
Algorithmica (2008) 50: 159–172
DOI 10.1007/s00453-007-9074-x

On Enumerating Minimal Dicuts and Strongly
Connected Subgraphs

Leonid Khachiyan · Endre Boros ·
Khaled Elbassioni · Vladimir Gurvich

Received: 19 April 2006 / Accepted: 19 June 2006 / Published online: 27 October 2007
© Springer Science+Business Media, LLC 2007

Abstract We consider the problems of enumerating all minimal strongly connected
subgraphs and all minimal dicuts of a given strongly connected directed graph
G = (V ,E). We show that the first of these problems can be solved in incremental
polynomial time, while the second problem is NP-hard: given a collection of mini-
mal dicuts for G, it is NP-hard to tell whether it can be extended. The latter result
implies, in particular, that for a given set of points A ⊆ R

n, it is NP-hard to generate
all maximal subsets of A contained in a closed half-space through the origin. We also
discuss the enumeration of all minimal subsets of A whose convex hull contains the
origin as an interior point, and show that this problem includes as a special case the
well-known hypergraph transversal problem.

1 Introduction

Let V be a finite set of vertices and G = (V ,E) a connected undirected graph
on V with edge set E ⊆ V × V . A minimal cut in G is a minimal set of edges

This research was supported by the National Science Foundation (Grant IIS-0118635). The third and
fourth authors are also grateful for the partial support by DIMACS, the National Science
Foundation’s Center for Discrete Mathematics and Theoretical Computer Science.

Our friend and co-author, Leonid Khachiyan tragically passed away on April 29, 2005.

E. Boros · V. Gurvich
RUTCOR, Rutgers University, 640 Bartholomew Road, 08854-8003, Piscataway, NJ USA

E. Boros
e-mail: boros@rutcor.rutgers.edu

V. Gurvich
e-mail: gurvich@rutcor.rutgers.edu

K. Elbassioni (�)
Max-Planck-Institut für Informatik, Saarbrücken, Germany
e-mail: elbassio@mpi-sb.mpg.de

160 Algorithmica (2008) 50: 159–172

the removal of which breaks G into two components. Given two specified vertices
s, t ∈ V , a minimal (s, t)-cut in G is a minimal set of edges whose removal discon-
nects s and t . Similar terms are also defined for directed graphs (digraphs). Given
a strongly connected digraph G = (V ,E) with arc set E ⊆ V × V , a minimal di-
rected cut, or a dicut is a minimal subset of arcs the removal of which leaves a
non-strongly connected digraph. Given two specified vertices s, t ∈ V , a minimal
(s, t)-dicut is a minimal subset of arcs whose removal leaves no directed path from s

to t .
These notions play an important role in network reliability, where edges or arcs

represent communication or transportation links, which may work or fail indepen-
dently, and where the main problem is to determine the probability that the network
is working, based on the individual edge/arc failure probabilities. It turns out that
such network reliability computations require in the general case the list of mini-
mal cuts, dicuts, (s, t)-cuts, etc., depending on the type of connectivity the network
is ought to maintain (i.e., all-terminal, two-terminal, strong, etc.), see e.g., [1, 3,
6, 16].

It is easy to see that the number of spanning trees, cuts, (s, t)-paths, (s, t)-cuts,
etc. may, in general, be exponential in the size of the graph. For this reason efficiency
of their generation is measured in both the input and output sizes, e.g., we shall talk
about the complexity of generation “per cut”.

Given a (strongly) connected (di)graph G = (V ,E), we shall consider the problem
of listing all minimal subgraphs of G, i.e. the family Fπ ⊆ 2E of all minimal subsets
of E, satisfying a given monotone property π : E �→ {0,1}. For instance, if π(X)

is the property that the subgraph with edge set X ⊆ E is connected, then Fπ is the
family of spanning trees of G. Note that, with each family of subgraphs Fπ satisfying
a monotone property π , we can associate the dual family

Fd
π = {X ⊆ E : X is a minimal transversal of Fπ },

where X ⊆ E is a transversal of Fπ if and only if X ∩ Y �= ∅ for all Y ∈ Fπ . Let us
also introduce the complementary family Fc

π = {E \X | X ∈ Fπ } whose elements are
complementary to the elements of Fπ . Thus if π(X) is the property that G′ = (V ,X)

is connected, then Fd
π is the family of all minimal cuts of G = (V ,E), and Fdc

π is the
family of maximal non-connected subgraphs of G.

Enumeration algorithms for listing subgraphs satisfying a number of monotone
properties are well known. For instance, it is known [18] that the problems of
listing all minimal cuts or all spanning trees of an undirected graph G = (V ,E)

can be solved with delay O(|E|) per generated cut or spanning tree. It is also
known (see e.g., [8, 12, 17]) that all minimal (s, t)-cuts or (s, t)-paths, can be
listed with delay O(|E|) per cut or path, both in the directed and undirected
cases. Furthermore, if π(X) is the property that the subgraph (V ,X) of a directed
graph G = (V ,E) contains a directed cycle, then Fπ is the family of minimal
directed circuits of G, while Fd

π consists of all minimal feedback arc sets of G

(i.e. minimal sets of arcs whose removal breaks every directed circuit in G). Both
of these families can be generated with polynomial delay per output element, see
e.g. [19].

Algorithmica (2008) 50: 159–172 161

It is quite remarkable that in all these cases both the family Fπ and its dual Fd
π

can be generated efficiently, unlike for many other monotone families, [5, 15]. In this
paper we focus on a case, relevant to reliability theory, when this symmetry is broken.

Given a strongly connected digraph G = (V ,E), let sc(X) be the property that
X ⊆ E is strongly connected on V. Then Fsc is the family of minimal strongly con-
nected subgraphs (V ,X) of G, and Fd

sc is the family of minimal dicuts of G. In this
note, we show that the problem of incrementally generating all minimal dicuts is
NP-hard.

Theorem 1 Given a strongly connected directed graph G = (V ,E) and a partial
list X ⊆ Fd

sc of minimal dicuts of G, it is NP-hard to determine if the given list is
complete, i.e. if Fd

sc = X .

We show also that on the contrary, listing minimal strongly connected subgraphs
can be done efficiently.

Theorem 2 Given a strongly connected directed graph G = (V ,E), all minimal
strongly connected subgraphs of G can be listed in incremental polynomial time.

We prove Theorems 1 and 2 in Sects. 2 and 3 respectively. We close with some
geometric generalizations of these problems in Sect. 4. Specifically, for a given set of
points A ⊆ R

n, we consider the problems of enumerating all minimal subsets of A
whose convex hull contains the origin as an interior point, and all maximal subsets of
A whose convex hull does not contain the origin as an interior point. We will show
that the former is at least as hard as the well-known hypergraph transversal problem,
while the latter turns out to be NP-hard by Theorem 1. Finally, we will discuss the
relation of these problems to the problem of vertex enumeration, i.e., to the problem
of generating all vertices of a polyhedron given as the set of feasible solutions to a
system of linear inequalities. This generation problem is known to be NP-hard (see
[14]), however it is still open for bounded polyhedra.

2 Proof of Theorem 1

Let us state first the following easy but very useful characterization of minimal dicuts
in a directed graph. For a directed graph G = (V ,E) and a subset S ⊆ V of its vertices
let us denote by G[S] the subgraph of G induced by the vertex set S.

Lemma 1 Given a strongly connected digraph G = (V ,E), an arc set X ⊆ E is a
minimal dicut if and only if there exist vertex sets S,T ,R ⊆ V satisfying the following
four properties.

(D1) S �= ∅, T �= ∅, S,T ,R are pairwise disjoint, S ∪ T ∪ R = V .
(D2) G[S] and G[T] are both strongly connected.
(D3) No arc of G is connecting S to R, or R to T .
(D4) X = {(a, b) ∈ E : a ∈ S, b ∈ T } is the set of all arcs from S to T .

162 Algorithmica (2008) 50: 159–172

Fig. 1 An example for the NP-hard reduction. The SAT problem (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ · · ·) ∧
· · · ∧ (· · · ∨ xn) = 1 has a solution iff the associated graph has a nontrivial arc set destroying its strong
connectivity

Proof The statement follows from the fact that the component digraph of the graph
obtained from G by deleting a minimal dicut X must have exactly one minimal and
one maximal strongly connected components T and S, respectively. �

To prove the theorem, we use a polynomial transformation from the satisfiabil-
ity problem. Let Φ = C1 ∧ · · · ∧ Cm be a conjunctive normal form of m clauses
and 2n literals {x1, x1, . . . , xn, xn}. In what follows, it is assumed without loss of
generality that for each i = 1, . . . , n, both xi and xi occur in Φ . We construct
a strongly connected digraph G = (V ,E) with |V | = m + 3n + 4 vertices and
|E| = ∑m

i=1 |Ci | + m + 6n + 4 arcs. See Fig. 1 for an example.

The Vertices The vertex set of G is defined as follows. There are m vertices
C1, . . . ,Cm corresponding to the m clauses, 2n vertices x1, x1, . . . , xn, xn corre-
sponding to the 2n literals, n + 1 vertices p0,p1, . . . , pn, and finally 3 other vertices
z,u, y.

The Arcs There is an arc (z,Cj) from vertex z to every clause vertex Cj for j =
1, . . . ,m, an arc (�, y) from each literal � ∈ {x1, x1, . . . , xn, xn} to vertex y, and an arc
(C, �) for each clause C and literal � appearing in it. For i = 1, . . . , n, we also have
arcs (pi−1, xi), (pi−1, xi), (xi,pi), and (xi,pi). Finally, we add the arcs (pn,p0),
(p0, u), (u, y), and (y, z).

Algorithmica (2008) 50: 159–172 163

Trivial Dicuts Let us call a minimal dicut trivial if it is the set of arcs leaving a single
vertex v ∈ V , or the set of arcs entering a single vertex v ∈ V . Clearly, not all sets
of arcs leaving or entering a vertex are minimal dicuts. However, the number of such
minimal dicuts does not exceed twice the number of vertices, which is polynomial in
n and m.

Non-Trivial Minimal Dicuts Let us now show that any non-trivial dicut yields a
satisfying assignment for Φ and conversely, any satisfying assignment for Φ gives a
non-trivial minimal dicut for G. This will prove Theorem 1.

Let σ = (�1, �2, . . . , �n) be the set of literals assigned the value T rue in a satisfy-
ing truth assignment for Φ . We define a minimal dicut X of G corresponding to σ .
For this, we use the characterization of Lemma 1, i.e. give the corresponding sets S,
T , and R. Let

T = {p0, �1,p1, �2, . . . , pn−1, �n,pn},
S = {z,C1, . . . ,Cm, �1, . . . , �n, y}, (1)

R = {u}.
Then it easy to verify that the assignments (1) satisfy the conditions (D1–D3) of
Lemma 1, and define a non-trivial minimal dicut.

To see the converse direction, let us consider a non-trivial minimal dicut X ⊆ E.
We use Lemma 1 again to present a corresponding satisfying truth assignment for Φ .
Since X is a minimal dicut, there exist sets S, T , and R satisfying conditions (D1–D4)
of Lemma 1. We present the case analysis in the following steps:

(S0) None of the arcs (pn,p0), (p0, u), (u, y), (y, z), and (z,Cj) for j = 1, . . . ,m

can belong to X, since each of these arcs alone form a trivial minimal dicut.
(S1) We must have |S| ≥ 2 and |T | ≥ 2 by the non-triviality of X.
(S2) We must have y ∈ S, since otherwise all vertices from which y is reachable in

E \X must belong to R ∪T by (D3), implying by (S0) that {p0, u, y} ⊆ R ∪T .
Thus, S ⊆ V \ {p0, u, y} would follow, implying |S| = 1 in contradiction with
(S1), since the vertex set V \ {p0, u, y} induces an acyclic subgraph of G.

(S3) Then, {y, z,C1, . . . ,Cm} ⊆ S is implied by (S2), (D3) and (S0).
(S4) We must have p0 ∈ T , since otherwise all vertices reachable from p0 in E \ X

must belong to S ∪ R by (D3), implying by (S0) that {p0, u, y} ⊆ S ∪ R. Thus
T ⊆ V \ {p0, u, y} would follow, implying |T | = 1 in contradiction with (S1),
since the vertex set V \ {p0, u, y} induces an acyclic subgraph of G.

(S5) Then, {p0,pn} ⊆ T is implied by (S4), (D3) and (S0).
(S6) The strong connectivity of G[T] and (S5) then imply that there exist literals

�i ∈ {xi, xi} for i = 1, . . . , n such that {p0, �1,p1, �2, . . . , pn−1, �n,pn} ⊆ T .
(S7) The strong connectivity of G[S] and (S3) then imply that there exist literals

�ij ∈ S which belong to Cj for all j = 1, . . . ,m. Furthermore, we are guaran-

teed by (S6) that �ij �= �ik for all k, j = 1, . . . ,m.

Now it is easy to see by (S7) and by the construction of the graph G that assigning
�ij ← T rue, for all j = 1, . . . ,m, yields a satisfying truth assignment for Φ .

164 Algorithmica (2008) 50: 159–172

Let us remark before closing this section that analogously to Lemma 1, character-
izations of minimal cuts, (s, t)-cuts, and (s, t)-dicuts are also well-known, and can
be used for efficient generation. For completeness, we include here these analogous
statements:

Lemma 2 Given a connected graph G = (V ,E), an edge set X ⊆ E is a minimal
cut if and only if there exist vertex sets S,T ⊆ V such that

(U1) S �= ∅, T �= ∅, S ∩ T = ∅, S ∪ T = V , and
(U2) G − X = G[S] ∪ G[T], and both G[S] and G[T] are connected.

Furthermore, given two vertices s, t ∈ V , an edge set X ⊆ E is a minimal (s, t)-cut if
and only if there exist vertex sets S,T ⊆ V satisfying (U1), (U2) and

(U3) s ∈ S, t ∈ T .

Lemma 3 Given a strongly connected digraph G = (V ,E) and two specified vertices
s, t ∈ V , an arc set X ⊆ E is a minimal (s, t)-dicut if and only if there exist disjoint
vertex sets S,T ⊆ V satisfying (D4) of Lemma 1, and the following properties:

(D5) s ∈ S, t ∈ T ,
(D6) for any v ∈ S, there is a directed path from s to v in G[S], and
(D7) for any v ∈ T , there is a directed path from v to t in G[T].

Proofs of Lemmas 2 and 3 can be found, e.g., in [17].

3 Enumerating Minimal Strongly Connected Subgraphs

Let G = (V ,E) be a given strongly connected digraph and Fsc ⊆ 2E the family of
all minimal strongly connected subgraphs of G. We generate all elements of Fsc by
performing a traversal (for instance, breadth-first-search) of a directed “supergraph”
G = (Fsc,E) on vertex set Fsc. Let S ∈ Fsc be a “vertex” of G, then we define the
neighborhood E+(S) ⊆ Fsc of the immediate successors of S in G to consist of all
minimal strongly connected subgraphs T of G which can be obtained from S by the
following process:

1. Let e = (a, b) ∈ S be an arc of G such that the graph (V ,E \ e) is strongly con-
nected. Delete e from S.

2. Add a minimal set W of arcs from E \ S to restore the strong connectivity of
(S \ e) ∪ W , i.e. the reachability of b from a.

3. Lexicographically delete some arcs Y from S \ e to guarantee the minimality of
T = (S \ (Y ∪ e)) ∪ W .

(We assume in Step 3 that we have fixed some order on the arcs of G.)
To illustrate, consider the strongly connected subgraph S on three vertices a, b, c

with arcs {(a, b), (b, a), (b, c), (c, b)}. Let e = (a, b) and W = {(a, c)}. Then (S \
e) ∪ W is strongly connected and can be made minimal by deleting arc (b, c).

Theorem 2 readily follows from the following lemma.

Algorithmica (2008) 50: 159–172 165

Lemma 4

(i) The supergraph G is strongly connected.
(ii) For each vertex S ∈ Fsc, the neighborhood of S can be generated with polyno-

mial delay.

Proof (i) Let S,S′ ∈ Fsc be two distinct vertices of G. To show that G contains an
(S,S′)-path, consider an arbitrary arc e = (a, b) ∈ S \S′. Since S \{e}∪S′ is strongly
connected, we can find a minimal set of arcs W ⊆ S′ \S such that b is reachable from
a in S \ {e} ∪W . Lexicographically minimizing the set of arcs S \ {e} ∪W over S \ e,
we obtain an element S′′ in the neighborhood of S with a difference |S′′ \ S′| smaller
than |S \ S′|. This implies that G is strongly connected and has diameter linear in n.
(ii) Let us start with the observation that for any two distinct minimal sets W and W ′
in Step 2, the neighbors resulting after Step 3 are distinct. Therefore, it suffices to
show that all minimal arc sets W in Step 2 can be generated with polynomial delay.

For convenience, let us color the arcs in S \ {e} black, and color the remaining arcs
in E \ S white. So we have to enumerate all minimal subsets W of white arcs such
that b is reachable from a in G(W) = (V , (S \ {e}) ∪ W). Let us call such subsets of
white arcs minimal white (a, b)-paths. The computation of these paths can be done
by using a backtracking algorithm that performs depth first search on the following
recursion tree T (see [18] for general background on backtracking algorithms). Each
node (z,W1,W2) of the tree is identified with a vertex z ∈ V and two disjoint subsets
of white arcs W1 and W2, such that W1 is a minimal white (z, b)-path that can be
extended to a minimal white (a, b)-path by adding some arcs from W \ (W1 ∪ W2).
The root of the tree is (b,∅,∅) and the leaves of the tree are those nodes (z,W1,W2)

for which a ∈ B(z), where B(z) consists of all vertices v ∈ V such that z can be
reached from v in S \ {e}, that is by using only black arcs. As we shall see, the set W1

for each leaf of T is a minimal white (a, b)-path, and each minimal white (a, b)-path
will appear exactly once on a leaf of T.

We now define the children of an internal node (z,W1,W2), where a �∈ B(z). Let Z

be the set of all white arcs from W \(W1 ∪W2) which enter B(z). Pick an arc e ∈ Z. If
the tail y of e is reachable from a in G(W \ (W1 ∪W2 ∪Z)), then (y,W1 ∪ {e},W2 ∪
(Z \ {e})) is a child of the node (z,W1,W2) in T. It is easy to see that W1 ∪ {e} is
indeed a minimal white (y, b)-path: Let e1, e2, . . . , ek = e be the set of arcs added
to W1 ∪ {e}, in that order, and let (z1,W 1

1 ,W 1
2), (z2,W 2

1 ,W 2
2), . . . , (zk,Wk

1 ,Wk
2) be

the set of nodes from the root of tree T to node (y,W1 ∪ {e},W2 ∪ (Z \ {e})). Then
the set Wk

1 \ {e1} does not contain any white path since it contains no arcs entering
B(b). More generally, for i = 1, . . . , k, the set Wk

1 \ {ei} does not contain any white
arc entering B(b)∪B(z1)∪ · · · ∪B(zi−1) and hence it contains no white (y, b)-path.
Note also that this construction guarantees that in addition to the minimality of the
white (y, b)-path Wk

1 = W1 ∪ {e}, it can be extended to a minimal white (a, b) path
by adding some arcs from (W \ (W1 ∪ W2 ∪ Z)). Similar arguments also show that
distinct leaves of T yield distinct minimal white (a, b)-paths, and that all such distinct
paths appear as distinct leaves in T.

Note that the depth of the backtracking tree is at most |V |, and that the time spent
at each node is polynomial in |V | and |E|. This proves (ii). �

166 Algorithmica (2008) 50: 159–172

As mentioned earlier, by performing a transversal on the nodes of the super-
graph G, we can generate the elements of Fsc in incremental polynomial time. How-
ever, we cannot deduce from Lemma 4 that the set Fsc can be generated with poly-
nomial delay since the size of the neighborhood of a given vertex S ∈ Fsc may be
exponentially large.

We close this section with the following observation. It is well known that the
number of spanning trees (i.e., minimal edge sets ensuring the connectivity of the
graph) for an undirected graph G can be computed in polynomial time (see, e.g.,
[4]). In contrast to this result, given a strongly connected digraph G with m arcs, it
is NP-hard to approximate the size of Fsc to within a factor of 2m1−ε

, for any fixed
ε > 0. To see this, pick two vertices s and t in G and let G{s, t}, be the digraph ob-
tained from G by adding, for each vertex v ∈ V \ {s, t}, two auxiliary vertices v′, v′′
and four auxiliary arcs (t, v′), (v′, v), (v, v′′), (v′′, s). It is easy to see that any mini-
mal strongly connected subgraph of G{s, t} contains all the auxiliary arcs and some
(s, t)-path in G. Hence there is a one-to-one correspondence between the set Fsc for
G{s, t} and the set of directed (s, t)-paths for G.1 Now the claim follows by using
the amplification technique of [13], which replaces each arc of G by (2m)1/ε con-
secutive pairs of parallel paths of length 2. It follows then that any approximation of
the number of (s, t)-paths in the resulting graph G′ to within an accuracy of 2(m′)1−ε

,
where m′ is the number of arcs in G′, can be used to compute the longest (s, t)-path
in G, a problem that is known to be NP-hard.

A stronger inapproximability result for counting minimal dicuts is implied by
the NP-hardness proof of Theorem 1: Unless P = NP, there is a constant c > 0,
such that no polynomial-time algorithm can approximate the number of minimal
dicuts of a given strongly connected directed graph G to within a factor of 2cm,
where m is the number of arcs of G. This can be seen, for instance, as follows. Let
Φ(x1, x1, . . . , xn, xn) be a CNF of k clauses on 2n literals. Replace Φ by

Φ ′ = Φ ∧
s∧

j=1

(yj ∨ zj)(yj ∨ zj),

where y1, . . . , ys and z1, . . . , zs are new variables. This way we obtain a new CNF
Φ ′ of k + 2s clauses on 2n + 4s literals such that Φ has a satisfying assignment
if and only if Φ ′ has at least 2s satisfying assignments. Let G be the digraph with
O(k + n + s) arcs constructed for Φ ′ in the proof of Theorem 1. Now the result
follows from the fact that it is NP-hard to determine whether G has O(k + n + s) or
more than 2s minimal dicuts.

4 Some Related Geometric Problems and Concluding Remarks

Let A ⊆ R
n be a given subset of points in R

n. Fix a point z ∈ R
n, say z = 0, and

consider the following four geometric objects:

1In particular, this shows that maximizing the number of arcs in a minimal strongly connected subgraph
of G is NP-hard. Minimizing the number of arcs in such a subgraph is also known to be NP-hard [11].

Algorithmica (2008) 50: 159–172 167

A Simplex a minimal subset X ⊆ A of points containing z in its convex hull: z ∈
conv.hull(X).

An Anti-Simplex a maximal subset X ⊆ A of points not containing z in its convex
hull: z �∈ conv.hull(X).

A Body a minimal (full-dimensional) subset X ⊆ A of points containing z in the
interior of its convex hull: z ∈ int conv.hull(X).

An Anti-Body a maximal subset X ⊆ A of points not containing z in the interior of
its convex hull: z �∈ int conv.hull(X).

Equivalently, a simplex (body) is a minimal collection of points not contained in
an open (closed) half-space. An anti-simplex (anti-body) is a maximal collection of
points contained in an open (closed) half-space. It is known that |X| ≤ n + 1 for any
simplex X ⊆ A and that n + 1 ≤ |X| ≤ 2n for any body X ⊆ A.

For a given point set A, denote respectively by S(A) and B(A) the families of
simplices and bodies of A with respect to the origin z = 0. Then it is clear that
S(A)dc and B(A)dc are respectively the families of anti-simplices and anti-bodies
of A.

Let A ∈ R
m×n, where m = |A|, be the matrix whose rows are the points of A.

It follows from the above definitions that simplices and anti-simplices are in one-to-
one correspondence respectively with the minimal infeasible and maximal feasible
subsystems of the linear system of inequalities:

Ax ≥ e, x ∈ R
n (2)

where e ∈ R
m is the m-dimensional vector of all ones. Similarly, it follows that bod-

ies and anti-bodies correspond respectively to the minimal infeasible and maximal
feasible subsystems of the system:

Ax ≥ 0, x �= 0. (3)

As a special case of the above problems, let G = (V ,E) be a directed graph, and
let A ⊆ {−1,0,1}V be the set of incidence vectors corresponding to the arc-set E,
i.e. A = {χ(a, b) : (a, b) ∈ E}, where χ = χ(a, b) is defined for an arc (a, b) ∈ E

by

χv =
⎧
⎨

⎩

1 if v = a,

−1 if v = b,

0 otherwise.

Denote by A ∈ R
|E|×|V | the corresponding incidence matrix of G. Note that, for any

subgraph G′ of G, the corresponding subsystem of (2) defined by the arcs of G′
is feasible if and only if G′ is acyclic. Thus it follows that the simplices S(A) are
in one-to-one correspondence with the simple directed circuits of G. By definition,
an anti-simplex is a maximal subset of points not containing any simplex. Thus, the
anti-simplices of A correspond to the complements of the minimal feedback arc sets

168 Algorithmica (2008) 50: 159–172

(recall that feedback arc sets in a directed graph are sets of arcs whose removal breaks
every directed circuit the graph).

Now, let us consider bodies and anti-bodies of A. Fix a vertex v ∈ V and consider
the system of inequalities (3) together with the equation xv = 0 (or equivalently,
remove the v-th column of A and the v-th component of x). Then it is easy to see
that the subsystem of (3) (together with xv = 0) defined by the arcs of a subgraph
G′ of G is infeasible if and only if G′ is strongly connected. In particular, the family
of bodies B(A) is in one-to-one correspondence with the family of minimal strongly
connected subgraphs of G, and the family of anti-bodies B(A)dc is in one-to-one
correspondence with the (complementary) family of minimal dicuts of G.

Given a directed graph G = (V ,E), it is known that all simple circuits of G can
be listed with polynomial delay (see, e.g., [18]). It is also known [19] that all minimal
feedback arc sets for a directed graph G can be listed with polynomial delay. Theorem
2 states that we can also list, in incremental polynomial time, all minimal strongly
connected subgraphs of G, while Theorem 1 states that such a result cannot hold for
the family of minimal dicuts unless P = NP .

Thus, as a consequence of Theorem 1, we obtain the following negative result.

Corollary 1 Given a set of points A ⊆ R
n, and a partial list X ⊆ B(A)dc of anti-

bodies of A, it is NP-hard to determine if the given list is complete, i.e. X = B(A)dc.
Equivalently, given an infeasible system (3), and a partial list of maximal feasible
subsystems of (3), it is NP-hard to determine if the given partial list is complete.

We now turn to the enumeration of all bodies for A. In contrast to Theorem 2,
the general case of the enumeration problem for B(A) turns out to be at least as hard
as the well-known hypergraph transversal problem [9], which is not known to be
solvable in incremental polynomial time.

Proposition 1 The problem of incrementally enumerating bodies, for a given set of
m + n points A ⊆ R

n, includes as a special case the problem of enumerating all
minimal transversals for a given hypergraph H with n hyperedges on m vertices.

Proof Given a hypergraph H = {H1, . . . ,Hn} ⊆ 2{1,...,m}, we define a set of points
A ⊆ R

n such that the bodies of A are in one-to-one correspondence with the minimal
transversals of H. For j = 1, . . . , n, let ej be the j th unit vector, containing 1 in
position j and 0 elsewhere. For i = 1, . . . ,m, let vi ∈ {0,1}n be the vector with
components vi

j = 1 if i ∈ Hj and vi
j = 0 if i �∈ Hj . Now define

A = {−e1, . . . ,−en} ∪ {v1, . . . , vm}.

Let X ∈ B(A) be a body. If, for some j ∈ {1, . . . , n}, −ej �∈ X, then X �∈ B(A),
because X ⊆ A \ {−ej } ⊆ {x ∈ R

n | xj ≥ 0}, and hence the convex hull of
A \ {−ej } does not contain the origin as an interior point. We conclude therefore
that X must contain the points −e1, . . . ,−en. Now it is easy to see that the set
X′ = X ∩ {v1, . . . , vm} is a minimal subset of points for which there exists, for each

Algorithmica (2008) 50: 159–172 169

j = 1, . . . , n, a point v ∈ X′ with vj = 1, i.e. X′ is a minimal transversal of H. Con-
versely, let X be a minimal transversal of H. Then X is a minimal set with the prop-
erty that

∑
i∈X vi = y, for some vector y > 0, and consequently the set of points

{vi : i ∈ X} ∪ {−e1, . . . ,−en} forms a body. �

It should be mentioned that the best currently known algorithm for the hypergraph
transversal problem runs in incremental quasi-polynomial time (see [10]). We also
mention that the problem of generating simplices for a given set of points A ⊆ R

n

is equivalent with the well-known open problem of listing the vertices of a polytope
given by its linear description:

Vertex Enumeration: Given an m × n real matrix A ∈ R
m×n and an n-dimensional

vector b ∈ R
n such that the polyhedron P = {x ∈ R

n | Ax = b, x ≥ 0} is
bounded, enumerate all vertices of P .

If the polyhedron P is bounded, i.e. if it is a polytope, then the vertices of P are
in one-to-one correspondence with the simplices of the point set A whose elements
are the columns of the augmented matrix [A | − b]. The complexity status of the
vertex enumeration problem for polytopes and the transversal problem of enumer-
ating anti-simplices, currently remain open. For the special case of points A ⊆ R

n

in general position, we have B(A) = S(A), and consequently the problem of enu-
merating bodies of A turns into the problem of enumerating vertices of the polytope
{x ∈ R

n | Ax = 0, ex = 1, x ≥ 0}, each vertex of which is non-degenerate and has
exactly n + 1 positive components. For such kinds of simple polytopes, there exist
algorithms that generate all vertices with polynomial delay (see [2]). It is also worth
mentioning that, as pointed out by Kelmans and Rubinov, for points in general po-
sition, the number of anti-bodies of A is bounded by a polynomial in the number of
bodies and n:

|B(A)dc| ≤ (n + 1)|B(A)|, (4)

see [7]. A polynomial inequality, similar to (4), for points not necessarily in general
position, would imply that bodies, for any set of points A ⊆ R

n, could be generated
in quasi-polynomial time. This follows from the fact that under the assumption that
(4) holds, the problem of incrementally generating bodies reduces in polynomial time
to the hypergraph transversal problem (see e.g., [5]).

However, a polynomial bound similar to (4) does not hold in general as illustrated
by the following example. Let G = (V ,E) be a directed graph on k + 2 vertices
consisting of two special vertices (s, t), and k parallel directed (s, t)-paths of length
2 each. Then let G{s, t} be the graph obtained by the construction described in the end
of Sect. 3. It is not difficult to see that, for the set of incidence vectors A ⊆ {−1,0,1}V
corresponding to the arc-set of G{s, t}, the number of bodies of A is |B(A)| = k,
while the number of anti-bodies |B(A)dc| exceeds 2k .

Let us finally mention that, although the status of the problem of enumerating all
maximal feasible subsystems of (2) is not known in general, the situation changes if
we fix some set of inequalities, and ask for enumerating all its maximal extensions to
a feasible subsystem. In fact, such a problem turns out to be NP-hard, even if we only
fix non-negativity constraints.

170 Algorithmica (2008) 50: 159–172

Theorem 3 Let A ∈ R
m×n be an m × n matrix, b ∈ R

m be an m-dimensional vector,
and assume that the system

Ax ≥ b, x ∈ R
n (5)

has no solution x ≥ 0. Let F be the set of maximal subsystems of (5) for which there
exists a non-negative solution x. Then given a partial list X ⊆ F , it is NP-hard to
determine if the list is complete, i.e. if X = F , even if b is a 0,1-vector, and entries
in A are either, −1,1, or 0.

Proof We again use a polynomial transformation from the satisfiability problem.
Let Φ = C1 ∧ . . . ∧ Cm be a conjunctive normal form of m clauses and 2n literals
{x1, x1, . . . , xn, xn}, and assume that for each i = 1, . . . , n, both xi and xi occur in Φ .
We construct a system on m+ 3n+ 1 variables and

∑m
j=1 |Cj |+ 3n+ 1 inequalities.

For each clause Cj , j = 1, . . . ,m, we associate a variable yj . For i = 1, . . . , n, we
associate a variable ui with the positive literal xi and a variable vi with the negative
literal xi . We also use other n + 1 variables, z1, . . . , zn and x. There are four types of
constraints:

(C1) −ui ≥ 0, − vi ≥ 0, for i = 1, . . . , n.
(C2) x − zi − ui − vi ≥ 0, for i = 1, . . . , n.
(C3) ui − yj − x ≥ 0, for every j and i such that xi appears in Cj . Similarly, vi −

yj − x ≥ 0, for every j and i such that xi appears in Cj .
(C4)

∑m
j=1 yj + ∑n

i=1(ui + vi + zi) + x ≥ 1.

It is easy to see that the system (C1)-(C4) has no non-negative solution, and further-
more that any of the following subsystems is maximal with the property that it has a
non-negative solution:

(A) All constraints but (C4).
(B) All constraints but (C2) for some i ∈ {1, . . . , n}.
(C) All constraints but (C3) for some j ∈ {1, . . . ,m} and all i such that either xi or

xi appears in Cj .

Let us call any subsystem having the form (A), (B), or (C), a trivial maximal feasible
subsystem (MFS). The number of such subsystems is exactly m + n + 1. We now
show that there exists a non-trivial MFS if and only if the formula Φ is satisfiable.

Let σ = {�1, �2, . . . , �n} be the set of literals assigned the value T rue in a satis-
fying truth assignment for Φ . We define a non-trivial MFS X corresponding to σ .
Starting from an empty set X, we add (C4) and (C2) for all i = 1, . . . , n to X. For
each i = 1, . . . , n, if �i = xi , we add the inequality −vi ≥ 0 to X, otherwise we add
the inequality −ui ≥ 0 to X. For j = 1, . . . ,m, we also add to X all inequalities of
type (C3) corresponding to a pair (Cj , �), of a clause Cj and any literal � in σ such
that � satisfies Cj . Since σ is satisfying, for each clause Cj there exists at least one
such literal �ij , and this together with the fact that X includes constraints (C4), and
(C2) for all i, implies indeed that X is non-trivial. So it remains to verify that X is
an MFS for the system. To see this, note first that X has the following non-negative
solution: ui = 1 if xi ∈ σ and 0 otherwise, vi = 1 if xi ∈ σ and 0 otherwise, x = 1,
yj = 0 for all j = 1, . . . ,m, and zi = 0 for all i = 1, . . . , n. Second, let us see that if

Algorithmica (2008) 50: 159–172 171

we add a new inequality to X, the resulting subsystem has no non-negative solution.
If we add an inequality of type (C1) for some i, then we fix at value 0 some vari-
able, say ui , for which the corresponding literal � appears in σ . Since, by our earlier
assumption, � appears in some clause Cj , the inequality ui − yj − x ≥ 0 is already
in X. But then the latter inequality implies with X that all variables must be 0, in
contradiction to (C4). Suppose now that we add an inequality of type (C3) to X, say
ui − yj − x ≥ 0, corresponding to some clause Cj and some non-satisfying literal
xi �∈ σ . Since xi �∈ σ , the inequality −ui ≥ 0 is already in X, implying again, with the
added inequality that all variables must be 0, contradicting (C4) again. This shows
that X is indeed an MFS.

Conversely, assume that X is a non-trivial MFS for the system (C1–C4). Then X

must contain (C4), and (C2) for all i = 1, . . . , n, since otherwise, X is contained in
some trivial MFS of type (A) or (B). Furthermore, the fact that X is not contained
in any MFS of type (C) implies that, for each clause j = 1, . . . ,m, there exists an
index ij such that X contains an inequality of the form wij − yj − x ≥ 0, where
wij is either uij or vij . Now we define a satisfying truth assignment σ to be the set
of literals corresponding to the set of variables {wij : j = 1, . . . ,m}. Let us first
show that σ is indeed a truth assignment, i.e. no literal � and its complement � appear
together in σ . Assume on the contrary that for some i, both xi, xi ∈ σ . Then there
exist two distinct indices j and k for which the two inequalities ui − yj − x ≥ 0 and
vi − yk − x ≥ 0 are both contained in X. But then adding these inequalities, we get

ui + vi − yj − yk − 2x ≥ 0 (6)

as a valid inequality for X. Since X also contains all inequalities of type (C2), we
conclude by adding the ith such inequality to (6) that zi + yj + yk + x ≤ 0, from
which we get that every variable must be 0, in contradiction to (C4). The fact that σ

satisfies Φ immediately follows from the way we constructed σ . �

To conclude this section, let us consider an infeasible system of linear inequalities

Dx ≥ f and D′x ≥ f ′, (7)

where the subsystem D′x ≥ f ′ is feasible. Let us observe that the problem of finding
all maximal feasible subsystems of (7), which includes the given feasible subsystem
D′x ≥ f ′, generalizes the generation of both anti-simplices and simplices. Clearly,
the former problem can be written in the form (7) by considering (2) and all maximal
extensions of an empty (feasible) subsystem. For the latter problem, note that the
vertices of the polytope {x ∈ R

n | Ax = b, x ≥ 0}, where b �= 0, are in one-to-one
correspondence with the maximal feasible extensions of the subsystem Ax = b, x ≥
0 in the infeasible system Ax = b, x ≥ 0, x ≤ 0. Although the general problem,
of generating maximal feasible extensions, is NP-hard as shown in Theorem 3, the
special cases of generating simplices and anti-simplices remain open.

Acknowledgements We thank Marc Pfetsch for helpful discussions.

172 Algorithmica (2008) 50: 159–172

References

1. Abel, U., Bicker, R.: Determination of all cutsets between a node pair in an undirected graph. IEEE
Trans. Reliab. 31, 167–171 (1986)

2. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements
and polyhedra. In: Symposium on Computational Geometry, North Conway, NH, pp. 98–104 (1991)

3. Bansal, V.K., Misra, K.B., Jain, M.P.: Minimal pathset and minimal cutset using search technique.
Microelectron. Reliab. 22, 1067–1075 (1982)

4. Bollobas, B.: Graph Theory: An Introductory Course. Springer, Berlin (1979)
5. Boros, E., Gurvich, V., Khachiyan, L., Makino, K.: Dual-bounded generating problems: partial and

multiple transversals of a hypergraph. SIAM J. Comput. 30, 2036–2050 (2001)
6. Colburn, C.J.: The Combinatorics of Network Reliability. Oxford University Press, New York (1987)
7. Collado, R., Kelmans, A., Krasner, D.: On convex polytopes in the plane “containing” and “avoiding”

zero. DIMACS Technical Report 2002-33, Rutgers University (2002)
8. Curet, N.D., DeVinney, J., Gaston, M.E.: An efficient network flow code for finding all minimum cost

s − t cutsets. Comput. Oper. Res. 29, 205–219 (2002)
9. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems.

SIAM J. Comput. 24, 1278–1304 (1995)
10. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal

forms. J. Algorithms 21, 618–628 (1996)
11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-

completeness. Freeman, New York (1979)
12. Gusfield, D., Naor, D.: Extracting maximum information about sets of minimum cuts. Algorithmica

10, 64–89 (1993)
13. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial structures from a

uniform distribution. Theor. Comput. Sci. 43, 169–188 (1986)
14. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V.: Generating all vertices of a poly-

hedron is hard. In: SODA ’06: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete
Algorithm, pp. 758–765 (2006)

15. Lawler, E., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all maximal independent sets: NP-
hardness and polynomial-time algorithms. SIAM J. Comput. 9, 558–565 (1980)

16. Provan, J.S., Ball, M.O.: Computing network reliability in time polynomial in the number of cuts.
Oper. Res. 32, 516–526 (1984)

17. Provan, J.S., Shier, D.R.: A paradigm for listing (s, t) cuts in graphs. Algorithmica 15, 351–372
(1996)

18. Read, R.C., Tarjan, R.E.: Bounds on backtrack algorithms for listing cycles, paths, and spanning trees.
Networks 5, 237–252 (1975)

19. Schwikowski, B., Speckenmeyer, E.: On enumerating all minimal solutions of feedback problems.
Discrete Appl. Math. 117, 253–265 (2002)

	On Enumerating Minimal Dicuts and Strongly Connected Subgraphs
	Abstract
	Introduction
	Proof of Theorem 1
	The Vertices
	The Arcs
	Trivial Dicuts
	Non-Trivial Minimal Dicuts

	Enumerating Minimal Strongly Connected Subgraphs
	Some Related Geometric Problems and Concluding Remarks
	A Simplex
	An Anti-Simplex
	A Body
	An Anti-Body

	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

