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Abstract

In this paper we consider 3-dimensional generic bar-and-joint real-
izations of squares of graphs. These graphs are also called molecular
graphs due to their importance in the study of flexibility in molecules.
The Molecular Conjecture, posed in 1984 by T-S. Tay and W. Whiteley,
indicates that determining rigidity (or more generally, computing the
number of degrees of freedom) of molecular graphs may be tractable
by combinatorial methods. We show that the truth of the Molecular
Conjecture would imply an efficient algorithm to identify the maxi-
mal rigid subgraphs of a molecular graph. In addition, we prove that
the truth of two other conjectures in combinatorial rigidity (due to
A. Dress and D. Jacobs, respectively) would imply the truth of the
Molecular Conjecture.

1 Introduction

Many important aspects of the flexibility of molecules can be studied using
the theory of combinatorial rigidity. This branch of mathematics, which
has strong links to graph theory and geometry, is concerned with the rigid-
ity properties (i.e. number of degrees of freedom, maximal rigid compo-
nents, redundant elements, etc.) of different geometric structures, such as
bar-and-joint, body-and-hinge, and body-and-bar frameworks. For ‘generic’
frameworks these properties depend only on the graph associated to the
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Figure 1: A graph G and its square G2.

framework, in which vertices correspond to joints, or bodies, and edges cor-
respond to the bars, or hinges, of the framework which connect them.

Given a molecular structure made up of atoms and bonds in 3-space,
we can extract a geometric structure for the molecule whose flexibility can
be analyzed by combinatorial methods on the associated graph [24]. These
mathematical models and the related combinatorial algorithms are the basis
for the ‘pebble game algorithms’ used in FIRST, ROCK, and other fast
algorithms for predicting the flexibility and rigidity of discrete molecular
structures arising in proteins and glasses [11, 12, 13, 18]. In this paper we
focus on the problem of determining the rigidity properties of the bar-and-
joint model of molecules and the corresponding combinatorial problems on
graphs.

We model a molecule made up of atoms and covalent bonds as a graph
G in which vertices represent atoms and edges represent bonds. Since the
angles between the covalent bonds of each atom are fixed (as well as the
distance between bonded atoms) we need to add additional ‘bond bending’
edges connecting each pair of vertices of distance two in G, to fix these
angles. This forms the square of the graph G, which we denote by G2, see
Figure 1. Squares of graphs are sometimes called molecular graphs or bond
bending networks.

The Molecular Conjecture, due to Tay and Whiteley [17, Conjecture 1],
asserts that the square G2 of a graph G is rigid in 3-space if and only if
5G, the graph obtained from G by replacing each edge e by five copies of
e, contains six edge-disjoint spanning trees. This conjecture indicates that
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the problem of determining when a molecular graph is rigid (or more gener-
ally, computing its number of degrees of freedom, or floppy modes, and its
maximal rigid subgraphs) may be tractable by combinatorial methods. For
a substantial collection of supporting evidence for the Molecular Conjecture
see [24].

Our main result is a new combinatorial algorithm for computing the
number of degrees of freedom and determining the maximal rigid subgraphs
in a molecular graph G2, which runs on the underlying graph G. We give a
proof of correctness of our algorithm based on new structural properties of
molecular graphs and of graphs containing six edge-disjoint spanning trees,
as well as on the assumption that the Molecular Conjecture is true.

Our motivation is to establish that the truth of the Molecular Conjecture
would imply that there is a fast, provably correct algorithm for computing
the number of degrees of freedom and determining the maximal rigid sub-
graphs in a molecular graph. The algorithm of Jacobs [11, 12], which was
used in the first versions of the FIRST software, uses a different approach for
computing the degrees of freedom and the maximal rigid subgraphs. It runs
on G2, rather than G, and is a modification of the ‘pebble game’ algorithm,
originally designed for rigidity analysis of 2-dimensional frameworks. There
is no rigorous proof for its correctness even if we assume that the Molecular
Conjecture is true. A different algorithm for rigidity of molecular graphs is
given by Franzblau [3]. Her algorithm only gives upper and lower bounds
on the number of degrees of freedom of a molecular graph (but she shows
that her bounds are valid without assuming that the Molecular Conjecture
is true).

To provide more evidence in favour of the Molecular Conjecture, we also
use our structural results to show that the truth of two other conjectures in
combinatorial rigidity (due to Dress and Jacobs, respectively) would imply
the truth of the Molecular Conjecture.

2 Rigid graphs and the Molecular Conjecture

All graphs considered are finite and without loops. We reserve the term
graph for graphs without multiple edges and refer to graphs which may
contain multiple edges as multigraphs. A framework (G, p) (in 3-space) is
a graph G = (V,E) and a map p : V → R

3. We will also say that (G, p)
is a realization of G. The rigidity matrix of the framework is a matrix
R(G, p) of size |E| × 3|V |. For each edge vivj ∈ E, the entries in the
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row corresponding to the edge vivj are defined as follows: the 3 columns
corresponding to the vertex vi contain the 3 coordinates of p(vi) − p(vj);
the 3 columns corresponding to the vertex vj contain the 3 coordinates of
p(vj) − p(vi); the remaining entries are all zeros. See [20] for more details.

We refer to the vectors in the null space of R(G, p) as infinitesimal mo-
tions of (G, p). This definition is motivated by the fact that each continuous
motion of (G, p) which preserves all ‘edge lengths’ gives rise to an infinites-
imal motion [20]. The null space of R(G, p) will have dimension at least six
since the translations and rotations of R

3 give rise to six linearly indepen-
dent infinitesimal motions (when |V | ≥ 3). Thus, when |V | ≥ 3, the rank
of R(G, p) is at most 3|V | − 6. We say (G, p) is infinitesimally rigid if the
dimension of the null space of R(G, p) is equal to six (or equivalently, if the
rank of R(G, p) is equal to 3|V | − 6).

A framework (G, p) is generic if the ranks of its rigidity matrix, and all
its submatrices, are maximum among all realizations of G. It is known that
almost all realizations of G are generic, and that each infinitesimal motion of
a generic framework is ‘induced’ by a continuous motion of the framework.
We denote the rank of the rigidity matrix of a generic realization of G by
r(G). By the preceding paragraph r(G) ≤ 3|V | − 6, whenever |V | ≥ 3. The
graph G is said to be rigid if either G is a complete graph on at most two
vertices, or |V | ≥ 3 and r(G) = 3|V | − 6. More generally 3|V | − r(G), i.e.
the dimension of the null space of R(G, p) for a generic realization (G, p) of
G, is referred to as the number of degrees of freedom of G, and measures the
flexibility of the graph.

It is a difficult open problem to determine which graphs are rigid. For a
survey and partial results see [3, 6, 7, 8, 9, 20]. The Molecular Conjecture,
due to Tay and Whiteley [17, Conjecture 1], see also [20, 21, 22, 23, 24],
indicates that the problem of determining when molecular graphs are rigid
may be significantly easier than the problem for arbitrary graphs. Con-
jectures 2.1 and 2.2 below are the bar-and-joint versions of the Molecular
Conjecture. Recall that the square of a graph G = (V,E) is denoted by G2,
and the multigraph obtained from G by replacing each edge e ∈ E by five
copies of e is denoted by 5G.

Conjecture 2.1 Let G be a graph with minimum degree at least two.1 Then
G2 is rigid if and only if 5G contains six edge-disjoint spanning trees.

1The conjecture becomes false if we allow vertices of degree one. This is not a significant
constraint, however, since it would be straightforward to extend the characterization to
allow such vertices if the conjecture was known to be true, see [10].
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The ‘defect form’ of Conjecture 2.1 is the following. Let G = (V,E) be
a graph. For a family F of pairwise disjoint subsets of V let EG(F) denote
the set, and eG(F) the number, of edges of G connecting distinct members
of F . For a partition P of V let

defG(P) = 6(|P| − 1) − 5eG(P)

denote the deficiency of P in G and let

def(G) = max{defG(P) : P is a partition of V }.

Note that def(G) ≥ 0 since defG({V }) = 0. Nash-Williams [14] and Tutte
[19] independently characterized when a graph has k edge-disjoint spanning
trees. Their result implies that 5G has six edge-disjoint spanning trees if
and only if def(G) = 0.

Conjecture 2.2 [10] Let G = (V,E) be a graph with minimum degree at
least two. Then

r(G2) = 3|V | − 6 − def(G). (1)

Since there are efficient algorithms for computing def(G), Conjecture 2.2
would imply that r(G2), and hence the number of degrees of freedom of G2,
can be computed efficiently. We will return to this in Section 6.

We showed in [10] that Conjectures 2.1 and 2.2 are equivalent. We also
showed that the right hand side of (1) is an upper bound on r(G2).

Theorem 2.3 [10] Let G = (V,E) be a graph of minimum degree at least
two. Then

r(G2) ≤ 3|V | − 6 − def(G).

3 Basic results on graph rigidity

Let H = (V,E) be a multigraph. For X ⊆ V , let EH(X) denote the set,
and iH(X) the number, of edges in H[X], that is, in the subgraph induced
by X in H. For X ⊂ V let dH(X) = eH(X,V − X) denote the degree of
X. If X = {v} for some v ∈ V then we simply write dH(v) for the degree of
v. The set of neighbours of X (i.e. the set of those vertices v ∈ V − X for
which there exists an edge uv ∈ E with u ∈ X) is denoted by NH(X). We
use E(X), i(X), d(X), or N(X) when the multigraph H is clear from the
context.
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Figure 2: The graphs obtained by applying the operations of Lemma 3.1
and Lemma 3.2 to a cycle of length five.

We say that a set of edges E ′ ⊆ E is M -independent if the rows of
the rigidity matrix R(H, p) corresponding to E ′, are linearly independent
in a generic realization (H, p) of H. The set of edges E ′ is an M -basis
for H if E′ is a maximum set of M -independent edges of H. (Thus every
M -independent set of edges can be extended to an M -basis, every M -basis
contains r(H) edges and H is rigid if and only if H has an M -independent set
of 3|V |−6 edges, when |V | ≥ 3.) We say that the graph H is M -independent
if its edge-set E is M -independent.

We shall use the following concepts and basic results from rigidity theory.

Lemma 3.1 [20, Lemma 9.1.3] Let H = (V,E) be a graph and v1, v2, . . . vs

be distinct vertices of H for some s ∈ {1, 2, 3}. Let G be obtained from
H by adding a new vertex v and all edges vvi for 1 ≤ i ≤ s. Then G is
M -independent if and only if H is M -independent.

Lemma 3.2 [10] Let H = (V,E) be an M -independent graph and {u1, u2},
{v1, v2} and {w1, w2} be three sets of distinct vertices of H with
|{u1, u2, v1, v2, w1, w2}| ≥ 3. Let G be obtained from H by adding three
new vertices u, v, w, the edges uv, vw, uw, and all edges uui, vvi, wwi for
1 ≤ i ≤ 2. Then G is M -independent.

The operations of Lemmas 3.1 and 3.2 are illustrated in Figure 2. The
next result follows from the ‘Glueing Lemma’ [20, Lemma 11.1.9].
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Lemma 3.3 Let H1,H2 be rigid graphs with at least three vertices and H =
H1 ∪ H2. Then
(a) H is rigid if and only if |V (H1) ∩ V (H2)| ≥ 3.
(b) If |V (H1) ∩ V (H2)| = 2, u ∈ V (H1) − V (H2), and v ∈ V (H2) − V (H1),
then H + uv is rigid.

A rigid component of a graph H = (V,E) is a rigid subgraph of H which
is maximal with respect to inclusion. Each rigid component is clearly an
induced subgraph of H. For u, v ∈ V , the edge uv is an implied edge of H if
uv 6∈ E and r(H + uv) = r(H). The closure Ĥ of H is the graph obtained
by adding all the implied edges to H. A rigid cluster of H is a set of vertices
which induce a maximal complete subgraph of Ĥ. (Informally we may think
of a rigid cluster of H as a maximal subset U of V with the property that
every continuous motion of a generic realization (H, p) of H which preserves
the lengths of all edges vw ∈ E, also preserves the distances between the
points p(u), p(u′) for all u, u′ ∈ U .)

It is clear that (the vertex set of) each rigid component of H is contained
in a rigid cluster of H. In general H can have rigid clusters which are not
even vertex sets of rigid subgraphs of G, see Figure 3.2 Jacobs [11] has
conjectured, however, that the rigid clusters of a molecular graph are the
same as the vertex sets of its rigid components3.

Conjecture 3.4 Let G = (V,E) be a graph and U ⊆ V . Then U is a rigid
cluster of G2 if and only if G2[U ] is a rigid component of G2.

In order to verify Conjecture 3.4, we need to show that r(G2 + uv) =
r(G2) if and only if u, v belong to the same rigid component of G2. It seems
that it would be difficult to verify this even if we assume that the Molecular
Conjecture is true, since the graph G2 + uv need not be a molecular graph.

A cover of a graph H = (V,E) is a collection X of subsets of V , each of
size at least two, such that ∪X∈XE(X) = E. A cover X = {X1, X2, . . . , Xm}
of H is 2-thin if |Xi∩Xj | ≤ 2 for all 1 ≤ i < j ≤ m. For Xi ∈ X let f(Xi) = 1
if |Xi| = 2 and f(Xi) = 3|Xi| − 6 if |Xi| ≥ 3. Given a 2-thin cover X of H,
let Θ(X ) be the set of all pairs of vertices uv such that Xi ∩Xj = {u, v} for

2Note that the graph on Figure 3 is not a square. This follows, for example, from the
simple observation that if H = G2 for some graph G and H − {u, v} is disconnected for
some pair u, v ∈ V (G), then we would have uv ∈ E(H).

3This conjecture is actually a combination of two assertions [11, Observation 3.1] and
[11, Theorem 4.3] whose proofs are incomplete.
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Figure 3: A graph H with a rigid cluster U = {u, v, w} for which H[U ] is
not rigid.

some 1 ≤ i < j ≤ m. For each uv ∈ Θ(X ) let θ(uv) be the number of sets
Xi in X such that {u, v} ⊆ Xi and put

val(X ) =
∑

X∈X

f(X) −
∑

uv∈Θ(X )

(θ(uv) − 1). (2)

Using Lemma 3.3(a), we can see that any two rigid clusters of G intersect
in at most two vertices. Thus the set of rigid clusters of G is a 2-thin cover
of G. Dress conjectured in 1987 that the value of this special 2-thin cover is
equal to the rank of G.

Conjecture 3.5 (see [6, Conjecture 5.6.1],[2], and [16, Conjecture 2.3])
Let H = (V,E) be a graph and X be the set of rigid clusters of H. Then

r(H) = val(X ). (3)

We will show in Section 5 that the Molecular Conjecture would follow
from the truth of Conjectures 3.4 and 3.5.

4 Rigid components of molecular graphs

Let G be a graph. We first verify a number of properties of the rigid com-
ponents of G2. We then use these to show that the vertex sets of the rigid
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components of G2 are a 2-thin cover of G2 whose value gives an upper bound
on r(G2). We conjecture that this upper bound is tight. Throughout this
section we refer to the edges in E(G2) − E(G) as new edges of G2.

Lemma 4.1 Suppose G is a connected graph with at least three vertices.
Let C be a rigid component of G2 and let Y = V (C). Then
(a) |Y | ≥ 3,
(b) dG[Y ](v) ≥ 1 for all v ∈ Y ,
(c) G[Y ] is connected,
(d) dG[Y ](v) = 1 for all v ∈ NG(V − Y ).

Proof: (a) This follows from the fact that each edge of G2 belongs to a
triangle and hence to a rigid subgraph with three vertices.

(b) Suppose that all the edges incident to v in G2[Y ] are new edges. The new
edges of G2 are ‘generated’ by pairs of edges of G, and, by our assumption,
no edge from any of these pairs can be in G[Y ].

First suppose |Y | ≥ 4. Since G2[Y ] is rigid, there must be (at least)
three new edges e, f, g incident to v in G2[Y ]. By considering the pairs of
edges of G which ‘generate’ e, f, g, and the edges that these pairs ‘generate’
in V −Y , it is easy to check that either there is a vertex y ∈ V −Y connected
to Y by three edges in G2, or there is a triangle T in G2 − Y which satisfies
the hypotheses of Lemma 3.2 in G2. This contradicts the maximality of C
by Lemma 3.1 or Lemma 3.2.

The proof for the case when |Y | = 3 proceeds similarly by considering
the two new edges e, f incident to v in G2 as well as the third edge g of
G2[Y ].

(c) Consider a connected component D of G[Y ]. By (b) each vertex of D
is incident to an edge in G[Y ]. Let uv, vw be a pair of edges in E which
‘generate’ a new edge uw of G2 with u ∈ V (D) and w ∈ Y − V (D). We
must have v ∈ V − Y . Since dG[Y ](w) ≥ 1 by (b), v must be connected to
Y by at least three edges in G2. This contradicts the maximality of C by
Lemma 3.1.

(d) Let uv ∈ E with v ∈ Y and u ∈ V − Y . We have dG[Y ](v) ≥ 1 by (b). If
dG[Y ](v) ≥ 2 then u must be connected to Y by at least three edges in G2,
a contradiction by Lemma 3.1 and the maximality of C. Thus dG[Y ](v) = 1.
•
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Lemma 4.2 Suppose G is a connected graph with at least three vertices
and that G2 is not rigid. Let C1, C2 be distinct rigid components of G2 with
Y1 = V (C1), Y2 = V (C2) and Y1 ∩ Y2 = {u, v}. Then
(a) uv ∈ E,
(b) dG[Y1](u) = 1 and dG[Y2](v) = 1 (or dG[Y2](u) = 1 and dG[Y1](v) = 1),
(c) uv is contained in no rigid components of G other than C1, C2.

Proof: The maximality of C1, C2 implies that Y1 − Y2 6= ∅ 6= Y2 − Y1. Part
(a) follows from Lemma 4.1(b), Lemma 3.3(b), and the maximality of C.
Part (b) follows in a similar way from Lemma 3.3(b). Part (c) follows from
(b) and Lemma 4.1(a),(c). •

Lemma 4.3 Suppose G is a connected graph with at least three vertices
and that G2 is not rigid. Let C1, C2 be distinct rigid components of G2 with
Y1 = V (C1), Y2 = V (C2) and Y1∩Y2 = {v}. Then dG[Y1](v) = 1 = dG[Y2](v).

Proof: The lemma follows from Lemma 4.1(b), Lemma 3.1, and the maxi-
mality of C. •

Let H be a graph without isolated vertices. It follows from the fact that
every edge of H is contained in a rigid component, and Lemma 3.3(a), that
the vertex sets of the rigid components H form a 2-thin cover of H. We
will abuse our notation and use Θ(C) and val(C) to denote, respectively, the
hinge set and the value of this 2-thin cover.

Theorem 4.4 Suppose G is a connected graph with at least three vertices
and that G2 is not rigid. Let C = {C1, C2, . . . , Ct} be the set of rigid com-
ponents of G2. For all 1 ≤ i ≤ t, let Yi = V (Ci) and let Qi = Yi − {v :
dG[Yi](v) = 1 and dG(v) ≥ 2}. Put Q = {Q1, Q2, ..., Qt}. Then
(a) Q is a partition of V ,
(b) val(C) = 3|V | − 6 − defG(Q), and
(c) r(G2) ≤ val(C).

Proof: (a) By Lemma 4.1(a),(c), Qi 6= ∅ for all 1 ≤ i ≤ t. Choose v ∈ V .
We first suppose that dG(v) = 1. It is easy to see that v is contained in a
unique rigid component Ci ∈ C and that Xi is the unique set in Q which
contains v. Next we suppose that dG(v) ≥ 2. Then there is a unique rigid
component Ci ∈ C which contains {v} ∪ NG(v). We have v ∈ Xi and, by
Lemmas 4.2(b) and 4.3, no other set in Q can contain v. Thus Q partitions
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V .

(b) By Lemma 4.1(a) we have |Yi| ≥ 3 for all 1 ≤ i ≤ t. By Lemma 4.2(a),(c)
we have uv ∈ E and θ(uv) = 2 for all uv ∈ Θ(C). By Lemma 4.2(b)
and the definition of Q we have EG(Q) = Θ(C). Lemma 3.1 implies that
NG(Qi) ⊆ Yi and hence |Yi| = |Qi|+dG(Qi) for all 1 ≤ i ≤ t. Thus val(C) =∑

Ci∈C
(3|Yi|−6)−|Θ(C)| = 3|V |+6eG(Q)−6t−eG(Q) = 3|V |−6−defG(Q).

(c) Theorem 2.3 and (b) now imply

r(G2) ≤ 3|V | − 6 − def(G) ≤ 3|V | − 6 − defG(Q) = val(C).

•

We will refer to the partition Q defined in Lemma 4.4 as the partition
of V generated by the rigid components of G2.

It is easy to see that Theorem 4.4(c) implies that we have r(G2) ≤ val(C)
for all graphs G without isolated vertices. We conjecture that equality holds.

Conjecture 4.5 Let G be a graph without isolated vertices. Then r(G2) =
val(C).

We will show in the next section that this conjecture is equivalent to
Conjecture 2.2. To do this we need to reduce the conjecture to the case of
graphs of minimum degree at least two.

Lemma 4.6 If Conjecture 4.5 holds for all graphs of minimum degree at
least two, then it holds for all graphs.

Proof: It is straightforward to show that if Conjecture 4.5 were false, then
a smallest counterexample would have minimum degree at least two. •

Note that there exist examples of a graph H whose set of rigid com-
ponents C satisfies r(H) < val(C).4 It is conceivable, however, that the
inequality r(H) ≤ val(C) holds for all graphs H, not just molecular graphs.

4Let G0 = (V0, E0) be a complete graph on five vertices with V0 = {vi : 1 ≤ i ≤ 5}.
For 1 ≤ i < j ≤ 5 let Gi,j = (Vi,j , Ei,j) be a complete graph on five vertices with Vi,j∩V0 =

{vi, vj} and Ei,j∩E0 = {vivj} for 1 ≤ i < j ≤ 5. Let G =
“

G0 ∪ (
S

1≤i<j≤5
Gi,j)

”

−E0. It

can be seen that r(G) ≤ |E(G)| − 1 = 89. On the other hand, the set of rigid components
of G is C = {Gi,j − vivj : 1 ≤ i < j ≤ 5} and we have val(C) = 90. See [9, Example 3]
for more details.
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Figure 4: A graph G and its brick partition {X1, X2} together with its
square G2 and the vertex sets {X1 + v2, X2 + v1} of the rigid components of
G2.

5 Bricks and rigid components

Let G = (V,E) be a graph of minimum degree at least two. In this section,
we consider the relationship between the partition Q of V generated by
the rigid components of G2 and another partition of V . We say that the
graph G is strong if 5G has six edge-disjoint spanning trees, or equivalently,
if def(G) = 0. A subgraph H is a brick of G if H is a maximal strong
subgraph of G. Thus bricks are induced subgraphs of G. It was shown in
[10] that the vertex sets of the bricks of G partition V . We shall refer to this
partition of V as the brick partition of G. We illustrate the brick partition
of a graph in Figure 4. We showed in [10] that the brick partition B of G
satisfies defG(B) = def(G). The first three lemmas of this section investigate
the relationship between the bricks of G and the rigid components of G2.
They will imply that Q is a refinement of B, and that, if Conjecture 2.1 is
true, then Q = B.

Henceforth, we shall use V1(H) to denote the vertices of degree one in a
graph H.

Lemma 5.1 Let G be a graph of minimum degree at least two, C be a rigid
component of G2, Y = V (C) and X = Y − V1(G[Y ]). Then G[X]2 is rigid
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and G[X] is strong.

Proof: Since C is a rigid component of G2, it follows from Lemma 3.1,
Lemma 4.1 (a),(c), and the maximality of C that |Y | ≥ 3, G[Y ] is con-
nected, and G2[Y ] = G[Y ]2. Since Y − X = V1(G[Y ]), we also have G[X]
is connected and G2[X] = G[X]2. Furthermore, either |X| = 1, or |X| ≥ 3
and dG[X](v) ≥ 2 for all v ∈ X (since the end-vertices of a cut-edge in G[X]
would form a separating pair in C, and, by Lemma 3.3(a), this would con-
tradict the fact that C is rigid). If |X| = 1 then G[X]2 is rigid and G[X] is
strong by definition. Hence we may suppose that |X| ≥ 3.

Consider a vertex v ∈ X with a neighbour in Y −X and let W be the set
of all neighbours of v in Y − X. Then dG[X](v) ≥ 2, so G2[{v} ∪ NG[X](v)]
is a complete graph Kv on at least three vertices. Let Bv be an M -basis for
Kv. By Lemma 3.1, we may extend Bv to an M -basis B for C, in which
each vertex w ∈ W is incident to exactly three edges of B and there are no
edges of B between vertices in W . Since C is rigid, Lemma 3.1 now implies
that C − W is also rigid. This argument may be repeated for each group
of vertices W ′ ⊆ Y − X with a common neighbour v′ ∈ X to deduce that
G[X]2 = G2[X] = C − (Y − X) is rigid. Theorem 2.3 now implies that
def(G[X]) = 0 and hence G[X] is strong. •

We showed in [10] that if two strong subgraphs have a non-empty inter-
section, then their union is strong. Together with Lemma 5.1, this implies
that the partition Q of V generated by the rigid components of G2 is a
refinement of the brick partition B of G, when G has minimum degree at
least two.

Lemma 5.2 Let G be a graph of minimum degree at least two, B = G[X]
be a strong subgraph of G and Y = X ∪ NG(X). Suppose that Conjecture
2.1 holds for B. Then G[Y ]2 is rigid.

Proof: If |X| = 1 then G[Y ]2 is a complete graph, and hence is rigid. Sup-
pose |X| ≥ 3. Since B is strong, B has minimum degree at least two. By
Conjecture 2.1, G[X]2 is rigid. Thus G[Y ]2 is rigid by Lemma 3.1. •

Lemma 5.3 Let G be a graph of minimum degree at least two.
(a) Let B = G[X] be a brick of G, Y = X ∪ NG(X), and suppose that
Conjecture 2.1 holds for B. Then G[Y ]2 is a rigid component of G2.
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(b) Let C be a rigid component of G2, Y = V (C), and X = Y − V1(G[Y ]).
Let B be the brick of G which contains G[X] and suppose that Conjecture
2.1 holds for B. Then B = G[X].

Proof: (a) Since G[X] is a brick, each vertex in X has degree at least two in
G[Y ] (if X is non-trivial, each vertex has degree at least two already in G[X];
if X is trivial, it follows from the fact that G has minimum degree at least
two). By Lemma 5.2, G[Y ]2 is rigid. Let C be the rigid component of G2

containing G[Y ]2 and let Y ′ = V (C). Suppose Y ′ − Y 6= ∅. By Lemma 5.1,
X ′ = Y ′−V1(G[Y ′]) is strong. Now X ⊆ X ′ since X ∩V1(G[Y ′]) = ∅. Since
X is a brick, we must have X = X ′ and hence Y = Y ′. Thus G2[Y ] is a rigid
component of G2. Since B is a brick, it is easy to see that G2[Y ] = G[Y ]2.

(b) Since C is a rigid component of G2, Lemma 5.1 implies that G[X] is
strong. Let X ′ = V (B). By Lemma 5.2, G[X ′ ∪ NG(X ′)]2 is rigid. Since
C is a rigid component of G2, we have |Y | ≥ 3 by Lemma 4.1(a). Since
Y ⊆ X ′ ∪ NG(X ′) and C is a rigid component, we have X ′ ∪ NG(X ′) = Y .
Thus X ′ ⊆ Y . But dG[Y ](v) = 1 for all v ∈ Y −X, since Y −X = V1(G[Y ]).
Since X ′ ⊆ Y and G[X ′] is a brick, we must have v /∈ X ′ for all v ∈ Y −X.
Thus X ′ = X and B = G[X]. •

Lemmas 5.2 and 5.3 immediately imply:

Theorem 5.4 Suppose that Conjecture 2.1 holds. Let G = (V,E) be a
graph of minimum degree at least two. Then for each rigid component C of
G2 there is a brick B = G[X] of G with C = G[X ∪ NG(X)]2, and for each
brick B = G[X] of G the subgraph G[X ∪ NG(X)]2 is a rigid component of
G2.

Theorem 5.4 immediately implies that if Conjecture 2.1 holds then the
partition Q of V generated by the rigid components of G2 is identical to the
brick partition B of G, when G has minimum degree at least two. We may
now deduce:

Corollary 5.5 Conjectures 2.1, 2.2 and 4.5 are all equivalent. Furthermore
they would each follow from the truth of Conjectures 3.4 and 3.5.

Proof: The fact that Conjectures 2.1 and 2.2 are equivalent is a result in
[10]. We show that Conjectures 2.2 and 4.5 are equivalent. By Lemma 4.6,
it will suffice to show that they are equivalent for graphs of minimum degree
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at least two. Let G = (V,E) be a graph of minimum degree at least two.
Let B be the brick partition of G, C be the set of rigid components of G2,
and Q be the partition of V generated by C.

Suppose Conjecture 2.2 holds. Then r(G2) = 3|V | − 6 − def(G). Since
defG(B) = def(G) by [10], B = Q by the above, and 3|V | − 6 − defG(Q) =
val(C) by Lemma 4.4(b), we have r(G2) = val(C). Thus Conjecture 4.5
holds for G.

Suppose, on the other hand, that Conjecture 4.5 holds. Then

r(G2) = val(C) = 3|V | − 6 − defG(Q) ≥ 3|V | − 6 − def(G) ≥ r(G2),

by Lemma 4.4(b), and Theorem 2.3. Thus equality holds throughout and
Conjecture 2.2 holds for G.

It is easy to see that Conjectures 3.4 and 3.5 would imply Conjecture
4.5. •

It was shown in [10] that, if true, Conjecture 2.2 could be used to deter-
mine the rank of squares of all graphs, not just graphs of minimum degree at
least two. It is also possible to extend the results of this section to squares
of arbitrary graphs. We omit the details.

A graph H is called redundantly rigid if H − e is rigid for all e ∈ E(H).
In applications it is sometimes useful to identify the redundantly rigid com-
ponents (that is, the maximal redundantly rigid subgraphs) of a molecular
graph, see [12]. It would be interesting to find (possibly assuming the truth
of Conjecture 2.1) a connection between the redundantly rigid components
of G2 and the maximal ‘superstrong’ subgraphs of G, where a subgraph
F of G is superstrong if 5F − e has six edge-disjoint spanning trees for all
e ∈ E(5F ). As a first step, one may ask when the square of a superstrong
graph is redundantly rigid. This is not always the case. Consider, for ex-
ample, the graph G0 consisting of two 4-cycles joined at a cut-vertex. Then
G0 is superstrong but G2

0 is not redundantly rigid since it contains vertices
of degree three. It is conceivable, however, that if G is superstrong and G2

has minimum degree at least four then G2 is redundantly rigid.

6 The algorithm

Conjecture 2.1 and Theorem 5.4 have important algorithmic consequences.
The deficiency and the brick partition of a graph G can be found in poly-
nomial time (see below). Thus, provided Conjecture 2.1 is true, we can
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compute the number of degrees of freedom and the rigid components of G2

by a fast combinatorial algorithm. This algorithm will run on the graph
5G.5

The fact that the brick partition of a graph can be computed in poly-
nomial time can be seen from the following more general argument. Given
a multigraph H = (V,E) we define H to be k-strong, for a positive integer
k, if H has k edge-disjoint spanning trees. The k-brick partition of H is the
partition of V into the vertex sets of the maximal k-strong subgraphs of H.
We may find the k-brick partition of H as follows.

STEP 1 Construct a maximum size spanning subgraph H ′ = (V, I) of H
whose edge set can be partitioned into k forests.

STEP 2 For each v ∈ V construct the k-brick of H ′ which contains v. The
subgraphs of H induced by the vertex sets of these k-bricks are the k-bricks
of H.

Step 1 is the same as finding a basis I in the matroid Mk(H), which is the
matroid union of k copies of the cycle matroid of H. An efficient algorithm
for this is given by Gabow and Westermann in [4]. Since I is independent
in Mk(H), we have |EH′(X)| ≤ k|X| − k for all nonempty X ⊆ V . Thus
finding a k-brick of H ′ containing a specified edge vw ∈ I in Step 2 is equiv-
alent to finding a maximal subset B ⊆ V which contains both v and w
and satisfies |EH′(B)| = k|B| − k. This subroutine is easy to implement
by maximum flow (or bipartite matching, or degree constrained orientation)
algorithms. If no such subgraph exists we choose another edge incident to v
and repeat the subroutine until we either find the k-brick of H ′ containing
v, or all edges of I incident to v have been exhausted. In the latter case we
can conclude that the k-brick of H ′ containing v is just the isolated vertex v.
The assertion that the vertex sets of the k-bricks of H ′ and H are the same
follows from the fact that, for each circuit C of Mk(H), and each e ∈ C, the
subgraph of H induced by C − e is k-strong (c.f. [20, Proposition A.1.1]).

There exist more efficient methods for finding the k-brick partition of

5The algorithm of Jacobs [11, 12], which runs on G2, computes the number of degrees
of freedom by building up a maximal (with respect to inclusion) subset F of edges of G2

in a greedy fashion with the property that no subset X ⊆ V with |X| ≥ 3 induces more
than 3|X| − 6 edges of F . (This property can be tested efficiently by a version of the
‘pebble game’.) It is conjectured that F is M -independent, and that F is a maximum
size M -independent edge set in G2. Even though computational results are convincing,
there is no rigorous proof for its correctness, even if we assume that Conjecture 2.1 is true.
With some additional computations the algorithm identifies the maximal rigid subgraphs
of G2 in a similar manner.
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H, where the basis I and the k-brick partition are built up simultaneously.
We omit the details and refer the reader to [15, Chapter 51] for a detailed
survey and [1, 24] for the orientation-based approach and more references.

We may obtain the brick partition for a graph G by applying the above
algorithm to find the 6-brick partition for the graph H = 5G. The set I
constructed in Step 1 satisfies |I| = 6|V | − 6 − def(G). Thus, if Conjecture
2.2 (or equivalently Conjecture 2.1) were true, and G has minimum degree
at least two, then the number of degrees of freedom of G2 would be 6|V |−|I|.
Furthermore Theorem 5.4 implies that the rigid components of G2 would be
the subgraphs G2[X ∪ NG(X)] with X = V (B) for each brick B of G.

It is straightforward to adapt the above procedure to handle the case
when G has vertices of degree one.
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