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CONQUEST: A Coarse-Grained Algorithm
for Constructing Summaries of
Distributed Discrete Datasets1

Jie Chi,2 Mehmet Koyutürk,2 and Ananth Grama2

Abstract. In this paper we present a coarse-grained parallel algorithm, CONQUEST, for constructing bounded-
error summaries of high-dimensional binary attributed data in a distributed environment. Such summaries
enable more expensive analysis techniques to be applied efficiently under constraints on computation, com-
munication, and privacy with little loss in accuracy. While the discrete and high-dimensional nature of the
dataset makes the problem difficult in its serial formulation, the loose-coupling of distributed servers hosting
the data and the heterogeneity in network bandwidth present additional challenges. CONQUEST is based on a
novel linear algebraic tool, PROXIMUS, which is shown to be highly effective on a serial platform. In contrast
to traditional fine-grained parallel techniques that distribute the kernel operations, CONQUEST adopts a coarse-
grained parallel formulation that relies on the principle of sampling to reduce communication overhead while
maintaining high accuracy. Specifically, each individual site computes its local patterns independently. Vari-
ous sites cooperate in dynamically orchestrated work groups to construct consensus patterns from these local
patterns. Individual sites may then decide to continue their participation in the consensus or leave the group.
Such parallel formulation implicitly resolves load-balancing and privacy issues while reducing communication
volume significantly. Experimental results on an Intel Xeon cluster demonstrate that this strategy is capable of
excellent performance in terms of compression time, ratio, and accuracy with respect to post-processing tasks.

Key Words. Coarse-grained data mining algorithms, Compressing binary attributed vectors, Non-orthogonal
matrix decompositions, Correlations in high dimensions.

1. Introduction. The tremendous increase in recent years in organizations’ ability to
acquire and store data has resulted in extremely large, high-dimensional datasets. For
example, commonly used Wal-Mart sales data is in the order of terabytes, with each
transaction typically defined over a space of several thousand dimensions (items). Such
datasets are often binary in nature, or can be transformed into binary datasets easily. This
paper focuses on efficient distributed techniques for analysis of such binary attributed
datasets.

Analysis of binary datasets presents significant challenges since it generally leads
to NP-hard problems. Consequently, algorithms and heuristics for such problems rely
heavily on principles of sub-sampling and compression for reducing the volume of data
these algorithms must examine. While serial techniques for sub-sampling and compres-
sion have been developed and applied with some success [1]–[4], a variety of application
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characteristics necessitate the development of corresponding distributed formulations.
These application characteristics include:

• Loose-coupling: As the sites that contain data are often loosely coupled, application
of fine-grained parallel algorithms for the above-mentioned problems is likely to
be very inefficient in terms of communication. In addition, the distribution of data
and the network bandwidth may be heterogeneous among different sites, making the
application of fine-grained algorithms considerably more difficult.
• Data volume: Large datasets often reside on geographically distributed locations. For

purposes of data mining, clustering, classification, and learning, collecting all of the
data at a single location is infeasible because of storage constraints.
• Real-time response: Certain applications in data analysis, such as network intrusion

detection, require real time response from a number of different locations. Collecting
data for analysis and/or applying fine-grain parallel implementations of the underlying
algorithms directly on the data may be too time consuming for such applications.
• Privacy considerations: In other applications, privacy considerations might preclude

collecting data at a single site. Depending on privacy requirements, only aggregated
patterns may be communicated. Constructing summaries in parallel, rather than ex-
changing the original data implicitly addresses such constraints.

CONQUEST is based on the linear algebraic tool PROXIMUS, which uses a variant of
Semi-Discrete Matrix Decomposition (SDD) [5] to compress binary datasets efficiently
in an error-bounded fashion. In PROXIMUS the compression (or summarization) problem
is formulated as follows. Given a set of binary vectors, find a compact set of binary vectors
such that each input vector is within bounded distance from some output vector. Based on
this formulation, each output vector may be interpreted as a pattern in the dataset. PROX-
IMUS is available over the public domain at http://www.cs.purdue.edu/homes/koyuturk/
proximus/. To date, it has over 300 installations in over 10 countries.

While parallelizing PROXIMUS, CONQUEST uses a coarse-grained formulation that
relies on the principle of sampling to reduce communication overhead while maintaining
high accuracy. Specifically, each individual site computes its local patterns (vectors)
independently. Various sites cooperate within dynamically orchestrated work groups to
construct consensus patterns from these local patterns. Then individual sites decide to
participate in the consensus or to leave the group based on the proximity of their local
patterns to consensus patterns. We demonstrate that this strategy results in excellent
parallel performance, particularly on loosely coupled platforms.

The optimization criteria for the problem are: minimizing the error in approximation
provided by the output patterns, and the number of patterns in the approximation for
given bound on error. Since the parallel formulation does not correspond directly to the
serial formulation and relies on the principle of sampling, an important consideration
is the effect of our parallelization strategy on the quality of the output. We show ex-
perimentally that CONQUEST demonstrates excellent parallel performance, in terms of
efficiency, quality of approximation, and redundancy in the number of detected patterns.

The rest of the paper is organized as follows. In Section 2 we discuss prior research
related to CONQUEST’s serial and parallel formulations. Section 3 introduces PROXIMUS

briefly. In Section 4 we discuss the challenges associated with a coarse-grained parallel
formulation, show the drawbacks of a fine-grained parallelization approach and motivate
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our design decisions. In Section 5 we evaluate the performance of CONQUEST on a cluster
of Intel Xeon servers on a range of inputs. We also discuss the application of CONQUEST

in the context of association rule mining. Finally, in Section 6, we draw conclusions and
outline avenues for future research.

2. Related Work. We first explore related work on analyzing binary datasets, followed
by parallel formulations of these methods. Data reduction techniques typically take the
form of probabilistic sub-sampling or data compression. Techniques based on probabilis-
tic sub-sampling have been extensively explored [1], [3], [4]. Use of data compression
techniques relies on extracting compact representations for data through discovery of
dominant patterns. A natural way of compressing data relies on matrix transforms such as
truncated Singular Value Decompositions (SVD), Semi-Discrete Decomposition (SDD),
and Centroid Decomposition. These methods have been widely used in information re-
trieval [5]–[8]. SVD decomposes a matrix into two orthogonal matrices, which contain
the dominant patterns. Each pattern is represented by a pair of singular vectors and an
associated singular value, which identifies the strength of the corresponding pattern in
the matrix. Computation of a full SVD can be expensive. SDD provides a convenient,
and often faster approximation to SVD by limiting the entries of the singular vectors
to the set {−1, 0, 1}. Centroid Decomposition represents the underlying matrix in terms
of centroid factors that can be computed without knowledge of the entire matrix with
the help of a fast heuristic called the Centroid Method. The computation of a centroid
decomposition depends only on the correlations between the rows of the matrix. The
main difference between SVD and the centroid method is that the centroid method tends
to discover a single dominant pattern while the SVD tends to discover the overall trend
in data. This may be a collection of several independent patterns. Orthogonal matrix
decompositions have been used by several distributed data mining algorithms [9], [10].

A major problem associated with orthogonal decompositions for large-scale binary
data analysis is that the forced orthogonality of discovered patterns degrades the inter-
pretability of the analysis (e.g., what is the physical interpretation of a negative number
in binary data?). A variant of these methods, Principal Direction Divisive Partitioning
(PDDP) [11], addresses this problem by recursively finding rank-one approximations of
the input matrix and partitioning this matrix based on the approximation. All of these
methods target the analysis of high-dimensional data of a continuous nature. PROX-
IMUS adapts the idea of recursive matrix decomposition to the analysis of large-scale
binary-valued datasets.

Prior work on parallel data mining algorithms has focused on tasks such as clus-
tering, classification, and association rule mining. Several projects have addressed the
parallelization of existing clustering algorithms [12]–[15]. Among these, CLARA [16]
attempts to create multiple samples and applies PAM (Partitioning Around Medoids)
on each sample to achieve efficiency of analysis on relatively large datasets. However,
this efficiency is achieved at the expense of a possibility (probabilistically small) of
missing clusters in the data not sampled. Several researchers have developed parallel
association rule mining algorithms for various platforms [10], [17]–[24]. Most of these
approaches are based on the a priori algorithm [25] and its variants. One class of algo-
rithms is based on aggressive parallel formulations that focus on partitioning the data
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elements (e.g., candidate itemsets) so that each site performs an independent part of the
task. Such formulations are well suited to massively parallel platforms. Another class of
parallel formulations is based on computing frequent itemsets on each site individually
and then working in parallel to join individual patterns into global association rules. This
provides a more suitable framework for loosely coupled distributed systems. Work on
parallel classification has resulted in systems such as SPRINT [26], ScalParC [27], and
others [28]. These systems typically use decision tree-based classification.

In comparison with the parallel techniques mentioned above, CONQUEST is based on
a fundamentally different serial algorithm, PROXIMUS, which provides a more flexible
formulation for discrete data analysis based on the principle of data reduction. Instead
of analyzing a large dataset, PROXIMUS attempts to reduce the volume of data that any
subsequent analysis task would have to deal with. Possible subsequent analyses include
classification, clustering, pattern discovery and association rule mining. As the solution
of such problems on distributed platforms with large datasets tends to be expensive, it is
desirable to exploit the flexibility of PROXIMUS to simplify the problem for the underlying
application. Based on this observation, CONQUEST adopts a parallel formulation that
draws upon principles of sub-sampling to yield excellent parallel performance, while
preserving the quality of the output.

3. PROXIMUS: An Algebraic Framework for Error Bounded Compression of Binary
Datasets. PROXIMUS [2], [29] is a collection of novel algorithms and data structures that
rely on modified SDD to find error-bounded approximations to binary attributed datasets.
While relying on the idea of non-orthogonal matrix transforms, PROXIMUS provides a
framework for capturing the properties of binary datasets more accurately while taking
advantage of their binary nature to improve both the quality and efficiency of analysis.
PROXIMUS is based on recursively computing discrete rank-one approximations of a 0–1
matrix to extract dominant patterns hierarchically.

3.1. Discrete Rank-One Approximation of Binary Matrices

DEFINITION 1 (Discrete Rank-One Approximation of Binary Matrices). Given matrix
A ∈ {0, 1}m × {0, 1}n , find x ∈ {0, 1}m and y ∈ {0, 1}n to minimize the error:

‖A − xyT ‖2
F = |{ai j ∈ (A − xyT ): |ai j | = 1}|.(1)

As described above, discrete rank-one approximation can be considered as the discov-
ery of the most dominant pattern in the matrix. This pattern is characterized by a pattern
vector y and its presence in the rows of the matrix is signified by the presence vector
x . The outer product of the presence and pattern vectors provides a rank-one approxi-
mation for A that is at the minimum Hamming distance from A over all binary matrices
of rank one. The problem of finding a rank-one approximation is NP-hard. Therefore,
PROXIMUS uses an alternating iterative heuristic as a fast and effective technique that is
ideally suited to the discrete nature of the data.
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It can be easily shown that minimizing the error in a rank-one approximation is
equivalent to maximizing

Cd(x, y) = 2xT Ay − ‖x‖2
2‖y‖2

2.(2)

We show that this optimization problem can be solved in linear time for x if y is fixed.

LEMMA 1. For fixed y, the binary vector x that maximizes the objective function of (2)
is given by

x(i) =
{

1, if 2s(i) ≥ ‖y‖2
2,

0, otherwise,
(3)

where s = Ay.

PROOF. Assume that vector x∗ maximizes Cd(x, y). Let x∗(i) = 1. Let x̂ be the same
as x∗, except that x̂(i) = 0. Then Cd(x̂, y) = Cd(x∗, y) − 2s(i) + ‖y‖2 ≤ Cd(x∗, y).
Thus, 2s(i) ≥ ‖y‖2

2. A similar argument applies for the case x∗(i) = 0.

Therefore, it is possible to find the optimal solution to x for fixed y in linear time.
The same process can be applied to solve for y for a fixed x . Thus, we can iteratively
apply this strategy by choosing an initial y, solving for x , fixing x , solving for y, and
so on, until no improvement is possible. The fundamental operation in each iteration of
this algorithm is a matrix-vector multiplication, which can be performed in time linear
in the number of the non-zeros of matrix A. Note also that the number of iterations is
bounded by the number of columns (rows) and generally a few iterations are sufficient
for convergence in practice [30].

An elegant continuous approximation for the objective function of (2) based on SDD
is Cc(x, y) = (xT Ay)2/‖x‖2

2‖y‖2
2 [5]. While not being equivalent to the original ob-

jective function, this function might provide better approximations especially for very
sparse matrices. Both algorithms derived from these two objective functions are imple-
mented in PROXIMUS and CONQUEST. Although we base our discussion on the original
(discrete) objective function, the algorithms and analysis that follow from the continu-
ous approximation are similar. The differences between the two objective functions are
discussed in detail in [30].

3.2. Recursive Decomposition of Binary Matrices. PROXIMUS uses the rank-one ap-
proximation of a given matrix to partition the rows into two sub-matrices A1 and A0

containing rows that correspond to the ones and zeros of the presence vector x , respec-
tively. Therefore, the rows in A1 have a greater degree of similarity with respect to their
non-zero structure among themselves (characterized by the pattern vector y) compared
with the rest of the matrix. Since the rank-one approximation of A yields no information
about A0, we further compute a rank-one approximation for A0 and partition this matrix
recursively. On the other hand, we use the representation of the rows in A1 given by the
pattern vector y to determine whether this representation is adequate as determined by
some stopping criterion. If so, we decide that matrix A1 is adequately represented by
matrix xyT and stop; else, we recursively apply the procedure for A1 as for A0.
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The partitioning-and-approximation process continues until the matrix cannot be
further partitioned or the resulting approximation adequately represents the entire matrix.
Adequacy of representation is evaluated in terms of Hamming distance between the input
vectors and discovered pattern vectors. The Hamming radius of a matrix is defined as
the maximum of the Hamming distances of all rows in the matrix that are present in the
approximation to the pattern vector.

The recursive algorithm does not partition sub-matrix Ai further if both of the fol-
lowing conditions hold for the rank-one approximation Ai ≈ xi yT

i :

• r̂(Ai1, yi ) < ε, where ε is the prescribed bound on the Hamming radius of identified
clusters.
• xi ( j) = 1 ∀ j , i.e., all the rows of Ai are present in Ai1.

If both of the above conditions hold, the pattern vector yi is identified as a dominant
pattern in matrix A. The resulting approximation for A is represented as Ã = XY T

where X and Y are m× k and n× k matrices containing the presence and pattern vectors
in their rows, respectively, and k is the number of identified patterns.

EXAMPLE 1. Figure 1 illustrates the recursive structure of PROXIMUS. Starting with
matrix A, a rank-one approximation to A is computed. Matrix A is then partitioned into
A1 and A0 based on the presence vector x1. The rank-one approximation to A1 returns
a presence vector of all ones and the approximation is adequate so the recursion stops
at that node and y2 is recorded as a dominant pattern. On the other hand, matrix A0 is

A

A � x1y
T

1

x1[i] = 1 x1[i] = 0

A1 A0

A1 � x2y
T
2

x2[i] = 18i,

r̂(A11; y2) < �

x2; y2

A0 � x3y
T
3

x3[i] = 1 x3[i] = 0

A01

A01 � x4y
T
4

x4[i] = 18i,

r̂(A011; y4) < �

x4; y4

A00

A00 � x5y
T

5

x5[i] = 18i,

r̂(A001; y5) < �

x5; y5

Fig. 1. Recursive structure of PROXIMUS. Leaves of the recursion tree correspond to final decomposition.



CONQUEST OF7

further partitioned as the approximation A0 ≈ x3 yT
3 does not cover all rows of A0. The

overall decomposition is A ≈ XY T where X = [x2, x4, x5] and Y = [y2, y4, y5].

The running time of each rank-one approximation is linear in the number of non-zero
entries in the matrix, assuming that the number of iterations is bounded. As the number
of non-zeros in all the matrices that appear at a single level of the recursion tree is equal to
the number of non-zeros in the original matrix (nz(A)), and the height of the recursion
tree is at most equal to the number of patterns (k), the running time of the recursive
decomposition is O(k × nz(A)).

4. CONQUEST: A Coarse-Grained Tool for Constructing Summaries of Distributed
Binary Datasets. In this section we present a coarse-grained parallel algorithm for
constructing bounded-error summaries for binary datasets. The algorithm is based on
the model and algorithms described in the previous section. However, it is not a fine-
grained parallelization of PROXIMUS derived from a direct parallelization of the kernel
operations. Instead, it adopts a coarse-grained approach that relies on the principle of sub-
sampling to maintain quality of the solution while minimizing communication overhead.
The distributed formulation is formally defined as follows:

DEFINITION 2 (Bounded-Error Approximation of Distributed Binary Vectors). Given
m binary vectors of size n distributed across p sites, find a set of k � m binary vectors
of size n, so that for any input vector, there is an output vector such that the Hamming
distance between the two vectors is at most ε.

Here, ε is a prescribed bound depending on the application. One can view the problem
as decomposing p binary matrices A0, A1, . . . , Ap−1 of size mi × n for 0 ≤ i ≤ p − 1
where

∑p−1
i=0 mi = m to obtain global presence and pattern matrices X and Y of size

m × k and n × k such that

A =




A0

A1

· · ·
Ap−1


 ≈ XY T .(4)

Here X and Y approximate A in the sense that ‖A(i) − Y ( j)‖2
2 ≤ ε for i, j such that

X (i, j) = 1, where A(i) denotes the i th row of matrix A. This approximation provides
a global view of the underlying patterns in the overall data characterized by matrix Y .
Matrix X on the other hand, signifies the presence of each pattern in the rows of a matrix
at any site. As k � m, it is possible to replicate Y over all sites so that all sites will have
a global view of the entire data, which can be used for further post-processing for the
purpose of clustering, classification, pattern discovery, and so on.

EXAMPLE 2. A sample instance of the problem is shown in Figure 2. The instance
consists of 12 binary vectors of size 5 distributed across four sites. Matrices X and Y
shown in the figure provide an approximation to the input vectors such that each input
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A0 =
[

1 1 1 0 0
1 1 0 0 0
0 0 1 0 1

]

A1 =




0 1 1 0 0
0 0 1 1 1
0 0 0 1 1
0 0 1 0 1




A2 =
[

1 1 1 0 0
1 1 1 0 0
1 0 1 0 0

]

A3 =
[

1 1 1 0 0
0 0 1 1 1

]

X =




1 0
1 0
0 1
1 0
0 1
0 1
0 1
1 0
1 0
1 0
1 0
0 1




}
X0


X1

}
X2}
X3

Y T =
[

1 1 1 0 0
0 0 1 1 1

]

Input Matrices Presence Matrix Pattern Matrix

Fig. 2. A sample instance for bounded-error approximation of distributed binary vectors. The input is 12
vectors distributed across four sites. The two output pattern vectors provide an approximation for the input
vectors within a Hamming distance of at most 1.

vector is within Hamming distance of 1 of at least one pattern vector. Note that the pattern
matrix is common to all sites while the presence matrix might be distributed across sites
correspondingly.

4.1. Drawbacks of Fine-Grained Parallelization. In the distributed formulation of the
problem, no assumptions are made on the distribution of the input vectors among various
sites. In other words, the number of vectors and the underlying pattern structure of the
vectors residing at different sites are allowed to be arbitrary, making the model applicable
to any distributed platform. This assumption simplifies the task of parallelization for fine-
grained approaches and thus provides a more appropriate framework for the discussion of
fine-grained parallelization, while preserving validity of the observations on drawbacks
of such parallelization approaches.

In order to demonstrate the drawbacks of traditional fine-grained parallelization ap-
proaches, consider the following simple scenario: given a matrix A, find an error-bounded
binary non-orthogonal decomposition for A in parallel on p processors. As discussed
in the previous section, the underlying algorithm for binary non-orthogonal decompo-
sition is a recursive application of rank-one approximation to the input matrix and its
sub-matrices. Therefore, rank-one approximation is the core procedure in the algorithm.
An outline of the alternating iterative heuristic for rank-one approximation is shown in
Figure 3.

A fine-grained parallel algorithm would perform each rank-one approximation in
parallel. As seen in Figure 3, the major computation that takes place in this algorithm
is repeated matrix-vector multiplications (mat-vec), which appear on lines 2.1 and 2.3.
Once the mat-vecs are computed, the optimization problems of lines 2.2 and 2.4 can be
solved with relatively little effort. Therefore, the main computational bottleneck for the
algorithm is comprised of the two mat-vecs that are performed repeatedly.
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Algorithm RANKONEAPPROXIMATION(Binary Matrix A)
� returns Binary Vectors x and y that minimize ‖A − xyT ‖2

2

1 initialize y
2 repeat

2.1 s ← Ay
2.2 solve for x to maximize 2x T s − ‖x‖2

2‖y‖2
2

2.3 s ← x T A
2.4 solve for y to maximize 2sT y − ‖x‖2

2‖y‖2
2

3 until no improvement on Cd(x, y) is possible

Fig. 3. Outline of the alternating iterative heuristic for rank-one approximation.

Repeated mat-vec is an extensively studied problem in parallel computing [31]. For the
case of sparse rectangular matrices as in our problem, three possible matrix partitioning
schemes exist for mapping data and computation to processors, as shown in Figure 4.
These are one-dimensional mapping based on rows, one-dimensional mapping based on
columns, and two-dimensional mapping. Consider a one-dimensional mapping based
on rows, in which each processor is responsible for a set of rows in the matrix. This is
in agreement with the nature of our algorithm since we partition the matrix based on
rows after each rank-one approximation. While computing each mat-vec Ay, a processor
needs the entire y vector and it computes the part of vector x that corresponds to its set
of rows. Therefore, while computing xT A, each processor will need to communicate
with other processors to obtain the entire y vector. A one-dimensional mapping based on
columns also leads to a similar communication pattern, but it has additional complications
for our problem as the recursive decomposition is carried out on the rows during the
course of the algorithm. For partitioning schemes that only take computational load
balancing into account, these schemes require a communication volume of O((p−1)m)
and O((p − 1)n), respectively. A two-dimensional mapping reduces the volume of
communication to O((

√
p− 1)(m + n)) [32]. However, this computation is repeated at

every iteration of each rank-one approximation. Observing that all matrices that appear
in the course of the computation have the same number of columns (n), the number of
rows of the matrices at each level of the recursion tree add up to that of the original

P0

P0

P0

P1

P1

P1

P2

P2

P2

P3

P3

P3

1-D Row 1-D Column 2-D

Fig. 4. Possible schemes for partitioning sparse rectangular matrices to perform repeated mat-vecs on four
processors. Each processor stores the part of the matrix that is marked by its own ID.
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matrix m, and the height of the recursion tree can be at most the number of discovered
patterns (k), this means a total communication of O(

√
pk(m + n)), assuming that the

number of iterations is bounded by a constant. This amount of communication poses
significant bandwidth requirement, which may be unrealistic when we consider that the
processors might be loosely coupled in a distributed scenario. Furthermore, the above
communication overhead is likely to overwhelm the run time of the overall computation
considering that the sequential runtime of the algorithm is just O(k × nz(A)).

By means of some optimization techniques, it is possible to minimize the communi-
cation cost involved in the mat-vecs to take advantage of the sparse nature of the data.
It is possible to formulate this problem as hypergraph partitioning or graph partition-
ing with vertex separator (GPVS) for the one- and two-dimensional mapping schemes,
respectively. In such models the cutsize of the graph (hypergraph) corresponds to the
total number of data elements to be communicated. There are many algorithms that
solve these problems efficiently in order to minimize total communication volume while
maintaining load balance [33]–[36]. However, the applicability of such methods to our
problem is questionable for the following reasons:

1. The datasets of interest often contain a few dominant patterns along with a number of
weak patterns. As a result, the matrices that appear in intermediate steps often differ
significantly in size. This situation is illustrated in Figure 5. The matrix is initially
distributed evenly among the two processors. If we simply assign the task of decom-
posing a child matrix to one processor, we could have unbalanced distribution of tasks
among processors as seen at the second level and the third level of the recursion tree.
In order to maintain consistent load balance among processors and minimum vol-
ume of communication, the communication-minimization heuristic must be applied
at every level of the recursion tree and large amount of data must be transferred as a
result. The communication cost incurred in load balancing and communication mini-

P1

P2

P1
P2

Pattern 1

Pattern 3
Pattern 2

Fig. 5. A parallel recursion tree that results from a straightforward assignment of tasks to processors.
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mization itself is likely to dominate the overall cost of the computation and therefore
significantly reduce scalability.

2. Computing good partitions implies finding good clusters within the dataset. While
this works for more expensive post-processing on the graph (such as repeated mat-
vecs for solving linear systems), they are not suitable for inexpensive operations such
as those involved in CONQUEST (no FLOPS at all!). The use of existing heuristics will
easily overwhelm the cost of executing CONQUEST without any optimization (i.e.,
CONQUEST is much cheaper than existing graph partitioners!).

In addition to the communication cost incurred by parallel mat-vecs and transfer of
data at each step of the recursive algorithm, the data is likely to be already distributed
among different sites in a real-life scenario. Therefore, redistributing the data in order to
minimize communication and provide load-balance might require transfer of the entire
data through the network and/or solution of a graph-partitioning problem in parallel.
Obviously, such attempts are likely to overwhelm the cost and purpose of the original
problem. Moreover, privacy constraints might make it impossible to transfer raw data
among sites. In this case, only general patterns that do not reveal the specific details
in the dataset that each site owns might be exchanged between sites. All of these ob-
servations and constraints show that a fine-grained parallel formulation is likely to be
inappropriate for our problem. For these reasons, CONQUEST adopts a coarse-grained
parallel formulation based on the principle of sub-sampling.

4.2. A Coarse-Grained Parallel Algorithm for Decomposing Binary Matrices. CON-
QUEST uses the concept of work groups to aggregate processors working on data with
similar patterns. Initially all processors are associated with a single work group. Each
processor proceeds to compute a rank-one approximation using its local data indepen-
dent of the others. Processors then go through a consolidation process (described in
detail in Section 4.2.1) to refine work groups to include only those processors that find
similar patterns at the most recent step. After regrouping, processors repeat the same
steps within their own work groups until the stopping criterion is satisfied. Note that
the work group is partitioned only for the sub-matrix (A1) that corresponds to the rows
that contain the pattern. While decomposing the rows that do not contain the discovered
pattern (A0), the work group of the parent matrix (A) is retained.

This process is illustrated in Figure 6. In this example there are four processors, each
initially assigned to a global work group. After the first round of computation, the first
three processors decide the patterns they found are similar and form a new work group.
They repeat the same process within the new group. Processor P4 discovers a pattern
that is sufficiently supported only by its own data (but is different from other proces-
sors’ patterns) and thereafter continues on its own. After consolidation, the recursive
procedure continues and processors consolidate within their work group after each step
of computation in the recursion tree until each of their stopping criteria is satisfied. At
this point, processors that terminate notify the remaining members of the work group
of their departure. When all processors terminate, they exchange their patterns and each
processor keeps a copy of all unique patterns.

The idea of constructing local work groups among processors is motivated by the ob-
servation that geographically distributed datasets often exhibit patterns that are somewhat
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Legend Rank−one approximation

P1 P2 P3 P4

Work Group

Fig. 6. CONQUEST parallel communication model.

unique in relation to their locations. For example, a Gap store in Minnesota in the winter
is likely to have sales patterns very different from those observed at a store in California.
This implies that the global data exchange in conventional parallelization schemes is
unnecessary and the additional gains in terms of accuracy of patterns discovered from
conventional strategies are likely to be limited.

4.2.1. Pattern Consolidation. After each rank-one approximation, processors in the
same work group exchange most recently discovered pattern vectors. Each processor
stores all the pattern vectors as a matrix and executes a serial version of the algorithm
to discover patterns within this matrix. Processors then replace their original patterns
with a consolidated pattern that is closest to the original, and use the new pattern for
continuing the process. By doing so, processors learn from each other by exchanging the
summary of the data in their local partitions and discovering the global trend in patterns.
It is noteworthy that communication happens only among processors that are in the same
work group. Communication across work groups is not necessary since processors in
different work groups, by definition, work on datasets that have different underlying
patterns. Additional communication would have little effect in terms of improving the
solution. Once new patterns are computed, processors form new work groups with others
sharing the same pattern and continue computation in this manner. This consolidation
process is implemented as shown in Figure 7.

We illustrate this process with a simple example that has four processors in a work
group. After the broadcast in line 2 in Figure 7, each processor has a pattern matrix
shown in Figure 8(a). Each row in the pattern matrix is a pattern vector discovered by a
processor in the same work group, and is tagged with the corresponding processor ID.
After obtaining the pattern matrix, each of the four processors tries to find patterns in
this matrix using the serial version of the algorithm, which results in the patterns shown
in Figure 8(b).

The two vectors found during local analysis can be thought of as the representatives
of all the patterns in the pattern matrix. These representative patterns provide the basis
for regrouping the processors. Processors 1, 2, and 3 have pattern vectors similar to the
first representative pattern, and form a new work group. They use the first representative
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Algorithm PATTERNCONSOLIDATION(Pattern Vector y, Current Workgroup G)
� returns Group Pattern ŷ and New Workgroup G ŷ

1 P ← all-to-all broadcast y within G
2 decompose P to find dominant patterns and

store them as set D = {d1, . . . , dk}.
3 if |D| = 1 then

3.1 ŷ ← d1 and G ŷ ← G
4 else

4.1 for i ← 1 to |D| do
4.1.1 if y is similar to di then

4.1.1.1 ŷ ← di

4.1.1.2 create and join communication group G ŷ

Fig. 7. Sketch of the parallel algorithm for pattern consolidation.

pattern to partition their local matrices. Processor 4 is in a group of its own and uses the
second representative pattern, which in this case, is the same as its original pattern, to
partition its local matrix.

4.2.2. Performance Aspects of CONQUEST. In essence, the CONQUEST parallel formu-
lation replaces the global rank-one approximation in the serial algorithm with local
approximation operations at each individual processor. There are two major advantages
of this formulation:

1. Load balancing is no longer a major issue. The only effort required is the initial
balancing of the load among processors. We no longer need to be concerned with the
communication patterns among the partitions of the matrix at different processors.
This is because kernel operations of mat-vecs and sorting operations are performed
independently at each processor.




P1 1 1 1 0 1 1 1 0

P2 1 1 1 0 1 1 1 0

P3 1 1 1 0 0 1 1 0

P4 0 0 0 1 1 1 0 1




(a)[
1 1 1 0 1 1 1 0

0 0 0 1 1 1 0 1

]

(b)

Fig. 8. (a) Collection of pattern vectors gathered into global pattern matrix. The ID of the processor that
contains each pattern is shown on the first column of the corresponding row. (b) Group patterns discovered
resulting from the decomposition of global pattern matrix.
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2. Communication overhead of the scheme is minimal. For each processor, there is at
most one all-to-all broadcast of its pattern vector required at each recursion step. The
size of the data being exchanged is the number of non-zeros in the pattern vector,
which is of the same dimension as the data matrix. For sparse data matrices, the size
of the pattern vector tends to be small.

One potential drawback of this approach is that the processors may work on local
partitions of the data most of the time. The computation of local patterns is carried out by
processors largely independently of each other and therefore is at the risk of converging
to undesirable local optima. The problem in this case is similar to that faced in typical
applications of sub-sampling.

To understand the likelihood of this event, consider the classical sub-sampling prob-
lem. Using Chernoff bounds, Toivonen [4] shows that the probability δ of error ε in
frequency of a subset in the original dataset and the sample is bounded by a function of
the sample size, |s|, and the error bound ε.

THEOREM 1. Let T be a set of transactions on set S of items. If t ⊂ T is a sample of
size

|t | ≥ 1

2ε2
ln

2

δ
,

then, for any subset s ⊂ S of items, the probability that e(s, t) > ε is at most δ, where
e(s, t) = |fr(s, T ) − fr(s, t)| is the difference between the frequencies of s in T and t ,
respectively.

Note that in the context of our problem, T is the matrix of interest and the items in
S are the columns of T . In this respect, the part of the matrix at each processor can be
considered as a sub-sample t of the original matrix. Thus, the theorem applies directly
with frequency of item sets in the theorem being viewed as the frequency of patterns in
CONQUEST. Since datasets in practical applications are likely to be large, the error bound
and the probability of error are both quite small. In addition, we are able to alleviate this
problem further to a satisfactory degree by periodic reconciliation among processors to
improve the accuracy of patterns that they converge to.

5. Experimental Results. In this section we evaluate the parallel performance of CON-
QUEST by examining its run-time properties and the various characteristics of the patterns
discovered. We then show CONQUEST’s application as a pre-processor in association rule
mining and compare the results with those of the a priori algorithm applied on raw data.
We examine the results in terms of precision and recall of discovered rules.

5.1. Execution Environment. CONQUEST is implemented for message-passing plat-
forms using MPI [37]. The measurements are taken on a cluster of Intel Xeon 800 MHz
servers networked over a 100 Mbs LAN. The use of such an environment is only mo-
tivated by the convenience of allocating a group of identical processors for the purpose
of investigating characteristics of parallel performance. As we discuss later in this sec-
tion, a high bandwidth cluster is by no means a prerequisite for the efficient execution
of CONQUEST.
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Table 1. Description of datasets used in experiments.

Data Number of rows Number of columns Number of patterns

M10K 7,513 472 100
M31K 23,228 714 100
L100K 76,025 178 20
LM100K 76,326 452 50
M100K 75,070 852 100
HM100K 74,696 3,185 500
H100K 74,733 7,005 2,500
M316K 237,243 905 100
M1M 751,357 922 100

The data matrices used in the experiments are generated using the synthetic data
generator made available by the IBM Quest Research Group [38]. We use a synthetic
data generator because it enables us to explore program performance with varying data
parameters. We generate two sets of data, one with a varying number of rows and
the other with a varying number of patterns. In the first set the number of patterns
is fixed at 100 (medium) and five instances, named M10K, M31K, M100K, M316K,
and M1M, containing ≈10K, ≈31K, ≈100K, ≈316K, and ≈1M rows, respectively, are
generated. In the second set the number of rows is fixed at ≈ 100K (medium) and five
instances, named L100K, LM100K, M100K, HM100K, and H100K, that contain 20,
50, 100, 500, and 2500 patterns, respectively, are generated. We set the average number
of items per row and the average number of items per pattern both to 10. We also set
the average correlation between every pair of patterns to 0.1 and the average confidence
of a rule to 90%. Note that although other choices of these parameters are explored,
we are restricting our discussion to a single setting for simplicity, which is chosen to
be reasonable and observed to be representative for general performance results. As
might be inferred intuitively, the number of discovered patterns grows by increasing
between-pattern correlation, for both serial and parallel algorithms. Table 1 shows the
exact number of rows, number of items, and number of patterns in all datasets.

Unless otherwise specified, we set the bound on the Hamming radius of identified
clusters to 3 and use the Partition initialization scheme for all experiments discussed in
the remainder of this paper. For details on these parameters, please see [2].

5.2. Parallel Performance

5.2.1. Run-Time Properties. We demonstrate that CONQUEST is capable of excellent
speedup, while maintaining accuracy of the patterns found by comparing the run times
of CONQUEST on eight machines and the serial algorithm on an identical machine with
the same parameters. Tables 2 and 3 summarize the parallel performance for a varying
number of rows and number of patterns, respectively.

As the number of rows in the dataset grows from 10K to 1M, CONQUEST consistently
demonstrates speedups ranging from 6 to 12 (Figure 9). A similar behavior is observed
with respect to increasing number of patterns. The super-linear speedup, observed in
some cases, is attributed to the effect of sub-sampling. CONQUEST and PROXIMUS perform
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Table 2. Comparison of patterns discovered by parallel (eight pro-
cessors) and serial formulations for a varying number of rows.

Run time Number of patterns

Number of rows Serial Parallel Serial Parallel

10 K 0.40 0.07 296 526
31 K 0.96 0.16 406 700

100 K 7.90 0.99 745 964
316 K 27.62 2.35 1,343 1,624

1 M 76.78 7.25 189 322

different amounts of computation—and due to sub-sampling, CONQUEST often performs
less computation than its serial counterpart. The tradeoff for this lower computational
cost is that CONQUEST returns a larger number of pattern vectors. Table 4 shows the
parallel performance on dataset of 1M rows and 100 patterns with increasing number of
processors.

5.2.2. Quantitative Evaluation of the Patterns Discovered by CONQUEST. We first ex-
amine the number of patterns discovered by the parallel algorithm in comparison with
that of the serial algorithm. Figure 10 shows that CONQUEST discovers as many as 2.5
times the number of patterns discovered by the serial program. While this is an undesir-
able consequence resulting from the choice made in the design of the parallel formulation
in order to avoid a large communication overhead, we show that this redundancy in the
patterns discovered does not contribute significantly to the overall error in approximation.

Non-orthogonal decomposition of an input matrix A provides an approximation to
the matrix, namely Ã = XY T , where X and Y are the presence and pattern matrices,
respectively. A metric that immediately follows from the definition of the problem is the
error in approximation, i.e., the number of non-zeros in the residual matrix, given by the
following equation:

error = ‖A − Ã‖2
F = |{ai j ∈ (A − Ã): |ai j | = 1}|.(5)

As this metric is dependent on the size of the input matrix, we use two other normalized
metrics, namely precision and recall, that provide more intuitive interpretation of the
results. Precision measures the percentage of ones in the approximation matrix that also

Table 3. Comparison of patterns discovered by parallel (eight processors)
and serial formulations for a varying number of underlying patterns.

Run time Number of patterns
Number of of patterns Serial Parallel Serial Parallel

20 5.66 0.49 578 683
50 7.05 0.64 746 810

100 7.90 0.99 745 964
500 10.6 1.40 1,148 3,077

2,500 18.13 4.94 5,344 11,645
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Fig. 9. Speedup obtained by CONQUEST on eight processors over a serial program with (a) an increasing number
of rows and (b) an increasing number of underlying patterns.

exist in the original matrix. It is defined as follows:

precision = ‖A& Ã‖2
F

‖ Ã‖2
F

= |{(i, j): A(i, j) = Ã(i, j) = 1}|
|{(i, j): Ã(i, j) = 1}| .(6)

Recall, on the other hand, measures the percentage of the ones in the original matrix that
are also captured by the decomposition. It is defined as follows:

recall = ‖A& Ã‖2
F

‖A‖2
F

= |{(i, j): A(i, j) = Ã(i, j) = 1}|
|{(i, j): A(i, j) = 1}| .(7)

We use precision and recall to compare the approximations, As and Ap, which are
provided by serial and parallel formulation, respectively. Figure 11(a) shows precision

Table 4. Performance of CONQUEST on M1M data with an
increasing number of processors.

Number of processors Run time Number of patterns

1 76.78 189
2 32.55 197
4 14.46 242
6 8.68 288
8 7.25 322

10 4.80 361
12 3.90 390
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Fig. 10. The increase rate of the number of discovered patterns by the parallel algorithm with (a) an increasing
number of rows and (b) an increasing number of underlying patterns.

and recall comparing A with As and A with Ap with an increasing number of rows in
the original dataset. Figure 11(b) shows the same comparison for increasing number
of underlying patterns in the original dataset. These comparisons show that in general
precision and recall of the parallel approximation closely follow those of the serial
approximation. Notable differences include lower precision for a dataset with a small
number of rows (10K), and lower precision but higher recall for a dataset with a very
large number of patterns (2500 patterns in 100K rows). These deviations are consistent
with the expected variance as a result of sub-sampling. As the size of a dataset decreases
or the number of underlying patterns in a dataset increases, each pattern is supported by
fewer rows, which results in higher variations in the patterns discovered. In addition, we
also evaluate precision and recall for serial and parallel approximations with a varying
bound on the Hamming distance (1–5). As is evident in Figure 11(c), the precision and
recall levels of serial and parallel approximations closely match and stabilize as the
bound on the Hamming radius increases.

5.2.3. Bandwidth Requirement. We now examine the bandwidth requirement of CON-
QUEST with a view to justifying its coarse-grained nature. The coarse-grained nature
of CONQUEST’s parallel formulation alleviate much of the bandwidth requirement im-
posed by traditional fine-grained formulation. Figure 12(a) presents a lower bound on
the communication volume of a fine-grained parallel formulation derived from optimal
parallelizations of underlying kernels and the coarse-grained formulation adopted in
CONQUEST. Reported values for the total volume of communication for the fine-grain
parallel algorithm are conservative estimates that take into account only the repeated
mat-vecs. We assume a one-dimensional mapping of the matrix based on rows, which is
the most suitable for our application. We compute a lower-bound on the total volume of
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Fig. 11. Comparison of serial (dotted line) and parallel (solid line) approximations in terms of precision and
recall with respect to the original matrix with (a) an increasing number of rows, (b) an increasing number of
underlying patterns, and (c) an increasing bound on the Hamming radius.

communication optimized by a min-cut graph model using the following formula:

Vf = 4
∑

R

# of iterations × # rows in submatrix× cutsize

# rows in original matrix
.(8)

Here R denotes the set of all rank-one approximation computations. Using a hyper-
graph model, we compute a good cutsize using the hypergraph partitioning tool hMeTiS
[39], which is equal to the number of vector elements to be communicated during each
mat-vec (note again that the process of deriving a min-cut partition is more expensive
than CONQUEST itself!). We compute a conservative approximation for each sub-matrix
by averaging over the number of rows, which is an optimistic approximation to the cut-
size of the sub-matrix being approximated since the matrices that appear deeper in the
recursion tree are denser than the original matrix. As the mat-vec is repeated through
iterations, we multiply this number by the number of iterations in that computation.
The factor of 4 in the equation is for conversion to bytes since integer vectors need to
be transferred in a fine-grain formulation. Note that, in contrast, only bit-vectors are
transferred in CONQUEST.

We present only the matrices with 10K, 31K, and 100K matrices since the hyper-
graph partitioning the problem’s complexity exceeds that of sequential application of
PROXIMUS, making the minimum cut-based optimization infeasible.
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Total Communication
# of rows size×iter. cutsize fine-grained coarse-grained

10K 27 381 41148 1360
31K 31 630 78120 2981
100K 46 852 156768 4988
316K - - - 12935
1M - - - 38417

(a)
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Fig. 12. (a) Lower bound on communication volume of a hypothetical fine-grained algorithm compared with
the traffic volume generated by the execution of CONQUEST with the number of rows ranging from 10K to 1M.
(b) Comparison of the amount of network traffic generated by CONQUEST and fine-grained algorithms for the
first three datasets.

These results provide clear contrast between the fine-grained approach and the
coarsed-grained approach adopted by CONQUEST. Even with a conservative estimation
outlined above, a fine-grained parallel formulation would generate at least 150 KB net-
work traffic for the analysis of a dataset of 100K rows. In contrast, the execution of
CONQUEST generates only 5 KB of network traffic for the same analysis. Even the heavi-
est traffic, generated during the execution on a dataset of 1 million rows, is about 38 KB,
which is well within the capability of any wide area network (e.g., it takes milliseconds
to transfer 38 KB of data on a 1 Mbps network link). Thus, we can safely conclude that
the time it takes to transfer the small amount of traffic generated by CONQUEST is indeed
a very small fraction of the overall run time.

5.3. Application to Association Rule Mining. In this section we illustrate an applica-
tion of CONQUEST as a tool for summarizing large amounts of data distributed across
various sites. The objective is use this summary for mining association rules using a
conventional algorithm, sequentially. This is generally more efficient than collecting all
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of the data at one site or running a parallelized version of the conventional algorithm
since the underlying algorithm has considerable parallelization overhead, especially for
geographically distributed platforms.

Association rule mining is a well-known and extensively studied problem in data
mining [25]. Given a set of rows over a set of items, association rule mining aims to
discover rules in itemsets that satisfy the minimum support and confidence constraints
prescribed by the user. An association rule is an assertion of the kind “{bread, milk}
⇒ {butter}”, meaning that if a transaction contains bread and milk, it is also likely to
contain butter. The support of a rule in a set of transactions is defined as the percentage
of transactions that contain all items of the rule over all transactions in the set. The
confidence of a rule is the conditional probability of observing the right-hand side, given
the left-hand side.

We illustrate the use of CONQUEST for the purpose of association rule mining with an
example. Given a sample set of six transactions as shown in Figure 13(a), we can construct
a binary transaction matrix by mapping transactions to rows and items to columns and
setting entry ti j of the transaction matrix T to 1 if item j is in transaction Ti . The resulting
matrix is shown in Figure 13(b). As shown in Figure 14(a) two rank-one approximations
decompose T into a set of orthogonal presence vectors (xi ) and a set of pattern vectors
(yi ), with x1 = [0 0 1 1 1 1]T and y1 = [0 0 1 1 1] in one pair and x2 = [1 1 0 0 0 0]T

and y2 = [1 1 1 0 0] in another. We can construct a set of virtual transactions, using
the pattern vectors as transactions and the number of non-zeros in presence vectors as
their weights (Figure 14(b)). We can now analyze this smaller approximate transaction
set using any existing association rule-mining technique. Note that this summary can be
constructed using CONQUEST if the transactions are distributed among various sites.

T1 : {beer, snacks}
T2 : {beer, snacks, bread}
T3 : {milk, bread}
T4 : {milk, bread, butter}
T5 : {milk, butter}
T6 : {bread, butter}

(a)

beer snacks bread milk butter

T1 1 1 0 0 0

T2 1 1 1 0 0

T = T3 0 0 1 1 0

T4 0 0 1 1 1

T5 0 0 0 1 1

T6 0 0 1 0 1

(b)

Fig. 13. (a) A sample transaction set of six transactions on five items and (b) its corresponding transaction
matrix.



OF22 J. Chi, M. Koyutürk, and A. Grama

T ≈




0 1

0 1

1 0

1 0

1 0

1 0




[
0 0 1 1 1

1 1 1 0 0

]

(a)

Virtual transactions Weight

T ′1 : {bread, milk, butter} 4

T ′2 : {beer, snacks, bread} 2

(b)

Fig. 14. (a) Decomposition of the transaction matrix of the transaction set of Figure 13 and (b) the corresponding
approximate transaction set.

We show the validity of this technique by using existing association rule-mining
software to mine the original dataset M1M (above) and the approximate set generated
by CONQUEST. The software we use is an open source implementation [40] of the well-
known a priori algorithm. We also create a slightly modified version of this software
which is capable of mining weighted approximate transaction sets.

Table 5 shows the comparison of results obtained by running the a priori software on
the original 1M transaction matrix and on the approximate transaction matrix generated
by running CONQUEST using eight processors. The a priori software was run with 90%
confidence in all instances. The figures in the table include minimum support for the
rules, total time spent mining the original matrix, total time spent mining the approximate
matrix, rules discovered from the original matrix, rules discovered from the approxima-
tion matrix, rules matched in the two cases precision and recall. Precision is defined
as the number of matching rules over all rules that are discovered on the approximate

Table 5. Association rule-mining performance of CONQUEST on the M1M dataset.

Min. Time Time Rules Rules Rules Rules match

support orig. approx. orig. approx. match Precision Recall
(%) (sec.) (sec.) (#) (#) (#) (%) (%)

2.0 28.45 0.38 63,503 53,280 53,280 100.0 91.0
2.5 12.69 0.14 27,090 20,299 20,299 100.0 75.0
3.0 10.99 0.14 20,353 19,527 19,527 100.0 98.1
3.5 10.56 0.13 19,617 19,527 19,527 100.0 99.5
4.0 9.23 0.08 12,793 12,793 12,793 100.0 100.0
4.5 9.27 0.08 12,787 12,789 12,787 100.0 99.98
5.0 8.98 0.06 12,398 10,955 10,955 100.0 90.9
5.5 7.20 0.05 6,740 6,732 6,732 100.0 99.88
6.0 7.12 0.05 6,732 6,732 6,732 100.0 100.0
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Fig. 15. Precision and recall level with varying minimum support.

transaction set, measuring how precise the results obtained on the approximate set are.
Recall is defined as the fraction of the rules discovered in the original transaction set that
are also discovered in the approximate set, measuring how successful the compression
is in recalling the rules that are present in the original data.

As we observe from our results, CONQUEST demonstrates excellent overall accuracy.
Precision values in all cases are 100%. Recall values are almost all close to 100%;
dropping below 90% in one case (75%) (Figure 15), and immediately rising up to 98%.
This phenomenon is sometimes observed and is due to the sudden change in the support
value of a large group of data (an artifact of the Quest data generator). While maintaining
high accuracy, CONQUEST provides a speedup of several orders of magnitude over a priori
operating on un-preprocessed data. Note that the time for constructing the summary for
M1M dataset is 7.25 seconds (eight processors), which is well below the time spent on
mining the original transaction set for almost all meaningful support values.

This demonstrates that, in addition to being a useful tool for the purpose of correlating
large high-dimensioned datasets, CONQUEST can be used as a powerful pre-processor for
creating summaries of distributed data for conventional data-mining techniques without
incurring the expensive overhead of transferring and centrally storing all of the original
datasets.

6. Conclusions. In this paper we have presented CONQUEST, a novel parallel formula-
tion of a powerful new technique for analysis of large high-dimensional binary attributed
sets. CONQUEST adopts a coarsed-grained parallel formulation designed to conserve net-
work bandwidth and alleviate the problem of load balancing faced in fine-grained con-
ventional parallelization techniques. These properties make it ideal for mining extremely
large datasets over geographically distributed locations. We also show that CONQUEST

successfully relies on the principle of sub-sampling and periodic consolidation among
processors to achieve excellent speedups while maintaining high accuracy. Finally, we
demonstrate the application of CONQUEST in association rule mining as a powerful pre-
processing tool to accelerate significantly existing data-mining software.
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