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Abstract Every rectilinear Steiner tree problem admits an optimal tree T ∗ which is
composed of tree stars. Moreover, the currently fastest algorithms for the rectilin-
ear Steiner tree problem proceed by composing an optimum tree T ∗ from tree star
components in the cheapest way. The efficiency of such algorithms depends heavily
on the number of tree stars (candidate components). Fößmeier and Kaufmann (Al-
gorithmica 26, 68–99, 2000) showed that any problem instance with k terminals has
a number of tree stars in between 1.32k and 1.38k (modulo polynomial factors) in
the worst case. We determine the exact bound O∗(ρk) where ρ ≈ 1.357 and mention
some consequences of this result.

Keywords Rectilinear Steiner tree · Terminal points · Tree star

1 Introduction

Given a weighted graph (V ,E) on n = |V | nodes, non-negative edge weights c :
E → R+, a set Y ⊆ V of k terminal nodes (or terminals, for short), the Steiner tree
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problem asks for exhibiting a shortest (i.e., min cost) subtree T ∗ = T ∗(Y ) of (V ,E)

spanning all terminals.
The most well-known algorithm for solving Steiner tree problems is the so-called

Dreyfus-Wagner [1] algorithm, a certain dynamic programming approach that com-
putes an optimum tree T ∗ in time O∗(3k). Here and in what follows, we use the
O∗-notation to indicate that factors of order O(poly(n)) are suppressed. (In the rec-
tilinear case we study here, n = O(k2), so equivalently, we suppress factors of or-
der O(poly(k)).) The currently fastest algorithm, due to [4] resolves the problem in
O∗((2 + ε)k) for any ε > 0. We admit, however, that the result is purely theoretical
and the algorithm is not expected to be of any use in practice.

The most interesting problems in practice are actually so-called rectilinear prob-
lems, where the terminal set is a finite set Y ⊆ R

2 and the underlying graph (V ,E) is
the so-called Hanan grid: If X1 ⊆ R resp. X2 ⊆ R denote the projections of Y onto
the first respective second coordinates, then V = X1 × X2 and E is the complete set
of edges e = (u, v) with l1-metric c(e) = ‖u − v‖1.

In general (due to the non-negativity of the edge costs) every leaf of T ∗ = T ∗(Y )

is necessarily a terminal. In addition, T ∗ may contain some terminals in its interior.
These interior terminals split T ∗ into components (subtrees). In the rectilinear case,
a lot is known about the structure of such components (cf. below and Sect. 2).

For simplicity, let us assume that the given instance Y ⊆ R
2 consists of k points

with pairwise different first resp. second coordinates, so that the associated Hanan
grid has exactly n = k2 nodes. This may always be achieved by perturbation. For
example, if the original instance is defined by Y = {y1, . . . , yk} ⊆ Z

2, we may chose
ε1 > · · · > εk > 0 sufficiently small and replace each yi by

ỹi := yi + (εi, ε
2
i ).

The resulting set ˜Y ⊆ R
2 has pairwise different coordinates. Moreover, if

∑

εi +ε2
i <

1
2 , any optimum Steiner tree ˜T ∗ for ˜Y must correspond to an optimum Steiner tree
T ∗ for Y . Note that, in addition, the perturbed instance ˜Y can be assumed to generate
a Hanan grid without any induced squares. (Choose ε1, . . . , εk so as to ensure that
εi − εj �= ε2

h − ε2
l holds for all pairwise different i, j, h, l.)

In what follows we will assume throughout that Y ⊆ R
2 is perturbed in this way.

A well known result of Hwang ([6, 11]) then states the existence of an optimum
Steiner tree T ∗ = T ∗(Y ) with each component of the following form (Hwang topol-
ogy): There are two special terminals, the root r and the tip t of the component,
connected to each other by a horizontal and vertical line segment (the two legs of the
component). These two legs are incident in a common endpoint c ⊆ R

2, the corner
of the component. The leg [r, c] is called the long leg or (Steiner) chain, the other
leg [t, c] is called the short leg of the component. The chain has an arbitrary number
of straight line segments attached to it from both sides alternatingly, each connecting
exactly one terminal to the chain. In addition, there may be one exceptional terminal
connected to the short leg (cf. Fig. 1). The degree three nodes of the component (i.e.
all interior nodes except the corner) are called Steiner nodes. We usually draw the
Steiner chain horizontally in the direction of the positive x-axis as in Fig. 1. The ter-
minals y �= r, t that are attached to the chain from above resp. below are referred to
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Fig. 1 A Hwang tree with
optimal exceptional terminal

as upper resp. lower terminals. The optional additional terminal attached to the short
leg will not be of much interest for our purposes.

In what follows, a Steiner tree (component) with Hwang topology as above will
be simply called a Hwang tree. A Hwang set is a set X ⊆ Y which is the terminal set
of at least one Hwang tree. We let H(X) denote the shortest Hwang tree for X. By
slightly misusing the notation, we also interpret T ∗(X) and H(X) as the length of an
optimum Steiner tree resp. Hwang tree for X. In case X ⊆ Y is not a Hwang set, we
define H(X) = ∞.

In the literature, Hwang sets/trees are also known as full sets and full components,
as Hwang trees are candidates for T ∗-components. Ganley and Cohoon ([5]) present
a straightforward dynamic program computing an optimum Steiner tree T ∗ by com-
posing T ∗ from Hwang trees in the cheapest way:

• Compute H(X1) for all X1 ⊆ Y .
• Compute recursively for all X ⊆ Y

T ∗(X) := min
X=X0��X1

T ∗(X0) ∪ H(X1),

where

X = X0 �� X1 ⇔ X = X0 ∪ X1, and |X0 ∩ X1| = 1.

In [5], it is shown that there are (modulo polynomial factors) at most 1.62k Hwang
sets X1 ⊆ Y . More generally, every X ⊆ Y of size i ≤ k has at most 1.62i Hwang
subsets X1 ⊆ X. So the above dynamic program has a running time of order

O∗
(

k
∑

i=1

(

k

i

)

1.62i

)

= O∗(2.62k).

Fößmeier and Kaufmann ([2]) further restrict the set of candidates for T ∗-components
by showing that each T ∗-component can be assumed to be a so-called tree star
(a Hwang tree with certain additional properties, cf. Sect. 2). They show that, in
the worst case, the number of tree stars is in between 1.32k and 1.38k , yielding an
improvement of the running time in the above dynamic program to O∗(2.38k). The
analysis leading to the upper bound in [2] is rather involved (16 pages). We present a
somewhat simpler approach yielding a tight bound of O∗(1.357k).

The currently fastest algorithms in practice ([9, 11]) first compute Hwang trees
for all candidate sets and then seek to compose the optimum tree from these candi-
date sets—not necessarily by dynamic programming, but rather by solving a related
integer program. In any case, the number of candidate sets determined in the pre-
processing phase is crucial for the efficiency of the algorithm. Having a tight bound
on the number of tree stars also allows us to estimate the impact of possible further
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restrictions on the candidate sets. For example, [10] exhibits additional properties of
T ∗-components (cf. Sect. 2), which are both natural and helpful in practice. As it
turns out, however, the number of tree stars with these additional properties is still
O∗(1.357k) in the worst case. So from a theoretical point of view, the new properties
are of no help.

2 Tree Stars

Consider an optimal Steiner tree T ∗ for a (suitably perturbed) instance Y ∈ R
2. Ac-

cording to Hwang’s theorem, we may assume that each component of T ∗ is a Hwang
tree with root r ∈ Y , tip t ∈ Y and terminals, say, y0, . . . , yp attached to the chain as
in Fig. 2 (with possibly an additional terminal yp+1 joined to the short leg.)

We denote by s0, . . . , sp the corresponding Steiner points i.e., the degree 3 nodes
which are the projections of the yi ’s (i = 0, . . . , p) onto the chain. (Clearly, in case
there is an additional terminal yp+1, we also have an additional Steiner point sp+1. In
what follows, however, we restrict our attention to y0, . . . , yp and s0, . . . , sp so that
we do not have to distinguish between different types of Hwang trees.)

Let S ⊆ R
2 denote the set of Steiner nodes of T ∗. Clearly, being an optimal Steiner

tree, T ∗ must be an MST for the set Y ∪ S. This simple necessary condition on
T ∗ in turn implies certain properties of the components of T ∗. We present some of
these properties (empty regions conditions, cf., e.g., [10]) below, including the simple
proofs for convenience.

A diamond is a square with diagonal [yi, si], i = 0, . . . , p or [si , si+1], i =
0, . . . , p − 1, or [r, s0]. We then observe that T ∗ = MST (Y ∪ S) implies that every
component of T ∗ as in Fig. 3 must have empty diamonds in the sense that the interior
of each diamond may not contain any terminal y ∈ Y (cf. Fig. 3):

Lemma 2.1 Diamonds must be empty.

Proof Assume to the contrary, that for some component, say, a diamond D =
D[yi, si] with diagonal [yi, si] contains a terminal y ∈ Y in its interior. Let y′ de-
note the projection of y onto [yi, si]. Adding, e := [y, y′] to T ∗ closes a circuit that

Fig. 2 Labelling the nodes in a
component

Fig. 3 Diamonds must be
empty
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Fig. 4 A nonempty rectangle

Fig. 5 Shaded regions must be
empty

contains either f := [y′, yi] or f := [y′, si]. In both cases, T ∗\f ∪ e would be a
shorter tree, a contradiction.

Emptiness of diamonds of the form D = D[si , si+1] follows in the same way. �

Next we consider rectangles R = R[yi, si+1] or R = R[yi, si−1], defined by their
diagonal [yi, si+1] resp. [yi, si−1], i = 1, . . . , p − 1 (cf. Fig. 4). Again, rectangles
must be empty regions in the above sense.

Lemma 2.2 Rectangles must be empty.

Proof Assume to the contrary that, say, some component of T ∗ contains a nonempty
rectangle, say, R = R[yi, si+1]. So R contains some y ∈ Y in its interior. The rectan-
gle R has sides e = [yi, si] and f = [si , si+1]. Let ye and yf denote the projections
of y onto e resp. f . Recall from Sect. 1 that we may assume w.l.o.g. that the Hanan
grid generated by Y does not contain any squares.

Thus we may assume w.l.o.g. that, say, y is closer to e than to f . Removing the
segment [ye, si] from T ∗ splits T ∗ into two subtrees T1 and T2 containing ye resp.
yf . If y ∈ T2, then T1 ∪ T2 ∪ [y, ye] is shorter than T ∗, a contradiction. Hence y ∈ T1
must hold. But then T1\[yi, ye] ∪ T2 ∪ [y, yf ] is shorter than T ∗. �

The empty rectangles condition is rather restrictive: The number of Hwang trees
satisfying the empty rectangles condition is O∗(1.42k), cf. [2] (as compared to
O∗(1.62k) without this restriction, cf. [5]). This can be seen as follows. Any two
consecutive terminals yi and yi+2 “above” the chain uniquely determine the terminal
yi+1 in between them on the opposite side of the chain. (Namely the one that is clos-

est to the chain). This leads to a bound of O∗(2
p
2 ) = O∗(2 k

2 ) = O∗(1.42k) for the
number of such Hwang trees in a straightforward way.

A third empty regions condition (cf. [7, 8, 10]) is as follows. Let Bd(x) and Bd(C)

denote the l1-balls of radius d > 0 around x ∈ R
2 resp. the Steiner chain C. Let di > 0

denote the distance of yi to C. For i = 0, . . . , p, we let

�(yi) := Bdi
(yi) ∩ Bdi

(C)
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Fig. 6 Shaded region must be
empty

Fig. 7 Shaded regions must be
empty

denote the triangle defined by yi . The following result strengthens the empty diamond
condition for diamonds with diagonal [yi, si] (cf. Fig. 6):

Lemma 2.3 ([10]) Each triangle �(yi), i = 0, . . . , p must be empty.

Proof The proof is similar to the one of Lemma 2.2. Assume y ∈ Y is in the interior
of �(yi). Removing [yi, si] from T ∗ would leave two subtrees T1 and T2 containing
yi resp. si (and hence C). If y ∈ T2 then joining y to yi would yield a tree shorter
than T ∗, a contradiction. Similarly, y ∈ T1 would imply a shorter tree, obtained by
joining y to C. �

In [2] (cf. also [3]), a tree star is defined to be a Hwang tree that satisfies the empty
diamonds and empty rectangles condition and is, in addition, an MST of its terminals
and Steiner points. So in particular, the part of the tree induced by r1, s0, . . . , sp and
y0, . . . , yp must be an MST of these points. The latter is equivalent to the following
weak empty triangle condition: No �(yi) must contain any yj (j = 1, . . . , p) in its
interior.

A fourth empty regions condition is discovered in [10]: For i = 1, . . . , p − 1, let

ri =: min{‖si − si−1‖,‖si+1 − si‖,‖yi − si‖}.
The empty circles condition states that each Bri (si) must be empty, i.e., contain no
terminals in its interior, cf. Fig. 7. The proof is left to the reader. Fößmeier and Kauf-
mann [2] present a rather involved analysis showing that the number of tree stars is
bounded by O∗(1.38k) and provide an example problem allowing 1.32k tree stars.
In Sect. 3, we take a somewhat simpler approach, leading to a bound of O∗(1.357k).
Section 4 provides an example proving that our bound is tight.

3 The Upper Bound

Let α ≈ 1.8393 denote the unique real root of the polynomial x3 − x2 − x − 1. Our
main result can then be stated as:
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Fig. 8 Terminals above and
below the chain

Fig. 9 11 is forbidden for aiaj

Theorem 3.1 The number of tree stars is bounded by O∗(
√

α
k
) ≈ O∗(1.357k).

To prove Theorem 3.1 we consider a (fixed) Steiner chain C with terminals
a0, . . . , al+1 above and a′

0, . . . , a
′
l below the chain, so that a′

i is in between ai and
ai+1. We let zi resp. z′

i denote the corresponding potential Steiner points, cf. Fig. 8.
We seek to analyze the number of tree stars that have C as Steiner chain, and a0 and
al+1 as first resp. last upper terminal attached to C.

In what follows, a tree star will always mean a tree star with chain C and a0, al+1

as first resp. last upper terminal. We are interested in which of the remaining terminals
ai (i = 1, . . . , l) such a tree star may include. Slightly misusing our notation, we treat
each ai also as a boolean variable indicating whether ai is included in a given tree
star or not. So we define a tree star sequence (TSS) to be sequence a0, . . . , al+1 ∈
{0,1}l+2 that corresponds to a tree star as above (hence, in particular, a0 = al+1 = 1).
To prove Theorem 3.1, it suffices to show that the number ql of TSS’s is bounded by
O∗(αl). (Note that l ≤ k/2 must hold.)

We start by providing various constraints on tree star sequences. For example, if
aj ∈ �(ai) (cf. Fig. 9), then the weak empty triangles condition implies that ai =
aj = 1 cannot occur in a TSS. We say that 11 is forbidden for aiaj in this case.

Another similar type of constraint is presented in Lemma 3.1 below. Let di and d ′
i

denote the distances of ai resp. a′
i from C.

Lemma 3.1 If di > di+1 and d ′
i > d ′

i+1, then 10 is forbidden for aiai+1 (cf. Fig. 10).

Proof Assume to the contrary that some TSS has ai = 1 and ai+1 = 0. Let j >

i + 1 be the first index with aj = 1. The lower terminal a′
k to be included in the

corresponding tree star in between ai and aj is then at least as close to the chain
as a′

i+1 (according to the empty rectangles condition, a′
k is the lower terminal in

between ai and aj which is closest to the chain). So k ≥ i + 1, contradicting the
empty rectangle condition (as ai+1 is contained in the rectangle R[ai, z

′
i+1] with

diagonal [ai, z
′
i+1] ). �

Lemma 3.1 shows that any local minimum ai , i.e., any ai with di−1 > di < di+1

implies a forbidden 10 for ai−1ai or a forbidden 01 for aiai+1 (depending on whether
d ′
i−1 > d ′

i or d ′
i−1 < d ′

i holds). In some cases, we can derive an additional constraint:



Algorithmica (2007) 49: 232–244 239

Fig. 10 10 is forbidden for
aiai+1

Fig. 11 Illustration of
Lemma 3.2

Lemma 3.2 Let ai be a local minimum with, say, d ′
i−1 > d ′

i . If di−2 > di , then either
100 is forbidden for ai−2ai−1ai or 001 is forbidden for ai−1aiai+1, depending on
whether d ′

i−2 > d ′
i or not.

Proof Consider first the case where d ′
i−2 > d ′

i (cf. Fig. 11) and assume to the con-
trary that ai−2ai−1ai = 100 is part of a TSS, i.e., there is a tree star T that includes
ai−2, but neither ai−1 nor ai as upper terminal. Let aj , j > i, denote the first upper
terminal included in T . The corresponding lower terminal in between ai and aj is
then either a′

i (as d ′
i < d ′

i−1 and d ′
i < d ′

i−2) or some lower terminal a′
r , r ≥ i. Then

ai ∈ R[ai−2, z
′
r ] violates the rectangle condition.

The case where d ′
i−2 < d ′

i is similar. �

Lemma 3.3 Assume di−1 > di > di+1 and d ′
i−1 < d ′

i < d ′
i+1 holds for some 1 ≤ i ≤

l − 1. Then either ai ∈ �(ai−1) or a′
i ∈ �(a′

i+1) or {ai, a
′
i} ∩ D[zi−1, zi+1] �= ∅.

Proof Assume to the contrary that neither of these three possibilities occurs. Then
(cf. Fig. 12) ai must be to the right of a′

i , which is ridiculous. �

This simple observation leads to the following constraints on TSS’s:

Lemma 3.4 Assume dl−2 > · · · > dl+1 and d ′
l−3 < · · · < d ′

l . Then either of the fol-
lowing holds:

(a) 11 is forbidden for al−2al−1.
(b) 11 is forbidden for al−1al .
(c) 000 is forbidden for al−2al−1al .

Proof If al−1 ∈ �(al−2), then a tree star may not contain both al−1 and al−2 (weak
empty triangles condition), so 11 is forbidden for al−2al−1. Similarly, if a′

l−1 ∈ �(a′
l ),
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Fig. 12 Feasible regions for ai

resp. a′
i

a tree star may not contain both a′
l−1 and a′

l . Consequently, it must not contain both
al−1 and al (because together with al+1, these would imply the inclusion of the lower
terminals a′

l−1 and a′
l). Thus a′

l−1 ∈ �(a′
l ) forbids 11 for al−1al .

According to Lemma 3.3, we are left to analyze the case where {al−1, a′
l−1} ∩

D[zl−2, zl] �= ∅. We claim that 000 is forbidden for al−2al−1al in this case. Indeed,
assume to the contrary that T is a tree star that does not include any of al−2, al−1 and
al . Due to our assumptions dl−2 > · · · > dl+1 and d ′

l−3 < · · · < d ′
l , we conclude that

T does not contain any of a′
l−2, a′

l−1 and a′
l either. Let a′

i denote the last lower ter-
minal contained in T . Hence i ≤ l − 3. Then D[z′

i , zl+1] ⊇ D[zl−2, zl] is nonempty,
contradicting the empty diamonds condition. �

We are now prepared to prove our main result in a special (though crucial) case:

Lemma 3.5 Let d0 > · · · > dl+1 and d ′
0 < · · · < d ′

l . Then ql ≤ 1.183αl .

Proof For l ≤ 2 the claim is trivial. (Indeed, q2 ≤ 22 ≤ 1.183α2.) Hence assume
l ≥ 3. First note that, due to the special structure of our instance (distances dj de-
creasing, and d ′

j increasing), a tree star T which does not include ai , also does not
include a′

i . The number of TSS with ai = 0 is therefore at most ql−1 by induction.
(It might actually be less in case some TSS for the instance with ai and a′

i removed
corresponds to a Hwang tree containing ai or a′

i in a forbidden region.)
We proceed by induction on l. According to Lemma 3.4, there are three possible

cases:

(c) 000 is forbidden for al−2al−1al . Induction then yields

ql ≤ 1.183 · [αl−1 + αl−2 + αl−3] = 1.183αl,

where the terms in brackets account for the TSS’s ending with 11,101 and 1001,
resp.

(b) 11 is forbidden for al−1al . Induction gives

ql ≤ 1.183 · 3 · αl−2 ≤ 1.183αl,

where the term 3αl−2 takes care of the TSS’s ending with 001,011 and 101.
(a) 11 is forbidden for al−2al−1. Induction yields

ql ≤ 1.183 · 6 · αl−3 ≤ 1.183αl,
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where the term 6αl−3 accounts for the 6 possible endings of TSS’s 00 ∗ 1,01 ∗ 1
and 10 ∗ 1. �

The second assumption in Lemma 3.5 can be easily removed:

Lemma 3.6 Assume d0 > · · · > dl+1. Then ql ≤ 1.183αl .

Proof The case where d ′
0 < · · · < d ′

l is settled by Lemma 3.5. Hence assume that
d ′
i > d ′

i+1 for some i. Then Lemma 3.1 applies, showing that 10 is forbidden for
aiai+1. Thus induction gives

ql ≤ 1.183 · αl−1 + 1.1832 · αl−2 ≤ 1.183αl.

Here, the term 1.183αl−1 accounts for the TSS’s with ai = 0 and the term 1.1832 ·
αl−2 upper bounds the number of TSS’s, with aiai+1 = 11. �

Lemma 3.7 Let d0 < · · · < dj > dj+1 > · · · > dl+1. Then ql ≤ 1.4αl .

Proof For l ≤ 4 the claim is trivial (as 24 < 1.4α4). Hence assume l ≥ 5. If d ′
i > d ′

i+1
for some i ≥ j , then 10 is forbidden for aiai+1. Thus induction yields

ql ≤ 1.4 · αl−1 + 1.4 · 1.183αl−2,

where the first term accounts for all TSS’s with ai = 0 and the second term accounts
for all TSS’s with ai = 1 and ai+1 = 1. (Observe that Lemma 3.6 applies to the
subsequence ai+1, . . . , al+1.) We conclude that ql ≤ 1.4αl in this case. Similarly,
the claim follows in case d ′

i < d ′
i+1 for some i < j . (Consider the reverse sequence

al+1, . . . , a0.)
Finally, assume that d ′

j < · · · < d ′
l and d ′

0 > · · · > d ′
j−1 holds. We may then (by

passing to the reverse order al+1 · · ·a0 if necessary) assume w.l.o.g. that j ≤ l − 3
unless l = 5 and j = 3. In any case we may assume that dl−2 > dl−1 > dl > dl+1

and d ′
l−3 < d ′

l−2 < d ′
l−1 < d ′

l , so that Lemma 3.4 applies. We distinguish between the
three cases according to Lemma 3.4:

(a) If 11 is forbidden for al−2al−1, induction yields

ql ≤ 1.4 · 6 · αl−3 ≤ 1.4αl,

where the term 6αl−3 accounts for the TSS’s ending with 00∗1,01∗1 and 10∗1.
(b) If 11 is forbidden for al−1al , induction yields

ql ≤ 1.4 · 3 · αl−2 ≤ 1.4αl.

(c) If 000 is forbidden for al−2al−1al , induction yields

ql ≤ 1.183[αl−1 + αl−2 + αl−3] = 1.4αl. �
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We now finally arrive at the

Proof of Theorem 3.1 We claim that ql ≤ 1.4αl holds in general. We are left to deal
with the case where some local minimum exists. Let ai be the deepest local mini-
mum, i.e., di is minimal with the property that di−1 > di < di+1. Assume w.l.o.g.
that d ′

i−1 > d ′
i . Then 10 is forbidden for ai−1ai . In case i = 1, we thus have ai = 1

for every TSS (as a0 = 1 is fixed), and the result follows by induction. Hence assume
i ≥ 2. We distinguish two cases:

(1) di−2 > di . In this case, either 100 is forbidden for ai−2ai−1ai or 001 is forbidden
for ai−1aiai+1 (cf. Lemma 3.2).
In other words, ai−1ai = 00 either implies ai−2 = 0 or ai+1 = 0. In both cases
we conclude by induction that the number of TSS’s with ai−1ai = 00 is at most
1.4αl−3. Hence, induction yields

ql ≤ 2 · 1.42αl−2 + 1.4αl−3 ≤ 1.4αl.

(The first term bounds the number of TSS’s with ai−1ai = 01 or 11.)
(2) di−2 < di . In this case d0 < d1 < · · · < di−2 < di−1 must hold (otherwise ai were

not the deepest local minimum). Bounding inductively the number of TSS’s with
ai−1 = 0 and ai−1 = ai = 1, we get

ql ≤ 1.4 · αl−1 + 1.183 · 1.4 · αl−2 ≤ 1.4αl,

finishing the proof. �

4 The Lower Bound

It is obvious from Lemma 3.5, what a worst case example matching the upper bound
should look like. We let z0 = 0, z1 = 1 − ε and, in general, zi is defined by

‖zi − zi−1‖ = (1 − ε)2‖zi−1 − zi−2‖,
for suitable ε > 0. We let d0 = 1 and d1 = (1 − ε)2, and in general,

di+1 = (1 − ε)2di.

The lower terminals are given by z′
l = l + 1

2 , z′
l−1 = l − 1

2 + ε, dl = 1 and

‖z′
i − z′

i−1‖ = (1 − ε)2‖z′
i+1 − z′

i‖ and d ′
i = (1 − ε)2d ′

i+1.

For ε > 0 sufficiently small, we have zi ≈ i and z′
i ≈ i + 1

2 . It is straightforward
to check that any sequence a0, . . . , al+1 with no more than two consecutive ze-
roes is a TSS. Figure 13 indicates some empty regions. (For simplicity, the figure
is drawn with ε = 0.) To verify, say, the empty diamonds condition, consider a di-
amond D = D[z′

i−2, zi+1] as in Fig. 13. A sequence with ai−2ai−1aiai+1 = 1001
would correspond to a tree T containing ai−2 and ai+1 on the upper side and a′

i−2
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Fig. 13 A tight worst case
example

on the lower side (as this is closest to the chain). For ε = 0, the diamond D has no
terminals in its interior, but e.g., ai is on its boundary, as di = 1 = ‖zi − zi+1‖ holds.
For ε > 0, we have

di = (1 − ε)2i and ‖zi − zi+1‖ = (1 − ε)di,

so that ai is not (no longer) contained in D. A symmetric argument applied to a′
i−1

indeed shows that D is empty. Furthermore, any subtree fulfills the (weak) empty
triangle condition. Hence indeed any sequence with no more than two consecutive
zeroes is a TSS.

It is straightforward to check that the tree stars corresponding to such a TSS also
satisfy the (strong) empty triangles and circles condition as mentioned in Sect. 2. (In
addition to these empty regions conditions, [10] proves various upper bounds on the
length dl+1 of the last vertical segment. To modify our worst case example so as to
also meet these additional constraints, one simply has to choose the last terminal al+1

sufficiently close to the chain.) Summarizing, we conclude that

Proposition 4.1 In the worst case, there are up to �(
√

α
k
) tree stars satisfying the

empty triangles and circles condition. In particular, the upper bound in Theorem 3.1
is tight.

5 Remarks and Open Problems

We like to remark that our upper bound of O∗(1.357k) can only be proved for suitably
perturbed instances. Indeed, the worst case instance (Fig. 13) in Sect. 4 with ε = 0
would allow a lot more tree stars: Actually any sequence with at most 4 consective
zeroes would be a TSS. (If ai = ai+5 = 1 and ai+1 = · · · = ai+4 = 0, the correspond-
ing tree star must include a′

i+2 as lower terminal.) This yields 1.96l TSS’s or 1.4k

tree stars (disregarding possible choices for the lower terminals).
A second point we want to stress is that what we count is the number of tree stars,

rather than the actual number of potential components (candidate components) of the
optimum tree T ∗. For example, observe that none of the tree stars we count in our
worst case example (Fig. 13) in Sect. 4 occurs in the optimum tree. So it is quite
possible that the number of “candidate sets” can be further reduced.

In this context it is of interest that (as proposed by one of the referees) we input our
worst case example to GEOSTEINER 3.1, a software package (cf. http://www.diku.dk/
geosteiner/) which generates full components on the basis of empty regions condi-
tions as well as other more “global” conditions. These other conditions (which are
not known to us in detail) are seemingly quite strong, at least they ruled out most of
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Table 1 The number of
candidate sets l 5 10 15 20 25

FK 104 235 448 817 1498

TS 29 54 79 104 129

our tree stars from the list of candidates so that the number of candidate sets gener-
ated for our worst case example was much less than αl . In contrast, the “worst case
example” from Fößmeier and Kaufmann ([2]) gave rise to many more candidate sets.
The numbers of generated candidate sets for FK-instances and ours (labeled TS) for
various values of l are shown in Table 1.

The experimental results from geosteiner seem to indicate that tree stars are not the
final truth and that there are many more conditions on candidate sets that one should
take into account. Yet, as mentioned earlier, knowing the exact number of tree stars
may help us also to estimate more accurately the effect these additional conditions
have on the number of candidate sets. In practice, “most problem instances” produce
an “almost linear” growth rate of the number of candidate sets (tree stars with empty
triangles and empty circles) (cf. [10]). An intriguing open problem is whether one can
exhibit conditions that imply a polynomial upper bound on the number of candidate
sets. (This would imply a running time of O∗(2k) for the dynamic program in Sect. 1.)
Another line of future research, as proposed by one of the referees, is to consider
random instances in the spirit of [2].

Acknowledgements We are grateful to an anonymous referee for many helpful suggestions and com-
ments on an earlier version of this paper.
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