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Safe Reduction Rules for Weighted Treewidth1

Frank van den Eijkhof,2 Hans L. Bodlaender,3 and Arie M. C. A. Koster4

Abstract. Several sets of reductions rules are known for preprocessing a graph when computing its treewidth.
In this paper we give reduction rules for a weighted variant of treewidth, motivated by the analysis of algorithms
for probabilistic networks. We present two general reduction rules that are safe for weighted treewidth. They
generalise many of the existing reduction rules for treewidth. Experimental results show that these reduction
rules can significantly reduce the problem size for several instances of real-life probabilistic networks.
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1. Introduction. For many graph problems, it is useful and important to find a tree
decomposition of minimal width (called treewidth) [4], [19], [22]. Often these problems
can be solved in linear or polynomial time when a tree decomposition of bounded width
is known.

The problem of finding a tree decomposition with minimum width is NP-hard [1],
and approximating treewidth is also NP-hard [18]. In [9] and [10] it was shown that
preprocessing techniques can help reduce the size of instances of these problems. A set
of reduction rules is given that can be used to preprocess a graph for the computation of
its treewidth. Each of these rules reduces the number of vertices of the graph. Rules for
which a tree decomposition for the reduced graph with minimum treewidth can be easily
extended to a tree decomposition for the original graph that also has minimum treewidth
are called safe. To allow more safe rules, a variable low is maintained that is invariantly
a lower bound on the treewidth of the graph. A reduction rule is now called safe if and
only if the maximum of low and the treewidth of the graph is not changed. More results
on reduction algorithms for graphs of bounded treewidth can be found in [2] and [13].

In this paper we generalise the results of [9] and [10] to a weighted variant of treewidth.
The problem is motivated from the area of probabilistic networks, but it is also useful
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for combinatorial optimisation problems. Several modern decision support systems have
probabilistic networks as underlying technology [24]. These networks model dependen-
cies and independencies between statistical variables using a directed acyclic graph. For
each statistical variable, represented by a vertex in the graph, a probabilistic function is
defined. The most important problem to solve on these networks is probabilistic infer-
ence, which computes the probability distribution of a variable given a value-assignment
to other variables. The most efficient algorithm currently used for probabilistic inference
is based upon the use of a tree decomposition of the so-called moralised graph of the net-
work, since this graph appears to have small treewidth for many probabilistic networks
that model real-life situations. We refer to, e.g., [17] and [22] for details.

A tree decomposition consists of a number of “bags”, organised in a tree. (For the
precise definition, see Section 2.) The treewidth is one smaller than the maximum size of
a bag. The time the algorithm from [17] and [22] takes to process one bag is proportional
to the product over the variables represented by vertices in the bag of the number of
different values they can attain. So, e.g., if we have a probabilistic network with all
variables having the same number c of values (for instance, c = 2 for binary variables),
then the time to execute the algorithm based on a tree decomposition with n bags and
of width k becomes bounded by O(ck · n). In such a case, one may want to find a tree
decomposition of minimum treewidth to be used by the probabilistic inference algorithm.
However, the statistical variables in a probabilistic network may have different numbers
of values, and thus a tree decomposition with minimum treewidth may not be optimal
for this algorithm. Instead of treewidth, we therefore consider the weighted treewidth
problem, where we try to find tree decompositions such that the maximum over all bags
of the product of the weights of the vertices in the bag is as small as possible. We notate
the weight of vertex v byw(v); this is the finite number of values the variable associated
with v can attain. The weighted treewidth expresses the maximum product of weights of
the bags in a tree decomposition (note that when all vertices have weight c, the treewidth
of a graph is one less than the logarithm (with base c) of the weighted treewidth).

When preprocessing a graph, regardless of whether we consider weighted or un-
weighted treewidths, we repeatedly apply safe reduction rules from some set, until
no more rules from the set can be applied. After construction of a tree decomposi-
tion for the resulting graph, undoing the reductions in reverse order gives us a tree
decomposition for the original graph. In the case when the resulting graph is empty,
the optimal weighted treewidth is computed this way. In the case where the resulting
graph is not empty, whether the optimal weighted treewidth is obtained depends on
the technique used to produce a tree decomposition for the reduced graph. An exact,
but possibly computationally expensive algorithm (like integer linear programming or
a branch and bound algorithm) guarantees a tree decomposition with optimal weighted
width for the original graph. By using heuristic algorithm(s) only an approximation of the
weighted treewidth is obtained. This approximation becomes exact, although no exact
algorithm is used, when the weighted width computed for the reduced graph is at most the
value low.

In Section 3 we present two rules for preprocessing weighted treewidths. The first is the
Simplicial rule, which is a rather straightforward generalisation of the non-weighted case.
It removes a simplicial vertex, which is a vertex for which all neighbours form a clique,
and updates a variable low representing the lower bound for the weighted treewidth of
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the original graph. The second rule comprises many possible reduction rules. It is called
the Contraction Reduction rule. For this rule we try to generate a clique that separates
some single vertices from the rest of the graph using contraction of edges. Besides the
safeness for this rule, we show that the detection whether the contraction reduction rule
can be applied is in general NP-complete. In Section 4 we consider several special cases
of the Contraction Reduction rule that can be identified in polynomial time. Unweighted
variants of these instances, specially the Almost Simplicial, Buddy, and (Extended) Cube
rules have been introduced and proven safe for unweighted treewidth previously in [4],
[9], and [10]. We thus have generalised these rules to the weighted case. In addition, we
obtain new rules which are safe for the weighted treewidth. The Buddies rule generalises
the Buddy rule and is an example of such a new rule.

As for the unweighted case, the contraction reduction rule is based on a variable low
that is invariantly a lower bound on the weighted treewidth. The higher low is, the more
effective the rule can be. To increase low in practice, we discuss in Section 5 lower bounds
for weighted treewidths. Several experiments conducted by applying the reduction rules
on 23 real-life probabilistic networks and lower bounds are presented in Section 6. Our
experiments reveal that for several networks a decomposition with minimal weighted
width can be found, while most remaining networks are reduced significantly. Some
concluding remarks close the paper.

2. Definitions and Preliminaries. In this paper we assume that graphs are undirected,
simple, and have a weight function w: V → Z+. We use the notation G = (V, E, w).

We assume familiarity with standard graph notions, like independent set, clique, etc.
Let G = (V, E, w) be a graph. We define the complement of G with Ḡ. The set

of neighbours of a vertex v is denoted N (v). Note that we assume that v �∈ N (v). The
degree of a vertex is denoted as deg(v) = |N (v)|. A vertex v ∈ V is simplicial when
N (v) induces a clique. A subgraph H(G) of G is a graph H = (V ′, E ′, w[V ′]) with
V ′ ⊆ V , E ′ ⊆ (V ′ × V ′) ∩ E , and w[V ′]: V ′ → Z+ a function that assigns for every
vertex v ∈ V ′ the value w(v) to w[V ′](v). For a set of vertices W ⊆ V , the subgraph
induced by W is the subgraph G[W ] = (W, (W × W ) ∩ E, w[W ]). For the sets of
vertices W, X ⊂ V , W and X disjoint, the set X separates W when every path between
a vertex in W and a vertex in V \(W ∪ X) uses a vertex in X .

Let G = (V, E, w) be a graph. The weight of a set of vertices S ⊆ V is w(S) =∏
v∈S w(v). The neighbourhood weight or nwG(v) of a vertex v ∈ V is nwG(v) =

w(N (v) ∪ {v}). When G is clear from the context, we write nw(v).
A tree decomposition of a graph G = (V, E), or a weighted graph G = (V, E, w),

is a pair ({Xi | i ∈ I }, T = (I, F)) with T a tree and for every i ∈ I a bag Xi ⊆ V ,
such that for each vertex v ∈ V there exists a bag with v ∈ Xi , for each edge {v, u} ∈ E
there exists a bag with v, u ∈ Xi , and for each vertex v ∈ V the induced graph T [Sv],
with Sv = {i ∈ I | v ∈ Xi }, is a tree.

The width of a tree decomposition ({Xi | i ∈ I }, T = (I, F)) of a (weighted) graph
G = (V, E, w) equals maxi∈I |Xi |− 1; the treewidth of a graph G, denoted τ(G), is the
minimum width over all tree decompositions of G. Similarly the weighted width equals
maxi∈I w(Xi ) (without minus 1!) and the weighted treewidth of a graph G, denoted
τw(G), is the minimum weighted width over all tree decompositions of G.



142 F. van den Eijkhof, H. L. Bodlaender, and A. M. C. A. Koster

Let G = (V, E, w)be a graph. A contraction of an edge {v, u} ∈ E withw(v) ≤ w(u)
makes v adjacent to (N (v)∪N (u))\{v}, and removes vertex u and edge {v, u}. Rephrased
more intuitively, an edge is contracted to the incident vertex that has the smallest weight.

A minor of a graph G is a graph G ′ that is obtained from G by a sequence of zero or
more vertex removals, edge removals, and/or edge contractions.

LEMMA 1. Let G ′ be a minor of G. Then τw(G ′) ≤ τw(G).

PROOF. (This proof is similar to that for the unweighted case, see, e.g., Lemma 16 of
[6].) Let ({Xi | i ∈ I }, T = (I, F)) be a tree decomposition of G = (V, E) of optimal
width. If G ′ is obtained from G by removing an edge e ∈ E , then ({Xi | i ∈ I }, T ) is
also a tree decomposition of G. If G ′ is obtained from G by removing a vertex v ∈ V ,
then ({Xi − {v} | i ∈ I }, T ) is a tree decomposition of G. If G ′ is obtained from G by
contracting the edge {x, y} ∈ E to vertex x with w(x) ≤ w(y), then ({X ′i | i ∈ I }, T =
(I, F))with for all i ∈ I , X ′i = Xi when y �∈ Xi and X ′i = Xi −{y}∪ {x}when y ∈ Xi ,
is a tree decomposition of G ′. In each case the weighted treewidth of G ′ is at most the
treewidth of G. The result now follows by induction.

3. General Reduction Rules. In this section we define two general reduction rules.
Both rules concentrate upon deletion of vertices that can be separated from the graph
by cliques. The first rule deletes simplicial vertices, and the second rule is based on sets
of edges that can be contracted such that they form cliques in the graph. Its unweighted
version generalises some reduction rules known for (unweighted) treewidth. In the next
section we discuss these special cases in the context of weighted treewidth.

When reversing a reduction, for each vertex deleted in the reduction a new bag is
added containing this vertex and its neighbours. Because the neighbours form a clique in
the reduced graph, the bag can be easily added to the tree decomposition. We must be able
to guarantee that this bag will not increase the weighted treewidth to a value above the
weighted treewidth of the original graph. Therefore we maintain a variable low that rep-
resents the largest lower bound we know for the weighted treewidth of the original graph.

A reduction rule is called safe when application of the rule changes a graph G
and its associated variable lowG , into G ′ and its associated variable lowG ′ , such that
max(lowG, τw(G)) = max(lowG ′ , τw(G ′)). Safeness of a reduction rule implies that
when we start with low having any value that is at most the weighted treewidth of the
original graph, the rule does not increase the weighted treewidth of the graph above that
of the original graph. In Section 5 we discuss a heuristic for setting an initial low.

3.1. The Simplicial Rule. The Simplicial rule is a straightforward generalisation of the
same rule of the unweighted case, and easily follows from well-understood properties
of chordal graphs and tree decompositions.

The Simplicial rule

Let v be a simplicial vertex in graph G = (V, E, w).
Set low to max(low, nw(v)).
Remove v and its incident edges from G.
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Fig. 1. An instance of the Simplicial rule.

THEOREM 2. The Simplicial rule is safe.

PROOF. As G contains a clique of weight nw(v), we know that τw(G) ≥ nw(v).
Furthermore, because G − v is a minor of G, we know that τw(G) ≥ τw(G − v).
Therefore, τw(G) ≥ max(nw(v), τw(G − v)).

Now let T ′ be a tree decomposition for G − v with weighted width k ≤ max(nw(v),
τw(G − v)). We create a tree decomposition T by adding a bag Xi to T ′ as follows.
Bag Xi consists of N (v) ∪ {v}, and we connect Xi to a bag X j in T ′ with i �= j and
N (v) ⊆ X j . Since N (v) is a clique in G ′, X j exists [12, Lemma 3.1]. The weighted
width of T now equals max(nw(v), k), and thus τw(G) ≤ max(nw(v), τw(G−v)), hence
τw(G) = max(nw(v), τw(G − v)).

An application of the Simplicial rule is illustrated in Figure 1. The solid lines represent
edges, and the dotted lines connect to the remainder of the graph. The numbers represent
the weights on the vertices. For this example, low will become at least 120.

3.2. The Contraction Reduction Rule. Next, we introduce the general Contraction Re-
duction rule and show that it is safe. We also show that it is NP-complete to determine
for a given graph G whether it is possible to carry out the Contraction Reduction rule in
G. Fortunately, there are several special instances of the rule for which there are efficient
algorithms that determine if and where the rule can be carried out in a given graph; sev-
eral of these cases are discussed in Section 4. We first define the notion of contraction
reduction.

DEFINITION. A contraction reduction in a weighted graph G = (V, E, w) is a 3-tuple
(X, Y, S) with X, Y ⊂ V disjoint non-empty sets of vertices, and S ⊆ E a set of edges,
with the following properties:

1. X is an independent set.
2. Each edge in S has one endpoint in X and one endpoint in Y .
3. A vertex in X is incident to exactly one edge in S.
4. For each x ∈ X , N (x) ⊆ Y .
5. For each {x, y} ∈ S, x ∈ X , y ∈ Y : w(x) ≥ w(y).
6. Contraction of all edges in S will turn Y into a clique.

See Figure 2 for an example of a contraction reduction; the edges in S are drawn by
thick lines. An equivalent way of stating the last condition of a contraction reduction is
that for every pair of vertices y, y′ ∈ Y , either y = y′, {y, y′} ∈ E , or there is an x ∈ X
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Fig. 2. A contraction reduction.

with {x, y} ∈ S and {x, y′} ∈ E or {x, y} ∈ E and {x, y′} ∈ S. There are some special
cases of contraction reductions that are “uninteresting”, e.g., when there is a simplicial
vertex x ∈ X for contraction reduction (X, Y, S). In order not to make the definition
more complex, we do not explicitly forbid this case.

The Contraction Reduction rule

Let (X, Y, S) be a contraction reduction in G = (V, E, w).
If low ≥ maxx∈X nw(x),
then Remove all vertices of X from G.

Turn Y into a clique.

Next, we show the safeness of the Contraction Reduction rule.

THEOREM 3. The Contraction Reduction rule is safe.

PROOF. Let G and low be given. Suppose (X, Y, S) is a contraction reduction in G, and
low ≥ maxx∈X nw(x). Let G ′ be the graph, resulting from the application of the rule.
Note that G ′ is obtained from G by contracting all edges in S, so G ′ is a minor of G,
and hence τw(G ′) ≤ τw(G). Combined with the precondition low ≥ maxx∈X nw(x), we
have that max(low, τw(G)) ≥ max(τw(G ′),maxx∈X nw(x)).

Now let T ′ be a tree decomposition of G ′. We obtain T from T ′ by adding a bag Xx

to T ′ for each vertex x ∈ X as follows. Bag Xx consists of N (x) ∪ {x}, and we connect
Xx to a bag X j in T ′ with x �= j and N (x) ⊆ X j . Since N (x) ⊆ Y is a clique in G ′, X j

exists (see Lemma 3.1 of [12]).
The weighted width of T is at most the maximum of τw(T ′) and maxx∈X nw(x),

and thus τw(G) ≤ max(τw(G ′),maxx∈X nw(x)). Hence, τw(G) = max(τw(G ′),
maxx∈X nw(x)). So max(τw(G), low) = max(τw(G ′), low).

Note that the contraction reduction in Figure 2 is safe when low ≥ 72. As a by-
product of the proof of Theorem 3, we have a method to “undo” the rules: if we have
a tree decomposition of the reduced graph G ′ of treewidth not more than that of the
original input graph, then we can construct a tree decomposition of the graph just before
the reduction step by applying the construction given in the proof. The resulting tree
decomposition will have weighted width at most the maximum of low and τw(G).

Next we show that it is NP-complete to determine for a given graph G (and value
low) whether it is possible to apply the Contraction Reduction rule for G.

THEOREM 4. It is NP-complete to decide if there exists a contraction reduction in a
given graph G = (V, E, w), even if we require that w is a constant function.
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Fig. 3. Graph G ′ in the proof of Theorem 4.

PROOF. Clearly, the problem belongs to NP. To prove that it is NP-hard, we reduce
from VERTEX COVER. In the VERTEX COVER problem we are given a graph G = (V, E)
and an integer k ≤ |V |, and ask if there is a set of vertices W ⊆ V with |W | ≤ k, such
that every edge e ∈ E has at least one endpoint in W .

Let a graph G = (V, E), and an integer k be given. Without loss of generality, assume
|V | ≥ 5 and k ≥ 3. Let G ′ = (V ′, E ′) be obtained from G in the following way. Suppose
V = {v1, v2, . . . , vn}. We take the complement of G, add k new vertices {u1, . . . , uk}
that are made adjacent to each vertex in V , and add n new vertices z1, . . . , zn , making
zi adjacent to zi−1, zi+1, and vi , with z1 adjacent to zn . See Figure 3.

We write U = {u1, . . . , uk} and Z = {z1, z2, . . . , zn}. Now, V ′ = V ∪ U ∪ Z and
E ′ = {{y, z} | y, z ∈ V, y �= z, {y, z} �∈ E} ∪ {{ui , y} | ui ∈ U, y ∈ V } ∪ {{vi , zi } |
1 ≤ i ≤ n} ∪ {{zi , zi+1} | 1 ≤ i < n} ∪ {{zn, z1}}. Assume w(y) = 2 for all y ∈ V ′.

We now claim that G has a vertex cover of size at most k if and only if G ′ has a
contraction reduction. As G ′ can be constructed in polynomial time from G, the theorem
follows from this claim.

Suppose W = {w1, . . . , wk ′ } is a vertex cover of size at most k in G, k ′ ≤ k. If
k ′ < k, set wk ′+1, . . . , wk to arbitrary vertices in V . Set S = {{ui , wi } | 1 ≤ i ≤ k}.
Now, ({u1, . . . , uk}, V, S) is a contraction reduction in G ′. Most conditions of contraction
reduction hold by construction. We show that the contraction of edges in S turns V into
a clique. Consider y, z ∈ V , y �= z, either {y, z} ∈ E ′, or otherwise, {y, z} ∈ E and then
y ∈ W or z ∈ W as W is a vertex cover. Without loss of generality, suppose y = wi for
some i , 1 ≤ i ≤ k. ui is contracted to y, and as ui is adjacent to z, the edge {y, z} is
created by the contraction. So, V forms a clique after contraction of all edges in S.

Suppose that G ′ has a contraction reduction (X, Y, S).
First, assume that X ∩U �= ∅. Suppose ui ∈ X ∩U . As N (ui ) = V , V ⊆ Y . Let W

be the set of vertices in S that are the endpoint of an edge in S with the other endpoint
in U . It follows that |W | ≤ k. We claim that W is a vertex cover of G. Consider a pair
y, z ∈ V with {y, z} ∈ E . Now {y, z} �∈ E ′, so the edge {y, z} must be obtained from
contracting the edges in S. As a vertex in Z is adjacent to exactly one vertex in V , {y, z}
cannot be obtained from a contraction with a vertex in Z , and hence either y ∈ W or
z ∈ W . So we have a vertex cover of G of size at most k.

Now, assume that X∩U = ∅. This case will lead to a contradiction. Suppose X∩V �=
∅. As u1 and u2 are adjacent to each vertex in V , {u1, u2} ⊆ Y , and hence there must be
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an edge of the form {vi , uj } ∈ S, j ∈ {1, 2}, 1 ≤ i ≤ n. Then {u3, zi } ⊆ N (vi ) ⊆ Y . To
create the edge {u3, zi } by contracting S, there must be a common neighbour of u3 and
of zi that is contracted to u3 or zi , but their only common neighbour is already contracted
to uj , contradiction. So we conclude that X ∩ V = ∅, and hence X ⊆ Z .

Suppose zi ∈ X . To ease notation, suppose 1 < i < n. We have that {zi−1, zi+1, vi } ⊆
Y . As zi−1 and zi+1 have only zi as a common neighbour, zi must be contracted to one
of its neighbours in Z . As this argument applies to every vertex in X ∩ Z , all endpoints
of edges in S belong to Z . This yields a contradiction: either the edge {vi , zi−1} or the
edge {vi , zi+1} is not obtained by contraction of the edges in S. This finishes the proof
that G has a vertex cover of size at most k, and hence our NP-completeness proof.

Consider the problem to decide, given a graph G = (V, E, w) and a value for low,
if G can be reduced to a smaller graph with the Contraction Reduction rule. The proof
above shows that this problem is NP-complete, even in the case that w(v) = 2 for all
vertices v ∈ V and low = 2n+1.

3.3. Confluence of the Rules. Since several simplicial and/or contraction reduction
rules can be applicable at the same time for a graph, naturally the question arises as to
whether the order the rules are applied is of influence on the graph obtained in the end.
We conjecture that this is not the case. For multiple applications of the Simplicial rule
this is easy to see. For the Contraction Reduction rule and the combination of the rules
it seems to be harder to derive the result.

CONJECTURE 5 (Confluence of Rules). The order in which the Simplicial and the Con-
traction Reduction rules are applied to a graph does not affect the resulting graph.

4. Specific Reduction Rules. As discussed in the previous section, it is NP-complete
to determine for a given graph whether the Contraction Reduction rule can be used to
reduce its size. Fortunately, there are several special cases that have efficient algorithms
to find out whether and where they can be applied. We first discuss these special cases
which generalise known results for the unweighted case, providing sufficient conditions
on the weights of vertices and the value of low to make these rules safe.

In [3] Arnborg and Proskurowski identified a complete set of reduction rules for
(unweighted) graphs with treewidth at most three. In other words: at least one of these
rules can be applied to any non-empty graph of treewidth at most three, and applying the
rule will not turn a graph with treewidth at most three into one of treewidth more than
three, and vice versa. Thus, the rules can be used to obtain an algorithm to recognise
graphs of treewidth at most three; see also [23]. This set of rules consists of the Islet,
Twig, Series, Triangle, Buddy, and (Extended) Cube rules. The Islet and Twig rules
are instances of the Simplicial rule, expressing the cases that the simplicial vertex has
degree zero or one. In [9] and [10], the Almost Simplicial rule was shown to be safe for
(unweighted) treewidth. This rule generalises the Series and Triangle rules. We show
below that the Almost Simplicial rule is a special case of the Contraction Reduction
rule. Also, we show that the Buddy and (Extended) Cube rules are also special cases
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of the Contraction Reduction rule. In each case this gives a proof of the safeness of
generalisations of these rules to the weighted case, and establishes conditions upon the
weights when the rules can be carried out. Sanders [25] extended the set of rules from
[3] to a much larger set of rules that is safe and complete for non-weighted graphs with
treewidth at most four. However, only a subset of his reduction rules are instances of our
Contraction Reduction rule; many of his rules are not easily reversible, see also [21].

We define the Almost Simplicial rule as follows:

The Almost Simplicial rule

Let u and v be vertices in graph G = (V, E, w).
Suppose that v is a neighbour of u.
Suppose that N (v)\{u} forms a clique in G.
If low ≥ nw(v) and w(v) ≥ w(u),
Then Turn N (v) into a clique

Remove v and its incident edges from G.

COROLLARY 6. The Almost Simplicial rule is safe.

PROOF. Safeness of the Almost Simplicial rule follows from the fact that it is a special
case of the Contraction Reduction rule. Let G, u, v be as in the rule given above, with
w(v) ≥ w(u). Then ({v}, N (v), {{v, u}}) is a contraction reduction in G. The condition
that low ≥ maxx∈X nw(x) from the Contraction Reduction rule is here equivalent to
low ≥ nw(v). Thus, by Theorem 3, the Almost Simplicial rule is safe.

Figure 4 shows an instance of the Almost Simplicial rule; it can be carried out when
low ≥ 288. The dashed lines indicate potential edges.

The Series and Triangle rules are special cases of the Almost Simplicial rule. The
Series rule is the case that v has degree two. So, given a vertex v of degree two, the Series
rule removes v and adds an edge between its neighbours when the weight of v is at least
the weight of one of its neighbours, and low is at least the product of the weights of v
and the weights of its neighbours. The Triangle rule is the case that v has degree three
in the Almost Simplicial rule.

We next define the Buddies rule. In the Buddies rule we have r vertices, each with
the same r +1 neighbours; when certain conditions on the weights and low hold, we can
remove these r vertices and turn the set of r + 1 neighbours into a clique.

6

3 4

2 2

3 4

2 2

Fig. 4. An instance of the Almost Simplicial rule.
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Fig. 5. An instance of the Buddies rule.

The Buddies rule

Let r be a positive integer.
Let X = {x1, . . . , xr } be a set of r vertices in graph G = (V, E, w).
Let Y = {y1, . . . , yr+1} be a set of r + 1 vertices in G.
Suppose for each i , 1 ≤ i ≤ r , N (xi ) = Y .
If ∀1≤i≤r , w(xi ) ≥ w(yi ) and low ≥ max1≤i≤r nw(xi )

Then Turn Y into a clique
Remove the vertices in X and their incident edges from G.

From the assumptions in the Buddies rule, it follows that X and Y are disjoint sets.
An example of the Buddies rule with r = 3 is given in Figure 5.

COROLLARY 7. The Buddies rule is safe.

PROOF. The Buddies rule is a special case of the Contraction Reduction rule, and
hence is safe by Theorem 3. The corresponding contraction reduction is the tuple
({x1, . . . , xr }, {y1, . . . , yr+1}, {{xi , yi } | 1 ≤ i ≤ r}): note that if we contract each
xi with yi (1 ≤ i ≤ r ), then the set {y1, . . . , yr+1} turns into a clique.

The Buddies rule given above generalises the Buddy rule, which is one of the rules in
the set of rules to recognise graphs of treewidth three [3]. The Buddy rule is the special
case of the Buddies rule with r = 2.

The last reduction rule is taken from [3].

The Extended Cube rule

Suppose v, x , y, z, a, b, c are distinct vertices in graph G = (V, E, w).
Suppose N (a) = {z, y, x}, N (b) = {x, y, v}, N (c) = {v, y, z}.
If low≥max(nw(a), nw(b), nw(c)), w(a)≥w(x), w(b)≥w(v), and w(c)≥w(z)
Then Turn {v,w, y, z} into a clique

Remove the vertices in {a, b, c} and their incident edges from G.

COROLLARY 8. The Extended Cube rule is safe.

PROOF. Observe that ({a, b, c}, {v, x, y, z}, {{z, a}, {x, b}, {v, c}}) is a contraction re-
duction. Now the result follows from Theorem 3.

From the literature, we have a special case of the Extended Cube rule: the Cube rule.
The Cube rule is obtained from the Extended Cube rule by additionally requiring that



Safe Reduction Rules for Weighted Treewidth 149

v

z
x z

v

x2

3

3

4

3

5

2
2 2

3

3

a

bc y y

Fig. 6. An instance of the Extended Cube rule.

vertex y has degree three. In that case, y can be removed from the graph as well (i.e., by
application of the Simplicial rule). The Cube rule can be implemented somewhat faster
than the Extended Cube rule. We have not generalised the Extended Cube rule further,
because our experiments for the unweighted case [9], [10] indicate that this reduction
rule seldom occurs. An instance of the Extended Cube rule, which can be applied when
low ≥ 90, is given in Figure 6.

All reduction rules mentioned are built upon existing rules. However, it is also possible
to derive new reduction rules with the help of Theorem 3. Consider Figure 7. Note that
this subgraph cannot be reduced using any of the rules mentioned in this section so
far. Write X = {x1, . . . , x5}, Y = {y1, . . . , y5}. Suppose that for 1 ≤ i ≤ 5, we have
w(xi ) ≥ w(yi ). Then (X, Y, {{xi , yi } | 1 ≤ i ≤ 5}) is a contraction reduction. Hence,
if for 1 ≤ i ≤ 5, low ≥ nw(xi ), then turning Y into a clique and removing X and
its incident edges is safe. In similar ways, several more rules can be designed, but it is
unclear whether such rules would help much for preprocessing graphs that arise from
practical applications. Our experiments described in Section 6 show that more complex
rules (e.g., Buddies rule and (Extended) Cube rule) are seldom applied.

In contrast to the general contraction reduction rule, each of the rules given in this
section allows a polynomial time implementation (including the time to test if a rule
can be applied, and to find a possible “spot” in the graph where the rule can be used to
decrease the size of the graph). In case of the Buddies rule, we can list for each vertex
the sorted list of its neighbours, and then sort these lists lexicographically. Techniques
for efficient implementations can be found, e.g., in [3], [9], [10], and [23].

5. Rules to Increase the Lower Bound. When the value of the variable low is larger,
i.e., closer to the weighted treewidth of the original graph, then the Almost Simplicial
rule, Buddies rule, and Extended Cube rule, or more generally the Contraction Reduction
rule, can be applied in more cases. Thus, it can be advantageous to spend time obtaining a
better lower bound on the weighted treewidth of the original graph, or of graphs obtained

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Fig. 7. A contraction reduction when w(xi ) ≥ w(yi ) for 1 ≤ i ≤ 5.
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during preprocessing. Our experiments, reported in Section 6, support this. In this section
we discuss a method to increase the lower bound. Our lower bound heuristic is simple
to implement and often appears to give good results. It builds upon Lemma 1, and the
following result, which generalises a well-known fact for the unweighted case.

LEMMA 9. For every graph G = (V, E, w), τw(G) ≥ minv∈V nw(v).

PROOF. Let ({Xi | i ∈ I }, T = (I, F)) be a tree decomposition of G of minimum
weighted width, and a minimum size |I |. We claim that there is a vertex v ∈ V , and a
node i ∈ I with v ∪ N (v) ⊆ Xi . This claim clearly holds when |I | = 1. Otherwise, take
an arbitrary leaf node i ∈ I from T , and suppose j is the unique neighbour of i in T . If
Xi ⊆ X j , then removing i from T gives a tree decomposition of G, still with minimum
weighted width, but with a smaller size of |I |, which contradicts our assumptions. Thus,
we may suppose that there is a vertex v ∈ Xi , with v �∈ X j . By the definition of tree
decomposition, there is no i ′ �= i with v ∈ Xi ′ ; hence, for every edge {v,w}, we have
w ∈ Xi , so v ∪ N (v) ⊆ Xi . We can conclude that there exists a vertex v ∈ V with
τw(G ′) ≥ w(Xi ) ≥ nw(v), which proves the lemma.

The lemma suggests the following lower bound heuristic for the weighted treewidth,
called the Maximum Minimum Neighbourhood Weight heuristic, or MMNW for short. It
repeatedly removes the vertex with the minimum neighbourhood weight until the graph is
empty, and reports the maximum of these minimum neighbourhood weights seen during
the process. Clearly, this number constitutes a lower bound on the weighted treewidth
of the input graph since all intermediate graphs are subgraphs of G.

MMNW heuristic

Input: Graph G = (V, E, w).
Output: Number 
 with τw(G) ≥ 
.

 = 0;
G ′ = G;
While G ′ is not the empty graph
Do Let v be a vertex with nwG ′(v) minimal among all vertices in G ′.


 = max{
, nwG ′(v)};
Remove v and its incident edges from G ′.

Return 
.

A small improvement to the MMNW heuristic is possible. Instead of deleting vertices,
it is also possible to contract them with a neighbour. As contracting a vertex v to a vertex
x gives a vertex with weight min{w(v),w(x)}, we refrain from contracting a vertex to a
neighbour when it has only neighbours of higher weight. When the vertex v of minimum
neighbourhood weight has at least one neighbour of smaller or equal weight, then we
contract v to one of its neighbours; we chose the neighbour of smallest neighbourhood
weight among all neighbours x with w(x) ≤ w(v). The resulting heuristic is called the
MMNW+ heuristic.
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MMNW+ heuristic

Input: Graph G = (V, E, w).
Output: Number 
 with τw(G) ≥ 
.

 = 0;
G ′ = G;
While G ′ is not the empty graph
Do Let v be a vertex with nwG ′(v) minimal among all vertices in G ′.


 = max{
, nwG ′(v)};
Compute A = {x | {v, x} ∈ E ∧ w(x) ≤ w(v)}.
If A = ∅
Then Remove v and its incident edges from G ′.
Else Select the vertex x from A with nw(x) minimal.

Contract the edge {v, x} to x in G ′.
(That is, make x adjacent to all neighbours of v, and
remove v and its incident edges from G ′.)

Return 
.

LEMMA 10. Suppose the MMNW+ heuristic, applied to G, outputs k. Then τw(G) ≥ k.

PROOF. An invariant of the algorithm is that G ′ is a minor of G: in each step, we either
delete vertices or edges, or do an edge contraction. It follows that 
 ≤ τw(G) is also an
invariant, using Lemma 9.

Unfortunately, it is possible that the lower bound obtained by the MMNW+ heuristic
and the value of τw(G) differ much. Consider planar graphs with all vertices of weight
two. As every planar graph has a vertex of degree at most five, the MMNW+ heuristic
will never give a value larger than 26 on such instances, but the weighted treewidth of
such planar graphs can be arbitrary large. However, in many other cases, the MMNW+
heuristic gives a reasonable lower bound for the weighted treewidth.

Other methods to increase low are also possible. For instance, when the graph contains
a clique minor, then low can be set to the maximum of its current value and the weight
of the clique. Such a situation would occur when a subgraph is found that fulfils the
structural requirements of a contraction reduction, but not the conditions on the weights
and low. However, lower bounds based on clique minors may be far apart from the actual
treewidth (e.g., recall that planar graphs can have large treewidth but never have a clique
with five vertices as a minor), and are in general intractable.

Instead of working with a proven lower bound low on the weighted treewidth, we
can also use a value of low of which we are not sure that the weighted treewidth of the
input graph is at least low. Suppose we work with such a value low, apply preprocessing
to input graph G, and obtain a graph H , then obtain a tree decomposition of optimal
weighted treewidth of H , and then, by undoing the preprocessing steps, obtain a tree
decomposition of the input graph G. Now, the safeness of the preprocessing rules implies
that the weighted width of this resulting tree decomposition is at most the maximum of
the weighted treewidth of G and the original value of low. For instance, when we want
to decide if the weighted treewidth of G is at most some value k, we can start by setting
low to k.
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6. Computational Experiments. In this section we report on computational exper-
iments for the described preprocessing rules. Our experiments were conducted on 23
probabilistic networks developed for real-life problems. The Alarm, BOBLO, Diabetes,
Link, Munin, Oesoca, PigNet2, Pigs, VSD, and Wilson networks were taken from med-
ical applications; several versions exist of the Munin and Oesoca networks. The Barley
and Mildew networks are used for agricultural purposes, the Water network models a
water purification process, and the OOW-trad, OOW-bas, OOW-solo, and Ship-ship net-
works were developed for maritime use. These networks were also used in some other
algorithmic experiments on the treewidth of graphs (see, e.g., [5], [7], [8], [11], [16],
and [20]); several of these networks can be found online, e.g., from [26]. The rules are
implemented in C++. All computations have been carried out on a Linux-operated PC
with a 1700 MHz Intel Pentium 4 processor.

We discuss the results by means of four tables. Table 1 shows the results of prepro-
cessing for (i) only the Simplicial rule, (ii) all polynomial time executable rules, and
(iii) all these rules with initially low set to the MMNW+ lower bound. To illustrate the
quality of the MMNW+ bound in comparison with the MMNW bound both values are
presented in Table 2. Table 3 records the number of vertices preprocessed by each of
the rules. Finally, in Table 4 the results of preprocessing for weighted treewidth are
compared with those for (unweighted) treewidth.

The algorithm of Lauritzen and Spiegelhalter [22] works on a tree decomposition
of the moralisation of the network. In the moralisation of a directed graph, for each
pair of arcs with a common tail, an edge is added between the heads of the arc, and
then all directions of arcs are dropped. Thus, in Table 1, the size of the graph after
moralisation is shown (see [9] and [10] for the original sizes). Note that vertices with many
incoming edges in the probabilistic network create a large clique in the moralisation.
In Table 1 we show the size of the networks after each of the preprocessing strategies.
Moreover, the value of low after preprocessing is reported as well as the initial value
of low provided by the MMNW+ lower bound. To increase readability, the last column
reports the computation times for the last strategy. Table 1 shows that application of the
Simplicial rule only, already results in substantial graph size reductions in all cases. On
average over 50% of the vertices are removed by preprocessing (with a minimum of 18%
and a maximum of 87%). Including all other preprocessing rules results in even more
reduced graphs. For 6 out of 23 networks the graph is preprocessed to the empty graph
and hence the weighted treewidth is given by the low for these instances. By application
of the other rules, the Simplicial rule can be applied again and induces a further increase
of low in four cases (note that low is not increased by rules other than the Simplicial rule
and its special cases, the Islet rule and the Twig rule).

A third reduction can be shown by the use of an initial low value generated by a lower
bound procedure. By the MMNW+ lower bound, low is increased for 16 networks and for
10 out of the 17 remaining networks the graph size is reduced further. The time needed
to perform preprocessing is really small in comparison with the results achieved. Even
the 34 seconds for the PigNet2 network is justifiable taking into account that the graph
is reduced from 3034 to 1002 vertices. We only performed computations with MMNW+
as the initial lower bound. In Table 2 the MMNW and MMNW+ lower bounds are
compared. Although computation times are somewhat higher, the increase of the lower
bound is substantial for many instances. The most impressive example is the result for
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Table 2. Lower bounds for weighted treewidth.

Original Lower bound CPU time (s)
Instance |V | |E | MMNW MMNW+ MMNW MMNW+

Alarm 37 65 32 32 0.00 0.00
Barley 48 126 100,800 201,600 0.00 0.01
BOBLO 221 328 687,820 687,820 0.01 0.05
Diabetes 413 819 7,056 34,320 0.03 0.13
Link 724 1,738 256 8,192 0.08 0.40
Mildew 35 80 280,000 280,000 0.00 0.00
Munin1 189 366 1,280 250,000 0.01 0.04
Munin2 1,003 1,662 600 18,000 0.15 0.67
Munin3 1,044 1,745 600 38,400 0.16 0.71
Munin4 1,041 1,843 1,280 80,000 0.16 0.74
Munin-kgo 1,066 1,730 1,280 3,000 0.17 0.74
Oesoca+ 67 208 1,920 8,640 0.01 0.01
Oesoca 39 67 240 240 0.00 0.00
Oesoca42 42 72 240 240 0.00 0.00
OOW-bas 27 54 18,270 18,270 0.00 0.01
OOW-solo 40 87 18,270 36,540 0.00 0.00
OOW-trad 33 72 18,270 48,600 0.01 0.00
PigNet2 3,032 7,264 243 329 1.36 5.85
Pigs 441 806 81 6,561 0.04 0.15
Ship-ship 50 114 56,700 144,000 0.00 0.00
VSD 38 62 240 240 0.00 0.01
Water 32 123 16,384 49,152 0.00 0.01
Wilson 21 27 54 108 0.00 0.00

the PigNet2 network (329 ≈ 6.8 ∗ 1013). This bound indicates that it is unlikely that the
algorithm of [22] can be used for this network.

Table 3 allows us to have a closer look at the effectiveness of the various rules. We
analysed the most general case in which the initial low was set to the MMNW+ lower
bound. The order in which the rules are applied is important for a correct interpretation
of this table. The rules are applied consecutively in the order they are mentioned in the
table. In case a rule applies to the current graph, the rule is executed and the search is
restarted with the first rule in the order (i.e., Islet). In this way, it is avoided that, for
example, a simplicial vertex is processed by the Almost Simplicial rule.

As already observed in Table 1, the majority of the vertices are preprocessed by the
Simplicial rule and its specialisations Islet and Twig. Notice that Islet is only applied if
singletons are detected in the graph. Hence, Link contains at least 11 components, 10 of
them preprocessed completely. The Series and Triangle rules are also applied regularly,
whereas the more general Almost Simplicial rule is very successful for some instances.
With one exception, the remaining rules are not applied at all. Only for the Munin3
network 12 vertices are removed by the Buddy rule (6 times 2 vertices).

Finally, in Table 4 we compare the results for preprocessing for weighted and un-
weighted treewidth. In addition to the unweighted versions of the described rules, the
value low for (unweighted) treewidth is increased to four in case the Islet, Twig, Series,
Triangle, Buddy, and Cube rules cannot be applied anymore (see [3]). Table 4 shows
besides the resulting graph sizes the maximum weighted bag size for those bags that are
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Table 3. Contribution of the various rules.

Number of vertices removed by rule∗
Instance |V | |E | IS TW SI SE TR AS BU BS CU EC Total

Alarm 37 70 1 11 21 1 3 0 0 0 0 0 37
Barley 48 135 0 1 13 3 2 1 0 0 0 0 20
BOBLO 221 373 1 105 80 11 24 0 0 0 0 0 221
Diabetes 413 822 0 2 76 3 0 0 0 0 0 0 81
Link 724 2,257 10 73 147 12 10 164 0 0 0 0 416
Mildew 35 86 0 1 14 1 3 1 0 0 0 0 20
Munin1 189 413 0 40 42 7 21 0 0 0 0 0 110
Munin2 1,003 1,955 0 272 296 72 120 2 0 0 0 0 762
Munin3 1,044 2,066 0 298 352 74 126 8 12 0 0 0 870
Munin4 1,041 2,093 0 290 324 58 92 8 0 0 0 0 772
Munin-kgo 1,066 1,970 0 364 437 94 66 16 0 0 0 0 977
Oesoca+ 67 228 0 19 18 0 0 8 0 0 0 0 45
Oesoca 39 69 1 16 21 0 1 0 0 0 0 0 39
Oesoca42 42 73 1 18 22 0 1 0 0 0 0 0 42
OOW-bas 27 57 0 1 7 1 1 0 0 0 0 0 10
OOW-solo 40 90 0 2 7 1 1 0 0 0 0 0 11
OOW-trad 33 76 0 1 5 2 1 0 0 0 0 0 9
PigNet2 3,032 8,311 0 71 1341 89 481 48 0 0 0 0 2,030
Pigs 441 950 0 57 236 34 55 12 0 0 0 0 394
Ship-ship 50 116 0 2 9 0 1 0 0 0 0 0 12
VSD 38 71 1 16 15 2 3 1 0 0 0 0 38
Water 32 131 0 2 6 0 0 3 0 0 0 0 11
Wilson 21 29 1 12 6 2 0 0 0 0 0 0 21

∗IS=Islet, TW=Twig, SI=Simplicial, SE=Series, TR=Triangle, AS=Almost Simplicial, BU=Buddy,
BS=Buddies, CU=Cube, EC=Extended Cube.

constructed during the reverse of the reductions. Hence, this value is a lower bound on
the weighted width of the tree decomposition constructed in the end. For the weighted
preprocessing this value can be seen as the initial low needed for the achieved reduction
(which can be less than the MMNW+ value).

Compared with preprocessing for (unweighted) treewidth, fewer vertices are prepro-
cessed by the same set of rules for weighted treewidth. Hence, at first sight the conclusion
from this table may be that preprocessing for weighted treewidth is less effective than
preprocessing for the unweighted notion. However, this conclusion is only half the truth.
Of course, fewer vertices could be processed by the more restrictive conditions for the
rules. Also the unavailability of theoretical results to increase low further if certain rules
cannot be applied anymore, limits the effect of preprocessing. However, the advantage of
preprocessing for weighted treewidth lies in the fact that the maximum weight of the bags
Xi is considered. By reversing the preprocessing for (unweighted) treewidth, bags can
be constructed with unnecessarily high w(Xi ). Although we do not know the weighted
treewidth in most cases, for six networks the maximum value ofw(Xi ) by reconstruction
is higher with unweighted preprocessing than with weighted preprocessing, indicating
that the preprocessing is overreaching in this context. The most eye-catching result in
this context is obtained for the VSD network. Reversing the preprocessing, results in a
value that is 50% higher than necessary.
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Table 4. Preprocessing for unweighted and weighted treewidth.

Unweighted Maxw(Xi ) Weighted Maxw(Xi )

Original preprocessing reverse Preprocessing reverse
Instance |V | |E | |V | |E | bags |V | |E | bags

Alarm 37 65 0 0 32 0 0 32
Barley 48 126 25 76 151,200 28 81 151,200
BOBLO 221 328 0 0 687,820 0 0 687,820
Diabetes 413 819 116 276 109,824 332 662 7,056
Link 724 1,738 308 1,158 512 308 1,158 512
Mildew 35 80 0 0 12,681,900 15 31 280,000
Munin1 189 366 66 188 1,512 79 209 1,440
Munin2 1,003 1,662 165 451 7,350 241 573 2,401
Munin3 1,044 1,745 82 273 12,500 174 449 2,401
Munin4 1,041 1,843 215 642 3,750 269 720 2,000
Munin-kgo 1,066 1,730 0 0 40,500 89 246 2,880
Oesoca+ 67 208 14 75 34,560 22 105 5,760
Oesoca 39 67 0 0 240 0 0 240
Oesoca42 42 72 0 0 240 0 0 240
OOW-bas 27 54 0 0 822,150 17 35 5,400
OOW-solo 40 87 27 63 5,400 29 66 5,400
OOW-trad 33 72 23 54 13,500 24 56 1,972
PigNet2 3,032 7,264 1,002 3,730 729 1,002 3,730 729
Pigs 441 806 47 134 729 47 134 729
Ship-ship 50 114 24 65 57,188 38 91 600
VSD 38 62 0 0 360 0 0 240
Water 32 123 21 94 12,288 21 94 12,288
Wilson 21 27 0 0 108 0 0 108

7. Conclusions. Instances of NP-hard problems can often be reduced to equivalent
but smaller instances using preprocessing techniques. For the problem of finding a tree
decomposition for a weighted graph with minimal weighted width, we provided such a
technique. Our method consists of the application of a set of reduction rules that allows
for the reduction of a weighted graph without increasing its weighted treewidth, and
for which every reduction is easily reversible. We showed that several of the known
reduction rules can be generated from the generic Contraction Reduction rule, and that
new feasible reduction rules can be created. Furthermore, we presented techniques for
getting lower bounds on the weighted treewidth. We leave the confluence of the rules as
an interesting open problem (Conjecture 5.)

Experiments were conducted on the graphs of a set of probabilistic networks taken
from real-life applications. These experiments revealed that a subset of the identified
reduction rules were able to reduce the graphs significantly, or even eliminate them com-
pletely. Therefore, preprocessing by applying reduction rules is a very useful technique
for the weighted treewidth problem.

In several cases, the graph that results from preprocessing is not empty. Then a
different method must be used to solve the weighted treewidth problem on the resulting
graph. This is an interesting topic for further study. Possible approaches can be, e.g.,
integer linear programming, a branch and bound algorithm (e.g., a generalisation of the
techniques of Gogate and Dechter [16] to the weighted case), or perhaps a weighted
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variant of algorithms based on potential maximal cliques (see [14] and [15]). The use of
preprocessing in these cases is that such an (exponential time) algorithm runs on a graph
that “usually” has significantly fewer vertices.
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