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Abstract We consider the problem of computing a minimum cycle basis of an undi-
rected non-negative edge-weighted graph G with m edges and n vertices. In this
problem, a {0, 1} incidence vector is associated with each cycle and the vector space
over [y generated by these vectors is the cycle space of G. A set of cycles is called
a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum
of the weights of the cycles is minimum is called a minimum cycle basis of G. Min-
imum cycle basis are useful in a number of contexts, e.g. the analysis of electrical
networks and structural engineering.

The previous best algorithm for computing a minimum cycle basis has running
time O (m“n), where w is the best exponent of matrix multiplication. It is presently
known that @ < 2.376. We exhibit an O(m?n + mn”logn) algorithm. When the
edge weights are integers, we have an O(m?n) algorithm. For unweighted graphs
which are reasonably dense, our algorithm runs in O (mm®) time. For any € > 0, we
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also design an 1 + € approximation algorithm. The running time of this algorithm
is O((m®/e)log(W/e)) for reasonably dense graphs, where W is the largest edge
weight.

Keywords Cycle basis - Cycle space - Matrix multiplication - Polynomial
algorithms

1 Introduction

Let G = (V, E) be an undirected graph with m edges and n vertices. A cycle of G
is any subgraph of G in which every vertex has even degree. Associated with each
cycle C is an incidence vector x, indexed on E, where for any e € E

{ 1 ifeisanedge of C,
Xe = .
0 otherwise.

The vector space over [F; generated by the incidence vectors of cycles is called the
cycle space of G. It is well-known that when G is connected, this vector space has
dimension m — n 4 1, where m is the number of edges of G and »n is the number of
vertices. A maximal set of linearly independent cycles is called a cycle basis.

The edges of G have non-negative weights assigned to them. A cycle basis where
the sum of the weights of the cycles is minimum is called a minimum cycle basis of G.
We consider the problem of computing a minimum cycle basis of G. We sometimes
use the abbreviation MCB to refer to a minimum cycle basis.

The problem of computing a minimum cycle basis has been extensively studied,
both in its general setting and in special classes of graphs. Its importance lies in un-
derstanding the cycle structure of a graph and its use as a preprocessing step in several
algorithms. That is, a cycle basis is used as an input for a later algorithm, and using a
minimum cycle basis instead of any arbitrary cycle basis reduces the amount of work
that has to be done by this later algorithm. Such algorithms include algorithms for
diverse applications like electrical circuit theory [2], structural engineering [1], and
surface reconstruction [21].

History of the problem: The problem of finding low-cost cycle bases, or in other
words sparse cycle bases, has been considered in the literature multiple times, see
for example [13, 15, 20, 25]. Horton [12] was the first to present a polynomial time
algorithm for finding a minimum cycle basis in a non-negative edge weighted graph.
The running time of his algorithm is O (m3n). Later, Hartvigsen and Mardon [10]
studied the structure of minimum cycle bases and characterized graphs whose short
cycles' form a minimum cycle basis. They essentially characterized those graphs
for which an algorithm of Stepanec [20] always produces a minimum cycle basis.
Hartvigsen [9] also introduced another vector space associated with the paths and the
cycles of a graph, the U-space. Hartvigsen extended Horton’s approach to compute
a minimum weight basis for this space as well. Hartvigsen and Mardon [11] also stud-
ied the minimum cycle basis problem when restricted to planar graphs and designed
an O (n?logn) time algorithm.

A cycle C is considered a short cycle if it is the shortest cycle through one of its edges.
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Horton defined a set M of mn cycles which he proved to be a superset of an MCB
and then extracted the MCB as the shortest m — n + 1 linearly independent cycles
from M using Gaussian elimination. Golynski and Horton [8] observed that the short-
estm —n + 1 linearly independent cycles could be obtained from M in O (m“n) time
using fast matrix multiplication algorithms, where w is the best exponent for matrix
multiplication. It is presently known [4] that w < 2.376. The O (m®n) algorithm was
the best known algorithm for the MCB problem.

De Pina [5] gave an O (m> + mn?logn) algorithm. His approach is different from
that of Horton; it is similar to the algorithm of Padberg and Rao [17] for the minimum
weighted 7-odd cut problem. Our new algorithm is based on de Pina’s approach.

For an experimental study of minimum cycle basis algorithms, see [16].

Fundamental cycle bases are cycle bases induced by spanning trees. There is a cy-
cle for each non-tree edge consisting of the non-tree edge plus the tree path connect-
ing its endpoints. The problem of computing a minimum weight fundamental cycle
basis is NP-complete [6]. The minimum cycle basis problem is also NP-complete
when negative edge weights are allowed.

In this paper we obtain the following new results: For graphs with arbitrary non-
negative edge weights, we give an O (m*n + mn?logn) algorithm, improving upon
the current O (m“n) upper bound. In particular, whenever m > nlogn, we have an
O (m?n) algorithm. Also, when the edge weights are integers, we have an O (m*n)
algorithm. When the edge weights are small integers (which also includes unweighted
graphs), we have an O (mn®) + O (m®) algorithm. If the graph is reasonably dense,
that is, if m > n!T1/@=Dpoly(logn), the O (m®) term dominates and so this is an
O (m®) algorithm.

We use an all pairs shortest paths (APSP) algorithm as a subroutine in our al-
gorithm. The running time of our algorithm is O(m) times the running time of an
all pairs shortest paths computation in G. Using Dijkstra’s algorithm for the APSP
computation, we obtain the above time of O (m*n + mn? logn). We obtain the bet-
ter running times for integer edge weights and unweighted graphs by using faster
all pairs shortest path algorithms for these cases [7, 19, 22, 23]. Similarly, when the
graph is sparse, using faster APSP algorithms our algorithm can be made faster.” Us-
ing the APSP algorithm in [18], the running time of our algorithm is O (m*na(m, n)),
where «(m, n) is Tarjan’s inverse Ackermann function.

We also look at approximation algorithms for computing a minimum cycle basis
in a graph. Given any ¢ > 1, we have a c-approximation algorithm by relaxing the
shortest paths subroutine to a c-stretch paths subroutine. (A c-stretch (s, t) path is
a path which is at most ¢ times the length of a shortest (s, #) path.) The running
time of our algorithm which computes a cycle basis whose weight is at most twice
the weight of an MCB is 5(m3/2n3/2) + O(m®) using the result in [3] to compute
2-stretch paths. For reasonably dense graphs (say, m > n!3/(©=1-9poly(logn)), this
is an O(m®) algorithm. Using the all pairs (1 4 €)-stretch paths algorithm [24], for
any € > 0, we have an O (mn®/elog(W/e)) + O(m®) algorithm to compute a cycle
basis which is at most 1 + € times the weight of an MCB, where W is the largest
edge weight in the graph. If m > n'T1/@=Dpoly(logn) and all edge weights are

20ur algorithm cannot be made to run faster than m® though.
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Initialize S1; ={e;} (=1,...,N).
For k=1, ..., N do the following:

1. Find a minimum weight cycle C; with an odd number of edges in S k.
2. Definefori=k+1,...,N:

Sk.i if Ck has an even number of edges in S ;

Ska1i=
k+1.d { Sk.i A Sk if Ci has an odd number of edges in Sk ;

{where A denotes symmetric difference}

The algorithm returns {Cy, ..., Cy}.

Fig. 1 De Pina’s combinatorial algorithm for computing an MCB

polynomial in n, this is an O (m®/elog(1/€)) algorithm. We also give an O (m®)
algorithm to construct a witness of a minimum cycle basis.

The rest of this paper is organized as follows. In Sects. 2 and 3 we present
a simple algebraic framework (based on de Pina’s algorithm) for computing a min-
imum cycle basis in a graph. In Sect. 4 we give our algorithm. In Sect. 5 we give
a c-approximation algorithm to compute a cycle basis whose weight is < ¢ - weight
of an MCB. In Sect. 6 we give an algorithm to obtain a certificate or witness of
a minimum cycle basis.

2 A Simple MCB Algorithm

Let G = (V, E) be an undirected graph with m edges and n vertices, and with non-
negative weights on its edges. We may assume G to be connected since a minimum
cycle basis of a graph is the union of the minimum cycle bases of its connected
components. If G is connected, N =m — n + 1 is the dimension of the cycle space
of G.

De Pina [5] gave the combinatorial algorithm in Fig. 1 to compute a minimum
cycle basis in G. Let T be any spanning tree in G. Let e, ..., ey be the edges of
G\ T in some arbitrary but fixed order.

We give some explanations. The algorithm defines sets S ; for k <i < N. A sim-
ple induction shows that e¢; € Sx; € {e1,...,ex,¢;} for all k and i. In particular,
ex € Sk k- The fundamental cycle formed by e; and the tree path connecting its end-
points intersects Sk x only in edge e; and hence the set of cycles with an odd number
of edges in Sk « is non-empty. Thus the execution of the algorithm is well defined.

Before we show the correctness of de Pina’s algorithm, we interpret it alge-
braically. We feel that the algebraic formulation gives more insight into why the
algorithm works. Also, it will lead to an improved implementation.

An algebraic description: A cycle in G can be viewed in terms of its incidence
vector. So each cycle is a vector (with 0’s and 1’s in its coordinates) in the space
spanned by all the edges. Here we only look at these vectors restricted to the coor-
dinates indexed by {eq, ..., ex}. That is, each cycle can be represented as a vector
in {0, 1}V,
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For i =1 to N do the following:

1. Let S; be any arbitrary non-zero vector in the subspace orthogonal to
{C1,Ca,...,Ci—1},1e., S; #0and (Cg, S;) =0fork e {1,...,i — 1}.
[Initially, S} is any arbitrary non-zero vector in the space {0, 1}V.]

2. Compute a minimum weight cycle C; such that (C;, S;) = 1.

Fig. 2 SIMPLE-MCB: An algebraic framework for computing an MCB

In SIMPLE-MCB (see Fig. 2) we compute the cycles of a minimum cycle basis
and their witnesses. A witness S of a cycle C is a subset of {ey, ..., ey} which proves
that C belongs to a minimum cycle basis. We will view these witnesses or subsets
in terms of their incidence vectors over {eq, ..., ey}. Hence, both cycles and their
witnesses are vectors in the space {0, 1}V.

(C, S) stands for the standard inner product or dot product of the vectors C and S.
We say that a vector S is orthogonal to C if (C, S) = 0. Since we are in the field [,
observe that (C, S) =1 if and only if C contains an odd number of edges of S.

Since each S; is non-zero, it has to contain at least one edge e from G \ T. The
cycle C, formed by the edges of T and e has intersection of size exactly 1 with S;.
So, there is always at least one cycle C satisfying (C, S;) = 1.

It is easy to see that C; is independent of Cy, ..., C;_1. This is because any vec-
tor v in the span of {Cy, ..., C;_1} satisfies (v, S;) =0 since (C;, §;) = 0 for each
1 <j <i—1.But(; satisfies (C;, S;) = 1. Hence, C; does not lie in the subspace
spanned by {Cy, ..., C;i_1}. Thus, it follows immediately that {Cy, ..., Cy} is a ba-
sis. Let us now prove that {Cy, ..., Cx} is a minimum cycle basis.

Theorem 1 The set {C1, Ca,...,Cn} determined by SIMPLE-MCB is a minimum
cycle basis.

Proof (from [5]) Suppose not. Then there is some i, 0 < i < N, such that
{C1,...,C;} is contained in some minimum cycle basis B but there is no mini-
mum cycle basis containing {C1, ..., C;, C;i11}. Since B is a basis, there exist cycles
Bi, ..., By in B such that

Cit1=B1+By+---+ Bx. ()

Since (Cit1, Si+1) = 1, there exists some B; in the above sum such that (B}, S; 1)
= 1. But C;4 is a minimum weight cycle such that (C, S;+1) = 1 and hence the
weight of C; 4 is at most the weight of B;.

Let B’ = BU {Ciy1} \ {B;}. Since B; is equal to the sum of C;;; and
{B1,..., B} \ {B;} (by (1)), B’ is also a basis. And B’ has weight at most the weight
of B which is a minimum cycle basis. So ' is also a minimum cycle basis. Finally

observe that B; cannot be equal to any one of Ci, ..., C; because (B;, Si11) =1
whereas (Cy, Si11) =0 for all I <i. Thus {Cy,Cs,...,Cii1} € B, a contradiction
to the definition of i. O
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Fig. 3 An example of the graph
G; when the graph G has 4
vertices {1, 2, 3,4} and 4 edges [The + level]
{(1,2),(1,4),(2,4), (3,4} and

only the edge (1,2) isin S;.

Since the edge (1,2) € §;, we v

have the edges (1~,27), A

(1%, 27) going across the +

and — levels. The edges not in

S;,ie., (1,4),(2,4), (3,4) have

copies inside the + level and

inside the — level

[The — level]

We have now shown the correctness of the algorithm SIMPLE-MCB (Fig. 2),
which is equivalent to the combinatorial algorithm in Fig. 1. There are two subrou-
tines in SIMPLE-MCB: computing a non-zero vector S; in the subspace orthogonal

to {Cy, ..., C;_1} and computing a minimum weight cycle C; such that (C;, S;) = 1.
We next show how to compute the cycle C; and in Sect. 3 we shall see a simple
method to compute a non-zero vector S; orthogonal to Cq, ..., Ci_1.

2.1 Computing the Cycles

Given §;, it is easy to compute a minimum weight cycle C; with (C;, S;) = 1 by com-
puting n shortest paths in an appropriate graph G;. The construction is well-known.
The graph G; is defined from G = (V, E) and S; C E in the following manner.

G; has two copies of each vertex v € V. Call them v* and v™.
for every edge e = (v, u) € E do

if e ¢ S; then

Add edges (v, u™) and (v, u™) to the edge set of G;.
else

Add edges (v, u™) and (v, u™) to the edge set of G;.
end if

In either case assign their weights to be the same as the weight of e.
end for

G can be visualized as two levels of G (the + level and the — level). Within each
level, we have edges of E '\ S;. Between the levels we have the edges of S;. See Fig. 3
for an example. Every vt to v~ path in G; induces a cycle in G by identifying
the vertices and edges in G; with their corresponding vertices and edges in G. For
instance, the path 1~ -27—4"—1" in G; in Fig. 3 corresponds to the cycle 1-2-4-1 in
G. Because we identify both v™ and v~ with v, any v™ to v~ path in G; corresponds
toacycle C in G.

More formally, take the incidence vector of any path (over the edges of G;) and
obtain an incidence vector over the edges of G by identifying (v*, u") with (v, u)
where * and T are + or —. Suppose the path contained two copies of the same edge
(it could have contained both (v, ™) and (v—, u™") for some (v, u)). Then add the
number of occurrences of that edge modulo 2 to obtain an incidence vector over the
edges of G.
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Lemma 1 Let p be the shortest (v, v™) path in G; for any v € V. Then p induces
a minimum weight cycle C in G with an odd number of edges in S;.

Proof Since the endpoints of p are v and v, p has to contain an odd number of
edges of S;. This is because only edges of S; provide a change of sign and p goes
from a + vertex to a — vertex. We might have deleted some edges of S; while forming
C since those edges occurred with a multiplicity of 2. But this means that we always
delete an even number of edges from S;. Hence, C has an odd number of edges of
S; present in it. Also, the weight of C is at most the weight of p since edges have
non-negative weights.

We next prove that C is a minimum weight cycle containing an odd number of
edges in S;. Let C’ be any other cycle in G with an odd number of edges of S; in it. If
C’ is not a simple cycle, then C’ is a union of simple cycles (with disjoint edge sets)
and at least one of those simple cycles Cp should have an odd number of edges of S;
present in it. And the weight of Cy is at most the weight of C’.

Let u be any vertex in Co. We lift Cy to a path p’ from u™ to u™ of cost equal to
the cost of Cy as follows: p’ starts in u*. When Cy uses an edge (x, y) € S;, p’ uses
the edge (x*,y™) or (x~, y™) depending on whether the current endpoint of p is
xT or x~. When C uses an edge (x, y) & S;, p’ uses the edge (x*, y*) or (x 7, y™)
depending on whether the current endpoint of p is x* or x ™. Since Cy is a cycle, p’
ends in ut or u~, and since Cp uses an odd number of edges in S;, p’ must end in
u~ . Finally the weight of p’ is equal to the weight of Cy.

But p was the minimum weight (v, v™) paths in G; for any v € V. Hence, the
weight of p is at most the weight of p’ which in turn is at most the weight of C’. Thus
the weight of C is at most the weight of C’ and hence C is a minimum weight cycle
using an odd number of edges in S;. g

The computation of the path p can be done by computing n shortest (v, v™)
paths (each by Dijkstra’s algorithm) in G; and taking their minimum or by one
invocation of an all-pairs-shortest paths algorithm in G;. This computation takes
O((n(m + nlogn)) time. Note that depending on the relation between m and n, the
algorithm can choose which shortest path algorithm to use. For example, in the case
when the edge weights are integers or the unweighted case it is better to use faster
all-pairs-shortest paths algorithms than to run Dijkstra’s algorithm » times.

Since we have to compute totally N such cycles Cy, Ca,...,Cy, we spend
O (mn(m + nlogn)) time, since N =m —n + 1.

3 Computing the Subsets

We will now consider the problem of computing the subsets S;, for i =1 to N. We
want S; to be a non-zero vector in the subspace orthogonal to {C1y, ..., Ci_1}.

The simplest way to compute S; is to look for a non-zero solution S to the linear
system (S,C;)=0,1<j <i. The C; formai — 1 by N matrix of rank i — 1. We
compute a rank i — 1 submatrix using Gaussian elimination (it can be shown that
the first i — 1 components of the C; form a non-singular matrix), set a component
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of S outside the submatrix to zero and solve for the components of S indexed by the
submatrix. All of this takes time O(N?) = O (m?>) per iteration.

We next describe an alternative method which is more in line with de Pina’s ver-
sion of the algorithm and takes only time O (N?) per iteration. We maintain a basis
of the subspace orthogonal to {Cy, ..., C;_1}. Any vector in that basis will then be
a non-zero vector in the subspace.

When i = 0, the orthogonal subspace is the full space {0, 1}V. We set S; = {¢;}
for all j, 1 < j < N. This corresponds to the standard basis of the space {0, l}N LAt
the beginning of phase i, we have {S;, Si+1, ..., Sy} which is a basis of the space
C* orthogonal to the space C spanned by {C1, ..., Ci_1}. We use S; to compute C;
and update {S;11,..., Sy} to a basis {S/ ., Sy} of the subspace of C+ that is

i+10
orthogonal to C;. The update step of phase i is as follows: Fori 41 < j <N, let

S/.={Sj if (C;, Sj) =0,

J S+ Si if(C,‘,Sj)Zl.

Lemma 2 Sl.’_H, ..., Sy form a basis of the subspace orthogonal to C1, ..., C;.
Proof We will first show that S; IRTREEE S}y belong to the subspace orthogonal to
Ci,...,C;i. We know that S;, Si+1, ..., Sy form a basis of the subspace orthogonal
to Cq,...,C;_1. Since each S;, i +1<j <N isalinear combination of S; and S;,
it follows that S} is orthogonal to Cy, ..., C;—1. If an §; is already orthogonal to C;,
then we leave it as it is, i.e., S} = §;. Otherwise, (C;, S;) = 1, and we update S; as
S} = S; + ;. Since both (C;, §;) and (C;, S;) are equal to 1, it follows that each S}
is now orthogonal to C; also. Hence, S IRTREES S}y belong to the subspace orthogonal
toCy,...,C;.

Now we will show that S|, ..., S} are linearly independent. Suppose there is
a linear dependence among them. Substitute S ; ’s in terms of S;’s and S; in the linear
dependence relation. S; is the only vector that might occur more than once in that
relation and hence the relation is non-trivial contradicting the linear independence of
Si, Si+1,...,Sn. Hence, Si/+1’ ..., Sy are linearly independent. O

This completes the description of the algorithm SIMPLE-MCB. Let us now bound
the running time of this algorithm. During the update step of the ith iteration, the cost
of updating each S;, j > i is N and hence it is N (N — i) for updating S; 41, ..., Sy
Since we have N iterations, the total cost of maintaining this basis is N 3, which
is O(m?).

The total running time of the algorithm SIMPLE-MCB, by summing the costs
of computing the cycles and witnesses, is O (m> + mn?logn). So, using Dijkstra’s
algorithm or a faster algorithm for computing all-pairs-shortest-paths is not really
crucial; the time taken to compute the S;’s is the real bottleneck.

4 A Faster Implementation

Recall our approach to compute the vectors S;. We maintained a basis of C* in each
iteration for a cost of O (m?) per iteration. Note that we need just one vector from
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The algorithm FAST-MCB:

o Initialize the cycle basis with the empty set and initialize S; = {e;} for 1 <
J=N.

e (all the procedure extend_cb({}, {S1, ..., Sn}, N).

A call to extend_cb({Cy, ..., Ci}, {Si+1, .-, Si+k}, k) extends the cycle basis by
k cycles. Let C denote the current partial cycle basis which is {Cy, ..., C;}.

The procedure extend_cb(C, {Si+1, ..., Si+k}, k):

e if k =1, compute a minimum weight cycle C;4; such that (C;41, Si+1) = 1.

e if k > 1, use recursion.

1. call extend_cb(C,{Siy1, ..., Si+(k/2/}, Lk/2]) to extend the current cycle
basis by |k/2| elements. That is, the cycles Cy1, ..., Citx/2) are com-
puted in a recursive manner.

During the above recursive call, S;11, ..., Si+|k/2) get updated. Call their
final versions (at the end of this step) as Si/+1’ el Sl.’Jr /2l

2. call updcll‘e({Si/Jrl N Si/+Lk/2J}’ {Si+|_k/2j+l, ..., Si+k}) to update
{Sitik/2)+15 -+ s Sigk}. Let {Tiy\x/2)+1, - -+, Titr} be the output returned
by update.

3. call extend_cb(CU{Ciy1, ..., Citks2)}s ATig1k/2) 415 - - Tigk}, [k/27) to
extend the current cycle basis by [k/2] cycles. That is, the cycles
Citk/2)+1s - - - » Cipx will be computed recursively.

Fig. 4 FAST-MCB: A faster minimum cycle basis algorithm

the subspace orthogonal to {Cy, ..., C;}. But the algorithm maintains N — i such
vectors: Sit1, ..., Sy. This is the limiting factor in the running time of the algorithm.
In order to improve the running time of SIMPLE-MCB, we relax the invariant that
Si+1,..., Sy form a basis of the subspace orthogonal to Cy, ..., C;. Since we need
just one vector in this subspace, we can afford to relax this invariant and maintain the
correctness of the algorithm.

In SIMPLE-MCB in the ith iteration we update S;4 1, ..., Sy. Our idea now is to
update only those S;’s where j is close to i and to postpone the update of the later
S;’s. During the postponed update, many §;’s can be updated simultaneously. This
simultaneous update is implemented as a matrix multiplication step. And using a fast
algorithm for matrix multiplication causes the speedup.

Our main procedure is called extend_cbh. The procedure extend_cb works in a re-
cursive manner. We present in Fig. 4 the overall algorithm FAST-MCB and the pro-
cedure extend_cb.

The procedure extend_cb({Cy, ..., Ci}, {Si+1,..., Si+k}, k) computes k new cy-
cles Ciyt1, ..., Citg of the minimum cycle basis using the subsets Sji1, ..., Sitk-
We maintain the invariant that these subsets are all orthogonal to Cy,...,C;. It
first computes Cjyq, ..., C,‘+|_k/2J using S;t1, ..., Si+|_k/2j- At this point, the re-
maining subsets S;4|k/2)+1,..., Si+k need not be orthogonal to the new cycles

@ Springer



342 Algorithmica (2008) 52: 333-349

Cit1, ..., Cigk/2)- Our algorithm then updates S; 1 k/2/+1. - - -, Si+k so that they are
orthogonal to Cj41,..., Ciyx/2) and they continue to be orthogonal to Cq, ..., C;.
Finally it computes cycles Ciyx/2)+1, - -, Citk-

Let us see a small example as to how this works. Suppose N = 4. We initialize the
subsets S;,i =1, ..., 4 and call extend_cb, which then calls itself with only S; and S
and then only with S and so computes C1. Then it updates S5 so that (Cy, S>) =0 and
computes C». Then it simultaneously updates S3 and S4 which were still at their initial
values so that the updated S3 and S4 (which we call T3 and T4) are both orthogonal
to C1 and C». Then it computes C3 using 73 and updates 74 and then computes Cy.

Observe that whenever we compute C; using S;4+1, we have the property that
Si+1 is orthogonal to Cy, ..., C;. The difference is the function update which allows
us to update many S;’s simultaneously to be orthogonal to many C;’s. As mentioned
earlier, this simultaneous update enables us to use the fast matrix multiplication algo-
rithm which is crucial to the speedup. We next describe these steps in detail.

The function update: When we call function update({S; PP S; k2 J},
{Six1k/2)+15 - -5 Sixk}), the sets Sy k/2)+1, - -, Sitx need not all be orthogonal to
the space spanned by C U {Ci1, ..., Ciy|k/2)}. We know that S;yx/2)41, ..., Sitk
are all orthogonal to C and now we need to ensure that the updated S;y|x/2)+1,
ooy Siqk (call them Tiy(k/2j41, ..., Tiyx) are all orthogonal to C U {Ciyy,...,
Ciyk/2)}. We now want to update the sets S;yx/2)+1, ..., Sitk, 1.6, we want to
determine T;4|k/2)+1, - -, Ti+k such that for each j in the range for i + |k/2] +1 <
Jj <i+k we have

1. Tj is orthogonal to Cj11, ..., Ciy|k/2) and
2. T; continues to remain orthogonal to Cy, ..., C;.

So, we define T; (foreachi + |k/2] +1 < j <i + k) as follows:
T; = S; + alinear combination of Si’H, e, Si’ﬂkm.

This makes sure that T; is orthogonal to the cycles Cy, ..., C; because S; and all of
Sl.’ FETREON Slf +lk/2) are orthogonal to C1q, ..., C;. The coefficients of the linear combi-
nation will be chosen such that T; will be orthogonal to C; 11, ..., Ciy /2. Let

Tj=S8j+ajSi+apSio+ - +ajk2 S

We will determine the coefficients a;i, ..., ajx2) foralli + [k/2] +1<j <i+k
simultaneously. Writing all these equations in matrix form, we have

S
Ti v (kj2)+1 it
. !
—An-| S
: Sit1k/2)+1
T
i+k Si+k
where Aisa [k/2] x | k/2]| matrix whose £-th row has the unknowns a1, ..., aj k2],

where j =i + [k/2] + £. And T; represents a row with the coefficients of T; as its
row elements.
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Let us multiply both sides of this equation with an N x |k/2] matrix whose

columns are the cycles C;1, ..., Ciy|k/2). Thatis,
S/
Tit1k/2)+1 .l.+.1
: T T Si+iks2y
-(C: ... (! =(AI)- i+
( i+1 1+Lk/2j) Si+Lk/2j+l
T ...
i+k Si+k
T T
) (Ci+l Ci+Lk/2J)‘
Then the left hand side is the 0 matrix since each of the vectors T4 (k/2)+1, - .-, Ti+k
has to be orthogonal to each of Cj11, ..., Ciyx/2). Let
Sis1
o\ _| s
_ w2l | . (cT, ... T
(Y) Si+\_k/2j+l (Ct—H C1+Lk/2J)
Sitk
where
Sis1 . .
X= L '(Ci+1 Ci+Lk/2J)
Si+Lk/2J
and
Sit1k/2)+1 ; .
Y= ’(Ci+1 Ci+Lk/2J)‘
Sitk
Then

O:(AI)~<);>.

We now look at this problem as a problem in linear algebra.

A problem in linear algebra: Consider the following problem. We are given an
invertible |k/2| x |k/2] matrix X and a [k/27 x | k/2] matrix ¥ and we want to find
a [k/2] x |k/2] matrix A such that

(AI)-(f)zo.

Here 0 stands for the [k/27 x | k/2] zero-matrix and I stands for the [k /27 x [k/2]
identity matrix. We need AX + Y =0 or A= —YX~! =YX~ ! since we are in the
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field [F,. We can determine A in time k£ using fast matrix multiplication and matrix
inverse algorithms since X is invertible.

Let us now go back to the implementation of update. We have the problem of the
preceding paragraph if we show that X is invertible. The matrix

1 “ee
(Sip1:Civt) -+ (S Civlry2)) 0 T \ I
’ /
Yo (S,-+2,.Ci+1) {Siyar Cj"Hk/zJ) _l0 0 1 *
(S,{+|_k/2J’Ci+l> (S;+Lk/2J,Ci+\_k/2J> 0 0 () 1

is an upper triangular matrix with 1’s on the diagonal, since each S} is the final
version of the subset S; used when C; is computed, which means that (S;., Ci)=1

and (S}, Cy) =0 for all £ < j. Hence, X is invertible. Thus, A = YX 1. Hence, we
can compute all the coefficients a1, ...,ajk2) forall i + [k/2] +1<j <i+k
simultaneously using matrix multiplication and matrix inversion algorithms.

By the implementation of the function update, Lemma 3 follows.

Lemma3 Whenk = 1,i.e., we call extend_cb({Cy, ..., Ci}, Sit+1, 1), the vector S;+1
is orthogonal to {C1, ..., Ci}. And S;i+1 always contains the edge e; 1.

Hence, just before we compute C;;1, we always have a non-zero vector S;4
orthogonal to {Ci,...,C;}. And C;4; is a minimum weight cycle such that
(Ci+1, Si+1) = 1. Hence, the correctness of FAST-MCB follows from Theorem 1.

4.1 The running time of FAST-MCB

Let us analyze the running time of the algorithm FAST-MCB. The recurrence of the
algorithm is as follows:

Tk cost of computing a minimum weight odd cycle C; in S; ifk =1,
k) = {2T(k/2)+costofupdate ifk > 1.
Cost of update. The computation of matrices X and Y takes time mk®~! using the
fast matrix multiplication algorithm. To compute X (and similarly Y) we are multi-
plying |k/2] x N by N x |k/2]| matrices. We split the matrices into 2N/ k square
blocks and use fast matrix multiplication to multiply the blocks. Thus multiplication
takes time (2N /k)(k/2)® = O(mk®~"). We can also invert X in O(k®) time and
we also multiply ¥ and X ~! using fast matrix multiplication in order to get the ma-
trix A. And we use the fast matrix multiplication algorithm again, to multiply the
matrix (A I) with the matrix whose rows are S/ 410 -+ Si+k to get the updated sub-
sets Tiyk/2)+1s -+ -5 Titk-

Using the algorithm described in Sect. 2.1 to compute a shortest cycle C; that has
odd intersection with S;, the recurrence turns into

T(k)_{O(mn+n2logn) ifk=1,
2T (k/2) + O(k®'m) ifk > 1.

@ Springer



Algorithmica (2008) 52: 333-349 345

This solves to 7' (k) = O (k(mn 4+ n”logn) + k®~'m). Thus T (m) = O (m® + m?n +
mn? logn). Since m® < m?n, this reduces to T (m) = O (m*n + mn> logn).

For m > nlogn, this is T(m) = O(m?n). For m < nlogn, this is T(m) =
O (mn? logn). Thus we have shown the following theorem.

Theorem 2 A minimum cycle basis of an undirected weighted graph can be com-
puted in time O(m*n 4+ mn*logn).

Our algorithm has a running time of O (m® +m -n(m +nlogn)), where the n(m +
nlogn) term is the cost to compute all pairs shortest paths. This term can be replaced
with a better term when the graph is unweighted or the edge weights are integers or
when the graph is sparse.

When the edges of G have integer weights, we can compute all pairs shortest paths
in time O (mn) [22, 23], that is, we can bound 7' (1) by O(mn). These algorithms
assume a RAM model of computation which allows bitwise and/or shift operations
in constant time. Other shortest path algorithms work in the addition-comparison
model. In the context of our paper, the assumption of constant time bitwise and shift
operations is no restriction, because the linear algebra related parts of our algorithms’
require constant time multiplication of numbers of logarithmic length.

When the graph is unweighted or the edge weights are small integers, we can com-
pute all pairs shortest paths in time é(n‘”) [7, 19]. When such graphs are reasonably
dense, say m > n'T1/@=Dpoly(logn), then the m® term dominates the running time
of our algorithm. We conclude with the following theorem.

Theorem 3 A minimum cycle basis in a graph with integer edge weights can be
computed in time O(m*n). For unweighted graphs which satisfy m > n'+1/(@=1D .
poly(logn), for some fixed polynomial, we have an O (m®) algorithm to compute a
minimum cycle basis.

5 An Approximation Algorithm for Minimum Cycle Basis

The bottleneck in the running time of our minimum cycle basis algorithm is the com-
putation of a minimum weight cycle C; such that (C;, S;) = 1. Suppose we relax our
constraint that our cycle basis should have minimum weight and ask for a cycle basis
whose weight is at most « times the weight of an MCB. Then can we give a faster
algorithm?

We show a positive answer to the above question. For any parameter o > 1,
we present below an approximation algorithm which computes a cycle basis whose
weight is at most « times the weight of a minimum cycle basis. To the best of our
knowledge, this is the first time that an approximation algorithm for the MCB prob-
lem is being given.

This algorithm is obtained by relaxing the base step (k = 1) in procedure
extend_cb of our FAST-MCB algorithm (Fig. 4). In the original algorithm, we com-
puted a minimum weight cycle C;1 such that (C;1, Si+1) = 1. Here, we relax it to
compute a cycle D; 1 such that (D;41, S;4+1) = 1 and the weight of D; 1 is at most
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For i =1 to N do the following:

e Let §; be any arbitrary non-zero vector in the subspace orthogonal to
{D1,Da,...,Dj_1},1e., S; #0and (Dg, S;) =0fork=1toi — 1.

e Compute a cycle D; such that (D;, S;) = 1 and the weight of D; < « - the
weight of a minimum weight cycle that has odd intersection with S;.

Fig. 5 APPROX-MCB: An «-approximate MCB

o times the weight of a minimum weight cycle that has odd intersection with S; 1.
The method of updating the subsets S; would be identical to the way the update step
is done in FAST-MCB.

We compute a set of cycles {D1, ..., Dy} in our approximation algorithm using
the following idea (Fig. 5).

The linear independence of the D;’s follows from the existence of S;’s. That is,
(D, S;) =1 while (Dg, S;) =0forall k=1, ...,i — 1 shows that D; is linearly in-
dependent of Dy, ..., D;_1. Similarly, note that the subsets {S1, ..., Sy} are linearly
independent since each S; is independent of {S;y1,..., Sy} because (D;, S;) =1
whereas (D;, S;) =0 foreach j >i.

Now we would like to prove the correctness of the algorithm in Fig. 5. Let |C]|
denote the weight of cycle C. We need to show that ZZNZ 1 I1Di| <« - weight of MCB.
Let A; be a shortest cycle that has odd intersection with S;. The set {A,..., Ay}
need not be linearly independent since the subsets S;’s were not updated according to
the A;’s. The following lemma was originally shown in [5] in order to give an equiv-
alent characterization of the MCB problem as a maximization problem. We present
a simple proof of the lemma here.

Lemma4 YN | |A;| < weight of MCB.

Proof We will look at the A;’s in sorted order, i.e., let ¥ be a permutation on [N]
such that [A; ()| < 1Az < -+ < Azl Let {Cy, ..., Cy} be the cycles of an
MCB and let |Cq] < |C2] < -+ < |Cy|. We will show that for each i, Ay ;)| < |C;l.
That will prove the lemma.

We will first show that (Cy, Sy (¢)) =1 for some k and £ with 1 <k <i <£ < N.
Otherwise, the N — i + 1 linearly independent vectors Sy (;y, Sz(i+1), - --» Sz(v) be-
long to the subspace orthogonal to C1q, ..., C;; however, this subspace has dimension
only N —i.

This means that [A; )| < |Ck| since Az () is a shortest cycle such that (Az (),
Szy) = 1. But by the sorted order, |Az )| < |Ax)| and |Ci| < |C;|. This implies
that |[Az | < |Cil. 0

Since |D;| < - |A;| for each i, it follows from the above lemma that ZZN=1 |Di| <
o- weight of MCB. Thus, Theorem 4 follows.

Theorem 4 The linearly independent cycles {D1, ..., Dy} computed by the algo-

rithm APPROX-MCB have weight at most « times the weight of a minimum cycle
basis.
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5.1 The running time of APPROX-MCB

Since all the steps of APPROX-MCB, except the base step corresponding to com-
puting a cycle, are identical to FAST-MCB, we have the following recurrence for
APPROX-MCB:

cost of computing an a-stretch cycle D; thatisoddin §; ifk =1,

T = {2T(k/2)+ 0 k“~'m) itk >1.

So the running time of APPROX-MCB depends on which parameter « is used in
the algorithm. We will compute an «-stretch cycle D; that is odd in S; by using the
same method as in Sect. 2.1. But instead of a shortest (v, v™) path in G;, here we
would compute an a-stretch (v*, v™) path. It is easy to see that the minimum of such
paths would correspond to an «-stretch cycle in G that has odd intersection with S;.

When o = 2, we use the result in [3] to compute 2-stretch paths which would re-
sult in 2-stretch cycles. Then algorithm APPROX-MCB runs in time O(m3*n3/%) 4
O (m®). For reasonably dense graphs (say, number of edges m > n13+9)/(@=15) for
a constant § > 0), this is an O (m®) algorithm.

For 1 + € approximation, we use the all pairs (1 4 €)-stretch paths algorithm [24].
Then we have an O (mn® /e log(W/e€)) + O (m®) algorithm to compute a cycle basis
which is at most 1 + € times the weight of an MCB, where W is the largest edge
weight in the graph. If m > n'*1/(©@=Dpoly(logn) for a constant § > 0 and all edge
weights are polynomial in n, then APPROX-MCB is an O(m®/elog(l/¢€)) algo-
rithm.

6 Computing a Certificate of Optimality

We conclude with the problem of constructing a certificate to verify a claim that
a given set of cycles C = {C}, ..., Cy} forms an MCB. A certificate is an “easy to
verify” witness of the optimality of our answer.

For example, the sets S;, 1 <i < N in our algorithm from which we calculate
the cycles C = {Cy, ..., Cy} of the minimum cycle basis, are a certificate of the
optimality of C. The verification algorithm would consist of verifying that the cycles
in C are linearly independent and that each C; is a minimum weight cycle such that
(Ci, Si)y=1.

Though asymptotically, this verification algorithm and FAST-MCB have the same
running time, the constants would be much smaller in the verification algorithm and
also this algorithm would be conceptually much simpler. This motivates the following
question: given a set of cycles {C1y, ..., Cy}, compute its certificate.

The following algorithm computes witnesses S, ..., Sy given Cq, ..., Cy.

1. Compute a spanning tree 7. Let {e1, ..., ey} be the edges of G\ T.

2. Form the 0-1 N x N matrix C = (CT, ..., C{,), where the ith column of C is the
incidence vector of C; over {ey, ..., en}.

3. Compute C~!. The rows of C~! are our witnesses or certificate.
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If the matrix inversion algorithm returns an error, it means that C is singular. That

is, {Cq, ..., Cn} are linearly dependent. Hence, they cannot form a cycle basis.
The rows of C~! form our witnesses S1, 82, ..., Sy. The property that we want
from Sy, ..., Sy is that for each i, (C;, S;) = 1. Since C1C is the identity matrix,

this property is obeyed by the rows of C~!.

Suppose each C; is a minimum weight cycle such that (C;, S;) = 1. Then by
Lemma 4, this means that ZIN=1 |Ci| < weight of an MCB. Since {Cy,...,Cy} are
linearly independent (by the existence of C~!), it means that {Cy, ..., Cy} forms
a minimum cycle basis.

On the other hand, if for some i, C; is not a minimum weight cycle such that
(C;i, S;i) = 1, then by replacing C; with a minimum weight cycle that has odd inter-
section with S; (as in the proof of Theorem 1), we get a cycle basis with smaller
weight.

Hence, the cycles {Cq, ..., Cy} form an MCB if and only if each C; is a minimum
weight cycle such that (C;, S;) = 1. Since the inverse of an N x N matrix can be
computed in O (N®) time, we have the following theorem.

Theorem 5 Given a set of cycles C ={Cy,...,Cy} we can construct a certificate
{S1,..., Sy} in O(m®) time.

7 Conclusions

In this paper we considered the problem of computing a minimum cycle basis in an
undirected graph. We gave an O (m?n +mn? logn) algorithm for this problem where
m is the number of edges and n is the number of vertices. Improved running time
estimates were given in special cases like integer edge weights or when the graph is
unweighted.

We also considered the approximate minimum cycle basis problem. Faster algo-
rithms were presented for this problem using approximate shortest paths algorithms.
Quite recently faster constant time approximation algorithms were presented in [14].

It would be very interesting to design a faster algorithm also for the general prob-
lem.
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