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Abstract In a recent article, Nakhleh, Ringe and Warnow introduced perfect phylo-
genetic networks—a model of language evolution where languages do not evolve via
clean speciation—and formulated a set of problems for their accurate reconstruction.
Their new methodology assumes networks, rather than trees, as the correct model to
capture the evolutionary history of natural languages. They proved the NP-hardness
of the problem of testing whether a network is a perfect phylogenetic one for char-
acters exhibiting at least three states, leaving open the case of binary characters, and
gave a straightforward brute-force parameterized algorithm for the problem of run-
ning time O(3kn), where k is the number of bidirectional edges in the network and
n is its size. In this paper, we first establish the NP-hardness of the binary case of
the problem. Then we provide a more efficient parameterized algorithm for this case
running in time O(2kn2). The presented algorithm is very simple, and utilizes some
structural results and elegant operations developed in this paper that can be useful on
their own in the design of heuristic algorithms for the problem. The analysis phase
of the algorithm is very elegant using amortized techniques to show that the upper
bound on the running time of the algorithm is much tighter than the upper bound
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obtained under a conservative worst-case scenario assumption. Our results bear sig-
nificant impact on reconstructing evolutionary histories of languages—particularly
from phonological and morphological character data, most of which exhibit at most
two states (i.e., are binary), as well as on the design and analysis of parameterized
algorithms.

Keywords Parameterized algorithms and complexity · Phylogenetic networks ·
Linguistics

1 Introduction

A phylogeny of a set of (natural) languages is a tree that models the “evolution”
of these languages through the processes of division (due to communities’ separa-
tion) and differentiation (languages change differently in different communities). The
leaves of such a tree represent the extant languages, while the internal nodes represent
the ancestral languages.

Reconstructing language phylogenies is of great interest not only to historical lin-
guists, but also to archaeologists and human geneticists, for example. Since these
phylogenies are at best partially known, mathematical optimization criteria and com-
putational techniques have been devised for their accurate reconstruction. One such
criterion is perfect phylogeny, which is a reflection of the observation that if commu-
nities are sufficiently separated after they diverge, then the inference of the phylogeny
for the languages can be inferred by comparing the characteristics of the languages
[3, 4, 7, 15]. Borrowing from the biology jargon, this criterion states that linguistic
characters evolve without back or parallel substitutions. The problem of determining
if a perfect phylogeny exists, and then computing it, is NP-hard [1], and several para-
meterized algorithms for it were devised; see [6]. Beside the computational methods
for addressing the problem, Don Ringe and Tandy Warnow demonstrated the crite-
rion’s appropriateness by using it to study the evolutionary history of a family of
Indo-European languages.

However, while the methodology seemed to model the evolutionary history of
Indo-European languages with high accuracy (e.g., see [16–18]), the model did not
allow for borrowing between languages. Subsequently, Nakhleh et al. introduced the
perfect phylogenetic networks (PPN) model in which languages do not evolve via a
clean speciation process [10, 11]. They proved the NP-hardness of the problem of
testing whether a network is a perfect phylogenetic one for characters exhibiting at
least three states, leaving open the case of binary characters, and gave a straight-
forward O(3kn) time parameterized algorithm for the problem [10], where k is the
number of bidirectional edges in the network and n is its size.

In this paper we consider the binary case of the problem. This case is of prime in-
terest on its own since it models the problem of reconstructing evolutionary histories
of languages, particularly from phonological and morphological character data, most
of which exhibit at most two states [8, 17, 18]. We first prove the NP-hardness of this
problem. Then we present a branch-and-bound parameterized algorithm that solves
the problem in O(2kn2) time. The algorithm employs several interesting structural
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(network) operations that are very useful in the design of heuristic algorithms for the
problem. When analyzed using the standard methods for analyzing parameterized
branch-and-bound algorithms, and which usually work under a worst-case scenario
assumption, the upper bound obtained on the size of the search tree of the algorithm
is O(3k), matching the upper bound of the trivial brute-force algorithm. This worst-
case analysis for a branch-and-search process is usually very conservative— the worst
cases can appear very rarely in the entire process, while most other cases permit much
better branching and reductions. Instead, we use amortized analysis to show that “ex-
pensive” operations can be balanced by efficient ones, and that the actual size of the
search tree can be upper bounded by O(2k). The running time of the algorithm be-
comes O(2kn2). The analysis phase of the algorithm is very elegant illustrating once
more (see [2]) that parameterized algorithms perform much better than their claimed
upper bounds, and suggesting that the standard approaches used in analyzing the size
of the search tree for parameterized algorithms are very conservative.

2 Inferring Evolutionary Trees

An evolutionary tree, or phylogeny, for a set L of taxa (i.e., species or languages)
describes the evolution of the taxa in L from their most recent common ancestor.
Each taxon in L corresponds to a leaf in the evolutionary tree. Different types of data
can be used as input to methods of tree reconstruction; “qualitative character” data,
which reflect specific observable discrete characteristics of the taxa under study, are
one such type of data. There are several ways of describing qualitative characters: as
partitions of the set of taxa into equivalence classes, or as functions that map the taxa
to the distinct states. Qualitative characters for languages are grammatical features,
unusual sound changes, and cognate classes for different meanings. The assumption
of the historical linguistic methodology is that these qualitative characters evolve in
such a way that there are no back or parallel substitutions. What this means is that
when the state of the qualitative character changes in the evolutionary history of the
set of languages, it changes to a state which does not exist anywhere else on earth at
that time, nor has it appeared earlier. We now formalize this concept mathematically.

Suppose that T is a rooted tree describing the evolution of a set L of languages.
Therefore the leaves in T are the languages in L. Suppose that a qualitative character
α is defined for each of the languages in L as a function α : L → Z, where Z de-
notes the set of integers (i.e., each integer represents a possible state for α). That is,
α is a labeling to the leaves in T . We say a qualitative character α is compatible (or
“convex”) on T if we can extend α to every internal node of the tree T , thus defining
a qualitative character α′, or a labeling to the internal nodes of T , so that for every
state, the nodes in T having that specific state induce a connected subgraph of T . (In
other words, ∀z ∈ Z, the set of nodes {v ∈ V (T ) : α′(v) = z} induces a connected
subgraph of T .)

A different way of casting the above problem which is more intuitive is the fol-
lowing. Given a rooted tree T whose leaves are labeled with integers, decide if the
internal nodes in T can be labeled so that each set of nodes in T with the same label
induces a connected subgraph of T .
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Ringe and Warnow postulated that all properly encoded qualitative characters for
the Indo-European data should be compatible on the true tree, if such a tree existed.
Such a tree is called a perfect phylogeny.

Definition 2.1 Let C be a set of qualitative characters defined on a set L of languages.
A tree T is a perfect phylogeny for C and L if every qualitative character in C is
compatible on T .

We now review the linear-time algorithm devised by Nakhleh and Warnow for
deciding whether a character (not necessarily binary) is compatible with a given tree.

Theorem 2.2 (From [10]) Let T be a phylogenetic tree on a set L of n languages,
and assume that each language in L is assigned a state for α. Then we can test the
compatibility of α on T in O(n) time.

Proof Assume the states of α on the set L are 1,2, . . . , r , for some integer r . We
preprocess the input in order to compute the vector c[1 . . . r] defined by c[i] = |{s ∈
L : α(s) = i}|. Obviously we can compute this vector in O(n) time.

Now, for each i,1 ≤ i ≤ r , and each node v in the tree T , we define Bi(v) to be

Bi(v) = {x : x is a leaf of T below v and α(x) = i}.
Note that if v is a node in T then 0 < |Bi(v)| < c[i] implies that in any labeling of

the node v for which α is compatible, we must have α(v) = i. Hence at each node v

there is at most one state i satisfying this condition.
At each node v we will therefore compute the set States(v) defined to be those

state(s) i such that 0 < |Bi(v)| < c[i], as well as the value |Bi(v)| for every i ∈
States(v). If for any node v we have |States(v)| > 1, then we return “Incompatible”,
and exit; else, we return “compatible”.

We now show how to compute this information. We do this from the bottom up,
and it is trivial to compute these values for the leaves. So suppose v is a node in T and
we have computed these values at its children, which are v1, . . . , vl . Note that the only
candidates for elements of States(v) must be drawn from States(v1)∪· · ·∪States(vl).
For each i ∈ States(v1) ∪ · · · ∪ States(vl), we set |Bi(v)| = |Bi(v1)| + · · · + |Bi(vl)|,
and then compare this to c[i] to see if we include i in States(v). Since |States(v1) ∪
· · · ∪ States(vl)| ≤ l, we can therefore compute States(v) in O(l) time, where l is the
number of children of v. Hence, we can determine the compatibility of α on T in
linear time in the number of nodes in T , that is, in O(n) time. �

The initial analysis of the Indo-European data done by Warnow and Ringe in [17]
demonstrated that the IE linguistic data is, nevertheless, “almost perfect”: they found
a tree on which the proportion of compatible characters to incompatible characters
was enormous. This suggested that the basic approach was a good one, but that the
model had to be extended.

Largely the problem seemed to be the Germanic subfamily, which seemed to have
remained in contact with other languages so that a tree was an inappropriate model of
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evolution. That is, the IE family must have evolved other than through clean specia-
tion. When the group of languages contains some pairs of related dialects which have
evolved in close contact with each other, the ability of the linguist to detect borrow-
ing is greatly reduced. More precisely, whereas borrowing between clearly different
speech forms is tightly constrained and clearly different from change in normal ge-
netic descent, borrowing between closely related dialects is largely unconstrained
and often indistinguishable from changes which could in principle be of very differ-
ent types [9, 12, 14]. In this case, a tree model is inappropriate, and the evolutionary
process is better represented as a “network” [10].

3 Phylogenetic Networks Compatibility: Preliminaries and Complexity

We consider the model introduced in [10] of how languages evolve on networks. This
model references an underlying rooted tree (modeling “genetic descent”) to which we
then add bidirectional edges (modeling how linguistic characters can be transmitted
through contact). Therefore, the underlying tree is rooted, and the edges of that tree
can be naturally oriented from parent to child, whereas the additional edges are by
design bidirectional, since contact between language communities can result in the
flow of linguistic characters in both directions. This model was formalized in [10] as
follows.

Definition 3.1 A phylogenetic network on a set L of languages is a rooted directed
graph N = (V ,E) with the following properties:

(i) V = L ∪ I , where I denotes added nodes which represent ancestral languages,
and L denotes the set of leaves of T .

(ii) E can be partitioned between the edges of a tree T = (V ,ET ), and the set of
“non-tree” edges or bidirectional edges E′ = E − ET . For more convenience in
the notation, we will refer to a bidirectional edge by a b-edge. The edges in T

are oriented from parent to child, and hence T is a directed rooted tree.
(iii) N is “weakly acyclic”, i.e., if N contains directed cycles, then those cycles con-

tain only edges from E′.
(iv) Every internal node in N has at least two children in T .

Properties (iii) and (iv) above will be referred to as the phylogenetic networks prop-
erties.

Assumption 3.2 We shall assume that the b-edges are only incident on internal nodes
in the network N (i.e., not on leaves). This assumption can be made with no loss of
generality since any network can be transformed into one satisfying this property as
follows. For every leaf x with b-edges incident on it: replace x with an internal node
u having two leaf-children labeled as x. Note that this operation can increase the
network size by only a linear factor.

We will now review the concept of character compatibility on a phylogenetic net-
work. We assume that the network N is given together with a set of characters C,
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where each character induces a labeling of the leaves in the network. In the discus-
sion below, we will fix a binary character c ∈ C (i.e., c has only two states 0 and 1)
and look at the network N whose leaves are labeled by the character c. We denote by
TN the underlying tree of N .

For a node u ∈ N , we denote by label(u) the label of node u (note that u might
not be labeled), and by π(u) the parent of u in TN . If e is a b-edge between two
nodes u and v in the network N , then e has three possible statuses: (1) the edge e can
be simply removed denoting that no borrowing took place between the two ancestral
languages representing u and v, (2) e can be directed from u towards v denoting that
the borrowing was from the ancestral language representing u to that representing v,
or (3) e can be directed from v towards u denoting that the borrowing was from
the ancestral language representing v to that representing u. If e is directed from u

towards v, then the network is transformed as follows. Remove the edge (π(v), v)

from N , and make u the new parent of v in the resulting network (that is, add the
edge (u, v) as a tree edge to the resulting network). Similarly, if e is directed from v

towards u, then the edge (π(u),u) is removed from N , and the edge (v,u) is added.
Note that if there are t b-edges in N , then the t b-edges induce O(3t ) trees based on 3t

different statuses of the t edges. We denote by � the set of the trees induced by the t

b-edges in N . Figure 1(A) shows an example of a phylogenetic network with a single
b-edge e = (u, v) whose leaves are labeled by a single character. Figure 1(B) shows
the resulting tree when the b-edge e is removed, Fig. 1(C) shows the resulting tree
when e is directed into v, and Fig. 1(D) shows the resulting tree when e is directed
into u.

If we specify a status for each b-edge in N we obtain an assignment to the statuses
of the b-edges in N , or simply an assignment to the b-edges in N . An assignment
to the b-edges in N is said to be successful if the character c is compatible with
the tree induced by this assignment. A successful labeling for a compatible tree is
a labeling of the nodes of T in which all the nodes with the same label induce a
connected subgraph of T . Two assignments A and A′ agree on a set of b-edges S

in N if they assign the same status to each b-edge in the set S. Note that the order
in which the b-edges that are incident on a certain node are assigned can potentially
make a difference in the resulting tree. For example, if e = (v,u) and e′ = (w,u)

are two b-edges incident on u, then an assignment to e and e′ that directs e into u

followed by directing e′ into u, induces a tree (assuming e and e′ are the only two
b-edges in N ) in which u is a child of w, whereas an assignment to e and e′ that
directs e′ into u followed by directing e into u, induces a tree in which u is a child
of v. So when we say that two assignments agree on a set of b-edges we implicitly
mean that they also agree on the order in which these edges were assigned. The order
of the assignment will not be an issue for us because, as it will be shown in Fact 5.5,
every assignment to the b-edges in N has an equivalent one that, for any node in N ,
it directs at most one b-edge into that node, and hence is not ambiguous.

Definition 3.3 Let N = (V ,E) be a phylogenetic network on L and � be the set of
trees induced by all the assignments to the b-edges in N . Let C be a set of characters
defined on L, and let c : L → Z be a character in C. Then c is said to be compatible on
N if c is compatible on at least one of the trees in �. N is called a Perfect Phylogenetic
Network if all characters in C are compatible on N .
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The CHARACTER COMPATIBILITY ON PHYLOGENETIC NETWORKS problem,
denoted henceforth by CCPN, was defined as follows [10].

CCPN Given a phylogenetic network N = (V ,E) on a set L, and a set of characters
C defined on L, decide if N is a perfect phylogenetic network.

This problem was shown to be NP-hard [10] for the case where each character
has at least three states. We will consider the case of the CCPN problem in which
each character has exactly two states. We will call this problem the BINARY CHAR-
ACTER COMPATIBILITY ON PHYLOGENETIC NETWORKS, denoted henceforth by
BCCPN. This problem is of prime interest on its own in the field of linguistics as
was mentioned before (see [8, 12, 13, 15, 17, 18]).

BCCPN Given a phylogenetic network N = (V ,E) on a set L, and a set of characters
C defined on L such that each character in C has two states (i.e., binary),
decide if N is a perfect phylogenetic network.

Remark 3.4 Since characters are assumed to be independent, deciding if a network N

is perfect phylogenetic on a set of characters C reduces to deciding if every character
c ∈ C is compatible on N . Therefore, without loss of generality, we will denote by
BCCPN the problem of deciding whether a given binary character c is compatible
on N . The mentioning of c becomes irrelevant in this case, and we will simply say N

is compatible to denote that the implicit (given) character c is compatible on N . Note
that in this case the leaves of N are labeled by the single character c only.

Going back to the phylogenetic network given in Fig. 1, where the state of the
character c on every leaf is indicated by the label on the leaf, this network is compat-
ible because if we direct the b-edge e into v, we get the tree in Fig. 1(C) on which
the character c is compatible. Note that the character c is not compatible on the tree
given in Fig. 1(B) resulting from removing the b-edge e in the original network, nor
on the tree given in Fig. 1(D) resulting from directing e into v in the original network.

In the next section we study the complexity of the BCCPN problem.

4 On the Complexity of BCCPN

In this section we show that the BCCPN problem is NP-complete. This will imply
that the CCPN problem is NP-complete as well by specialization, giving an alterna-
tive proof to that in [10] for the NP-completeness of the CCPN problem.

Theorem 4.1 BCCPN is NP-complete.

Proof It is easy to see that BCCPN is in NP: a polynomial time nondeterministic
Turing machine can nondeterministically “guess” the status of every b-edge in the
network, and verifies the compatibility of the resulting tree in polynomial time.

We show that BCCPN is NP-hard by providing a polynomial time reduction from
the 3-SAT problem to BCCPN. Recall that the 3-SAT problem is: given a boolean
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Fig. 1 An example of a phylogenetic network whose leaves are labeled by a single character, and the trees
resulting from the possible assignments to the b-edge e in the network

formula F in the conjunctive normal form (CNF) in which each clause contains ex-
actly three literals, decide if F is satisfiable.

Let F be an instance of 3-SAT on n variables {x1, . . . , xn}. Suppose that F =
C1 ∧ · · · ∧ Cm, where Ci = (l1

i ∨ l2
i ∨ l3

i ), for i = 1, . . . , n. We describe next how to
construct the corresponding phylogenetic network N .

The construction of N proceeds in three stages. We first construct the variable
gadgets, then we construct the clause gadgets, and finally we construct the partition
gadget.

4.1 The Variable Gadgets

For every variable xi in F , we construct the following subnetwork. Associate two
nodes xi and x̄i in N . (We use the same name for the literal and its corresponding
node.) Node xi has two children a and b, x̄i has two children c and d , with two b-
edges linking a and c, and b and d . Finally a has two leaves labeled 0, b has two
leaves labeled 1, c has two leaves labeled 0, and d has two leaves labeled 1. See
Fig. 2 for an illustration of the V-Gadget for variable xi .

We refer to this subnetwork by V-Gadget(xi ). Note that in any labeling of the nodes
in V-Gadget(xi ) that makes the gadget compatible, a and c must be labeled 0, and b
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Fig. 2 The V-Gadget (left) and the C-Gadget (right)

and d must be labeled 1. If τ is a valid truth assignment to the variables in F , then
τ assigns each variable and its negation opposite truth values. This truth assignment
induces a labeling on the nodes xi and x̄i in N that makes the subnetwork of N

V-Gadget(xi ) compatible. For instance, if xi is assigned truth value 1 by τ , then x̄i

is assigned 0. If we label the node xi in N 1, and the node x̄i 0, direct the b-edge
between a and c from c towards a, and that between b and d from b towards d ,
then the subtree induced by this assignment is compatible. The case is similar if xi

is assigned 0 and x̄i 1. Conversely, if there is a labeling to the nodes xi and x̄i in the
network V-Gadget(xi ) that induces a compatible subtree, then it can be readily seen
from the construction of V-Gadget(xi ) that this assignment must assign the nodes xi

and x̄i opposite labels. This shows that a truth assignment τ to F is valid if and only if
each variable gadget in N is compatible. Note also that the subnetwork V-Gadget(xi )
is weakly acyclic, not containing any cycles with a tree edge.

4.2 The Clause Gadgets

For every clause Ci = (l1
i ∨ l2

i ∨ l3
i ) in F , we construct the following subnetwork.

Note that each of the literals in Ci appears in some V-Gadget. As a matter of fact,
each literal in Ci appears as a node in exactly one V-Gadget. Construct three nodes
a1
i , a2

i , and a3
i , each with two leaves labeled 1, and add the b-edges (a1

i , a
2
i ), (a2

i , a
3
i ),

and (a1
i , a

3
i ). (Note that it is not necessary to add two leaves to each of the three nodes.

This is a technicality imposed by the constraint stating that each internal node in a
phylogenetic network must have at least two children in the underlying tree.) Now
add tree edges from the node in the V-Gadget corresponding to the literal l1

i to a1
i ,

from the node in the V-Gadget corresponding to l2
i to a2

i , and from the node in the V-
Gadget corresponding to l3

i to a3
i . This completes the construction of the subnetwork

corresponding to the clause Ci . We will refer to this subnetwork by C-Gadget(Ci ).
See Fig. 2 for an illustration of the C-Gadget for clause Ci = (l1

i ∨ l2
i ∨ l3

i ).
Note that each of the C-Gadget corresponding to a clause is linked to the

V-Gadgets corresponding to the variables that appear in the clause. It is easy to see
that each C-Gadget is weakly acyclic, and the whole subnetwork determined by the
C-Gadgets and the V-Gadgets is weakly acyclic as well. Since any truth assignment τ

to F that satisfies F must satisfy each clause Ci in F , for every i, there exists a literal
l
j
i in Ci (j ∈ {1,2,3}), such that l

j
i is assigned 1 by τ . Without loss of generality,

assume this literal is l1
i . Now the node corresponding to the literal l1

i in the V-Gadget
containing l1

i will be labeled 1, and the subnetwork determined by C-Gadget(Ci ) is
compatible. This can be seen by directing the b-edge between a1

i and a2
i from a1

i
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towards a2
i , and between a1

i and a3
i from a1

i towards a3
i , and finally removing the

b-edge between a2
i and a3

i . On the other hand, if the subnetwork determined by C-
Gadget(Ci ) is compatible, then at least one of the three nodes corresponding to the
literals l1

i , l2
i , and l3

i must be labeled 1, and hence the corresponding literal is labeled
1 satisfying clause Ci . This shows that clause Ci in F is satisfiable by a valid truth
assignment if and only if C-Gadget(Ci ) is compatible.

So far, the subnetwork constructed above and determined by the V-Gadgets and the
C-Gadgets ensures the following: The nodes in this subnetwork can be labeled, and
the status of the b-edges can be assigned, so that all the nodes in each resulting subtree
rooted at a node corresponding to a literal have the same labels if and only if there
exists a valid truth assignment to F that satisfies F (consequently, if and only if F

is satisfiable). This captures the core of the reduction from 3-SAT to BCCPN. What
remain are only some technicalities to complete the construction of the underlying
rooted tree of N , and ensure that, upon an assignment to the b-edges of N in the
V-Gadgets and C-Gadgets, the remaining b-edges in the network N guarantee that
N can be partitioned so that all the nodes labeled 0 form a connected subtree, and
all the nodes labeled 1 for a connected subtree, in the resulting tree induced by the
assignment to the b-edges in N .

4.3 The Partition Gadget

The partition gadget is constructed as follows. Add a node r as the root of TN , and
add two children r0 and r1 of r . Add two leaves labeled 0 with parent r0, and one
leaf labeled 1 with parent r1. Add tree edges from r1 to every node in a V-Gadget
corresponding to a literal (i.e, to every node of the form xi or x̄i in a V-Gadget),
thus making r1 the parent of all these nodes. Add b-edges from r0 to every node in a
V-Gadget corresponding to a literal. This completes the construction of N . See Fig. 3
for an illustration of the partition gadget and the whole network.

It is not difficult to verify that N as constructed above is a phylogenetic network.
In particular, the underlying structure of N (i.e., if we remove the b-edges from N ) is

Fig. 3 The partition gadget and
the whole network



Algorithmica (2008) 51: 99–128 109

a tree rooted at r , each internal node in N has at least two children, and N is weakly
acyclic since the partition gadget does not create any cycles containing tree edges.

The above construction gives a polynomial-time reduction that takes an instance
F of 3-SAT and produces an instance N of BCCPN.

If F is satisfiable, then there exists a valid truth assignment τ to the variables in F

that satisfies every clause in F . Since τ is valid, we can label the nodes correspond-
ing to the literals in F in every V-Gadget by the truth values assigned by τ to their
corresponding literals, and direct the b-edges as described above so that to make each
V-Gadget compatible. This also makes all the nodes of label 1, and label 0 in each
V-Gadget, form connected subtrees within each gadget satisfying that all the nodes
in each subtree have the same label. Since τ satisfies every clause in F , by the above
discussion, we can direct the b-edges in every C-Gadget so that to make the C-Gadget
compatible. After this step, all the nodes in any subtree rooted at a node correspond-
ing to a literal have the same label. Now to show that N is compatible, we need to
show how the remaining b-edges in N can be assigned so that the nodes labeled 0
form a connected subtree and the nodes labeled 1 form a connected subtree. At this
point each of the nodes except r , r0, and r1 has a label. In particular, the nodes cor-
responding to the literals in the V-Gadgets are labeled. We label r with 1, r0 with 0,
and r1 with 1 (note that r0 and r1 are forced to be labeled as such), and direct all
the b-edges between r0 and the nodes with label 0 in the V-Gadgets corresponding to
literals, from r0 towards these nodes. Note that by doing this, we are cutting off all
the edges between these nodes and their parent r1. This operation makes all the nodes
of label 0 connected, and all those labeled 1 connected, which in turn, makes all the
nodes of label 0 in N form a connected subtree, and so do the nodes of label 1.

Conversely, suppose that N is compatible. Then each V-Gadget is compatible, and
by the above discussion, in every V-Gadget, the node corresponding to the variable
and the node corresponding to the negation of this variable are assigned different la-
bels. Now if we assign the corresponding variables the truth values determined by the
labels of these nodes in the V-Gadgets we get a valid truth assignment τ for F . Since
each C-Gadget is compatible, by the above discussion, the clause corresponding to
the gadget must be satisfiable. This shows that F is satisfiable.

It follows that 3-SAT is reducible to BCCPN in polynomial time. Consequently,
BCCPN is NP-complete. This completes the proof. �

5 A Parameterized Algorithm for BCCPN

A parameterized problem is a set of pairs of the form (x, k) where x is the input
instance and k is a positive integer called the parameter. A parameterized problem is
said to be fixed-parameter tractable, if the problem can be solved in time f (k)|x|c ,
where f is a computable function of the parameter k, |x| is the input size, and c is a
constant independent of k [5]. The area of parameterized algorithms and complexity
was introduced mainly in the work of Downey and Fellows [5], and is based on the
core observation that for many practical occurrences of intractable problems some
parameters remain small, even if the problem instances are large. Therefore, if we
have an algorithm for a problem which runs in time f (k)|x|c for some fixed c, then
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the exponential growth in the running time no longer depends on the input size, but
just the parameter (via the function f (k)). If we assume that k is fixed (or small), we
have a polynomial time solution whose exponent does not depend on k.

Taking the advantage of the fact that the number of b-edges in the phylogenetic
network is small [11], the BCCPN problem can be naturally parameterized by the
number of b-edges, k, in the phylogenetic network. We call this problem the PARA-
METERIZED BCCPN problem. It is easy to see that the PARAMETERIZED BCCPN
problem can be solved in O(3kn) time, where n is the number of nodes in the phy-
logenetic network, by enumerating the status of every b-edge in the network, then
checking whether the resulting induced tree is compatible. We will significantly im-
prove on this upper bound next. The algorithm we present is a decision algorithm
deciding if the network is compatible or not. The algorithm can be easily modified
so that, during this processes, the status of every edge is kept track of and returned
as a witness to the solution when the decision is positive. We present the algorithm
and prove its correctness in this section and we analyze its running time in the next
section. We start by presenting some definitions, facts, and operations.

Assumption 5.1 Let (N, k) be an instance of PARAMETERIZED BCCPN. If there is
at most one leaf in N of label 0 (resp. 1), then N is compatible. This is true since if we
label all the internal nodes in N with 1 (resp. 0), then every assignment to the b-edges
in N is a successful assignment. Since these particular cases can be identified and
resolved in O(n) time, we will assume henceforth that at any stage of the algorithm,
there are at least two leaves of label 0 and at least two leaves of label 1 in the network.

Definition 5.2 Let N be a phylogenetic network. An internal node s in N is said to
be a splitting node if there exists a successful assignment to the b-edges in N that
results in a compatible tree T , such that there is a valid labeling for the nodes in T

with all the nodes in the subtree rooted at s labeled with the same label, and all the
other nodes in the tree labeled with the other (different) label. If s is any splitting
node in N and A is any successful assignment to the b-edges in N with an induced
tree T , then A is said to respect the splitting node s if there is a valid labeling for the
nodes in T with all the nodes in the subtree rooted at s labeled with the same label,
and all the other nodes in the tree labeled with the other (different) label.

Remark 5.3 Observe that, if we assume the statements in Assumption 5.1, then for
any compatible phylogenetic network N there is at least one splitting node in N .

Definition 5.4 Two assignments to the b-edges in N are said to be equivalent if their
induced trees are the same.

Fact 5.5 If A′ is an assignment to the b-edges in N , then there exists an equivalent
assignment A to the b-edges in N such that for any node u in N , A directs at most
one b-edge into u. In particular, if N is compatible and s is a splitting node in N ,
then there exists a successful assignment A to the b-edges in N that respects s, and
such that for every node u in N , A directs at most one b-edge into u.
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Proof Let A′ be an assignment to the b-edges in N . Let u be a node in N . If A′
directs more than one b-edge towards u, let (a,u) and (b,u) be the first two such
b-edges in the order given by the assignment. Suppose, without loss of generality,
that A′ directs the b-edge (a,u) first. Then A′ can be replaced by another assignment
A′′ that removes the b-edge (a,u), directs (b,u) towards u, and agrees with A′ on
the assignment to the other b-edges and their respective assignment order. Moreover,
the resulting network structure is unaffected by this change. Applying this argument
repeatedly, we end up with an assignment that directs at most one b-edge towards u.
Now we apply this argument repeatedly to the nodes in the resulting network with re-
spect to the resulting assignment. We eventually obtain an assignment A, and that for
every node u in N , directs at most one b-edge into u, and that is equivalent to A′. In
particular, since the resulting structure is unaffected by this change, if N is compat-
ible and A′ is a successful assignment to the b-edges in N that respects the splitting
node s, then there exists a successful assignment A to the b-edges in N that respects s,
and such that for every node u in N , A directs at most one b-edge into u. �

Figure 4(A) shows an example of a network with two b-edges incident on u: e1
and e2. Suppose that an assignment A directs both e1 and e2 into u with e1 being di-
rected first. The network resulting from directing e1 into u is shown in Fig. 4(B). The
network/tree resulting from directing e2 into u in the network in Fig. 4(B) is shown
in Fig. 4(C). The network/tree resulting from Fig. 4(A) by an assignment A′ that re-

Fig. 4 An illustration for Fact 5.5
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moves e1 and directs e2 into u is shown in Fig. 4(D). Note that the two networks/trees
in Fig. 4(C) and Fig. 4(D) are equivalent, and hence these two assignments A and A′
are equivalent.

In the discussion below we will be introducing some operations that can be applied
to the network N . These operations may end up removing or directing b-edges in N ,
and labeling some of its internal nodes. Therefore, in addition to the fact that the
leaves in N are labeled by a single binary character (being an instance of the BCCPN
problem), the network N can be partially labeled.

Fact 5.6 Let u and u′ be two nodes in a network N such that label(u) 
= label(u′),
and suppose that (u,u′) is a b-edge in N . If N is compatible and s is a splitting node
in N , then there exists a successful assignment to the b-edges in N that respects s

and in which the b-edge (u,u′) is removed.

Proof Let A be a successful assignment that respects s. By Fact 5.5, we can assume
that A directs at most one b-edge towards any node in N . In particular, we can assume
that at most one b-edge is directed into u, and at most one b-edge is directed into
u′ by A. If A removes the b-edge (u,u′) then A is the desired assignment and we
are done. Suppose now that A does not remove (u,u′), and hence A either directs
this b-edge into u or into u′. Assume, without loss of generality, that A directs the
b-edge (u,u′) into u′. Since at most one edge is directed into u′ by A, and since
label(u′) 
= label(u), u′ must be the splitting node s. (This is true because all the
nodes labeled with the same label as u′ have to end up being descendants of u′ in the
resulting tree. Notice that since (u,u′) is the only b-edge directed into u′, the position
of u′ in the tree induced by A has been fixed as a child of u which has a different label
from u′.) But then if we change the status of the b-edge (u,u′) in A to be removed,
we still have a successful assignment that respects the splitting node s = u′. �

Fact 5.7 Let u and u′ be two nodes in a network N such that label(u) = label(u′).
Suppose that (u,u′) is a b-edge in N . If N is compatible and s is a splitting node
in N , then there exists a successful assignment to the b-edges in N that respects s

and in which (u,u′) is not removed, i.e., in which (u,u′) is either directed towards u

or towards u′.

Proof Let A be a successful assignment to N that respects s. If A does not remove
(u,u′) then A is the desired assignment and we are done. Suppose now that A re-
moves (u,u′). If u = s (resp. u′ = s) is the splitting node, then let A′ be the assign-
ment that agrees with A on its assignment to all the b-edges except to (u,u′), where
A′ directs (u,u′) into u′ (resp. into u). If neither of u or u′ is the splitting node s, then
let A′ be the assignment that agrees with A on its assignment to all the b-edges except
to (u,u′), where A′ either directs (u,u′) towards u (or towards u′). It is straightfor-
ward to verify that A′ is a successful assignment that respects s in each of the above
cases. �

Fact 5.8 Let u and u′ be two nodes in a network N such that label(u) = label(u′) =
label(π(u)) = label(π(u′)). Suppose that (u,u′) is a b-edge in N . If N is compatible
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Fig. 5 The subroutine Clean
Clean((u,u′))
Precondition: label(u) 
= label(u′) and (u,u′) is a b-edge

1. remove the b-edge (u,u′) from N ;

and s is a splitting node in N , then there exists a successful assignment to the b-edges
in N that respects s and in which (u,u′) is removed.

Proof Let A be a successful assignment to N that respects s. Observe first that since
N is weakly acyclic (N satisfies the phylogenetic networks properties), none of u or
u′ can be a splitting node in the induced tree; otherwise, the parent of that node has to
become its descendant, which is only possible if the network is not weakly acyclic. If
A does not remove (u,u′), let A′ be the assignment that agrees with A on its assign-
ment to all b-edges except to (u,u′), where A′ removes (u,u′). It is straightforward
to verify that A′ is a successful assignment that respects s. This follows from the fact
that the parents of u and u′ have the same labels as u and u′ and they all have to end
up being descendants of the same splitting node, which is different from u and u′, in
the induced tree. �

The main algorithm, Phylogenetic_Compatibility, which solves the PARAME-
TERIZED BCCPN problem is given in Fig. 8. The algorithm Phylogenetic_Compati-
bility tries every node in N as the splitting node. For each node selected as the
splitting node, it calls the subroutine Is_Compatible to check whether there exists a
successful assignment to N that respects the selected splitting node. Thus, the sub-
routine Is_Compatible works under the assumption that the splitting node is given.
The subroutine Is_Compatible utilizes the subroutines Clean, Reduce, and Merge,
given in Fig. 5, Fig. 6, and Fig. 7, respectively. These subroutines apply some opera-
tions to reduce the network N , and also work under the assumption that the splitting
node has been selected. We first prove that the modifications performed by the sub-
routines Clean, Reduce, and Merge to the network are correct.

Definition 5.9 An operation applied to a phylogenetic network N to obtain a network
N ′ is said to be valid if: (1) N ′ satisfies the phylogenetic networks properties, and
(2) there exists a successful assignment to the b-edges in N that respects the splitting
node if and only if there exists a successful assignment to the b-edges in N ′ that
respects the splitting node.

Proposition 5.10 The operation performed by the subroutine Clean given in Fig. 5
is valid.

Proof Let u and u′ be two nodes in N such that label(u) 
= label(u′) and such that
(u,u′) is a b-edge. Let N ′ be the network resulting from applying the subroutine
Clean to N and removing the b-edge (u,u′) as described by the subroutine. First
observe that when Clean is applied to N it removes a b-edge from N , and clearly
this does not affect the phylogenetic networks properties. Therefore N ′ satisfies the
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Reduce(u)

1. if u has two leaf-children with different labels then reject;
2. if all the children of u are leaves and there is no b-edge incident on u then

if u is marked as the splitting node then
if there is a leaf in N that is not a child of u

and of the same label as the children of u then reject;
else accept;

else
remove u and its children and replace them with a leaf l;
label l with the same label as the children of u;
add the tree edge (π(u), l);

3. if u is unlabeled and has a labeled child w (w could be a leaf) with no b-edge incident on w then
if w is marked as the splitting node then set label(u) = 1 − label(w);
else set label(u) = label(w);

4. if u is labeled and has an unlabeled child w with no b-edge incident on w then
if w is marked as the splitting node then set label(w) = 1 − label(u);
else set label(w) = label(u);

5. if u is labeled and has at most one leaf-child then
add two leaves as children to u of the same label as u;

6. if u has more than two leaves with the same label then remove all of them except two;

Fig. 6 The subroutine Reduce

Merge(〈u,u′〉)
Precondition: label(π(u)) 
= label(u) = label(u′) and (u,u′) is a b-edge

1. cut off the tree edge (π(u),u) from N ;
2. remove the b-edge (u,u′);
3. identify the two nodes u and u′ (i.e., merge the two nodes into one new node);
4. let the new node be w; set label(w) = label(u′) and π(w) = π(u′) (add the tree edge (π(u′),w));
5. make the children of both u and u′ children of w;
6. shift all the b-edges that are incident on u and u′ to make them incident on w without changing

the other endpoints of the b-edges;
7. if u or u′ is marked as the splitting node then mark the new node w as the splitting node;

Fig. 7 The subroutine Merge

phylogenetic networks properties. By Fact 5.6, if N is compatible and s is a splitting
node in N , then there exists a successful assignment to the b-edges in N that respects
s and in which the b-edge (u,u′) is removed. Therefore, N is compatible and s is a
splitting node in N if and only if N ′ is compatible and s is a splitting node in N ′.
This shows that the operation performed by Clean is a valid operation. �

Proposition 5.11 The operations performed by the subroutine Reduce given in Fig. 6
are valid.

Proof We will show that each step in Reduce is valid.
Step 1 of Reduce. If Reduce rejects in step 1 then obviously N is not compatible.

This can be seen as follows. Suppose that step 1 in Reduce applies to a node u and
let A be any successful assignment to the edges in N . Let T be the tree induced by
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the assignment A. Since T is compatible, there exists a successful labeling to the
nodes of T in which all nodes with label 0 induce a connected subgraph of T , and
all nodes of label 1 induce a connected subgraph of T . Suppose that u is labeled 0
in this labeling. The argument is analogous if u is labeled 1. Since u has a leaf-child
of label 1, this is only possible if the leaf-child of u of label 1 is the only leaf with
label 1 in N , contradicting Assumption 5.1.

Step 2 of Reduce. Suppose that step 2 of Reduce applies to a node u. Note that by
step 1 of Reduce, all the children of u must be of the same label. Note also that in
any successful labeling to the nodes of an induced compatible tree of N , the label of
u must be the same as the label of its children. This can be seen as follows. If u is
labeled differently than its children in a compatible tree T , since all children of u are
leaves and there is no b-edge incident on u, then it must be the case that u has exactly
one child and it is the single leaf in N with that specific label (otherwise the nodes
of the same label as that leaf-child of u do not induce a connected subgraph of T ),
contradicting Assumption 5.1. Therefore, u can be labeled with the same label as its
children.

Now if u is the splitting node and there is a leaf l′ in N with the same label as u

(and its children) that is not a child of u, then since all the children of u are leaves
(and hence has no b-edges incident on them) and there is no b-edge incident on u,
there is no assignment to the b-edges that would result in l′ being a descendant of u

in the induced tree, contradicting the working hypothesis that u is the splitting node.
Consequently, the subroutine rejects the instance in this case. If u is the splitting node
and all the leaves in N with the same label as u are children of u, then clearly if we
label all other internal nodes in N with the label (1 − label(u)) and remove the b-
edges from N , we obtain a compatible tree and the algorithm can accept the instance
in this case.

Suppose now that u is not a splitting node, and let N ′ be the network resulting
from applying step 2 in Reduce, which basically shrinks the subtree rooted at u to
a single leaf with the same label as u. Then N ′ satisfies the phylogenetic networks
properties since N ′ results from N by removing the subtree rooted at u and adding
a leaf-child with the same label as u. Clearly, such an operation does not affect the
weak acyclicity of N , nor does it destroy the property that each internal node has
at least two children (the parent of u still satisfies this property by virtue of adding
another leaf-child to it after cutting u off). Again note that by step 1 of Reduce, all
the children of u must be of the same label and that in any successful labeling of the
nodes of an induced compatible tree of N , the label of u must be the same as the label
of its children. Moreover, since there is no b-edge incident on u, in any assignment A

to the b-edges in N , u will remain a child of its current parent. It is straightforward
to see now that a successful assignment to the b-edges in N that respects the splitting
node in N is also a successful assignment to the b-edges in N ′ that respects the
splitting node (which is still a node in N ′) and vice versa.

Step 3 of Reduce. Consider step 3 of Reduce. Let u be an unlabeled node with a
labeled child w such that there is no b-edge incident on w.

Suppose first that w is marked as the splitting node. Since there is no b-edge in-
cident on w, any assignment to the b-edges in N leaves w a child of u. Since w is a
splitting node under the working hypothesis, and it remains a child of u in any suc-
cessful assignment, the label of u and w will be different in any successful labeling of
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a compatible tree resulting from a successful assignment to the b-edges in N . There-
fore, under the working hypothesis that w is the splitting node, the labeling operation
in step 3 of Reduce is correct in this case, and any successful assignment to N that
respects the splitting node will also be a successful assignment to the resulting net-
work that respects the splitting node, and vice versa. Moreover, since the only change
to the network performed in this case is the labeling of u, the resulting network still
satisfies the phylogenetic networks properties.

Suppose now that w is not marked as the splitting node. By the same observation
as above, w will always remain a child of u in any assignment to the b-edges if N .
Since w is not the splitting node under the working hypothesis, and w is a child of u,
the label of u must be the same as the label of w in any successful assignment to the
b-edges in N . This can be seen as follows. Let T be a compatible tree and consider
a successful labeling of T . If label(w) 
= label(u) in this successful labeling, then
since u is the parent of w in T , all nodes with the same label as w must belong to the
subtree rooted at w, and hence w would be a splitting node, contradicting our working
hypothesis. Therefore, under the working hypothesis that w is not the splitting node,
the labeling operation in step 3 of Reduce is correct in this case, and any successful
assignment to N that respects the splitting node will also be a successful assignment
to the resulting network that respects the splitting node, and vice versa. Moreover,
since the only change to the network performed in this case is the labeling of u, the
resulting network still satisfies the phylogenetic networks properties.

Step 4 of Reduce. The correctness of step 4 follows by a similar argument to that
of step 3.

Step 5 of Reduce. The validity of step 5 can be easily seen since adding more
leaves to u of the same label will not affect any successful assignment nor will it
affect the splitting node or destroy the phylogenetic networks properties.

Step 6 of Reduce. If u has two leaves with a certain label, then any other leaf
with the same label can be removed without affecting any successful assignment.
This can be seen as follows. Since u has two leaves of the same label, any successful
labeling must label u with the same label as these two leaves. Therefore, having more
leaves with the same label will not affect any successful labeling. Consequently, any
successful assignment to N that respects the splitting node will also be a successful
assignment to the resulting network that respects the splitting node, and vice versa.
Moreover, since the only change to the network performed in this case is the removal
of some leaves of u, and since u in the resulting network has two leaves, the resulting
network still satisfies the phylogenetic networks properties, and step 6 of Reduce is
valid. �

Proposition 5.12 Let N be a phylogenetic network and suppose that the subroutine
Reduce is not applicable to any node in N . Then the operations performed by the
subroutine Merge given in Fig. 7 are valid.

Proof Let u and u′ be two nodes in a phylogenetic network N such that label(π(u)) 
=
label(u) = label(u′), and such that (u,u′) is a b-edge in N . Suppose further that the
operation Reduce is not applicable to any node in N . The subroutine Merge cuts u off
its parent, merges the two nodes u and u′ to form a new node w with π(w) = π(u′),
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and makes all the b-edges that were incident on u and u′, incident on the new node
w. Let N ′ be the network resulting from this operation.

The fact that the operation preserves the phylogenetic networks properties is not
difficult to see. The operation clearly preserves the weak acyclicity of the network: if
N ′ is not weakly acyclic then N would not be. Since the only internal node that some
of its children are cut off by this operation is π(u), and since π(u) is labeled and
step 5 of Reduce is not applicable to π(u), it follows that π(u) has two leaves of the
same label that remain after the application of the operation. Therefore, N ′ satisfies
the phylogenetic networks properties.

Suppose now that there exists a successful assignment A to N that respects the
splitting node. Since label(u) = label(u′), by Fact 5.7, we can assume that A either
directs (u,u′) towards u or towards u′. It is not difficult to verify that the assignment
A′ to N ′ that assigns to a b-edge (c,w) the same value assigned by A to its corre-
sponding b-edge (c, u) or (c, u′) in N , disregards the assignment of A to the b-edge
(u,u′), and agrees with A on its assignment to all the other b-edges, is a successful
assignment that respects the splitting node in N ′. The converse is also true. �

Fact 5.13 Let N be a phylogenetic network and suppose that the subroutine Reduce
is not applicable to any node in N . If v is an unlabeled node in N , then there exists
at least one b-edge incident on a node in the subtree of TN rooted at v.

Proof This follows from step 2 and 3 in Reduce, and the fact that each non-leaf node
in a phylogenetic network has at least two children (and hence the subtree rooted at
v has leaves). If there is no b-edge incident on any node in the subtree of TN rooted
at v, then v would be labeled by the repeated application of step 2 in Reduce (starting
at the leaf-nodes in the subtree rooted at v and going bottom-up to v), followed by
the application of step 3 in Reduce. �

Proposition 5.14 Let N be a phylogenetic network such that none of the operations
Reduce, Clean, or Merge is applicable to N . Then there exist two nodes u and u′ in
N such that: (1) label(u) = label(u′), (2) (u,u′) is a b-edge in N , and (3) all children
of u and u′ are leaves.

Proof Define an internal node w in N to be a deepest node if all its children are
leaves. Note that since step 3 of Reduce is not applicable to any node in N , every
deepest node in N must be labeled, and by step 2 of Reduce and the fact that all
the children of a deepest node are leaves, every deepest node must have at least one
b-edge incident on it.

The idea of the proof is the following. Start at a deepest node w1 and look at an
incident b-edge (w1,w2). If w2 is a deepest node, then w1 and w2 is our desired
pair of vertices. Otherwise, starting at w2, we go down the tree TN until we reach a
deepest node w3. We look at an incident b-edge (w3,w4). If w4 is a deepest node,
then we are done. Otherwise, we repeat the same process. Since N is weakly acyclic,
this process will have to stop, and at that point we have found our desired pair of
vertices. We formalize this argument below.
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Let w1 be a deepest node in N , and let (w1,w2) be a b-edge incident on w1. If w2
is a deepest node, set u = w1 and u′ = w2, and u and u′ are the desired vertices (note
that label(u) = label(u′) since Clean is not applicable).

Now suppose that w2 is not a deepest node. Let Tw2 be the subtree of TN rooted
at w2. Since w2 is an internal node and N is a phylogenetic network, w2 has de-
scendants, and Tw2 contains leaves. Since step 2 of Reduce is not applicable, there
must exist a deepest node in the subtree Tw2 . Let w3 be such a deepest node, and let
(w3,w4) be a b-edge incident on w3. Now repeat the same process. We claim that this
process must halt with the desired u and u′. This can be easily seen as follows. Sup-
pose this process does not halt. Define the following walk W in N . Add every edge
of the form (wi,wi+1) to W . Add to W every path that is traced in this process from
a node wi to a deepest descendant node in Twi

. By the assumption that the process
does not halt, W is an infinite walk on N . Since N has finitely many nodes, W must
contain a simple closed path P . By the weak acyclicity of N , the path P cannot con-
tain any tree edges, and hence all the edges on P are b-edges. By looking at W , one
readily sees that every b-edge of the form (wi,wi+1) in W is followed by a tree path
from wi+1 to one of its deepest descendants (unless the process halts). Since P does
not contain any tree edges, P must consist of a single b-edge of the form (wi,wi+1),
a contradiction. It follows that this process halts with the desired vertices u and u′.
This completes the proof. �

We call a pair of nodes {u,u′} satisfying the three conditions in Proposition 5.14 a
nice pair. Proposition 5.14 establishes the existence of a nice pair in any phylogenetic
network N to which none of the operations Reduce, Clean, or Merge is applica-
ble. Now we are ready to present the main algorithm Phylogenetic_Compatibility
which solves the PARAMETERIZED BCCPN problem. The algorithm is a branch-
and-search process. Each stage of the algorithm starts with an instance (N, k) of the
problem, and tries to reduce the parameter k by identifying and eliminating some
b-edges. If a branch directs a b-edge in such a way that the resulting network is not
weakly acyclic (i.e., no longer satisfies the phylogenetic networks properties), then
this branch is not considered. After each branch, the algorithm recursively works on
the reduced instances. During the process of branching, some nodes in N get labeled.
We implicitly assume that after each step, the network N and the parameter k are
updated accordingly. Furthermore, we will assume that Assumption 5.1 is valid be-
fore each operation performed by the algorithm and its subroutines. The algorithm is
given in Fig. 8. Note that the subroutines Clean, Reduce, and Merge do not perform
any branching and can be very useful in the design of heuristic algorithms for the
problem. The algorithm itself performs exactly two different branches, which are the
ones given in Case 2 and Case 3 of step 4.

Theorem 5.15 The algorithm Phylogenetic_Compatibility is correct.

Proof The algorithm Phylogenetic_Compatibility tries every node as the splitting
node and then calls the subroutine Is_Compatible. If N is compatible, then there
exists a successful assignment to the b-edges in N and a successful labeling to the
induced compatible tree. By Remark 5.3, there exists a node in N which is a splitting
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Is_Compatible (N , k)

Implicit Assumptions. After each step, the network N and the parameter k are updated
accordingly. Assumption 5.1 is valid before each operation performed by the algorithm and its
subroutines.

1. if k = 0 and N is not compatible then reject;
2. while Reduce is applicable to a node in N apply it;
3. if any of Clean or Merge is applicable then apply it and go to step 1;
4. let {u,u′} be a nice pair in N ; {∗ assume without loss of generality that

label(u) = label(u′) = 1 ∗}
Case 1. Both π(u) and π(u′) are labeled

remove the b-edge (u,u′);
Case 2. Exactly one of π(u) and π(u′) is labeled, say π(u). Branch as follows

first side of the branch: set label(π(u′)) = 1 and remove the b-edge (u,u′);
second side of the branch: set label(π(u′)) = 0;

Case 3. (Both π(u) and π(u′) are unlabeled.) Branch as follows
first side of the branch: set label(π(u)) = 0;
second side of the branch: set label(π(u′)) = 0;
third side of the branch: set label(π(u)) = label(π(u′)) = 1 and remove the b-edge
(u,u′);

Phylogenetic_Compatibility

Input: an instance (N, k) of PARAMETERIZED BCCPN where N is a phylogenetic network and
k is a positive integer

Output: yes/no decision based on whether N is compatible or not

1. for every node s in N do
1.1. N ′ = N ;
1.2. mark s as the splitting node in N ′;
1.3. call Is_Compatible on (N ′, k);
1.4. if Is_Compatible returns yes then return yes;

2. return (no);

Fig. 8 The subroutine Is_Compatible and the algorithm Phylogenetic_Compatibility

node in this case. Therefore, if we show that the subroutine Is_Compatible which
works under the assumption that the splitting node is given, is correct, then it will
follow that the algorithm Phylogenetic_Compatibility is correct.

We look now at the subroutine Is_Compatible. Step 1 of the subroutine is correct
because if k = 0 then N must be a phylogenetic tree, and the compatibility of N can
be checked using Theorem 2.2. The correctness of steps 2 and 3 follows from Proposi-
tion 5.10, Proposition 5.11, and Proposition 5.12. Note that, by the way the statements
in the subroutine Is_Compatible are ordered, when Merge is executed, Reduce is
not applicable, and hence the assumptions in the statement of Proposition 5.12 hold
true. Therefore, we only need to verify step 4. First we need to justify the existence of
a nice pair at this point of the algorithm. By Proposition 5.14, we only need to show
that the network N satisfies the phylogenetic networks properties whenever we are at
step 4 of the algorithm. Note first that, by the way the algorithm is designed, when any
of the operations Clean or Merge is invoked, the operation Reduce is not applica-
ble. It has been shown that the operations in Clean, Reduce, and Merge preserve the
phylogenetic networks properties. Moreover, step 4 of Is_Compatible preserves the
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phylogenetic networks properties (since it only labels the nodes and possibly removes
some b-edges). It follows, by an inductive argument, that the phylogenetic networks
properties are preserved each time step 4 of the algorithm is about to be executed,
given that the network passed to the algorithm originally is a phylogenetic network.
The correctness of the branches in step 4 can be seen as follows. First notice that
each of u and u′ should have a parent. Otherwise, one of the them is the root and is
a deepest node. This means that all the other nodes in N including u′ are leaves, a
contradiction (since N could not contain any b-edges and step 1 should conclude the
algorithm). Since {u,u′} is a nice pair, both nodes u and u′ are labeled. The algorithm
only describes the case when both u and u′ are labeled 1. The other case is exactly the
same with 0s replaced by 1s and 1s by 0s in the branches. Note that none of π(u) or
π(u′) can be labeled 0, otherwise, since both u and u′ are labeled 1, Merge would be
applicable. The three cases given in step 4 clearly cover all possible scenarios since:
(1) either both π(u) and π(u′) are labeled, or (2) exactly one of them is labeled, or
(3) none of them is labeled. Now we justify the correctness of the branch (if any) in
each of the three cases.

In Case 1 no branching is needed, and the correctness of this step follows from
Fact 5.8. In Case 2, we note that since Merge(〈u,u′〉) is not applicable and label(u) =
1, label(π(u)) must be 1. Now either label(π(u′)) = 1 or label(π(u′)) = 0. In the
first side of the branch where we set label(π(u′)) = 1, the removal of the b-edge
(u,u′) is again correct by Fact 5.8. In Case 3, we know that either one of π(u),π(u′)
is labeled 0, or none of them is, an hence, both of them are labeled 1. In the latter
case the b-edge (u,u′) can be removed by Fact 5.8. Therefore the case accounts for
all possible scenarios. This proves the correctness of the branch in step 4. Now how
do we know that the algorithm terminates?

Observe first that each time step 4 of the algorithm is executed, at least one b-edge
will be removed. This can be seen as follows. If Case 1 is executed then the b-edge
(u,u′) is removed. If Case 2 is executed, then in the first side of the branch the b-
edge (u,u′) is removed. In the second side of the branch, label(π(u′)) is set to 0,
and when Merge(〈u′, u〉) is called next, the b-edge (u,u′) will be removed. If Case
3 is executed, then in the first and second sides of the branch, the b-edge (u,u′) will
be removed when Merge(〈u,u′〉) or Merge(〈u′, u〉) is called next. In the third side of
the branch the b-edge (u,u′) is removed by Fact 5.8.

Each execution of Clean removes at least one b-edge from N . Each execution of
Merge removes one b-edge. An execution of Reduce may end up adding two leaves
to an internal node, but once two leaves have been added to an internal node no more
leaves will be added to this internal node. Therefore, the total number of leaves that
can be added by Reduce is bounded by twice the number of nodes in N . Any other
execution of Reduce either ends up labeling some nodes or removing nodes and
edges from N . This proves the correctness of the whole algorithm. Therefore, if the
instance has a solution then a solution will be found by the algorithm, otherwise, a
negative answer will be reported by the algorithm. �

In the next section we will analyze the running time of the algorithm Phylo-
genetic_Compatibility. Since the algorithm Phylogenetic_Compatibility ends up
calling the subroutine Is_Compatible O(n) times, it suffices to analyze the running
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time of Is_Compatible and multiply it by O(n). We will refer to the subroutine
Is_Compatible by the algorithm Is_Compatible in the remainder of the paper.

6 Analysis of the Algorithm Is_Compatible

In this section we analyze the running time of the algorithm Is_Compatible. Since
the algorithm is a branch-and-bound process, its execution can be depicted by a search
tree. The running time of the algorithm is proportional to the number of root-to-leaf
paths, or equivalently the number of leaves in the search tree, multiplied by the time
spent along each such path. Therefore, the main step in the analysis of the algorithm
is deriving an upper bound on the number of leaves in the search tree.

Most proposed branch-and-search algorithms for NP-hard problems were ana-
lyzed based on a worst-case scenario, which assumes the worst local structure oc-
curring during the whole search process. This worst-case analysis for a branch-and-
search process is very conservative—the worst cases can appear very rarely in the
entire process, while most other cases permit much better branching and reductions.

In the current paper we use an amortized analysis approach. This allows us to cap-
ture the following notion: an operation by itself may be very costly in terms of the
size of the search tree that it corresponds to; however, this operation might be very
beneficial in terms of introducing many efficient branches and reductions in the entire
process. Therefore, the expensive operation can be well balanced by the induced effi-
cient operations. We show how this technique can be applied to the PARAMETERIZED

BCCPN problem. First we start with some preliminaries on search trees.
Let T be the search tree for the algorithm Is_Compatible on an input instance

(N, k). The nodes in T correspond to the operations of the algorithm. Let α be a
node in the search tree with an associated parameter k′. If we perform an r-sided
branch at α (r > 1) by reducing the parameter k′ in each branch by the values
a1, . . . , ar , respectively, then such a branch is called an (a1, . . . , ar )-branch. In such
case the node α in T has r children α1, . . . , αr , and the associated parameter with
αi is k′ − ai , i = 1, . . . , r . If the operation at α is a non-branching operation that
reduces the parameter k′ by a value q , then α has a single child in T with an as-
sociated parameter equals to k′ − q . Let T (k′) be the number of leaves in the sub-
tree rooted at α. If the operation at α is a branching operation (a1, . . . , ar ), then
T (k′) satisfies the recurrence T (k′) ≤ T (k′ − a1) + · · · + T (k′ − ar); if the opera-
tion at α is a non-branching operation that reduces the parameter k′ by a value q ,
then T (k′) satisfies the recurrence T (k′) ≤ T (k′ − q). To solve these recurrences, we
can associate with each branch (a1, . . . , ar ) a characteristic polynomial of the form
p(x) = x−ar + x−ar−1 + · · · + x−a1 − 1. The unique root x0 of p(x) in the interval
(0,∞) gives an upper bound of O(xk

0 ) on the number of leaves in the search tree of
an algorithm whose branches are all of the form (a1, . . . , ar ). If the branches of the al-
gorithm cannot be classified within a single form, then we can look at all the branches
performed by the algorithm, and upper bound the number of leaves in T by O(xk

max),
where xmax is the largest root among all roots of the characteristic polynomials corre-
sponding to the branches performed by the algorithm. This is a well-known method
for analyzing the size of the search tree, which has been commonly used in the liter-
ature.
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In this section we will show that the number of leaves in the search tree of the
algorithm Is_Compatible is O(2k). At this point an explanation of a subtlety is in
order. This upper bound may look trivial at a first glance. By Proposition 5.14, we
know that a nice pair {u,u′} exists before each branch. By Fact 5.7, there exists a
successful assignment that either directs the b-edge (u,u′) towards u or towards u′.
So it looks like we can always branch with a (1,1)-branch resulting from directing
the b-edge (u,u′) towards u and reducing the parameter by 1 in the first side of
the branch, and directing it towards u′ and reducing the parameter by 1 in the second
side of the branch. This would give us an O(2k) upper bound on the size of the search
tree. However, there is a subtle point here that could be easily overlooked. When we
branch along any of the two sides, say by directing the b-edge towards u′, we end
up cutting the node u′ from its parent. This reduces the number of children of π(u′),
and the resulting network may no longer satisfy the phylogenetic network property
stating that each internal node has at least two children, which is very essential to
proving the existence of a nice pair in the network (see Proposition 5.14). The case is
similar when the b-edge is directed towards u. To overcome this problem, whenever
we branch by cutting a certain node from its parent, we ensure at this point that the
parent has been assigned a label, and hence, when Reduce is applied in the next step
(before any subsequent branch takes place) the phylogenetic networks properties will
be restored by step 5 of Reduce. Therefore, we now branch by assigning the nodes
labels rather than branching at the edges. This is no longer a trivial matter, and the
analysis now takes a new turn.

As we will discuss below, the branches in the algorithm can be classified into
two branches: (1,1)-branches and (1,1,1)-branches. The latter branch corresponds
to a characteristic polynomial of root 3, and a worst-case analysis gives an O(3k)

upper bound on the size of the search tree, matching the bound of a trivial brute-force
algorithm that enumerates each of the three statuses of every b-edge. Differing from
the common analysis techniques based on the worst-case scenario, we present next
a novel way for analyzing the size of the search tree using amortized techniques.
We will show that the (1,1,1)-branches give some “credit” along each path of the
subtree of T rooted at this operation. We first classify the operations performed by
the algorithm that affect the parameter k into the following three categories.

1. Non-branching operations. These include the following operations.
(a) Operations performed by Clean. Each such operation removes a b-edge from

N and decreases the parameter k by 1.
(b) Operations performed by Merge. Each such operation removes a b-edge from

N and decreases the parameter k by 1.
(c) Operations performed in Case 1 of the algorithm. Each such operation re-

moves a b-edge and reduces the parameter by 1. Note also that these opera-
tions do not involve any branching.

2. (1,1)-branches: these are the operations performed in Case 2 of the algorithm.
Note that each such operation is a 2-sided branch which reduces the parameter by
1 on each side.

3. (1,1,1)-branches: these are the operations performed in Case 3 of the algorithm.
Each such operation is a 3-sided branch that reduces the parameter by 1 along
each side.
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We would like to show that the number of leaves in T is bounded by O(2k). The
(1,1)-branches give us this bound. However, the (1,1,1)-branches are worse, and
give an upper bound of O(3k) on the number of leaves of T . We will show next that
the (1,1,1)-branches can be balanced by the non-branching operations. We start with
the following definitions.

Definition 6.1 A node in N is said to possess a credit of value 1/2 if it is labeled and
there is a b-edge incident on one of its children. A node in N is said to give a credit
of value 1/2 after a certain operation if the node did not possess any credit before the
operation, and it possesses a credit of value 1/2 after the operation.

Ultimately, the value of a credit will correspond to a reduction in the parameter of
the same value.

Fact 6.2 Let v be an unlabeled node in a phylogenetic network N , and suppose that
Reduce is not applicable to any node in N . Let Tv be the subtree of TN rooted at v.
Let P = (v1 = v, v2, . . . , vr = l) be a path from v to any leaf l in Tv . Then there
exists a node vi 
= v on P such that vi has a b-edge incident on it, and all the nodes
{vj : 1 < j < i} are unlabeled and have no b-edges incident on them. (Note that such
a set of nodes might be empty and in which case the latter condition is vacuously
satisfied.)

Proof Let i be the smallest index in {2, . . . , r − 1} such that vi has a b-edge incident
on it. Since v is unlabeled, and Reduce is not applicable to any node in N , such i

must exist, otherwise v would be labeled by step 3 in Reduce. By the choice of i, all
the nodes in {vj : 1 < j < i} have no b-edges incident on them. Moreover, the nodes
in {vj : 1 < j < i} are unlabeled, otherwise, by step 3 of Reduce, v would be labeled
since there are no b-edges incident on any of these nodes. �

Proposition 6.3 Let N be a phylogenetic network and let v be an unlabeled node
in N . Suppose that a side of a branch in the algorithm is assigning a label to v.
Then there exists a node in the subtree Tv of TN rooted at v that will give a credit of
value 1/2.

Proof First observe that whenever the algorithm branches, the subroutine Reduce is
not applicable to N . If we look at a side of a branch of the algorithm that assigns
a label to a node in N , then this side of the branch is assigning a label to a parent
v = π(u) of a node u in a nice pair. This side of the branch might end up cutting u

from v = π(u). Since N satisfies the phylogenetic networks properties, v must have
a child w different from u. Moreover, before this branch v was unlabeled, and hence
w cannot be a leaf and must be an internal node (otherwise v would be labeled by
step 3 of Reduce). If w has a b-edge incident on it, then by the definition, v can give
a credit of value 1/2. Now suppose that w does not have a b-edge incident on it. Let
P = (v = v1, v2 = w, . . . , l) be a path from v to a leaf in Tv that passes through w. By
the way the algorithm works, before this side of the branch Reduce is not applicable.
By Fact 6.2, there is a node vi 
= v on P such that v′ has a b-edge incident on it, and
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such that all the nodes in the set S={w = v2, . . . , vi−1} between v and vi are unlabeled
and have no b-edges incident on them. Notice that the set S contains w and hence is
not empty. When Reduce is next called (note that Reduce will be called repeatedly
before the next branch by the algorithm) v will be labeled. Step 4 of Reduce will
label all the nodes in the set S, and in particular node vi−1. Now at that time the
algorithm will assign label to node vi−1 which has a child vi with a b-edge incident
on it. It follows that node vi−1 will give a credit of value 1/2. We note that this credit
is given before the next branch by the algorithm and hence can be associated with the
previous (side of the) branch. This completes the proof. �

The idea of an operation giving a credit is an intuitive way of looking at the whole
set of operations in the algorithm as an interleaved set in which some operations
balance the others. When a node gives a credit of a certain value, this credit will
correspond to a reduction in the parameter. When a node gives a credit of value 1/2,
we can associate this credit with a b-edge incident on one of its children. Note that
a b-edge (u, v) can have at most two credits associated with it, each of value 1/2,
resulting from the possible credits given by the nodes π(u) and π(v). Therefore, if the
b-edge is removed, its removal may cause at most two nodes to lose their possessed
credits since no b-edge will be incident on a child of theirs anymore. Ultimately, the
value of a credit will correspond to a reduction in the parameter of the same value.
Before we show the latter statement, let us assume it for the time being and look at
the operations performed by the algorithm to gain an intuition on how this method
works.

Non-Branching Operations A Clean operation removes a b-edge e between two la-
beled nodes u and v where label(u) 
= label(v). The b-edge contributes to a reduction
in the parameter of value 1. If π(u) is labeled and π(v) is labeled, then π(u) and π(v)

might possess a total credit of value 1 (1/2 each), and this credit may have been asso-
ciated with the b-edge e. When e is removed, e might cause these two nodes to lose
their credits. Consequently, an edge removed by Clean can compensate for the loss
of credit it incurs. Similarly for the other non-branching operations: each will result
in a reduction of the parameter of value 1, which is in the worst case not smaller than
the value of the possibly lost credit caused by the removal of the b-edge.

(1,1)-branches: Suppose the algorithm executes the branch in Case 2. On the first
side of the operation π(u′) is labeled and a b-edge e = (u,u′) is removed. By Propo-
sition 6.3, labeling π(u′) will give a credit of value 1/2. Since π(u′) was unlabeled
before this operation, no credit was possessed by π(u′). Hence, only a credit of value
1/2 could have been associated with the edge e due to the credit of value 1/2 that
could have been given by π(u) (which is labeled). Therefore, the credit gained by
labeling π(u′) can serve to pay for the credit possibly lost by the removal of e, thus
canceling each other out, and the total reduction in the parameter in this side of the
branch is equal to 1. The other side of the branch is similar yielding a reduction of
value 1. Therefore, this branch is effectively a (1,1)-branch.

(1,1,1)-branches: Suppose the algorithm executes Case 3. On the first side of the
branch π(u) is labeled with a label different from label(u). When Merge is called
next, the b-edge e = (u,u′) will be removed, and the two nodes u and u′ will be
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merged. Since before this operation was executed both π(u) and π(u′) were unla-
beled, the b-edge e does not cause any credit loss. Labeling π(u) gives a credit of
value 1/2 by Proposition 6.3. Therefore, the total “effective” reduction in the para-
meter along this side of the branch is 3/2. Similarly, in the second side of the branch
we get an effective reduction in the parameter of value 3/2. Now in the third side of
the branch both π(u) and π(u′) will be labeled with the same label and the edge e

is removed. Labeling π(u) gives a credit of value 1/2, and similarly for π(u′), and
the edge e does not cause any credit loss since both nodes π(u) and π(u′) were unla-
beled before this operation, and thus could not have given any credit before. The total
reduction in the parameter along this side of the branch has an effective value of 2.
Therefore, the algorithm in this case effectively branches with a (3/2,3/2,2)-branch.

The worst branch in the above branches is the (1,1)-branch giving an upper bound
of O(2k) on the size of the search tree. That was an intuitive look at the amortized
analysis of the algorithm. We formally prove this statement below.

Lemma 6.4 Let T be the search corresponding to the algorithm Is_Compatible on
an instance (N, k). The number of leaves of T is O(2k).

Proof We first prove the following statement.

Statement Let α be a node in the search tree T corresponding to the algorithm
Is_Compatible on an instance (N, k) and let Tα be the subtree of T rooted at α. Let
(Nα, kα) be the resulting network at α, and assume that there are � nodes in Nα that
possess credit, where 0 ≤ � ≤ 2kα . Then the number of leaves in Tα is bounded by
2kα−�/2.

We proceed by induction on kα . If kα = 0 then � = 0. There are no b-edges in the
network Nα in this case, and the algorithm Is_Compatible decides the compatibility
of Nα in step 0 using Theorem 2.2 and without performing any branches. Therefore
the number of leaves in Tα is 1, which is bounded by 2k−�/2 as claimed.

If kα = 1 then there is exactly one b-edge (u, v) in Nα . Since there are no b-edges
in Tu and Tv in Nα , the nodes u and v must be labeled by Fact 5.13. Since Nα is a
phylogenetic network, each internal node in Nα must have at least two children, and
in particular, the nodes π(u) and π(v). By Fact 5.13, and since Nα contains only the
b-edge (u, v), these two children must be labeled (the subtrees rooted at these nodes
in Nα contain no b-edges). By step 3 of Reduce, π(u) and π(v) must be labeled as
well. Now If label(u) 
= label(v) then the b-edge (u, v) will be removed by Clean.
If label(u) = label(v) and the label of π(u) or the label of π(v) is different from the
label of u and v, then the b-edge (u, v) will be removed by Merge. If the labels of
u, v, π(u), and π(v) are all equal, then the b-edge (u, v) will be removed by Case 1
in step 4 of the algorithm Is_Compatible. It follows that in all cases the b-edge (u, v)

will be removed by the algorithm without any branching. Since (u, v) is the only b-
edge in Nα , after removing this b-edge, the algorithm Is_Compatible will proceed
to solve the resulting instance in step 0. All in all, no branches will be performed by
the algorithm when solving the instance (Nα, kα) and the number of leaves in Tα is
1, which is bounded by 2kα−�/2.
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Suppose now that the above statement is true for any value of k′ satisfying 0 ≤
k′ < kα . The operation performed by the algorithm at α can be classified into one the
three categories above.

If this operation is a non-branching operation that results in the removal of a b-
edge e, then since α is a non-branching operation, α has a single child β in T . Let Tβ

be the subtree of T rooted at β . The number of leaves in Tα is equal to that in Tβ . By
the above discussion, the removal of e will decrease the parameter kα by at least 1,
and causes at most two nodes in Nα to lose their possessed credit. Let (Nβ, kβ) be
the resulting instance at node β , and let �′ be the number of nodes possessing credit
in Nβ . Then kβ ≤ kα − 1 and �′ ≥ � − 2. By induction, the number of leaves in Tβ is
bounded by 2kβ−�′/2 ≤ 2kα−1−(�−2)/2 = 2kα−�/2. Therefore the number of leaves in
Tα is bounded by 2kα−�/2 as claimed.

If the operation performed at α is a (1,1)-branch, let β and γ be the two children
of α in T . Let Tβ and Tγ be the subtrees of T rooted at β and γ , respectively. Let
(Nβ, kβ) and (Nγ , kγ ) be the resulting instances at β and γ , and �′ and �′′ be the
numbers of nodes that possess credit in Nβ and Nγ , respectively. From the above
discussion, each side of the (1,1)-branch causes the removal of one b-edge from Nα .
Also, the operation in each side of the branch causes at least one node to give a
credit and at most one node to lose its possessed credit. Therefore, kβ ≤ kα − 1,
kγ ≤ kα − 1, �′ ≥ �, and �′′ ≥ �. By induction, the number of leaves in Tβ is bounded
by 2kβ−�′/2 ≤ 2k−1−�/2 and the number of leaves in Tγ is bounded by 2kγ −�′′/2 ≤
2k−1−�/2. It follows that the number of leaves in Tα is bounded by the number of
leaves in Tβ plus the number of leaves in Tγ , which is bounded by 2k−�/2 as claimed.

If the operation performed by the algorithm is a (1,1,1)-branch, let β , γ , and θ be
the children of α in T . Let Tβ , Tγ , and Tθ be the subtrees of T rooted at β , γ , and θ ,
respectively. Let (Nβ, kβ), (Nγ , kγ ), and (Nθ , kθ ) be the resulting instances at β , γ ,
and θ , respectively, and let �′, �′′, �′′′ be the numbers of nodes that possess credit in
Nβ , Nγ , and Nθ , respectively. From the above discussion, in the first and second sides
of the branch in Case 3 (step 4 in the algorithm), we will end up labeling one node
and removing one b-edge (u,u′). The removal of the b-edge decreases the parameter
by at least 1. Moreover, the removal of the b-edge (u,u′) does not cause any node
to lose its possessed credit, because this removal can only cause the nodes π(u) and
π(u′) to lose credit, and these two nodes were unlabeled before the operation, and
hence possessed no credit. On the other hand, the labeling in each of the first two
sides of the operation causes at least one node to give a credit. Therefore, we have
kβ ≤ kα −1, kγ ≤ kα −1, �′ ≥ �+1, and �′′ ≥ �+1. In the third side of the branch, we
remove at least one b-edge causing the decrease of the parameter by at least 1, and we
label two nodes that were unlabeled before. By a similar argument, the removal of the
b-edge does not cause the loss of any credit due to the fact that the nodes that could
lose credit were unlabeled and never possessed any credit. Now the labeling of the
nodes π(u) and π(u′) will cause at least two nodes to give credit. These two nodes
that will give credit are distinct because the subtrees rooted at π(u) and π(u′) are
disjoint. Therefore, kγ ≤ kα − 1 and �′′′ ≥ � + 2. Inductively, the number of leaves in
Tβ is bounded by 2kβ−�′/2 ≤ 2kα−1−(�+1)/2 = 2kα−�/2−3/2, the number of leaves in Tγ

is bounded by 2kγ −�′′/2 ≤ 2kα−1−(�+1)/2 = 2kα−�/2−3/2, and the number of leaves in
Tθ is bounded by 2kθ−�′′′/2 ≤ 2kα−1−(�+2)/2 = 2kα−�/2−2. It follows that the number
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of leaves in Tα is bounded by 2kα−�/2−3/2 + 2kα−�/2−3/2 + 2kα−�/2−2 ≤ 2kα−�/2, as
claimed.

Since any operation performed by the algorithm belongs to one of the above three
categories, the number of leaves in Tα is bounded by 2kα−�/2 and the above statement
follows.

Now if we apply the statement to α with α being the root of the tree T , then kα = k

and l = 0, and we get that the number of leaves in T is O(2k). This completes the
proof. �

Theorem 6.5 The PARAMETERIZED BCCPN problem can be solved in time
O(2kn2) where n is the number of nodes in the network.

Proof By Theorem 5.15, the algorithm Is_Compatible solves the PARAMETERIZED

BCCPN problem correctly. Let T be the search tree of the algorithm on an instance
(N, k) of the problem. The running time of the algorithm is the number of leaves
in the search multiplied by the time spent on any root-leaf path. By Lemma 6.4, the
number of leaves in T is O(2k). Let P be a root-leaf path in T . On every node on P

the algorithm might need to call the subroutines Clean, Reduce, and Merge on every
node in N , which could take O(n + k) time since the size of N is O(n + k) (note
that N has n nodes and hence n − 1 tree edges, and k b-edges). However this need
not be the case with a careful implementation of each of these subroutines. Instead
of calling Clean at each node of the tree, we only call it on the nodes on which the
operation is applicable. This can be done as follows. For every node in N , we partition
its neighbors defined by the b-edges into three lists: those that are unlabeled, those
labeled with 0, and those labeled with 1. We call Clean whenever a node u is labeled.
When Clean is called on a node u that has just been labeled, we look at the list of its
neighbors defined by the b-edges that have opposite labels. This labeling of u results
in the removal of the b-edges from u to all these neighbors. The time spent by Clean
in each such call is proportional to the number of b-edges removed in the call. We
also need to update the adjacency lists of the nodes that are adjacent (via b-edges)
to u. This also takes time proportional to the number of b-edges incident on u. This
update is only done once when the node is labeled (a node never gets re-labeled in
the whole algorithm). Therefore, we can say that the total time spent by Clean on a
root-leaf path is proportional to the size of the network, which is O(n + k).

A similar analysis shows that the time taken by Reduce and Merge along P is
also O(n + k). An additional multiplicative factor of O(n) results from trying every
node in N as the splitting node. It follows that the running time of the algorithm is
O(2k(n + k)n) = O(2kn2). �
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