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Abstract

The purpose of this article is to show that the distribution of the longest fragment in the
random multisection problem after k steps and the height of m-ary search trees (and some
extensions) are not only closely related in a formal way but both can be asymptotically de-
scribed with the same distribution function that has to be shifted in a proper way (travelling
wave).

The crucial property for the proof is a so-called intersection property that transfers in-
equalities between two distribution functions (resp. of their Laplace transforms) from one
level to the next. It is conjectured that such intersection properties hold in a much more
general context. If this property is verified convergence to a travelling wave follows almost
automatically.

1 Introduction

In this paper we study concentration properties of several extremal parameters, the shortest and
longest fragment in a fragmentation process, the leftmost and rightmost particle in a branching
random walk and the height and saturation level in some random trees (see Theorems 2.1–2.3).
For all these parameters we observe the same phenomenon, the asymptotic distribution can be
described with the help of a travelling wave, that is, the distribution centered at the median
remains almost constant and consequently the distribution is concentrated around its median.1

In fact, we will concentrate on special cases that have nice analytic properties. However,
the core of the proof is an intersection property (Lemma 4.3 for the multisection problem,
Lemma 4.12 for m-ary search trees). In particular, in the last section (Section 5) we show in the
framework of branching random walks that an intersection property always implies convergence
to a travelling wave and, thus, concentration around the median (see Theorem 5.1).

1The interpretation of the result for the height and saturation level of trees is a little bit different (compare
with Theorem 2.3) but of similar flavour.
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2 Results

In this section we state our results. We start with Theorem 2.1 on the random multisection
problem, reformulate it in terms of branching random walks (Theorem 2.2) and close this section
with Theorem 2.3 on the height and saturation level of m-ary search trees. Theorem 2.3 is
probably the most interesting result. However, since the discussion of this result makes use of
branching random walks and also of the multisection problem the other two theorems are stated
first.

The Random Bisection Problem or Random Fragmentation Problem (see [3, 18, 19]) is
defined as follows. An interval of length x is cut into two halves of length x1 = V x and x2 =
(1−V )x, where V is a random variable taking values on [0, 1]. Next, each of these two fragments
is cut again into two parts (independently of the other and previous cuts). After the k-th step,
there are 2k fragments whose lengths are correlated random variables. Given the initial length
x, the problem is to determine the probability Pk(x, l) that each of the 2k fragments is shorter or
equal than l, that is, the distribution function of the longest fragment. Obviously this problem is
homogeneous in x and l. This motivates us to define P k(x) = Pk(x, 1), that is, Pk(x, l) = P k(x/l).
By definition we have P 0(x) = 1 for 0 ≤ x < 1, P 0(x) = 0 for x ≥ 1, and recursively

P k+1(x) = E
(
P k(xV )P k(x(1− V ))

)
. (1)

Similarly we can also consider the probability Qk(x, l) that each of the 2k fragments is longer
than l, that is, 1 minus the distribution function of the shortest fragment. With Qk(x) = Qk(x, 1)
we obtain as above Q0(x) = 0 for 0 ≤ x < 1, Q0(x) = 1 for x ≥ 1, and recursively

Qk+1(x) = E
(
Qk(xV )Qk(x(1− V ))

)
. (2)

In the same way we can define a Multisection Problem. Let m ≥ 2 and V1, . . . , Vm be random
variables taking values on [0, 1] with V1 + · · · + Vm = 1. An interval of length x is partitioned
into m parts of lengths xV1, xV2,. . . , xVm. Now the recurrence for P k(x) is given by

P k+1(x) = E
(
P k(xV1) · · ·P k(xVm)

)
. (3)

In what follows we will always assume that (V1, . . . , Vm) is (what we call) t-beta-distributed,
where t is a non-negative integer parameter. This means that

E f(V1, . . . , Vm) =
(m(t + 1)− 1)!

(t!)m
×∫ 1

0

∫ 1−x1

0
· · ·
∫ 1−x1−···−xm−2

0
(x1x2 · · ·xm−1(1− x1 − · · · − xm−1))t ×

f(x1, . . . , xm−1, 1− x1 − · · · − xm−1) dxm−1 dxm−2 · · · dx1.

In other words, the random vector (V1, . . . , Vm) is concentrated on the set
{(x1, x2, . . . , xm) ∈ [0, 1]m : x1 + x2 + · · · + xm = 1} and the density of the distribution is
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given by
(m(t + 1)− 1)!

(t!)m
(x1x2 · · ·xm)t.

We remark that, for large t, the distribution is approximated by the point distribution that is
concentrated at x1 = x2 = · · · = xm = 1

m . The fragments in the multisection problem will be
more balanced for large t.

We will see in the sequel that these kinds of distributions occur naturally in the context of so-
called fringe balanced m-ary search trees. Furthermore, relations of the form (1) can be restated
as convolution identities and, thus, lead to a differential equation for the Laplace transform of F
that can be tackled with the help of our methods. This was a strong motivation for us to restrict
ourselves to t-beta distributions. Of course, this is only a very special case of a fragmentation
process (see [3]). We cannot contribute much to the general situation, see section 5. Nevertheless
we can provide a complete answer to the above special case as it was predicted by [18].

Theorem 2.1 Let m ≥ 2 and t ≥ 0 be integers and (V1, . . . , Vm) be t-beta-distributed. Suppose
that P k(x) and Qk(x) are the distribution functions of the corresponding multisection problem.
Then there exist continuous functions F (x) and G(x) such that

P k(x) = F (x/xk) + o(1) and Qk(x) = G(x/yk) + o(1)

uniformly for x ≥ 0 as k → ∞, where xk and yk are defined by P k(xk) = Qk(yk) = 1/2. They
are asymptotically given by

log xk = k log ρ1 + Θ(log k) and log yk = k log ρ2 + Θ(log k),

where ρ1, ρ2 are defined as in Lemma 3.2.
Furthermore, there exist constants C1, C2 > 0, γ1, γ2 > 1, and β1, β2 > 0 with

P k(x) = O
(
e−C1(x/xk)γ1

)
(for x ≥ xk),

1− P k(x) = O
(
(x/xk)β1

)
(for x ≤ xk),

Qk(x) = O
(
e−C2(x/yk)−γ2

)
(for x ≤ yk),

1−Qk(x) = O
(
(x/yk)−β2

)
(for x ≥ yk).

A branching random walk is a sequence of point processes Zk, where Z0 = δ0 and Zk+1

evolves from Zk by splitting each particle of Zk (independently of one another) into a random
number N of points with displacements determined by a given point process Z = δX1+· · ·+δXN

.2

For example, if N ≡ m and X1 = log(1/V1), . . . , Xm = log(1/Vm) with V1 . . . , Vm from above
2δx denotes the probability measure concentrated at the point x.
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then the distribution of Lk, the left most particle at stage k, (and of Rk, the corresponding right
most particle) are given by

Pr{Lk > x} = P k(ex) and Pr{Rk ≤ x} = Qk(e
x).

Thus, we can reformulate Theorem 2.1 in terms of the distribution of Lk and Rk as follows.

Theorem 2.2 Let m ≥ 2 and t ≥ 0 be integers and (V1, . . . , Vm) be t-beta-distributed. Consider
the branching random walk Zk with reproduction measure

Z = δX1 + · · ·+ δXm ,

where Xj = log(1/Vj) (1 ≤ j ≤ m), and let Lk resp. Rk be the position of the leftmost resp.
rightmost particle at level k. Then there exist functions w1(x) and w2(x) such that

Pr{Lk > x} = w1(x−m1(k)) + o(1) and Pr{Rk ≤ x} = w2(x−m2(k)) + o(1),

where the medians m1(k) and m2(k) are defined by Pr{Lk ≤ m1(k)} = Pr{Rk ≤ m2(k)} = 1/2
and are also given by m1(k) = log xk and m2(k) = log yk (with xk, yk from Theorem 2.1). They
are asymptotically given by

m1(k) = k log ρ1 + Θ(log k) and m2(k) = k log ρ2 + Θ(log k) (k →∞),

where ρ1, ρ2 are defined as in Lemma 3.2.
Furthermore, there exist C > 0 and η > 0 with

Pr{|Lk −m1(k)| > x} ≤ Ce−ηx and Pr{|Rk −m2(k)| > x} ≤ Ce−ηx.

In particular we have, as k →∞,

VarLk = O(1) and VarRk = O(1).

By Biggins [4] it is known that Lk/k → log ρ1 and Rk/k → log ρ2 (almost surely). Hence,
Theorem 2.2 is in some sense a refined version of Biggins’ result. It also makes precise the
ideas evocated in Kyprianou [15], section 2. In this context, the functions w1 and w2 are also
called travelling waves. It is assumed that convergence to travelling waves is a much more
general phenomenon, but there are only few examples where it is known (see Bachmann [2]). In
section 5 we will show that a so-called intersection property will prove this almost automatically.
Unfortunately it seems to be a non-trivial problem to verify this intersection property in a
general setting. In Bachmann [2] this property was implicitly proved for iid Xj with log-concave
density. In the context of Theorem 2.2 (and also of Theorem 2.1) we can prove an intersection
property on the level of Laplace transforms. We remark that the results in Bramson [8] on
Brownian branching random walks rely on an intersection property, too.
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Binary (and more generally m-ary) search trees and their variants are one of the most
popular data structures (see [17]). They also appear implicitly in the analysis of Quicksort.
They become random trees by assuming proper random models on the input data. The most
common model is the random permutation model, that is, one assumes that every permutation
of n input elements (the data) is equally likely.

In order to speed up Quicksort one also uses the median of (2t + 1)-variant. In every step
one uses the median of 2t + 1 random elements as the pivot. Of course, this gives rise to a more
balanced binary search tree, the fringe balanced binary search tree. (The m-ary version is the so
called fringe balanced m-ary search tree, where one has to build up m−1 pivots from m(t+1)−1
random elements.) Equivalently one can build up split trees (see [12]) with splitting probabilities
for a tree storing n items with m subtrees with n1, n2, . . . , nm items (n1+n2+· · ·+nm = n−m+1;
the root stores m− 1 items) of the form(

n1

t

)(
n2

t

)
· · ·
(
nm

t

)(
n

m(t+1)−1

) .

For this random model of trees let H
(m,t)
n denote the height and H

(m,t)
n the saturation level, that

is the maximal level up to which the tree is a complete m-ary tree. For example, the splitting
probabilities can be used to get an explicit recurrence of the form

Pr{H(m,t)
n ≤ k + 1} (4)

=
∑

n1+n2+···+nm=n−m+1

(
n1

t

)(
n2

t

)
· · ·
(
nm

t

)(
n

m(t+1)−1

) Pr{H(m,t)
n1

≤ k} · · ·Pr{H(m,t)
nm

≤ k}.

A tree of size n has height ≤ k+1 if and only if all its subtrees (of sizes n1, . . . , nm) have heights
≤ k. Hence, the problem is to solve this recurrence in some sense.

The height Hn = H
(2,0)
n of binary search trees (and its variants) has a long history (compare

with [13]). In 1986 Devroye [10] proved that the expected value EHn satisfies the asymptotic
relation EHn ∼ c log n (as n → ∞), where c = 4.31107 . . . is the largest real solution of the
equation

(
2e
c

)c = e. (Earlier Pittel [21] had shown that Hn/ log n → γ almost surely as n →∞,
where γ ≤ c, compare also with Robson [23].) Based on numerical data Robson conjectured that
the variance VarHn is bounded. Eventually, Reed [22] and independently Drmota [13] settled
Robson’s conjecture and proved that

VarHn = O(1).

In [13] the distribution of Hn was also asymptotically determined.
The following theorem generalizes this result to the height (and saturation level) of fringe

balanced m-ary search trees.
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Theorem 2.3 Let m ≥ 2 and t ≥ 0 be integers. There exist sequences ck, dk with

lim
k→∞

ck+1

ck
= ρ1 and lim

k→∞

dk+1

dk
= ρ2

such that

Pr{H(m,t)
n ≤ k} = F (n/ck) + o(1) and Pr{H(m,t)

n > k} = G(n/dk) + o(1),

where F (x) and G(x) are as in Theorem 2.1.
Furthermore, set k1(n) = max{k ≥ 0 : ck ≤ n} ∼ log n/ log ρ1 and k2(n) = max{k ≥ 0 :

dk ≤ n} ∼ log n/ log ρ2. Then

EH(m,t)
n = k1(n) + O(1) and EH

(m,t)
n = k2(n) + O(1)

and there exists η > 0 with

Pr{|H(m,t)
n − k1(n)| > y} = O(e−ηy) and Pr{|H(m,t)

n − k2(n)| > y} = O(e−ηy).

In particular we have, as n →∞,

VarH(m,t)
n = O(1) and VarH

(m,t)
n = O(1).

These theorems show that the distribution of the longest part in the random multisection
problem and the height of m-ary search trees (and some extensions) are closely related. This
similarity has been already observed and used by Devroye [10, 11] to prove that H

(m,0)
n / log n →

1/ log ρ1 a.s. He uses an infinite m-ary trees where the m edges of each node are labeled by
independent copies of V1, . . . , Vm and the nodes v by the product Vj1Vj2 · · ·Vjh

corresponding to
the path joining the root and v. The height H̃n of the random subtree consisting of the nodes
with Vj1Vj2 · · ·Vjh

≤ 1/n corresponds to the leftmost particle in the branching random walk
determined by the point process Z = δ− log V1 + · · ·+ δ− log Vm or to the largest fragment in the
corresponding random multisection problem, more precisely

Pr{H̃n ≤ k} = Pr{Lk > log n} = P k(n).

Hence by restating Biggin’s result [4] properly it follows that H̃n/ log n → 1/ log ρ1 a.s. Finally,
the distribution of H

(m,0)
n can be compared to that of H̃n, for example one has Pr{H(m,0)

n ≥
k} ≥ Pr{H̃n ≥ k}. Thus one gets H

(m,0)
n / log n → 1/ log ρ1, too. By the way, the saturation level

corresponds to the rightmost particle or to the shortest fragment. Hence, by following exactly
Devroye’s lines we immediately get

H
(m,t)
n

log n
→ 1

log ρ1
a.s. and

H
(m,t)
n

log n
→ 1

log ρ2
a.s. (5)
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In view of this discussion, Theorem 2.3 is a refinement of this first approximation.
The philosophy of Devroye relies on a coupling method between H̃n and H

(m,0)
n . Funda-

mentally, it works because the two models can be considered on the same probability space: by
embedding the search tree process in continuous time, (a) the m-ary search tree is the continuous
tree process observed at discrete random stopping times; (b) the multisection branching random
walk (or the fragmentation process) is constructed from the continuous time process, as being the
asymptotic proportions in the subtrees. For details, see [9, 1]. Consequently, formal similarities
appear on the Laplace transforms. In particular, the Laplace transform of P k satisfies the same
(recursive) differential equations as the generating functions of the probabilities Pr{H(m,t)

n ≤ k},
compare with (16) and (42). Luckily this formal similarity also leads to a similar way for the
asymptotic analysis. Both problems can be described with the help of a common travelling wave
F (x). The crucial property for the proof is again an intersection property, see Lemma 4.12.

Although there is a strong formal similarity, we decided to treat both problems separately.
First, the random multisection problem is easier since it is only discrete in the number of steps
k whereas the height problem is discrete in the number of nodes n and the level k. This causes
additional monotonicity considerations and also additional approximation steps. Further, in the
random multisection problem one is mainly interested in the asymptotics k →∞ whereas in the
tree problem one looks as n →∞.

The structure of the paper is the following one. In Section 3 we prove the existence of a trav-
elling wave with the help of a stochastic fixed point equation. The main part is Section 4, where
we prove convergence to a travelling wave (Theorem 2.1 and 2.2) and the analogue for m-ary
search trees (Theorem 2.3). Finally, in Section 5 we discuss the implications of the intersection
property in the context of branching random walks.

3 Existence of a Travelling Wave

In this section we consider the functional equation

F (x/ρ) = E (F (xV1) · · ·F (xVm)) (6)

for critical values ρ > 1 and show that there is (up to scaling) a unique solution that can be
interpreted as a travelling wave solution of a certain branching random walk. In fact, we will
present two proofs. The first one is based on known results on the fixed point solution of the
equation

Y =
∑
i≥1

AiYi, (7)

where (A1, A2, . . .) is a random decreasing sequence of non-negative numbers that ultimatively
vanish and Yi are copies of a random variable Y that are independent of each other and
(A1, A2, . . .).
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The second proof will be presented in the next section and follows from an analysis based
on the Laplace transform. We remark that the first approach is much more general than the
second one but the second approach provides tail estimates for the solution of (6) that are not
granted by the first method.

Alternatively to (7) one usually considers the Laplace transform Φ(x) = E e−Y x and the
corresponding equation

Φ(x) = E

∏
i≥1

Φ(xAi)

 (x ≥ 0) (8)

and searches for solutions Φ of (8), in the set of Laplace transforms of finite non-negative random
variables. Note that Φ(ax) is also a solution of (8) for every a > 0 if Φ(x) satisfies (8). There is
an extensive literature that deals with the problem of establishing the uniqueness of solutions
for equations like (8). For instance the work by Biggins and Kyprianou [7], Liu [16] and already
of Durrett and Liggett [14] for the nonrandom case where N ≡ m show that, under suitable
conditions, (8) has (up to this scaling) a unique solution:

Proposition 3.1 Set v(α) = log
(
E
(∑

i≥1 Aα
i

))
and suppose that v(0) > 0, that α = 1 is

contained in the interior of {α : v(α) < ∞}, and that v(1) = v′(1) = 0 (critical case). Then
the equation (8) has (up to scaling) a unique solution Φ(x) in the set of Laplace transform of
non-negative random variables. This solution is such that

lim
x→0+

1− Φ(x)
−x log x

= c1 (9)

exists (with a positive constant c1).

It should be noted that the non critical case v(1) = 0, v′(1) < 0 is much easier to handle. In
Biggins and Kyprianou [5] it is shown that there is also a unique solution.

Before stating our result we need the following property.

Lemma 3.2 Let m ≥ 2 and t ≥ 0 be integers. Then there exist exactly two solutions β1 > 0
and β2 < 0 of the equation

(m−1)(t+1)−1∑
j=0

log(β + t + 1 + j)− log
(

(m(t + 1))!
(t + 1)!

)
=

(m−1)(t+1)−1∑
j=0

β

β + t + 1 + j
. (10)

Set

ρ1 = exp

(m−1)(t+1)−1∑
j=0

1
β1 + t + 1 + j

 and ρ2 = exp

(m−1)(t+1)−1∑
j=0

1
β2 + t + 1 + j

 .

Then 1 < ρ1 < ρ2.
Furthermore,
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1. if 1 < ρ < ρ1 then the equation

(m(t + 1))!
(t + 1)!

ρβ = (β + t + 1)(β + t + 2) · · · (β + m(t + 1)− 1) (11)

has exactly two solutions β′, β′′ with 0 < β′ < β1 < β′′,

2. if ρ = ρ1, then (11) has exactly one solution β = β1,

3. if ρ1 < ρ < ρ2 then (11) has no solutions,

4. if ρ = ρ2, then (11) has exactly one solution β = β1, and

5. if ρ > ρ2 then (11) has exactly two solutions β′, β′′ with −t− 1 < β′ < β2 < β′′ < 0.

For the reader’s convenience we provide a short proof.
Proof. For β > −t− 1 set

v(β) = log
(

(m(t + 1))!
(t + 1)!

)
−

(m−1)(t+1)−1∑
j=0

log(β + t + 1 + j).

Then v(β) is strictly convex and we have v(0) = log m > 0 and v(1) = 0. Thus, the graph of
v(β) is the boundary ∂C = {(β, v(β)) : β > −t − 1} of a strictly convex region C = {(β, γ) :
β > −t− 1, γ ≥ v(β)} that does not contain the origin (0, 0) but we have (0, log m) ∈ ∂C and
(1, 0) ∈ ∂C.

Now note that (10) is equivalent to v(β)/β = v′(β). In geometric terms this means that one
is looking at tangents to the convex region C that contain the origin (0, 0). Since C is strictly
convex there are exactly two tangents γ = β log 1

ρ1
and γ = β log 1

ρ2
with 1 < ρ1 < ρ2 that

correspond to the tangent points (β1, v(β1)) and (β2, v(β2)) with β1 > 0 and −t− 1 < β2 < 0.
Finally, (11) is equivalent to v(β) = β log 1

ρ or to the intersection points of the boundary
of C and the line γ = β log 1

ρ . By obvious convexity arguments this completes the proof of the
lemma. �

With the help of Proposition 3.1 we can easily prove the following property.

Theorem 3.3 Let m ≥ 2 and t ≥ 0 be integers and (V1, . . . , Vm) be t-beta-distributed. Then for
ρ = ρ1 and ρ = ρ2 as defined in Lemma 3.2 the functional equation (6) has (up to scaling) a
unique solution F1(x) resp. F2(x). This solution is such that

1− F1(x) ∼ d1x
β1 log x (x → 0+) (12)

and
1− F2(x) ∼ d2x

β2 log x (x →∞) (13)
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for non-zero real constants d1, d2. Furthermore, F1(x) and F2(x) are strictly decreasing resp.
increasing, continuous, and satisfy

lim
x→∞

F1(x) = lim
x→0+

F2(x) = 0. (14)

Proof. For 1 ≤ i ≤ m set Ai = (ρ1Vi)β1 . Then

v(α) = αβ1 log ρ1 + log(mt!)−
t∑

j=0

log(αβ1 + t + j + 1)

and by (10) and (11) we obtain directly that v(1) = v′(1) = 0. Using Proposition 3.1 it follows
that there exists a function Φ1(x) that is unique up to scaling and satisfies

Φ1(x) = E

(
m∏

i=1

Φ1

(
x(ρ1V1)β1

))

and 1 − Φ1(x) ∼ −d1x log x as x → 0+, for an appropriate constant d1 > 0. Hence, F1(x) =
Φ1(xβ1) satisfies the functional equation (6) and (12). Since Φ1(x) = E

(
e−Y x

)
is the Laplace

transform of a non-negative random variable Y , it is decreasing. Furthermore, Φ′
1(x) =−E

(
Y e−Y x

)
< 0. Thus Φ1(x) and F1(x) are strictly decreasing (and continuous). It also follows that the limit
D = limx→∞ F1(x) ≥ 0 exists. By (12) we know that D < 1 and from (6) it follows that D = Dm.
Consequently D = 0.

In completely the same way we can proceed with ρ2 and β2 < 0 and obtain corresponding
properties for F2(x). �

Remark 3.4 As already mentioned above, using Proposition 3.1, we can only get one-sided tail
estimates for F1(x) and F2(x).

Remark 3.5 The functional equation (6) has also unique solutions for 1 < ρ < ρ1 and for
ρ > ρ2. This case corresponds to v(1) = 0 and v′(1) < 0.

Remark 3.6 The solution of the functional equation (8) is the Laplace transform of a random
variable which has a meaning in the branching random walk framework (see [6, 7, 15]): let
Z = δX1 + · · · + δXN

be the point process driving the branching random walk with N ≡ m
and for j = 1, 2, . . . ,m, Xj = log(1/Vj). Call Xu the position of a particle u (the sum of i.i.d.
displacements in the random walk on the branch leading to u). Let

m(β) = E

 N∑
j=1

e−βXj


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and

Wn(β) =
∑
|u|=n

e−βXu

m(β)n
=
∑
|u|=n

e
−β(Xu+n

log m(β)
β

)

be the additive martingale associated to the branching random walk. The critical case corresponds
to the case where β is a solution of the equation

log m(β)
β

=
m′(β)
m(β)

,

and there are two solutions β1 and β2 of this equation. In our fragmentation case, it appears that
it is the same equation as equation (10) in lemma 3.2.3 So call them β1 > 0 and β2 < 0. For β1

for instance (it is the same with β2), Wn(β1) tends to 0 almost surely when n goes to infinity,
giving a trivial solution to the fixed point equation. Besides the derivative martingale (so called
because it can be derived by differentiating the additive martingale with respect to β) is defined
by

W ′
n(β) = −

∑
|u|=n

(
Xu + n

m′(β)
m(β)

)
e−βXu

m(β)n
.

In the critical case, it has almost surely a finite limit W ′(β1) but with an infinite expectation. It
is a solution of the same fixed point equation and its Laplace transform is a solution of (8), so
that the wave can be represented as

F1(x) = Φ1(xβ1) = E(e−xβ1W ′(β1)) (15)

Of course, W ′(β1) coincides with Y in the proof of Theorem 3.3.

4 Convergence to Travelling Wave

In this section (V1, . . . , Vm) will always denote a t-beta distributed random vector with a non-
negative integer parameter t.

4.1 Random Fragmentation Problem

In what follows we will prove Theorems 2.1 and 2.2. One major tool is the property of Lemma 4.2
that we call intersection property. It transfers inequalities from one step to the next. Convergence
to a travelling wave (resp. to its Laplace transform) is then almost automatic, see Lemmas 4.3
and 4.4.

3The function v(β) in the proof of Lemma 3.2 equals log m(β) for a t-beta distributed random vector
(V1, . . . , Vm).
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Lemma 4.1 Suppose that F (x), x ≥ 0, is a non-negative bounded function and let

LF (u) =
∫ ∞

0
e−xuF (x) dx (u > 0)

be the Laplace transform of F (x). Furthermore, let TF be given by

(TF )(x) = E (F (xV1) · · ·F (xVm)) .

Then4

L
(m(t+1)−1)
TF (u) = (−1)m−1 (m(t + 1)− 1)!

(t!)m

(
L

(t)
F (u)

)m
. (16)

Proof. The proof is easy and is left to the reader. �

Lemma 4.2 Let m ≥ 2 and t ≥ 0 be given integers and suppose that F (x) and G(x) are
non-negative functions, that are defined for x ≥ 0, have the following properties:

1. The Laplace transforms LF (u) and LG(u) exist for u > uc (for some uc ≥ −∞).

2. The t-th derivative ∆̂(t)(u) of the difference ∆̂(u) = LF (u)−LG(u) exactly one zero u0 > uc

such that (−1)t∆̂(t)(u) > 0 for u > u0.

3. There exists u1 such that (−1)j∆̂(j)
1 (u) > 0 for u > u1 and j = 0, 1, . . . ,m(t+1)−1, where

∆̂1(u) = LTF (u)− LTG(u).

Then the differences
∆̂(j)

1 (u) = L
(j)
TF (u)− L

(j)
TG(u)

have at most one zero > uc for j = 0, 1, . . . ,m(t + 1)− 1.

Proof. By (16) we have

∆̂(m(t+1)−1)
1 (u) = (−1)m−1 (m(t + 1)− 1)!

(t!)m
∆̂(t)

1 (u)
m−1∑
`=0

(L(t)
F (u))`(L(t)

G (u))m−1−`.

Since (−1)`L
(`)
F (u) > 0 and (similarly for LG(u)) it follows that ∆̂(m(t+1)−1)

1 (u) has exactly one
zero u0 > uc and that

(−1)m(t+1)−1∆̂(m(t+1)−1)
1 (u) > 0

for u > u0.
Now, observe that by assumption (−1)m(t+1)−2∆̂(m(t+1)−2)

1 (u) > 0 for u ≥ u1. Hence, if we
consider the mapping

v 7→ f(v) = (−1)m(t+1)−2∆̂(m(t+1)−2)
1 (u1 − v) (0 ≤ v < u1 − uc)

4We use the notation f (t)(x) for the t-th derivative of f(x).
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then it follows that f(0) > 0, that f(v) is increasing for 0 ≤ v ≤ u1 − u0 and decreasing for
u1 − u0 ≤ v < u1 − uc. Thus, f(v) has at most one zero for 0 ≤ v ≤ u1 − uc. Consequently,
∆̂(m(t+1)−2)

1 (u) has at most one zero > uc.
In the same way we can proceed further. If (−1)m(t+1)−2∆̂(m(t+1)−2)

1 (u) has no zero > uc

then it follows that (−1)m(t+1)−3∆̂(m(t+1)−3)
1 (u) > 0 for all u > uc (and so on). If

(−1)m(t+1)−2∆̂(m(t+1)−2)
1 (u) has a zero > uc then we obtain that ∆̂(m(t+1)−3)

1 (u) has at most
one zero > uc. The lemma follows now by induction. �

Lemma 4.3 Let F0(x) be defined by

F0(x) =
{

1 for 0 ≤ x < 1,
0 for x ≥ 1,

and recursively Fk+1 = T Fk for k ≥ 0. Then there exist uk > 0 satisfying

1
uk

LFk

(
1
uk

)
=

1
2

with

1
uk+1

LFk+1

(
u

uk+1

)
≥ 1

uk
LFk

(
u

uk

)
(for u < 1), (17)

1
uk+1

LFk+1

(
u

uk+1

)
≤ 1

uk
LFk

(
u

uk

)
(for u > 1). (18)

Note that Fk(x) equals P k(x) from Theorem 2.1.
Proof. First of all we note that the Laplace transform LFk

(u) is defined for all (real and com-
plex) u. For example, LF0(u) = (1− e−u)/u. The functions LFk

(u) can be recursively calculated
with the help of (16).

Since F1(x) = 1 for 0 ≤ x ≤ 1 and F1(x) > 0 for x > 1 we surely have F1(x) ≥ F0(x) for
x ≥ 0 (and F1(x) > F0(x) for x > 1). Consequently we obtain by induction Fk+1(x) ≥ Fk(x)
(and Fk+1(x) > Fk(x) for x > 1). This implies that LFk+1

(u) > LFk
(u) for u > 0. Since

L−F ′
k
(u) = 1− uLFk

(u) we also have L−F ′
k+1

(u) < L−F ′
k
(u).

Note that L−F ′
k
(u) ∼ 1 as u → 0+, that L−F ′

k
(u) → 0 as u → ∞, and that L−F ′

k
(u) is

strictly decreasing. Hence, there uniquely exists uk > 0 with L−F ′
k
(1/uk) = 1

2 and consequently

1
uk

LFk

(
1
uk

)
=

1
2
.

We also have uk+1 > uk since L−F ′
k+1

(u) < L−F ′
k
(u) and L−F ′

k
(u) is strictly decreasing.

Now fix some k ≥ 0 and set (for j ≥ 0)

F̃j(x) = Fj(xuk) and G̃j(x) = Fj+1(xuk+1).
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Then T F̃j = F̃j+1, TG̃j = G̃j+1, and

LF̃k
(1) = LG̃k

(1) =
1
2
. (19)

For convenience, set ∆j(x) = F̃j(x)− G̃j(x) and ∆̂j(u) = L∆j (u). By construction we have
∆j(x) = 0 for 0 ≤ x ≤ 1/uk+1 and ∆j(x) > 0 for 1/uk+1 < x ≤ 1/uk. Thus, there exists u′j > 0
such that

(−1)`∆̂(`)(u) =
∫ ∞

0
∆j(x)x`e−xu dx = (−1)`

(
L

(`)

F̃j
(u)− L

(`)

G̃j
(u)
)

> 0 (20)

for u ≥ u′j and ` = 0, 1, . . . ,m(t + 1)− 1. We now show inductively that the differences

∆̂(`)
j (u) = L

(`)

F̃j
(u)− L

(`)

G̃j
(u)

have exactly one (positive) zero for j = 0, 1, . . . , k and ` = 0, 1, . . . ,m(t+1)−1. This is obviously
true for j = 0 since ∆0(x) has exactly one “zero”. (Note that uk+1 > uk !) Now, assume that
the functions ∆̂(`)

j (u) (` = 0, 1, . . . , k) have exactly one positive zero u′′j,` (for some j < k).

Since (−1)`∆̂(`)
j (u) is positive for u ≥ u′j we know that (−1)`∆̂(`)

j (u) < 0 for 0 < u < u′′j,` and

(−1)`∆̂(`)
j (u) > 0 for u > u′′j,`. From (20) we also know that (−1)`∆̂(`)

j+1(u) > 0 for u > u′j+1

and ` = 0, 1, . . . ,m(t + 1) − 1. Thus, we can apply Lemma 4.2 and obtain that ∆̂(`)
j+1(u) (` =

0, 1, . . . ,m(t + 1) − 1) have at most one positive zero. Hence, it remains to show that there
is some zero. If ∆̂(`0)

j+1(u) has no zero (for some `0) then it follows that ∆̂(`)
j+1(u) have no zero

for ` = 0, 1, . . . , `0. In particular it follows then by induction (with the help of the methods
of Lemma 4.1) that ∆̂j+1(u) > 0, ∆̂j+2(u) > 0, . . ., ∆̂k(u) > 0 for all u > 0. This contradicts
∆̂k(1) = 0 and consequently ∆̂(`)

j+1(u) has exactly one positive zero for all ` = 0, 1, . . . ,m(t+1)−1.
We also know now that u = 1 is the only zero of ∆̂k(1) = 0. By combining this with (20)

we have ∆̂k(u) < 0 for u < 1 and ∆̂k(u) > 0 for u > 1. Of course, this is just a translation of
(17) and (18) since LF̃k

(u) = 1
uk

LFk

(
u
uk

)
and LG̃k

(u) = 1
uk+1

LFk+1

(
u

uk+1

)
�

Lemma 4.4 Let Fk(x) and uk be defined as in Lemma 4.3. Then the limit

L1(u) = lim
k→∞

1
uk

LFk

(
u

uk

)
(21)

exists for each real u and L1(u) satisfies the differential equation

L
(m(t+1)−1)
1 (u) = (−1)m−1 (m(t + 1)− 1)!

(t!)m

(
1

ρt+1
1

L
(t)
1 (u/ρ1)

)m

, (22)
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where ρ1 is as defined in Lemma 3.2. We also have

ρ1 = lim
k→∞

uk+1

uk
(23)

and
log uk = k log ρ1 + Θ(log k) (k →∞). (24)

Furthermore, L1(u) is the Laplace transform of a distribution function F (x) that satisfies the
fixed point equation

F (x/ρ1) = E (F (xV1) · · ·F (xVm)) , (25)

that is, F (x) equals (up to scaling) F1(x) from Lemma 3.2, and we have

Fk(x) = F (x/uk) + o(1) (26)

uniformly for x ≥ 0, as k →∞.

Proof. From (17) and (18) it directly follows that the limit L1(u) in (21) exists. Furthermore,
the function 1− uL1(u) is the limit of the moment generating function of a certain sequence of
continuous random variables Yk with distribution function 1−Fk(xuk). Consequently, 1−uL1(u)
equals the moment generating function of a random variable Y that is the weak limit of the Yk’s.
Of course, the distribution function 1−F (x) of Y satisfies F (x) = Fk(xuk)+ o(1) as k →∞ for
all x that are continuity points of F .

Since L1(u) is a continuous function and the convergence to L1(u) is monotone, it fol-
lows that the convergence (1/uk)LFk

(u/uk) → L1(u) is uniform in u over intervals of the form
[u′, u′′] with 0 < u′ < u′′ < ∞. Hence, by elementary means it follows that all derivatives
(1/ut+1

k )L(t)
Fk

(u/uk) converge uniformly to L
(t)
1 (u) for u ∈ [u′, u′′], too.

Now we rewrite (16) to

1

u
m(t+1)
k+1

L
(m(t+1)−1)
Fk+1

(
u

uk+1

)
= (−1)m−1 (m(t + 1)− 1)!

(t!)m

(
1

κt+1
k

1
ut+1

k

L
(t)
Fk

(
1
κk

u

uk

))m

,

where κk = uk+1/uk ≥ 1. We can take the limit as k → ∞ on both sides and observe (due to
uniform convergence) that the limit

lim
k→∞

1
κt+1

k

L
(t)
1

(
u

κk

)
exists. It is now easy to conclude that κk is a convergent sequence. Namely, if κk had two different
limit points τ1 6= τ2 then L1(u) would satisfy (22) with ρ1 = τ1 and ρ1 = τ2. This would imply
τ

m(t+1)
1 L

(m(t+1)−1)
1 (τ1u) = τ

m(t+1)
2 L

(m(t+1)−1)
1 (τ2u) or F (x/τ1) = F (x/τ2) (for all continuity

points of F ) which is impossible since F is decreasing and not constant. Thus, κk = uk+1/uk → ρ
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for some ρ > 1. The case ρ = 1 can be discharged because this case corresponds to L1(u) = 1/u
or F (x) = 1.

Next, we use the interpretation of Theorem 2.2, that is, 1−Fk(ex) can be interpreted as the
distribution function of the leftmost particle Lk of a corresponding discrete branching random
walk that satisfies Lk/k → log ρ1 almost surely (as k →∞). Thus, ρ has to be equal to ρ1, that
is, (23). Further, (24) follows from [20].

Finally, it also follows that F (x) solves (25). Thus, F (x) equals (up to scaling) F1(x) from
Theorem 3.3. Since F1(x) is continuous, (26) holds uniform for all x ≥ 0. �

In completely the same way we obtain the following properties.

Lemma 4.5 Let G0(x) be defined by

G0(x) =
{

0 for 0 ≤ x < 1,
1 for x ≥ 1,

and recursively Gk+1 = TGk for k ≥ 0. Furthermore, let vk > 0 be given by

1
vk

LGk

(
1
vk

)
=

1
2
.

Then we have

1
vk+1

LGk+1

(
u

vk+1

)
≤ 1

vk
LGk

(
u

vk

)
(for 0 < u < 1, ) (27)

1
vk+1

LGk+1

(
u

vk+1

)
≥ 1

vk
LGk

(
u

vk

)
(for u > 1.) (28)

We only observe that Gk(x) = 0 for 0 ≤ x ≤ mk and that vk+1 > mvk. Observe also that Gk(x)
equals Qk(x) from Theorem 2.1 and that LGk

(u) is only defined for (real) u > 0.

Lemma 4.6 Let Gk(x) and vk be defined as in Lemma 4.5. Then the limit

L2(u) = lim
k→∞

1
vk

LGk

(
u

vk

)
(29)

exists for each u > 0 and L2(u) satisfies the differential equation

L
(m(t+1)−1)
2 (u) = (−1)m−1 (m(t + 1)− 1)!

(t!)m

(
1

ρt+1
2

L
(t)
2 (u/ρ2)

)m

, (30)

where ρ2 is as defined in Lemma 3.2. We also have

ρ2 = lim
k→∞

vk+1

vk
, (31)
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and
log vk = k log ρ2 + Θ(log k) (k →∞). (32)

Furthermore, L2(u) is the Laplace transform of a distribution function G(x) that satisfies the
fixed point equation

G(x/ρ2) = E (G(xV1) · · ·G(xVm)) , (33)

that is, G(x) equals (up to scaling) F2(x) from Lemma 3.2, and we have

Gk(x) = G(x/vk) + o(1) (34)

uniformly for x ≥ 0, as k →∞.

With the help of Lemma 4.4 and Lemma 4.6 we have proved almost entirely the first part
of Theorems 2.1 and 2.2. In order to complete the proofs we have to show that uk and xk (resp.
vk and yk) are related in a proper way and to provide proper tail estimates.

Lemma 4.7 Let xk, yk, uk, vk be as defined in Theorem 2.1 and Lemmas 4.3 and 4.5. Then
there exist positive constants C1, C2 such that the following limiting relations hold:

lim
k→∞

uk

xk
= C1 and lim

k→∞

vk

yk
= C2.

Proof. From (26) it follows that

lim
k→∞

F (xk/uk) =
1
2
.

Since F (x) is strictly decreasing and continuous it follows that the limit limk→∞
uk
xk

exists and
equals C1 = F−1(1/2).

The limiting relation for vk/yk is proved in exactly the same way. �

In order to complete the proofs of Theorems 2.1 and 2.2 it remains to show the right tail
estimates for Fk and Gk.

Lemma 4.8 Let 1 < ρ1 < ρ2 be defined as in Lemma 3.2. Then, for every ρ that satisfies
1 < ρ < ρ1 or ρ > ρ2 there uniquely exists Fρ(x), that is the solution of the equation

Fρ(x/ρ) = E (Fρ(xV1) · · ·Fρ(xVm))

and the normalization LFρ(1) = 1
2 .

Furthermore, for 1 < ρ < ρ1 we have Fρ(x) = 1 − d1x
β′ + O(xβ1) as x → 0+ (for some

constant d1 > 0) and there exists x1 > 0 and C1 > 0 such that

Fρ(x) ≤ e−C1xγ
(35)
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for x ≥ x1, where γ = (log m)/(log(m/ρ)). Similarly, for ρ > ρ2 we have Fρ = 1−d2x
β′ +O(xβ2)

as x →∞ (for some constant d2 > 0) and there exists x2 > 0 and C2 > 0 such that

Fρ(x) ≤ e−C2x−γ′
(36)

for x ≥ x2, where γ′ = (log m)/(log(ρ/m)).

Note that ρ2 > m so that γ′ > 0.
Proof. First suppose that 1 < ρ < ρ1 and let β′, β′′ denote the solutions of (11) that satisfy

0 < β′ < β1 < β′′. Let F denote the set of non-negative, continuously decreasing functions F (x),
x ≥ 0, that satisfy

F (x) = 1− xβ′ + O(xβ1) (x → 0+). (37)

(Note that all functions F ∈ F satisfy 0 ≤ F (x) ≤ 1.) We observe that F endowed with the
metric

δ(F,G) = sup
x≥0

|(F (x)−G(x))x−β1 |

is a complete metric space. Furthermore the mapping

S : F (x) 7→ (SF )(x) = E (F (ρxV1) · · ·F (ρxVm))

is a contraction on F . First of all, if F (x) is a non-negative, continuously decreasing function,
then (SF )(x) is a non-negative and continuously decreasing, too. Furthermore, if F (x) satisfies
(37) we also have (as x → 0+)

(SF )(x) = 1−mxβ′ρβ′E(V β′

1 ) + O(xβ1)

= 1− xβ′ρβ′ (m(t + 1))!
(t + 1)!(β′ + t + 1) · · · (β′ + m(t + 1)− 1)

+ O(xβ1)

= 1− xβ′ + O(xβ1).

Finally, suppose that F,G ∈ F with δ(F,G) = d. Then |F (x)−G(x)| ≤ d xβ1 and we obtain

|(SF )(x)− (SG)(x)| ≤ mE (|F (ρxV1)−G(ρxV1)|)
≤ dmρβ1xβ1E(V β1

1 )

= dρβ1xβ1
(m(t + 1))!

(t + 1)!(β1 + t + 1) · · · (β1 + m(t + 1)− 1)

and consequently

δ((SF ), (SG)) ≤ (m(t + 1))!ρβ1

(t + 1)!(β1 + t + 1) · · · (β1 + m(t + 1)− 1)
· δ(F,G).
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Set

g(β) =
(m(t + 1))!ρβ

(t + 1)!(β + t + 1) · · · (β + m(t + 1)− 1)
.

By Lemma 3.2 the equation g(β) = 1 has only two solutions β′, β′′ > 0 and we have g(β) →∞
as β → ∞ and if β → −t − 1. Since β′ < β1 < β′′ we thus have g(β1) < 1. Therefore, the
mapping S : F → F is a contraction.

Let Fρ ∈ F denote the unique fixed point of S that is granted by Banach’s fixed point
theorem. Our final goal is to show that Fρ satisfies (35). For this purpose set

F0(x) = max{1− xβ′ , 0} ∈ F

and Fk+1(x) = (SFk)(x) for k ≥ 0. By Banach’s fixed point theorem this sequence of functions
converges to Fρ and we have δ(Fk, Fρ) ≤ C for all k ≥ 0 for some C < ∞. Consequently we
know that

Fk(x) ≤ 1− xβ′ + Cxβ1 = 1− xβ′(1− Cxβ1−β′) (38)

for all k ≥ 0 and x ≥ 0. In particular there exists x1 > 0 such that

1− xβ′ + Cxβ1 < 1 for 0 ≤ x ≤ x1.

Next set
γ =

log m

log(m/ρ)

and

η = min
1≤`≤m−1

ρ− ρ
log `
log m

m− `

and choose C1 > 0 such that

1− xβ′ + Cxβ1 < e−C1xγ
for η x1 ≤ x ≤ x1. (39)

We now show inductively that

Fk(x) ≤ e−C1xγ
(for x ≥ x1). (40)

Obviously, (40) is satisfied for k = 0. We assume that (40) is satisfied for some k ≥ 0. By (38)
and (39) we also have Fk(x) ≤ e−C1xγ

for η x1 ≤ x ≤ x1. Our aim is to show that

Fk(z1)Fk(z2) · · ·Fk(zm) ≤ e−C1xγ
(41)

for all z1, z2, . . . , zm ≥ 0 with z1 + z2 + · · ·+ zm = ρx. It is clear that (41) directly implies

Fk+1(x) = E (Fk(ρxV1) · · ·Fk(ρxVm))
≤ E

(
e−C1xγ)

= e−C1xγ
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for x ≥ x1 as proposed.
If zi ≥ ηx1 for all i = 1, . . . ,m then we directly get

Fk(z1)Fk(z2) · · ·Fk(zm) ≤ e−C1(zγ
1 +zγ

2 +···+zγ
m)

≤ e−C1m((z1+z2+···+zm)/m)γ

= e−C1((z1+z2+···+zm)/ρ)γ

= e−C1xγ
.

Next suppose that zi ≥ ηx1 for 1 ≤ i ≤ ` and zi < ηx1 for `+1 ≤ i ≤ m for some 1 ≤ ` ≤ m−1.
By symmetry this is no loss of generality. Furthermore, since mηx1 ≤ ρx (for x ≥ x1) it cannot
be the case that zi < ηx1 for all i. Here we have

Fk(z1)Fk(z2) · · ·Fk(zm) ≤ Fk(z1)Fk(z2) · · ·Fk(z`)

≤ e−C1(zγ
1 +zγ

2 +···+zγ
` )

≤ e−C1`((z1+z2+···+z`)/`)γ

= e−C1(m/`)γ−1(x−(z`+1+···+zm)/ρ)γ

≤ e−C1(m/`)γ−1(x−(m−`)ηx1/ρ)γ
.

Since

η
m− `

ρ
≤ 1− ρ

log `
log m

−1 = 1−
(

`

m

)1−γ−1

and x1 ≤ x it follows that

ηx1
m− `

ρ
≤ x− x

(
`

m

)1−γ−1

or (m

`

)γ−1
(

x− (m− `)
ηx1

ρ

)γ

≥ xγ

which implies that
Fk(z1)Fk(z2) · · ·Fk(zm) ≤ e−C1xγ

even in this remaining case. This completes the proof of (41). Note finally, that we can scale
Fρ(x) properly so as to have LFρ(1) = 1

2 .
If ρ > ρ2 the proof is completely the same. �

Lemma 4.9 Let Fk(x) and Gk(x) be defined as in Lemma 4.3 resp. Lemma 4.5, let F (x) and
G(x) be given by Lemma 4.4 resp. Lemma 4.6, ρ1, ρ2 be defined as in Lemma 3.2, and Fρ(x) be
given by Lemma 4.8.

If 1 < ρ < ρ1 then

1
uk

LFk

(
u

uk

)
≤ LF (u) ≤ LFρ(u) (for u < 1, )

1
uk

LFk

(
u

uk

)
≥ LF (u) ≥ LFρ(u) (for u > 1.)
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If ρ > ρ2 then

1
vk

LGk

(
u

vk

)
≥ LG(u) ≤ LFρ(u) (for 0 < u < 1, )

1
vk

LGk

(
u

vk

)
≤ LG(u) ≥ LFρ(u) (for u > 1.)

Proof. First suppose that 1 < ρ < ρ1. We set

F̃j(x) = Fj(xuk) and G̃j(x) = Fρ(xρk−j).

Then G̃0(x) − F̃0(x) has exactly one “zero” which implies that all derivatives of the Laplace
transform have the same property. Furthermore, LF̃k

(1) = LG̃k
(1). We are, thus, in the same

situation as in the proof of Lemma 4.3. Consequently we obtain

1
uk

LFk

(
u

uk

)
≤ LFρ(u) (for u < 1 and)

1
uk

LFk

(
u

uk

)
≥ LFρ(u) (for u > 1.)

This is true for all k. Hence we also get LF (u) ≤ LFρ(u) for u < 1 and LF (u) ≥ LFρ(u) for
u > 1.

The case ρ > ρ2 can be treated in completely the same way. �

Lemma 4.10 Let Fk(x) and Gk(x) be as above. Then there exist constants C1, C2 > 0, γ1, γ2 >
1, and β1, β2 > 0 with

Fk(x) = O
(
e−C1(x/uk)γ1

)
(for x ≥ uk),

1− Fk(x) = O
(
(x/uk)β1

)
(for x ≤ uk),

Gk(x) = O
(
e−C2(x/vk)−γ2

)
(for x ≤ vk),

1−Gk(x) = O
(
(x/vk)−β2

)
(for x ≥ vk)

Proof. By 1− Fρ(x) ∼ xβ′ and (35) it follows that

L1−Fρ(u) = O(u−1−β′) (u →∞)

and
LFρ(u) = O

(
e−C2(−u)γ/(γ−1)

)
(u → −∞).
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Now assume that 0 < x < β′ and set u = β′/x (for which we have u > 1). With the help of
Lemma 4.9 we, thus, obtain

L1−Fρ(u) ≥ 1
uk

L1−Fk

(
u

uk

)
=

∫ ∞

0
(1− Fk(t uk))e−tu dt

≥ (1− Fk(xuk))
∫ ∞

x
e−tu dt

= (1− Fk(xuk))
e−ux

u

and consequently
1− Fk(xuk) = O(euxu−β′) = O(xβ′).

Similarly we obtain for u = −cxγ−1 < 0 (with a properly chosen constant c > 0)

LFρ(u) ≥ 1
uk

LFk

(
u

uk

)
=

∫ ∞

0
Fk(t uk)e−tu dt

≥ Fk(xuk)
∫ x

0
e−tu dt

≥ Fk(xuk)
e−ux

−u

and finally
Fk(xuk) = O

(
ueux+C1xγ)

= O
(
e−C2xγ/(γ−1)

)
.

The bounds for Gk(x) follow along similar lines. �

By combining the preceding results we have completed the proofs Theorem 2.1 and Theo-
rem 2.2.

4.2 Height and Saturation Level of m-Ary Search Trees

The proof of Theorem 2.3 is very similar to that of Theorem 2.1 and Theorem 2.2. A major tool
is again an intersection property stated in Lemma 4.12.

Lemma 4.11 Let H
(m,t)
n denote the height and H

(m,t)
n the saturation level of fringe balanced

m-ary search trees. Then the generating functions

yk(x) =
∑
n≥0

Pr{H(m,t)
n ≤ k} · xn and yk(x) =

∑
n≥0

Pr{H(m,t)
n ≥ k} · xn
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satisfy the recurrence relation

y
(m(t+1)−1)
k+1 (x) =

(m(t + 1)− 1)!
(t!)m

(
y

(t)
k (x)

)m
, (42)

y
(m(t+1)−1)
k+1 (x) =

(m(t + 1)− 1)!
(t!)m

(
y

(t)
k (x)

)m
(43)

with initial conditions

y0(x) = 1, yk(0) = y′k(0) = · · · = y
(m−1)
k (0) = 1

and
y0(x) =

x

1− x
, yk(0) = y′k(0) = · · · = y

(m−1)
k (0) = 0.

Proof. The recurrence (42) is just a restatement of (4). �

Lemma 4.12 Let y0(x), y1(x), z0(x), z1(x) be non-negative functions for x ≥ 0 such that the
difference y

(t)
0 (x)− z

(t)
0 (x) has exactly one positive zero, that

y
(m(t+1)−1)
1 (x) =

(m(t + 1)− 1)!
(t!)m

(
y

(t)
0 (x)

)m
, (44)

z
(m(t+1)−1)
1 (x) =

(m(t + 1)− 1)!
(t!)m

(
z
(t)
0 (x)

)m
, (45)

and that y
(j)
1 (0)−z

(j)
1 (0) > 0 for j = 0, 1, . . . ,m(t+1)−1. Then, the differences y

(j)
1 (x)−z

(j)
1 (x),

j = 0, 1, . . . ,m(t + 1)− 1, have at most one positive zero.

Proof. The proof is completely similar to the proof Lemma 4.2 (see also [13]). �

Lemma 4.13 Let ck and dk be defined by the relations

1
ck

yk

(
1− 1

ck

)
=

1
2

and
1
dk

yk

(
1− 1

dk

)
=

1
2
.

Then we have that

1
ck

yk

(
1− u

ck

)
<

1
ck+1

yk+1

(
1− u

ck+1

)
(for u < 1,)

1
ck

yk

(
1− u

ck

)
>

1
ck+1

yk+1

(
1− u

ck+1

)
(for u > 1).

and similar estimates follow for yk(x).

Proof. The proof is almost the same as that of Lemma 4.3. �
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Lemma 4.14 Let ck be as defined in Lemma 4.13. Then the limit

L1(u) = lim
k→∞

1
ck

yk

(
1− u

ck

)
exists for each real u > 0 and L1(u) satisfies the differential equation

L
(m(t+1)−1)
1 (u) = (−1)m−1 (m(t + 1)− 1)!

(t!)m

(
1

ρt+1
1

L
(t)
1 (u/ρ1)

)m

,

where
ρ1 = lim

k→∞

ck+1

ck
,

that exists, too. Hence, L1(u) is the same function as in Lemma 4.3 and is the Laplace transform
of a function F (x), for which 1− F (x) is a distribution function.

We also have
Pr{H(t)

n ≤ k} = F (n/ck) + o(1) (46)

uniformly for k ≥ 0, as n →∞.
Furthermore, there exist constants C1 > 0, γ1 > 1, and β1 > 0 such that

Pr{H(t)
n ≤ k} = O

(
e−C1(n/ck)γ1

)
(for n ≥ ck), (47)

Pr{H(t)
n > k} = O

(
(n/ck)β1

)
(for n ≤ ck). (48)

Proof. By Lemma 4.13 it is clear that the limit L1(u) exists and the convergence is also
uniform on any interval of the form [u′, u′′] ⊆ (0,∞).

We set Fk(x) = Pr{H(t)
x ≤ k} if x ≥ 0 is an integer and by linear interpolation for non-

integral x ≥ 0. Then 1−Fk(x) is a distribution function and we have (for every fixed u ≥ 0 and
as k →∞)

1
ck

yk

(
1− u

ck

)
=

∑
n≥0

Pr{H(t)
n ≤ k} (1− u/ck)

n 1
ck

=
∫ ∞

0
Fk(yck)e−uy dy + o(1).

Hence, we can argue as in the proof of Lemma 4.4 and it follows that there exists F (x) (that
has Laplace transform L1(u)) with Fk(xck) = F (x) + o(1) for all continuity points of F .

Next, (42) can be rewritten to

1
ct+1
k+1

y
(m(t+1)−1)
k+1 (1− u/ck+1) = (−1)m−1 (m(t + 1)− 1)!

(t!)m

(
1

κt+1
k

1
ct+1
k

y
(t)
k (1− u/(κkck))

)m
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which leads to

L
(m(t+1)−1)
1 (u) = (−1)m−1 (m(t + 1)− 1)!

(t!)m
lim

k→∞

(
1

κt+1
k

L
(t)
1 (u/κk)

)m

,

where κk = ck+1/ck, and as in the proof of Lemma 4.4, it follows that the limit ρ′ = limk→∞ κk =
limk→∞ ck+1/ck exists.

Since we know that H
(m,t)
n / log n → 1/(log ρ1) (almost surely as n →∞), ρ′ has to be equal

to ρ1. Hence, L1(u) and F (x) are (up to scaling) the same functions as those in Lemma 4.3.
Next, the tail estimates (47) and (48) follow in the same way in in the proofs of Lemma 4.10

(see also [13]). The only difference is that the Laplace integral has to be replaced by the power
series yk(x).

Putting all these things together we have shown that there exists a sequence εk → 0 with∣∣∣Pr{H(m,t)
n ≤ k} − F (n/ck)

∣∣∣ ≤ εk

uniformly for all n ≥ 0. Indeed, this is not exactly what we want to show. However, by combining
this estimate with the tail estimates for Pr{H(t)

n ≤ k} and F (x) it is easy to see that (46) follows,
too. �

The corresponding property for the saturation level H
(m,t)
n follows in analogous manner to

that of H
(m,t)
n . Theorem 2.3 is now an immediate consequence of Lemma 4.14.

5 The Intersection Property

In this final section we consider discrete branching random walks Zk defined by the point process

Z =
N∑

j=1

δXj ,

where we assume that EN > 1 and Pr{N < ∞} = 1.
It is well known that if Gk(x) = Pr{Rk ≤ x} is the distribution function of the rightmost

particle at level k then Gk+1(x) is given by

Gk+1(x) = E

 N∏
j=1

Gk(x−Xj)

 .

This motivates us to define the transform T :

(TG)(x) = E

 N∏
j=1

G(x−Xj)

 .

In what follows we assume that T satisfies the intersection property:
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Suppose that F (x) and G(x) are continuous distribution functions such that the dif-
ference F (x) − G(x) has exactly one zero. Then the difference (TF )(x) − (TG)(x)
has at most one zero.

It is worth mentioning that there are several examples where the intersection property applies.
For example, if N ≥ 2 is constant and if the Xj , 1 ≤ j ≤ N are iid with log-concave density then
the intersection property holds, compare with Bachmann [2]. Note further that F (x) ≤ G(x)
implies (TF )(x) ≤ (TG)(x) (resp. no zero implies no zero) and that T is sign preserving in the
sense that if F (x)−G(x) and (TF )(x)− (TG)(x) have exactly one zero then F (x)−G(x) > 0
as x →∞ if and only if (TF )(x)− (TG)(x) > 0 as x →∞.

We will also make the following general assumption on Z. We assume that

m(β) = E

 N∑
j=1

e−βXj


exists in a neighborhood of β = 0 and that the equation

log m(β)
β

=
m′(β)
m(β)

has in this neighborhood exactly two solutions β1 and β2 which are the same as in Lemma 3.2
in the particular case of the fragmentation problem. Without loss of generality we can assume
that the velocities c1 = −(log m(β1))/β1 and c2 = −(log m(β2))/β2 satisfy 0 < c1 < c2.

The following theorem provides convergence to a travelling wave w(x). It has to be compared
with Theorem 2.2, where the intersection property is not put ahead.

Theorem 5.1 Let Zk be a branching random walk as described above, in particular the inter-
section property holds. Let Lk resp. Rk the position of the leftmost resp. the rightmost particle
at level k. Then there exist functions w1(x) and w2(x) such that

Pr{Lk > x} = w1(x−m1(k)) + o(1) and Pr{Rk ≤ x} = w2(x−m2(k)) + o(1),

where m1(k) and m2(k) are defined by Pr{Lk ≤ m1(k)} = Pr{Rk ≤ m2(k)} = 1/2. They are
asymptotically given by

m1(k) = kc1 + o(k) and m2(k) = kc2 + o(k).

Moreover, the limits c1 = limk→∞(m1(k + 1) −m1(k)) and c2 = limk→∞(m2(k + 1) −m2(k))
exist and w1(x), w2(x) are (up to shifts) the unique solutions of the equations

w1(x) = E

 N∏
j=1

w1(x + c1 −Xj)

 and w2(x) = E

 N∏
j=1

w2(x + c2 −Xj)

 .
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Furthermore suppose that Z satisfies the property that there exist constants n > 0 and γ′ > 0
such that a.s.

N ≤ n and
N∑

j=1

e−γXj ≥ 1 (0 ≤ γ ≤ γ′)

Then there exist C > 0 and η > 0 with

Pr{|Lk −m1(k)| > x} ≤ Ce−ηx and Pr{|Rk −m2(k)| > x} ≤ Ce−ηx.

In particular we have, as k →∞, that

VarLk = O(1) and VarRk = O(1).

The branching random walk framework allows to get a martingale representation for w(x). It is
detailed in the following theorem.

Theorem 5.2 Let w1 and w2 be as given in Theorem 5.1. Then for every real x

Mn(x) =
∏
|u|=n

w1(x + nc1 −Xu)

is a multiplicative martingale with expectation w1(x), it converges a.s. and in L1 to a nondegen-
erate limit which can be written as

M(x) = exp(−Z(x))

Moreover,
w1(x) = E(exp{−eβ1xZ(0)})

which allows to represent any solution Φ of equation (8) as a Laplace transform of a limit of
martingales, namely

Φ(y) = E(e−yZ(0)) . (49)

Theorem 5.2 relies on arguments contained in [15]. As noticed in [15], the two representations:
in (15) the Laplace transform of W ′(β1) (an additive martingale limit) and in (49) the Laplace
transform of Z(0) (a multiplicative martingale limit) coincide thanks to the tail distribution of
Φ given in (9).

For the sake of shortness we do not give a proof of Theorem 5.2 but we indicate the main
steps of the proof of Theorem 5.1. It is split into several lemmas.

Lemma 5.3 Suppose that the intersection property holds. Let F0(x) be defined by

F0(x) =
{

1 for x < 0,
0 for x ≥ 0,
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and recursively by Fk+1 = TFk for k ≥ 0. Furthermore, let m1(k) > 0 be defined by

Fk(m1(k)) =
1
2
.

Then we have that

Fk+1(x + m1(k + 1)) ≤ Fk(x + m1(k)) (for x < 0, ) (50)
Fk+1(x + m1(k + 1)) ≥ Fk(x + m1(k)) (for x > 0.) (51)

Consequently, the limit
w1(x) = lim

k→∞
Fk(x + m1(k)) (52)

exists and is uniform for all x. Furthermore

c1 = lim
k→∞

(m1(k + 1)−m1(k)) (53)

and w1(x) satisfies the functional equation

w1(x) = E

 N∏
j=1

w1(x + c1 −Xj)

 . (54)

Proof. First of all, by the existence of m(β) in a neighbourhood of β = 0 there are proper tail
estimates and it easily follows that limx→∞ Fk(x) = 0 and limx→−∞ Fk(x) = 1 (for all k ≥ 1).
Furthermore, Fk(x) is continuous and strictly decreasing. Hence, m1(k) is uniquely defined.

Now fix some k ≥ 1 and define F̃j(x) = Fj(x+m1(k)) and G̃j(x) = Fj+1(x+m1(k+1)) (for
j = 0, 1, . . . , k). By definition we have F̃k(0) = G̃k(0) = 1/2. Furthermore, G̃0(x)− F̃0(x) has at
most one “zero”. Hence, by the intersection property it follows that all differences G̃j(x)− F̃j(x),
j = 0, 1, . . . , k, have exactly one zero and G̃j(x)− F̃j(x) > 0 as x →∞. In particular we obtain
(50) and (51).

Consequently, the limit (52) exists uniformly for all x and we also obtain

lim
k→∞

w1(x + m1(k + 1)−m1(k)) = (Tw1)(x)

for all x. Hence, the limit (53) exists and has to be equal to c1 (due to general properties of
branching random walks, compare with Biggins [4]). Finally, we also obtain (54). �

Note that Fk(x) = Pr{Lk > x} and that there is a completely analogous lemma for
Gk(x) = Pr{Rk ≤ x} that we do not state explicitly.

Lemma 5.4 Let 0 < c1 = −(log m(β1))/β1 < c2 = −(log m(β2))/β2 be the velocities from
above. Then for c with 0 < c < c1 resp. for c > c2 the equation

βc = − log m(β)
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has exactly two solutions β′, β′′ that satisfy β′ < β1 < β′′ resp. β′ < β2 < β′′. If c1 < c < c2

there are no solutions, and if c = c1 (resp. c = c2) then there is exactly one solution β = β1

(resp. β = β2).

Proof. The proof is of the same style as that of Lemma 3.2. �

Lemma 5.5 For every c that satisfies 0 < c < c1 or c > c2 there uniquely exists wc(x), that is
the solution of the equation

wc(x) = E

 N∏
j=1

wc(x + c−Xj)

 (55)

and satisfies the normalization wc(0) = 1
2 .

Furthermore suppose that Z satisfies the property that there exist n > 0 and γ′ > 0 such
that a.s.

N ≤ n and
N∑

j=1

e−γXj ≥ 1 (0 ≤ γ ≤ γ′).

Then for 0 < c < c1 we have wc(x) = 1 − d1e
β′x + O(eβ1x) as x → −∞ and there exist x1 and

C1 > 0, η1 > 0 such that
wc(x) ≤ exp (−C1e

η1x) (56)

for x ≥ x1. Similarly, for c > c2 we have wc(x) = 1−d2e
β′x +O(eβ2x) as x →∞ and there exist

x2 and C2 > 0, η2 > 0 such that

wc(x) ≤ exp
(
−C2e

−η2x
)

(57)

for x ≤ x2.

Proof. The proof is very close to that of Lemma 4.8; and we only consider the case 0 < c < c1.
We consider the set F of functions w(x) that are continuous and strictly decreasing and

satisfy w(x) = 1− eβ′x +O(eβ1x) as x → −∞ and limx→∞ w(x) = 0. The existence of wc follows
from the Banach’s fixed point theorem.

The proof of (56) is more involved. Without loss of generality we can assume that γ < β′.
Then we have m(γ) > e−γc which ensures that a.s. there exists j with Xj ≤ c + log n/γ. Next
we fix η > γ and D > log n/γ such that

eηcJ1−η/γ
(
1− (n− J)e−γ(c+D)

)η/γ
≥ 1

for J = 1, 2, . . . , n (which is surely possible by continuity).
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The main step of the proof is to observe that an estimate of the form w(x) ≤ exp (−Ceηx)
for x ≥ x1 −D implies that

w̃(x) = E

 N∏
j=1

w(x + c−Xj)

 ≤ exp (−Ceηx) (58)

for x ≥ x1, compare with the proof of Lemma 4.8.
By assumption we have a.s. 1 ≤ J = |S| ≤ n, where

S = {j ≥ 1 : Xj ≤ c + D}.

Consequently ∑
j∈S

e−γXj ≥ 1− (n− J)e−γ(c+D).

If x ≥ x1 and Xj ≤ c + D then x + c−Xj ≥ x1 −D. Hence, we get a.s.
N∏

j=1

w(x + c−Xj) ≤
∏
j∈S

exp
(
−Ceη(x+c)e−ηXj

)

= exp

−Ceη(x+c)
∑
j∈S

(e−γXj )η/γ


≤ exp

−Ceη(x+c)J1−η/γ

∑
j∈S

e−γXj

η/γ


≤ exp
(
−Ceη(x+c)J1−η/γ

(
1− (n− J)e−γ(c+D)

)η/γ
)

≤ exp (−Ceηx)

and thus w̃(x) ≤ exp (−Ceηx) for x ≥ x1. �

Lemma 5.6 Suppose that the intersection property holds. Let Fk(x) be defined as in Lemma 5.3
and wc be given as in Lemma 5.5. If 0 < c < c1 then

Fk(x + m1(k)) ≥ w1(x) ≥ wc(x) (for x < 0, )
Fk(x + m1(k)) ≤ w1(x) ≤ wc(x) (for x > 0.)

Proof. The proof is almost the same as that of Lemma 4.9. �

By combining Lemma 5.3–5.6 (with analogue results for w2(x)) one immediately derives
Theorem 5.1.
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