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Abstract We introduce unique sink orientations of grids as digraph models for many
well-studied problems, including linear programming over products of simplices,
generalized linear complementarity problems over P-matrices (PGLCP), and simple
stochastic games.

We investigate the combinatorial structure of such orientations and develop ran-
domized algorithms for finding the sink. We show that the orientations arising from
PGLCP satisfy the Holt-Klee condition known to hold for polytope digraphs, and we
give the first expected linear-time algorithms for solving PGLCP with a fixed number
of blocks.

Keywords Unique sink orientation · Linear programming · Generalized linear
complementarity problem · Sink finding algorithm · Holt Klee condition

1 Introduction

A grid is a graph whose vertex set is the Cartesian product of n finite sets, with edges
joining all pairs of vertices that differ in exactly one component, see Fig. 1a.
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Alternatively, we can view a grid as the skeleton (vertex-edge graph) of a specific
polytope, namely a product of simplices.

If all sets have size two, we get the graph of the n-cube. A face or subgrid is any
induced subgraph spanned by the Cartesian product of subsets of the original sets.
An orientation ψ of the grid is called a unique sink orientation (USO) if every face
has a unique sink with respect to ψ . Figure 1b depicts a USO of the (3 × 2 × 2)-grid.
In particular, the grid itself must have a unique sink. Grid USO may contain directed
cycles, as the 3-cube in Fig. 2 shows.

The significance of USO on grids comes from the fact that they form a simple
combinatorial framework subsuming a number of well-studied problems. We show
in this paper that the problem of solving a generalized linear complementarity prob-
lem over a P-matrix (PGLCP), as introduced by Cottle & Dantzig [9], can be recast
as the problem of finding the unique sink of an implicitly given grid USO. As special
cases, this includes the well-known standard linear complementarity problems over
P-matrices (PLCP) [10] and problems reducing to them [18, 39], linear programming
(LP) over products of simplices, and LP over combinatorial cubes. In the LP applica-
tions, we get acyclic unique sink orientations (AUSO).

Two major open problems motivate our research. On the one hand, it is unknown
whether polynomial-time algorithms exist for PLCP or PGLCP, even though both
problems are unlikely to be NP-hard. Megiddo has shown that hardness of PLCP
would imply NP = co-NP [37], and his proof extends to PGLCP easily. LP, on the
other hand, is solvable in polynomial time (a celebrated result of Khachyian [31]),
but a strongly polynomial algorithm is not known, even if we are dealing only with
LP over combinatorial cubes. Candidates for strongly polynomial algorithms must be
combinatorial in the sense that the number of arithmetic operations they perform de-
pends only on the combinatorial structure of the LP but not on the actual numbers that
encode it. The AUSO approach attempts to extract the combinatorial structure behind

Fig. 1 a The (3 × 2 × 2)-grid, b a unique sink orientation

Fig. 2 A cyclic USO
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LP; in this paper, we generalize to the combinatorics of PGLCP. A polynomial-time
algorithm for finding the sink of a grid USO (using an oracle that returns the orien-
tation of a given edge) would solve both problems in strongly polynomial time. The
USO generalization reveals some (algorithmically useful) hidden structure, leading
to new results for PGLCP.

The AUSO framework also covers a generalization of LP resulting from the
replacement of linear objective functions with abstract objective functions (AOF)
[1, 29], or completely unimodal numberings of vertices [26, 48]. On general poly-
topes, these concepts are dual to the notion of shellings [26], and they have suc-
cessfully been applied to the theory of polytope (di)graphs and linear programming
[28, 30]. A further generalization leads to the natural concept of violator spaces,
and grid USO can be shown to form nontrivial models of (possibly cyclic) violator
spaces [23].

The case of grid AUSO—equivalently, AOF on products of simplices—has been
treated in the planar case (n = 2), with interesting connections to arrangements of
pseudolines [15, 46].

For general n, grid AUSO have been studied by Björklund et al. as a combinatorial
framework for the problem of computing optimal infinite game strategies [2, 3]. The
games considered include parity, mean-payoff, and simple stochastic games (SSG).
Whether parity games (the easiest among the three) can be solved in polynomial
time is an important open question [25]. In particular, the complexity of very natural
strategy improvement algorithms for these classes of games is still open. For SSG,
such an algorithm is the Hoffman-Karp algorithm [8].

By the reductions of Björklund et al. [2, 3] (and the earlier reduction of Ludwig
for binary SSG [34]), we can interpret the Hoffman-Karp algorithm as a sink-finding
method for grid AUSO. In the USO world, this method is known as the bottom-
antipodal algorithm, and there are exponential lower bounds for its performance [40].
In order to understand whether or not these bounds can be turned into lower bounds
for the Hoffman-Karp algorithm, it is important to understand the class of grid AUSO
that may arise from SSG.

An alternative reduction from SSG to grid USO follows from our results, together
with a recent reduction of SSG to PGLCP [18]. In this way, we may get cyclic
USO, but in return, they will satisfy the Holt-Klee condition, a combinatorial property
shared by a diminishing fraction of all USO.

Unique sink orientations of cubes (not necessarily acyclic) were first considered
by Stickney and Watson as digraph models for PLCP [43]. Most remarkably, Szabó
and Welzl gave algorithms for finding the sink of an n-cube USO by looking at only
O(cn) vertices and edges, for some c strictly smaller than 2 [45]. This in particular
yields the first combinatorial algorithms for PLCP with nontrivial runtime bounds.
Cube USO are also useful as combinatorial models for geometric optimization prob-
lems, in particular the problem of computing the smallest enclosing ball of a set of
points [19, 45], or a set of balls [16]. In the point case, this problem can be reduced
to PLCP with a positive definite matrix [19], but the ball case leads to more general
USO. In both cases, cyclic orientations may arise.

Unique sink orientations of the graphs of general polytopes are dual to exact sign-
ings studied by Kleinschmidt and Onn [33].
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Fig. 3 Two-dimensional
projected USO over
one-dimensional hypervertices
(shaded) in a three-dimensional
grid. The projected USO is
defined through the arcs incident
to the hypervertex sinks (white);
in this case, we obtain the
projected USO of Fig. 4

Fig. 4 The refined index. For
each vertex, the two components
correspond to the outgoing
edges in the horizontal and
vertical directions

1.1 Statement of Results

In this paper, we generalize results known to hold in some of the above special cases,
and we prove new structural and algorithmic results of particular significance for the
theory of PLCP and PGLCP. Probably the most surprising insight is that all these
results hold even under the presence of directed cycles in the orientation.

1.1.1 Projected USO and Refined Index

A hypervertex is a face consisting of all vertices whose coordinates agree with a given
vertex on some fixed subset I of the n grid dimensions. An |I |-dimensional projected
grid can be imposed on the set of hypervertices defined by I in a natural way. Given
a USO of the grid, the projected orientation of the projected grid is obtained from
the orientations of the outgoing edges incident to the sinks of the hypervertices. We
prove that the projected orientation is USO again. Figure 3 shows an example.

While this result is an easy generalization of a corresponding result for cubes [45],
its implications are more interesting. In Sect. 2.2 we formally define the refined index
and, based on the projected structure, we are able to prove that the refined index is
a bijection for any grid USO. With respect to a given USO, the refined index maps
every vertex to an n-tuple of natural numbers, the entry at position i corresponding
to the number of outgoing edges in dimension i of the grid. Figure 4 depicts a USO
along with all refined index values.

This bijection was previously known to hold for cubical grids (in which case it
easily follows from the USO property [45]), and for acyclic grids [2], with a proof
that does not extend to USO with cycles. An earlier proof for the planar case is due
to Tschirschnitz [46]. For USO coming from LP over a product of simplices, or from
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a PGLCP, the bijection can be established using simple geometric arguments. In the
planar setting, it is the basis for a tight analysis of the RANDOMEDGE simplex algo-
rithm [22].

Our inductive proof of the bijection for grid USO differs fundamentally from the
proofs of the special cases. The reason is that the projected USO—which we use in
our proof—will in general not come from PGLCP, even if the original grid USO does
(we give a concrete example for this). Here, the generalization to USO allows for new
approaches that are not necessarily viable in the concrete setting.

1.1.2 Algorithms

Given an oracle that returns the orientation of any given edge in a grid USO, it is
natural to ask how many oracle calls are required in order to find the global sink of the
USO. In all concrete instances, this oracle can easily be implemented in polynomial
time, meaning that the number of oracle calls is a good measure of complexity. We
develop two simple randomized algorithms whose expected number of calls to the
oracle are of the order f (n)N , with N being the sum of sizes of the n sets whose
product forms the grid, and with f (n) ≈ n!.

The two algorithms are very similar in spirit; the first one generalizes an algorithm
for the n-cube [21, 45], and the vertices visited by the algorithm generally do not
form a path in the grid. The expected runtime only depends on the parameters of
the grid, but not on the concrete USO. The second algorithm follows a directed path
to the global sink. Compared to the first algorithm, its expected worst-case runtime
is slightly higher, but it has the potential of being much faster if the starting vertex
is already close to the sink, or if directed paths tend to be short in the USO under
consideration.

In particular, if n is fixed, we get linear-time algorithms. Specialized to PGLCP,
this corresponds to the case in which we have a fixed number of blocks; in this situ-
ation, we get the first algorithms whose expected complexity is linear in the number
of variables—this is optimal. Even if n is not considered to be fixed, our algorithms
improve over the trivial bound resulting from the evaluation of all edge orientations.
To the best of our knowledge, no previously published algorithm could be proven
to perform substantially better than the trivial approach, in the worst case. A reduc-
tion from PGLCP to PLCP was claimed [12] that would yield a quadratic bound of
O(N2 + plcp(n)), where plcp(n) is the time necessary to solve a PLCP instance of
size n. However, the proof contains an error, and there is a counterexample to the
correctness of the reduction [13].

In the acyclic case, linear-time algorithms for fixed n are known. This follows
from the fact that the problem of finding the sink in an AUSO can be formulated as an
LP-type problem [36] in a natural way [2]. In the LP-type framework, f (n)N oracle
calls suffice, even deterministically [5]. The currently best algorithm for the acyclic
case combines two randomized algorithms [7, 36] and requires an expected number
of O(Nn + f (n)) oracle calls, where f (n) = exp(O(

√
n logn )) is a subexponential

function [20]. No subexponential methods are known for USO that contain cycles.
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Fig. 5 Two AUSO violating the
Holt-Klee condition

1.1.3 The Holt-Klee Condition

Unique sink orientations coming from LP over products of simplices satisfy an inter-
esting combinatorial property: consider any subgrid along with its unique sink and
unique source.1 The Holt-Klee (HK) condition states that there are as many vertex-
disjoint directed paths between source and sink as there are neighbors of the source
(equivalently, the sink) in the subgrid [27]. This is obviously the maximum possible
number of such paths. The HK condition does not hold for general AUSO; there are
two nonequivalent AUSO of the 3-cube with only two vertex-disjoint directed paths
from source to sink, see Fig. 5.

The HK condition is important, as it is the only known simple combinatorial condi-
tion that can distinguish geometric (LP- or PGLCP-induced) from abstract situations.

We show that all grid USO coming from PGLCP do satisfy the HK condition (we
also say that they are HK), even in the presence of cycles. The proof works in the dual
and more general setting of complete pointed fans (defined in Sect. 4.3). The result
emphasizes the geometric nature of PGLCP and establishes a new combinatorial way
of checking whether a given USO can be realized as PGLCP. This result is new also
in the context of PLCP with its wide range of known theory and applications [10].

Even if a given USO is HK, the above result might allow us to conclude that it
is not PGLCP-induced. For this, we identify certain classes of edge flips that trans-
form PGLCP instances into other PGLCP instances. If we manage to obtain a non-
HK USO through such flips, we know that the USO we started with is not PGLCP-
induced.

The HK condition is necessary but not sufficient: there exist AUSO of the 4-cube
which satisfy the HK condition but do not come from PLCP [38]. Asymptotically, for
n tending to infinity, almost all n-cube AUSO that are HK are not PLCP-induced [11].
The stronger condition we get by including edge flips is not sufficient, either. Still,
we show that it properly strengthens HK: there is a 4-cube AUSO which satisfies HK
but can be shown to be not PLCP-induced through the edge flipping criterion.

The HK condition is involved in a prime example of how combinatorial informa-
tion can be exploited algorithmically. Matoušek has constructed a class of n-cube
AUSO with the property that the RANDOMFACET simplex algorithm [29] has su-
perpolynomial expected runtime on a randomly chosen instance from the class [35].
This runtime is of the order exp(�(

√
n )) and matches the best known upper bound

of exp(O(
√

n )) for the expected performance of this algorithm on general n-cube

1The existence of a unique source follows from the USO axioms, see Sect. 2.2.
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AUSO [17]. While this result settles the complexity of RANDOMFACET on n-cube
AUSO, the question remained open whether the performance analysis can be im-
proved when the AUSO is induced by an actual LP over a combinatorial cube. At
least within Matoušek’s class, this is the case. It can be shown that RANDOMFACET

needs an expected number of only O(n2) pivot steps on all n-cube AUSO in the class
that satisfy the HK condition [17]. It is open whether this result extends to larger
classes of AUSO.

A general grid USO in dimension n = 2 is known to be HK if and only if no
subgrid orientation is isomorphic to the orientation of Fig. 4 which we call the double
twist [15, 46]. We extend this result to n = 3, proving that in order to satisfy the HK
condition, it is necessary and sufficient to avoid the double twist as well as the two
cubes of Fig. 5. For n = 4, we give an example of a minimal grid that violates HK
but is not a cube.

1.1.4 The Planar Case

We show that no directed cycles can occur in a grid USO of dimension n = 2, mean-
ing that the cube of Fig. 2 is in fact the smallest possible cyclic example. If the ori-
entation is HK, this follows from the interpretation in terms of a pseudoline arrange-
ment [15].

2 Basics

Throughout this paper, we fix two natural numbers N ≥ n ≥ 1 and an ordered parti-
tion

� = (�1, . . . ,�n)

of the set [N ] := {1, . . . ,N} into n nonempty subsets. We also refer to �i as the
block i.

A subset J ⊆ [N ] is called a �-vertex (or simply vertex) if |J ∩ �i | = 1 for all i.
We also set

JI =
⋃

i∈I

(J ∩ �i), I ⊆ [n].

In other words, JI comprises the |I | elements of J in the blocks indexed by I .
Let V be the set of vertices. The grid spanned by S ⊆ [N ] is the undirected graph

G(S) = (V (S),E(S)),

with

V (S) := {J ∈ V | J ⊆ S},
E(S) := {{J,J ′} ⊆ V (S) | |J ⊕ J ′| = 2},
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where ⊕ denotes symmetric difference. The vertices of G(S) correspond to the ele-
ments of the Cartesian product

n∏

i=1

Si, Si := S ∩ �i.

(Note that Ji = J{i}.) Edges join pairs of vertices J,J ′ that differ in exactly one
coordinate.

If |Si | ≤ 2 for all i, G(S) is the graph of some k-cube, k ≤ n. If Si = ∅ for some i,
G(S) is the empty graph.

A face or subgrid of G(S) is any graph of the form G(S′), for S′ ⊆ S. Throughout,
we abbreviate G([N ]) as G and E([N ]) as E.

Definition 2.1 Let ψ be an orientation of G.2 ψ is called unique sink orientation
(USO) if all subgraphs of ψ induced by nonempty faces of G have unique sinks. If

ψ contains the arc (J, J ′), we also write J
ψ→ J ′.

In the remainder of this section, we introduce PGLCP as a generalization of LP
over products of simplices, and we prove that any generic PGLCP instance gives rise
to a USO. Subsequently, we prove further properties of general grid USO.

2.1 Grid LP and Generalized LCP

Consider a linear program in the variables x = (x1, . . . , xN)T , of the form

minimize cT x

subject to Ax = b,

x ≥ 0,

(1)

where A ∈ R
n×N,b ∈ R

n, c ∈ R
N . For S ⊆ [N ], let AS denote the submatrix of

columns indexed by S. Furthermore assume that every vertex J ∈ V is a nondegen-
erate basis in (1), meaning that AJ is invertible and A−1

J b > 0. We say that the LP is
�-compatible, and we call AJ a representative submatrix. We will assume that the
ordering of the columns in AJ is compatible with �, meaning that the ith column of
AJ comes from A�i

, i ∈ [n].
Using Cramer’s rule, the following is not hard to establish (we omit the proof).

Observation 2.2 Consider a �-compatible LP of the form (1). Then

(i) All determinants det(AJ ) of representative submatrices have the same (nonzero)
sign, and

(ii) The vertices J ∈ V are exactly the bases of the LP (1).

2Formally, ψ is a digraph containing either the arc (J, J ′), or the arc (J ′, J ), for each edge {J,J ′} ∈ E.
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For any c ∈ R
N , a canonical �-compatible LP is obtained by setting bi = 1 and

Aij :=
{

1, j ∈ �i ,
0, otherwise,

i ∈ [n], j ∈ [N ].

In this case, all representative submatrices are equal to the identity matrix In, and the
feasible region is the product of n simplices, where the ith simplex is defined in the
space of variables xj , j ∈ �i , via the constraints

∑

j∈�i

xj = 1, xj ≥ 0. (2)

In general, the feasible region of a �-compatible LP is combinatorially equivalent
to the product of n simplices with a total of N facets: as a consequence of Observa-
tion 2.2(ii), the vertex-edge graph of the feasible region is a grid. By nondegeneracy,
the feasible region is therefore a simple polytope, sharing its graph with the product
of simplices defined in (2). Because the combinatorial structure of a simple polytope
is determined by its graph [4, 28], the statement follows.

A unique sink orientation of the grid G is obtained from a �-compatible LP with
generic objective function vector c, meaning that cT x is not constant on any edge.
In this case, an edge can be directed towards its vertex of lower objective function
value. The resulting orientation is a USO, with the unique sink of the face G(S)

corresponding to the unique optimal basis of the linear program

minimize cT
S xS

subject to ASxS = b,

xS ≥ 0

in the |S| variables xS := (xj )j∈S .
The edge orientations in the USO are determined by reduced cost coefficients (see

any description of the simplex method, for example the one in Chvátal’s book [6]).
More precisely, if J is a basis, the row vector

c̄(J ) := cT − cT
J A−1

J A (3)

is the reduced cost vector associated with J . Note that c̄(J )J = 0, and that c̄(J )j = 0
for j /∈ J , if c is generic. Then, if J ′ is adjacent to J , with j being the unique index
in J ′ \ J , we have

J → J ′ ⇔ c̄(J )j < 0. (4)

The existence of a unique sink K therefore provides us with a vector yT := cT
KA−1

K

(a dual feasible solution) such that

(i) cT ≥ yT A, and
(ii) For every i ∈ [n], there is a j ∈ �i with cj = (yT A)j .

Note that the second set of constraints forces yT to be of the form cT
J A−1

J for some
vertex J . By the unique sink property, K is the only choice for J that also guarantees
property (i) and so there is a unique vector y that fulfills (i) and (ii).
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If A and c do not come from a �-compatible LP as in (1), a vector y satisfying
properties (i) and (ii) need not exist. However, restricting A to be a matrix that—in a
suitable sense—respects the partition �, we arrive at the following generalization of
�-compatible LP.

Definition 2.3 Let A ∈ R
n×N and c ∈ R

N such that A has property P, meaning that
condition (i) of Observation 2.2 holds. The P-generalized linear complementarity
problem (PGLCP) is the problem of finding a vector y ∈ R

n such that

cT ≥ yT A, (5)

and with the property that for every i ∈ [n], there is a j ∈ �i satisfying

cj = (yT A)j . (6)

Intuitively, PGLCP is LP of the form (1) ‘without a right-hand side’. It will turn out
that under this generalization, uniqueness of solution as well as the USO formulation
persist. Because already the cyclic cube USO of Fig. 2 arises from a PGLCP (Stickney
& Watson [43] give an example in an equivalent dual setting, see also Sect. 4.3), the
generalization is proper: given a PGLCP instance (A, c), it is not always possible to
find a right-hand side b such that A,b, c form a �-compatible LP.

Theorem 2.4 Let A ∈ R
n×N and c ∈ R

N define a PGLCP instance.

(i) There exists a unique vector y ∈ R
n satisfying conditions (5) and (6).

(ii) If c is generic (which means that c̄(J )j = 0 for j /∈ J ∈ V ), the edge orientations
given by (4) define a unique sink orientation of the grid G.

Proof Fix a vertex K , define

MT := A−1
K A,

qT := c̄(K) = cT − cT
KA−1

K A,

and consider the problem of finding z ∈ R
n,w ∈ R

N such that

w − Mz = q, (7)
∏

j∈�i

wj = 0, i ∈ [n], (8)

and

w,z ≥ 0. (9)

By definition, qk = 0 and (MT )k = ei for k being the unique element in K ∩ �i ,
where ei is the ith unit vector. Consequently, every solution of (7) must satisfy zi =
wk for i ∈ [n]. This means that (8) may be replaced with

zi

∏

j∈�i

wj = 0, i ∈ [n]. (10)
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Equations (7), (9) and (10) define the generalized linear complementarity problem
in the setting of Cottle & Dantzig, who show that a feasible solution (w, z) exists
if every representative submatrix of MT is a P-matrix [9]. A matrix is a P-matrix if
all determinants of principal minors are positive [10]. In our case, MT satisfies this,
which easily follows from the fact that MT has property P and contains a represen-
tative identity matrix (see Definition 2.3).

To prove the existence of y in part (i), we choose a solution (w, z) of (7), (8) and
(9). Then we set yT = (cT

K − zT )A−1
K and get wT = cT − yT A, using (7). Conditions

(8) and (9) then ensure that y is the desired solution.
For a uniqueness proof, assume that distinct y and y′ solve (5) and (6). Then

the vector (y′ − y)T A satisfies the property that in every block �i we have a zero
element (if both yT A and y′T A agree with cT on the same component in �i ), or
there is a positive and a negative element (if yT A and y′T A agree with cT on different
components; remember that cT −yT A, cT −y′T A ≥ 0). If R and S are representative
submatrices of A, then R−1S has to be a P-matrix if A is to have property P. We
construct representative submatrices R and S of A for which this fails, as follows. For
each i, if (y′ −y)T A has a zero entry in block i, then choose columns Ri and Si to be
the column of A corresponding to this entry (so that (y′ − y)T Ri = (y′ − y)T Si = 0).

Else, let columns Ri and Si be columns of block i of A for which the corre-
sponding components of (y′ − y)T A have different nonzero signs (this means that
(y′ − y)T Ri · (y′ − y)T Si < 0).

It follows that ((y′ − y)T R)i((y
′ − y)T R(R−1S))i ≤ 0 for each i. The matrix

R−1S is said to reverse the sign of the nonzero vector (y′ − y)T R. This implies (see
[10], Thm. 3.3.4) that R−1S is not a P-matrix which contradicts property P of A.

Statement (ii) is a corollary of (i), because c being generic implies that the vector
y from (i) can be expressed in the form yT = cT

J A−1
J for exactly one J . This set J is

then a sink of G in the orientation defined by (4); moreover, there cannot be a second
sink J ′, since that would correspond to a second solution y′T = cT

J ′A
−1
J ′ to (5) and

(6), a contradiction to (i).
The fact that this orientation defines a USO easily follows: applying the above

arguments to the PGLCP instance (AS, cS), we can prove the existence of a unique
sink in the subgrid G(S). �

Given a PGLCP instance (A, c) and i ∈ [n], the replacement of submatrix A�i

with −A�i
preserves property P. Let A′ be the resulting matrix, and let c′ be the

vector resulting from c by replacing the subvector c�i
with its negative. It is easily

seen from (3) and (4) that the USO induced by (A, c) and (A′, c′) differ exactly in the
orientations of the edges along dimension i. This can be summarized in the following

Theorem 2.5 Let ψ be a grid orientation, choose i ∈ [n], and let φ be the orientation
resulting from ψ by flipping all arcs of the form

(J, J ′), J ⊕ J ′ ⊆ �i.

Then ψ is a PGLCP-induced USO if and only if φ is a PGLCP-induced USO.

Theorem 2.12 proves that the class of general grid USO is closed under this flip-
ping operation as well.
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2.2 USO Properties

In this subsection, we study general grid USO according to Definition 2.1 and develop
some basic theory. The material will also be used in later sections.

2.2.1 Outmap and h-Vector

Any USO can be specified by associating each vertex J with its outgoing edges.
Given J and j ∈ [N ] \J , we define J � j to be the unique vertex J ′ ⊆ J ∪{j} which
is different from J . If j ∈ �i , we have J ′ = (J \ �i) ∪ {j}. We call J ′ the neighbor
of J in direction j . Note that J is a neighbor of J ′ in some direction different from j .

Given an orientation ψ , the function sψ : V → 2[N ], defined via

sψ(J ) := {j ∈ [N ] \ J | J ψ→ J � j}, (11)

is called the outmap of ψ . Björklund et al. consider the outmap for acyclic grid USO
and call it VID-function (vector of improving directions) [2]. Szabó and Welzl [45]
deal with outmaps for cube USO; formally, these are different from ours, even when
we specialize to the cube case, because Szabó and Welzl identify the n-cube ver-
tices with the subsets of an n-element set, while we identify them with representative
n-subsets of a 2n-element set. Still, we can generalize the characterization of USO
outmaps by Szabó and Welzl, using one more ingredient.

Definition 2.6 Let s : V → 2[N ]. The vector h(s) = (h0(s), . . . , hN−n(s)), defined
via

hk(s) = #{J ∈ V | |s(J )| = k}
is called the h-vector of s. If s = sψ for some orientation ψ on G, we also refer to
h(s) as h(ψ).

The following result is well-known for the acyclic case [2, 26]. We prove it for
general grid USO. The proof is the same as for the acyclic case, though, and we
provide it for completeness.

Theorem 2.7 h(ψ) = h(ψ ′) for any two USO ψ,ψ ′ of G.

Proof The degree of a nonempty subgrid G(S) is the number |S| − n, or the degree
of any vertex in G(S). Let fi denote the number of subgrids of degree i, i = 0, . . . ,

N − n.
On the one hand, each subgrid has a unique sink w.r.t. ψ , so the number of sinks

in degree-i subgrids is fi . On the other hand, J is a sink in G(S) if and only if

J
ψ← J � j for all j ∈ S \ J . It follows that a vertex of indegree k appears as a sink

in exactly
(
k
i

)
degree-i subgrids.

Since the number of vertices of indegree k is hN−n−k(ψ), we obtain the equations

fi =
N−n∑

k=0

(
k

i

)
hN−n−k(ψ), i = 0, . . . ,N − n.
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We write this as f = U · h̄(ψ), where f = (f0, . . . , fN−n)
T , h̄(ψ) = (hN−n(ψ), . . . ,

h0(ψ))T , and U is a square upper-triangular matrix with ones on the diagonal. There-
fore, U is invertible, and we have that for any ψ

h̄(ψ) = U−1f := h(�),

a quantity not depending on ψ . �

As all USO on a grid have the same h-vector, we denote it by h(�), emphasizing
the fact that it depends on the parameters of the grid only. An immediate corollary of
this theorem is that the h-vector is symmetric, meaning that hk(�) = hN−n−k(�) for
all k ∈ {0, . . . ,N −n}. To see this, choose ψ as some PGLCP-induced USO; repeated
application of Theorem 2.5 guarantees that the orientation ψ ′ in which all arcs are
flipped is again PGLCP-induced, so that hk(ψ) = hN−n−k(ψ

′) holds. In particular,
w.r.t. any given USO, all nonempty subgrids of G also have unique sources.

Here is the characterization of functions s that are of the form sψ , for ψ being
USO.

Lemma 2.8 Let s : V → 2[N ] satisfy s(J ) ∩ J = ∅ for all J ∈ V . The function s is
the outmap of a USO of G if and only if

(i) (s(J ) ⊕ s(J ′)) ∩ (J ⊕ J ′) = ∅, for all J = J ′, and
(ii) h(s) = h(�).

Proof If s is the outmap of a USO, (ii) follows from Theorem 2.7. To see (i), consider
the cube G(J ∪J ′) spanned by J and J ′, and assume w.l.o.g. that J is not the sink of
that cube. Then there is j ∈ J ′ \J ⊆ J ⊕J ′ such that j ∈ s(J ), and because j /∈ s(J ′),
(i) follows.

For the other direction, assume that s is a function satisfying (i) and (ii). s defines
a set of arcs

D = {(J, J � j) | J ∈ V, j ∈ s(J )}.
We first show that D contains exactly one arc for each grid edge {J,J � j}, meaning
that D defines a proper orientation ψ . From (i) (applied with J ′ = J � j ), it follows
that each edge generates at least one arc. On the other hand, we have

|D| =
∑

k

khk(s)
(ii)=

∑

k

khk(�) = |E|,

because h(�) is defined via a proper orientation. It follows that each edge gets a
unique orientation.

It remains to prove that ψ is USO. (i) implies that no face has more than one
sink w.r.t. ψ : assuming there are sinks J = J ′ in some face G(S), it follows that
s(J ) ∩ S = s(J ′) ∩ S = ∅, which implies (s(J ) ⊕ s(J ′)) ∩ S = ∅. Together with
J,J ′ ⊆ S (which implies J ⊕ J ′ ⊆ S), we get a violation of (i).

Condition (ii) then guarantees that every face has exactly one sink. To see this,
note that every J which is counted for hk(s) is the sink in exactly

2N−n−k
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faces, spanned by J and some subset of its incoming edges. In other words, the ex-
pression

∑

k

2N−n−khk(s) =
∑

k

2N−n−khk(�)

counts the total number of vertex-face pairs (J,F ) such that J is a sink in F w.r.t. ψ .
By the previous equation, this number equals the total number of nonempty faces, be-
cause in any USO, all nonempty faces have unique sinks. This again means that in ψ ,
each nonempty face has on average one sink, which—together with the previously
derived fact that all faces have at most one sink—implies that ψ is USO. �

We remark that condition (ii) in the lemma is necessary; unlike in the cube case
[45], it is not implied by (i).

2.2.2 Projected USO

Let I ⊆ [n]. Two vertices J,J ′ ∈ V are called I -equivalent if and only if JI = J ′
I . In

other words, J and J ′ coincide after collapsing all dimensions i ∈ I , or after project-
ing to the dimensions indexed by I .

This relation is an equivalence relation, and we call the equivalence classes of it the
hypervertices generated by I . For example, the hypervertices generated by I = [n]
correspond to the original vertices, while I = ∅ induces one hypervertex containing
all the vertices. Figure 3 depicts a partition of a grid into 1-dimensional hypervertices.

Definition 2.9 For I ⊆ [n] and J ∈ V ,

J I := {J ′ ∈ V | JI = J ′
I }

is the hypervertex generated by I and J .

V I := {J I | J ∈ V }
denotes the set of all these hypervertices.

I defines for any subset S ⊆ ⋃
i∈I �i a projected grid GI (S) = (V I (S),EI (S))

on the hypervertices, via

V I (S) := {J I ∈ V I | JI ⊆ S},
EI (S) := {{J I , J ′I } ⊆ V I (S) | |JI ⊕ J ′

I | = 2}.
By definition of a hypervertex, this graph is well-defined and isomorphic to the

grid defined by the ordered partition �I (S) = (Si)i∈I . It is not hard to see that all
edges in EI (S) are of the form

{J I , (J � j)I }, j ∈
⋃

i∈I

Si \ J.
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To obtain GI (S), one starts with the face G(S ∪ ⋃
i∈[n]\I �i) of the original grid

and collapses all dimensions i ∈ [n] \ I . Vertices of the original grid that only dif-
fer w.r.t. collapsed dimensions are identified with each other, resulting in a single
hypervertex

J I = V

(
JI ∪

⋃

i∈[n]\I
�i

)
.

As before, if S = ⋃
i∈I �i , we may omit the parameter S from GI ,V I and EI .

We also abuse notation and identify a hypervertex with the face of the original grid
that it corresponds to. We are now prepared to introduce the important concept of a
projected orientation.

Definition 2.10 Let ψ be an orientation of the grid G, I ⊆ [n]. The projected orien-
tation ψI is defined on GI via

J I ψI

→ (J � j)I ⇔ K
ψ→ K � j,

where K is the sink (w.r.t. ψ ) of the face J I .

In Fig. 3, the hypervertex sinks K correspond to the vertices in white.

Lemma 2.11 If ψ is USO, then ψI is USO.

Proof Any nonempty face of GI corresponds to a projected grid GI (S), obtained
by collapsing dimensions in the face F = G(S ∪ ⋃

i∈[n]\I �i) of the grid G. The

hypervertex J I that contains the sink of F w.r.t. ψ is a sink in ψI . Conversely, any
sink w.r.t. ψI contains a vertex that is a sink in F w.r.t. ψ . This implies the USO
property. �

Theorem 2.12 Let ψ be a grid orientation, choose i ∈ [n], and let φ be the orienta-
tion resulting from ψ by flipping all arcs of the form

(J, J ′), J ⊕ J ′ ⊆ �i.

Then ψ is USO if and only if φ is USO.

Proof Let I = {i}. By construction, φI arises from ψI by flipping the orientations
of all edges of the 1-dimensional projected grid GI . Assuming that ψ is USO, ψI is
USO by the previous lemma, and from the existence of unique sources w.r.t. ψI (see
the discussion after Theorem 2.7), it follows that φI is USO as well.

It remains to show that φ is USO. The only candidates for a sink of G w.r.t. φ are
the unique sinks of the |�i | hypervertices into which G is partitioned. Note that the
orientations within these hypervertices are unaffected by the reorientation ψ → φ.
But since φI is USO, exactly one of these hypervertices has no outgoing edge along
dimension i w.r.t. φ, so its sink is the unique sink of G w.r.t. φ.

The same can be shown for any face of G, so the USO property of φ follows. �
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2.2.3 Refined Index

The outmap value sψ(J ) ⊆ [N ] of a vertex J w.r.t. some USO ψ is partitioned ac-
cording to the dimensions of the grid (the sets �i ). Accordingly, the outdegree of J

can be refined to an n-vector of dimensional outdegrees, as follows.

Definition 2.13 Let ψ be a grid USO. The function

rψ : V →
n∏

i=1

{0, . . . , |�i | − 1},

with

rψ(J ) = (|sψ(J ) ∩ �1|, . . . , |sψ(J ) ∩ �n|), J ∈ V

is called the refined index of ψ .

Unlike the outmap, the refined index is a mapping between two sets of the same
size, so it is natural to ask whether this mapping is a bijection. This is true in the cube
case (where the refined index is just a different way of writing the outmap) [45], and
it also holds for grid AUSO [2], where Björklund et al. use the term signature (SIG).
The proof of the latter result does not generalize to the case of general USO. We show
that the refined index is a bijection for general USO, using the concept of projected
orientations.

Theorem 2.14 Let ψ be a grid USO. The refined index rψ is a bijection.

Proof We proceed by induction on n. For n = 1, Theorem 2.7 implies hk(ψ) = 1 for
all k ∈ {0, . . . , |�1| − 1} (take any 1-dimensional USO to see this). In other words,
for any k in this range, there is exactly one vertex whose outmap has size k. The result
follows.

For n > 1, we set I = [n] \ {i}, for i arbitrarily chosen from [n] and consider the
(n − 1)-dimensional grid GI over the 1-dimensional hypervertices J I , J ∈ V . Now
fix some value k ∈ {0, . . . , |�i | − 1}. Since the hypervertices are of dimension 1, we
may w.l.o.g. choose the generating vertex J of any hypervertex J I to be the unique
vertex in J I such that |sψ(J ) ∩ �i | = k.

Claim The orientation φ of GI , defined via

J I φ→ (J � j)I ⇔ J
ψ→ J � j

is USO, see Fig. 6.
Note that for k = 0, the claim is Lemma 2.11 applied to the special case I =

[n] \ {i}. For k > 0, we prove that GI contains exactly one sink w.r.t. φ; the argument
for a face GI (S) is the same, after restricting to the partition �I(S).

First, let us assume that GI contains two distinct sinks J I , J ′I w.r.t. φ. This means
that both J and J ′ have no outgoing edges along the dimensions indexed by I =
[n] \ {i}, but k outgoing edges along dimension i, w.r.t. ψ .
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Fig. 6 A USO ψ on the left and its ‘projected’ USO φ generated by vertices (white) having refined index 1
w.r.t. their hypervertices (shaded)

If Ji = J ′
i , then J and J ′ are in the same ‘slice’ (facet) G(([N ] \ �i) ∪ Ji) of G

w.r.t. dimension i, meaning that this slice contains two distinct sinks J,J ′ w.r.t. ψ ,
which is impossible. If Ji = J ′

i , we consider the 1-dimensional grid G{i}, in which J

and J ′ are the sinks (w.r.t. ψ ) of their respective (n − 1)-dimensional hypervertices.
However, both hypervertices have outdegree k in the projected USO ψ {i}, contradict-
ing hk(ψ

{i}) = 1. The case in which GI has no sink w.r.t. φ leads to hk(ψ
{i}) = 0, a

contradiction as well.
Having established the claim, we can resume the main proof. It is sufficient to

show that no two distinct vertices J,J ′ ∈ V have the same refined index value. If
rψ(J )i = rψ(J ′)i , we are done. Otherwise, rψ(J )i = rψ(J ′)i = k ∈ {0, . . . ,�i − 1},
and the claim provides us with a USO φ on GI for which rφ(J I ) = rφ(J ′I ) holds
by induction (note that J I = J ′I : as a consequence of rψ(J )i = rψ(J ′)i , J and J ′
cannot be in the same 1-dimensional hypervertex). By definition of φ,

rφ(J I )i′ = rψ(J )i′ , rφ(J ′I )i′ = rψ(J ′)i′ , i′ = i,

and rψ(J ) = rψ(J ′) follows. �

With this result, vertex K in Definition 2.10 of the projected orientation is the
unique vertex in J I satisfying rψ(K)i = 0, i ∈ [n] \ I . The refined index bijection
more generally implies that this definition also yields a USO if in all J I , K is chosen
as the unique vertex with rψ(K)i = ki, i ∈ [n] \ I , where the ki ∈ {0, . . . , |�i | − 1}
are any fixed numbers. The orientation φ derived in the proof of Theorem 2.14 is an
instance of such a generalized projected USO.

3 Algorithms

In this section, we develop algorithms for finding the sink of a given grid USO, im-
plicitly specified by either an edge evaluation or a vertex evaluation oracle. The edge
evaluation oracle must be able to return the orientation of any given grid edge, while
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the vertex evaluation oracle returns the outmap value of any given vertex. Our com-
plexity measure will be the maximum (expected) number of oracle calls needed to
find the sink in the worst case. In concrete instances, both oracles can typically be
implemented to run in polynomial time. In the case of PGLCP, for example, an edge
evaluation must return the sign of a single coefficient of the reduced cost vector (3),
while a vertex evaluation computes all signs. Obviously, the necessary number of
edge evaluations cannot exceed the number of vertex evaluations by a factor of more
than N − n, but better bounds may be (and actually are) possible. We remark that for
the cube case, Szabó and Welzl [45] only count vertex evaluations.

Under both oracles, the additional computations performed by our (very simple)
algorithms do not generate asymptotic overhead, and this justifies our measure of
complexity. In particular, any USO algorithm which calls the oracle only a polyno-
mial number of times is actually a strongly polynomial algorithm for LP and PGLCP.
Moreover, the complexity of a single edge evaluation typically only depends on n but
not on N (in the PGLCP case, this complexity is O(n3) at most). Therefore, if n is
considered to be a constant, any bound on the number of edge evaluations determines
the complexity of the algorithm up to a constant factor. This explains why counting
edge evaluations is our primary concern.

3.1 The PRODUCT Algorithm

This algorithm generalizes the product algorithm of Szabó and Welzl from cubes [45]
to grids, with a slight twist: while in the n-cube, all dimensions are equivalent with
respect to their size (which is two), a general grid may consist of large blocks �i

(meaning that there are many elements in �i ) and small blocks (with few elements
in �i ). The analysis will reveal why our algorithm gives priority to the large blocks.
The basic idea is the following.

Choose i ∈ [n] such that |�i | > 1, and choose j ∈ �i . Then recursively compute
the sink K of the subgrid G([N ] \ {j}), where j ∈ �i . If the edge incident to K in
direction j is incoming, we have already found the global sink, otherwise we need
to search the lower-dimensional slice G(([N ] \ �i) ∪ {j}) recursively. A generic call
to PRODUCT finds the sink of a nonempty face G(S). The correctness proof of the
algorithm is a straightforward induction, using the USO properties. By the end of this
subsection, it will also become clear why the algorithm is called PRODUCT. Recall
that Si = S ∩ �i .

Algorithm 3.1
PRODUCT(S):

(* Input: USO ψ on G(S), given by edge evaluation oracle *)
(* Output: unique sink of G(S) w.r.t. ψ *)
(* Invariant: S contains a vertex of G *)
IF is_vertex(S) THEN

RETURN S

ELSE
choose i ∈ [n] such that |Si | ≥ |Sk| for all k = i

choose j ∈ Si uniformly at random
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K := PRODUCT(S \ {j})
K ′ := K � j

IF K ′ ψ→ K THEN
RETURN K

ELSE
RETURN PRODUCT((S \ Si) ∪ {j})

END
END

To prepare the analysis of the algorithm, we need one more

Definition 3.2 Let S ⊆ [N ] be a set containing a vertex and let z = maxn
i=1 |Si | be

the size of a largest block. The (z − 1)-vector (a2, . . . , az), defined through

at = |{i ∈ [n] | |Si | = t}|
is called the characteristic of S. If z = 1 (meaning that S is a vertex itself), the char-
acteristic is the empty vector ( ).

For example, the n-cube has characteristic (n), and the grid in our first Fig. 1 has
characteristic (2,1). It can easily be shown by induction that the expected number of
edge evaluations in PRODUCT(S) only depends on the characteristic of S but (maybe
surprisingly) not on the input USO ψ . We can even compute the exact expectation.

Theorem 3.3 For z ≥ 1, let Te(a2, . . . , az) denote the expected number of edge eval-
uations in a call to PRODUCT(S), where S has characteristic (a2, . . . , az). Then

Te(a2, . . . , az) = Te(a2, . . . , az−1 + 1, az − 1) + 1

+ 1

z
Te(a2, . . . , az−1, az − 1), z > 1, (12)

with

Te(a2, . . . , az−1,0) := Te(a2, . . . , az−1) and Te() = 0.

The solution to this recurrence is

Te(a2, . . . , az) =
z∏

k=2

H
ak

k +
z∑

k=2

z∏

�=k

(H� − Hk−1 + 1)a� − z. (13)

Here, Hk = ∑k
t=1 1/t is the kth Harmonic number.

Proof It is clear that (a2, . . . , az−1 + 1, az − 1) and (a2, . . . , az−1, az − 1) are the
characteristics of the grids handled in the recursive calls. Moreover, the second recur-
sive call is executed if and only if the global sink contains the chosen element j . This
happens with probability 1/z. The recurrence follows. The closed form (13) can be
checked by induction. �
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As an example, consider Te(a2) (the cube case). The theorem yields

Te(a2) = 2

(
3

2

)a2

− 2,

which is still exponential but much smaller than the total number a22a2−1 of cube
edges.

For fixed z, (13) is maximized if az = n. This corresponds to the characteristic
(0, . . . ,0, n) of the (z × · · · × z)-grid. It follows that

Te(a2, . . . , az) ≤ Hn
z +

z∑

k=2

(Hz − Hk−1 + 1)n − z. (14)

The middle term

f (n, z) :=
z∑

k=2

(Hz − Hk−1 + 1)n (15)

asymptotically dominates the bound in (14), and an estimate of f (n, z) ≤
(z − 1)Hn

z ≈ z lnn z immediately follows. The next result shows that the bound is
actually linear in z.

Lemma 3.4

Te(a2, . . . , az) ≤ (�en!� − 1)z + Hn
z .

Proof Using the estimate
u∑

t=�

g(t) ≤
∫ u

�−1
g(x)dx (16)

for any decreasing function g such that the integral exists, we can bound (15) as
follows (the first inequality applies (16) with

∑z
t=k 1/t).

f (n, z) =
z∑

k=2

(Hz − Hk−1 + 1)n ≤
z∑

k=2

(ln z − ln(k − 1) + 1)n

=
z−1∑

k=1

(
1 − ln

k

z

)n

<

z∑

k=1

(
1 − ln

k

z

)n

(16)≤
∫ z

0

(
1 − ln

k

z

)n

dk = z

∫ 1

0
(1 − lnx)ndx := zIn.

Integration by parts yields the recurrence relation

In = 1 + nIn−1,

with I0 = 1. This solves to In = �en!� for n > 0 [42]. The statement follows. �
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This means that algorithm PRODUCT solves any PGLCP instance with a fixed
number n of blocks in expected time O(z) = O(N) which is asymptotically optimal.

Algorithm 3.1 can easily be rewritten to work under a vertex evaluation oracle. For
this, we simply need to call the oracle for the set S immediately before we RETURN S.
This has the effect that all face sinks computed by recursive calls of the algorithm get

evaluated before they are returned, meaning that all tests ‘K ′ ψ→ K’ come for free.
The resulting expected number Tv(a2, . . . , az) of vertex evaluations satisfies the

recurrence

Tv(a2, . . . , az) = Tv(a2, . . . , az−1 + 1, az − 1) + 1

z
Tv(a2, . . . , az−1, az − 1), (17)

with

Tv(a2, . . . , az−1,0) := Tv(a2, . . . , az−1) and Tv() = 1.

Its solution is

Tv(a2, . . . , az) =
z∏

k=2

H
ak

k . (18)

For the cube with characteristic (a2), we get

Tv(a2) = H
a2
2 =

(
3

2

)a2

.

Tv(a2, . . . , az) is maximized if az = n, from which we obtain the upper bound

Tv(a2, . . . , az) ≤ Hn
z .

For fixed n, the expected number of vertex evaluations required to find the sink is
therefore only polylogarithmic in z, equivalently in N . In order to turn this bound into
an actual runtime bound, an O(N) factor has to be included, though, which makes
the algorithm superlinear. The reason is that under the vertex evaluation oracle, all
edges incident to a vertex are evaluated, regardless of whether their orientations are
needed later or not. Our previous analysis in terms of edge evaluations avoids this.

Algorithm 3.1 is a close relative of algorithms due to Seidel (for linear program-
ming with n variables and N constraints) [41] and Welzl (for finding the smallest
enclosing ball of a set of N points in dimension n) [47]. If N ≤ n + 1, the smallest
enclosing ball problem is known to induce a cube USO [19, 45], but for larger N ,
the problem has in general no apparent grid structure. The complexity bounds for
Welzl’s algorithm are very similar to ours and hold as upper bounds. In our scenario,
the additional grid structure makes it possible to determine the complexity exactly.

Instead of choosing a largest block Si in the vertex evaluation version of the algo-
rithm, other rules could be applied. For example, we might choose a smallest block,
or even a random one. It turns out that the expected number of vertex evaluations
does not depend on the particular rule and always equals the expression in (18). In
order to explain this, let us adopt a somewhat different view of the algorithm under
the vertex evaluation oracle.
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Let i be the largest (or any other) block and set I = {i}. We can consider the grid
G as being the product of the projected grids GI and G[n]\I . Algorithm PRODUCT

can then be considered as an algorithm that evaluates the sink of the one-dimensional
projected USO ψI of GI . For this, it chooses a random hypervertex J I in GI (more
precisely, the one where Ji = j ) and recursively evaluates the sink KI among the
remaining |�i | − 1 hypervertices.3 If KI is not the sink w.r.t. ψI yet, one more eval-
uation of the true sink (K � j)I = J I is necessary. For each vertex evaluation w.r.t.
ψI , the algorithm evaluates the sink of a hypervertex J I (which has the structure of
G[n]\I ) w.r.t. the original USO ψ . The total (expected) number of vertex evaluations
is therefore the product of the respective numbers for the grids GI and G[n]\I . For
GI (a one-dimensional grid), this number is easily seen to be H|�i |, from which (18)
follows by induction.

Interestingly, the expected number of edge evaluations does depend on the choice
of i, and a bad choice can lead to a complexity which is asymptotically worse than
what we found in Theorem 3.3. For instance, always choosing i corresponding to the
smallest block yields an expected number of

Te(a2, . . . , az) =
z−1∑

k=1

k

(
k∏

�=2

H
a�

�

)
ak+1−1∑

m=0

Hm
k+1

edge evaluations, which is again largest for az = n. In this case we get

(z − 1)

az−1∑

m=0

Hm
z = z − 1

Hz − 1
(Hn

z − 1),

which is superlinear in z and asymptotically not better than the obvious upper bound
obtained from multiplying (18) by N − n. We believe (although we cannot prove it
formally) that our choice of i in Algorithm 3.1 leads to the smallest possible expected
number of edge evaluations.

3.2 The Algorithm RANDOMFACET

It is certainly pleasing from a mathematical point of view that the complexity of the
PRODUCT algorithm does not depend on the USO ψ and can be evaluated exactly
(Theorem 3.3). On the other hand, this means that the algorithm fails to deal with
easy orientations ψ in the appropriate way. Consider for example the uniform USO
ψ , given by

J
ψ→ (J ∪ {j}) \ {j ′} ⇔ j < j ′.

The sink is the vertex J which collects from each block �i the smallest element.
Moreover, any directed path in ψ has length at most N − n. It follows that any path-
following algorithm will find the sink quickly, while the algorithm PRODUCT will be

3In this recursive call, the algorithm might proceed according to some dimension different from i, but
inductively, we can argue that this does not influence the expected number of vertex evaluations, so we
might as well stick to dimension i.
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comparatively slow. In this subsection, we present a path-following algorithm whose
expected worst-case complexity is not much larger than that of algorithm PRODUCT

(but it has the potential of being much faster in practice). Its runtime is again O(N)

for fixed n.
The RANDOMFACET algorithm shares its basic idea with the PRODUCT algorithm.

However, in addition to the current set S, it maintains a current vertex J ∈ V (S)

which may be replaced at some point by a neighbor of J along an outgoing edge.
In order to guarantee the invariant J ∈ V (S), the element j which gets removed

from S for the first recursive call must not be in J . This restricts j to the set Si \ Ji ,
where the PRODUCT algorithm was free to choose j ∈ Si . As before, the correctness
of the algorithm is easily established through the USO axioms.

Algorithm 3.5
RANDOMFACET(J,S):

(* Input: USO ψ on G(S), given by edge evaluation oracle *)
(* Output: unique sink of G(S) w.r.t. ψ *)
(* Invariant: V � J ⊆ S *)
IF S = J THEN

RETURN J

ELSE
choose i ∈ [n] such that |Si | ≥ |Sk| for all k = i

choose j ∈ Si \ Ji uniformly at random
K := RANDOMFACET(J,S \ {j})
K ′ := K � j

IF K ′ ψ→ K THEN
RETURN K

ELSE
RETURN RANDOMFACET(K ′, (S \ Si) ∪ {j})

END
END

The following recurrence relation is derived as in the case of the PRODUCT algo-
rithm, where the probability of the second recursive call is now at most 1/(z − 1).
The closed formula for the upper bound can again be proved inductively.

Theorem 3.6 For z ≥ 1, let T ′
e (a2, . . . , az) denote the expected number of edge eval-

uations in a call to RANDOMFACET(S), where S has characteristic (a2, . . . , az).
Then

T ′
e (a2, . . . , az) ≤ T ′

e (a2, . . . , az−1 + 1, az − 1) + 1

+ 1

z − 1
T ′

e (a2, . . . , az−1, az − 1), z > 1, (19)

with

T ′
e (a2, . . . , az−1,0) := T ′

e (a2, . . . , az−1) and T ′
e () = 0.



Algorithmica (2008) 51: 200–235 223

An upper bound is

T ′
e (a2, . . . , az) ≤

z−1∑

k=1

z−1∏

�=k

(H� − Hk−1 + 1)a�+1 − z + 1. (20)

As an example, let us consider the cube case again. The theorem yields

T ′
e (a2) ≤ 2a2 − 1, (21)

which is not better than the trivial upper bound that holds for any path-following
algorithm. The reason is that j is ‘randomly chosen’ from a set of size one, so there
is no randomness left. In fact, if we break ties in the choice of i by choosing i, for
example, as the largest index for which |Si | = 2, the bound in (21) is tight. A worst-
case input is the Klee-Minty cube, an n-cube AUSO with a directed Hamiltonian path
through all vertices. This AUSO is actually generated by an LP and was the first
example to show that the simplex method with Dantzig’s pivot rule may require an
exponential number of pivot steps [32].

If we break ties randomly, the situation changes. For all cube AUSO, a subexpo-
nential upper bound of

e2
√

a2 − 1

on the expected number of edge evaluations can then be shown [17]. It is open
whether this bound (or any bound of the form 2o(a2)) holds for general cube USO.

As in the case of the PRODUCT algorithm, the complexity is maximized if az = n,
and an upper bound of

z−1∑

k=1

(Hz−1 −Hk−1 + 1)n − z+ 1 = (Hz−1 + 1)n +
z∑

k=2

(Hz−1 −Hk−1 + 1)n − z (22)

on T ′
e (a2, . . . , az) holds. Comparing this with the expected number of edge evalua-

tions (14) of PRODUCT, we see that for large z, both algorithms have approximately
the same expected worst-case complexity which we have shown to be linear in z.
However, only RANDOMFACET has the potential of being faster than the upper bound
in practice.

The algorithm RANDOMFACET is a close relative of an algorithm by Matoušek,
Sharir and Welzl for LP-type problems [36]. This combinatorial framework covers
grid AUSO but also general LP and other (acyclic) problems which have no grid
structure. While the PRODUCT algorithm is insensitive to directed cycles, RANDOM-
FACET (more precisely, its present analysis) suffers to some extent: the exponential
behavior in n (see Lemma 3.4 which also applies to RANDOMFACET with minor
modifications) is much worse than the subexponential bounds one gets for LP-type
problems [36]. In other words, not only for the cube (z = 2) but for any grid with
small z, cycles make a huge difference. On the other hand, if z (and N ) are large
compared to n, our analysis of RANDOMFACET shows that cycles are much less
problematic.
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Fig. 7 The forbidden non-HK
subgrids

All complexity bounds we have developed in this section are of the form f (n)N ,
where f (n) is exponential in n. We note that one can reduce these complexities to
O(Nn) + f (n), extending techniques by Clarkson [7] to deal with cyclic orienta-
tions [23].

4 The Holt-Klee Condition

A grid USO is said to be Holt-Klee (HK) if there is a set of N − n vertex-disjoint
paths from source to sink, and if in addition, every nonempty subgrid is HK. In this
section, we prove a number of HK-related results for general USO as well as for
specific USO coming from PGLCP.

4.1 Three-dimensional Grids

It is easy to prove [15, 46] that a 2-dimensional grid-USO is HK if and only if the
double twist of Fig. 7A does not occur as a subgrid. We derive a similar statement for
n = 3.

Theorem 4.1 For n = 3, a grid USO ψ is HK if and only if no subgrid orientation is
isomorphic to any of the three forbidden subgrids depicted in Fig. 7.

Proof Assume the grid has dimensions d1 × d2 × d3. It is clear that no forbidden
subgrid can occur if the orientation is HK, since the forbidden subgrids in Fig. 7 are
themselves not HK. For the other direction, it suffices to show that N − n paths can
be found in the full grid G; the same arguments then apply to the subgrids.

We distinguish three cases, depending on the positions of the global source J̄ and
the global sink J relative to each other.

Case 1 Source and sink span a 1-dimensional face. One can easily check that in this
case, any grid USO has N − n paths from source to sink. The proof only requires the
2 × 2 subgrids to be properly oriented.

Case 2 Source and sink span a 2-dimensional face. Without loss of generality, we can
assume that source and sink agree in their third coordinate, see Fig. 8. The edge la-
beled 1 in Fig. 8 (left) must be oriented as indicated, otherwise the forbidden subgrid
(A) occurs. In total, there are (d1 − 1) + (d2 − 1) vertex-disjoint ways of drawing the
figure, one for each neighbor of J̄ in the face spanned by J̄ and J . The remaining
d3 − 1 paths are obtained by going through the third dimension, see Fig. 8 (right)



Algorithmica (2008) 51: 200–235 225

Fig. 8 Some of the N − 3 paths
where sink and source span a
2-dimensional face

Fig. 9 Possible paths from J̄ to
J and the layer spanned by J

and J ′ , dividing the grid into
two subgrids

where two of them are shown. Because the 3-cube spanned by J̄ , J , J, J ′, must be
HK due to the absence of the forbidden cube (B) in Fig. 7, there is always a path
from J̄ to J in the upper facet of that cube (indicated by the dotted arrow). Here (and
below) we use the fact that the two cubes of Fig. 7 are the only 3-cube USO that are
not HK.

Case 3 Source and sink span a 3-dimensional face. For i = 1,2,3, J̄ has di −2 neigh-
bors in dimension i which do not share a coordinate with J . For any such neighbor
J , we prove that there is a path from J̄ to J through J , with the property that all
intermediate vertices on the path share the i-th coordinate with J , see Fig. 9. This
gives N − 6 vertex-disjoint paths, and as the forbidden subgrid (C) is not allowed to
occur, we get three more paths in the cube spanned by J̄ and J .

Let us consider the layer spanned by the vertices J and J ′ in Fig. 9. If there is no
path from J to J ′ in that layer, we may assume w.l.o.g. that the edges of the layer are
oriented as in Fig. 10, case (i) or (ii). We will derive a contradiction in both cases.

The contradiction in case (i) is obtained as follows: edges 1 and 2 must be as
given in order to avoid 2-cube orientations that are not USO (‘bad’ 2-cubes). Edge 3
prevents the right 3-cube from having two sinks and edge 4 circumvents the forbidden
subgrid (A). Edges 5 and 6 again avoid bad 2-cubes and finally edge 7, avoiding a
cyclic row, yields the forbidden subgrid (A).

The contradiction in case (ii) requires slightly more work: edges 1 and 2 avoid
bad 2-cubes. Assume as in case (iii) of Fig. 10 that edge 3 is oriented upwards. Then
edges a and b must have the same orientation. We must orient them to the left, as
otherwise we get the forbidden subgrid (A). Choosing c and d such that bad 2-cubes
are avoided results in the right 3-cube being the forbidden subgrid (B). So edge 3
must be oriented downwards.

Assume as in case (iv) that edge 4 is oriented upwards. Again, edges a and b must
have the same orientation. In order to avoid (A), they are oriented to the left. Edge
c prevents the left 3-cube from having two sources and d avoids a bad 2-cube. This
forces the left 3-cube to be (B), which means that edge 4 must be oriented downwards.
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Fig. 10 Contradictions if there is no path from J̄ to J through the layer of J,J ′

Knowing the orientations of the edges 3 and 4 lets us fix edges 5–8 in case (v)
(avoiding bad 2-cubes), resulting in the forbidden subgrid (C) for the 3-cube spanned
by J̄ and J . �

4.2 Higher-dimensional Grids

While we have shown in the previous subsection that a 3-dimensional grid is HK if
we exclude the double twist as well as the non-HK cubes, this does not hold anymore
in dimension 4.

The smallest counterexample is the orientation of the (3×2×2×2)-grid depicted
in Fig. 11 (the big arrow indicates the common orientation of all edges between the
left and right 3×2×2 faces). The orientation itself is not HK (try to build two vertex-
disjoint paths from source to sink, starting with edges 1 and 2), but all its faces are.
In other words, this orientation is a minimal, non-cubical obstruction for the Holt-
Klee condition in dimension n = 4. The example can be extended to yield a minimal
non-cubical obstruction in any dimension n ≥ 4.

An open question is whether there is a finite family of forbidden subgrids for given
n whose absence makes any n-dimensional grid-USO HK.

4.3 PGLCP-induced Orientations

We show in this section that the grid USO coming from PGLCP have the Holt-Klee
property. We actually prove this for a larger class of digraphs, those defined by com-
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Fig. 11 The
(3 × 2 × 2 × 2)-grid not being
HK

plete pointed fans. We will first show how the PGLCP case fits into this larger class,
yielding interesting examples of non-polyhedral fans.

Following Sect. 2.1, we are given an n×N matrix A, an N -vector c and a partition
� of [N ] into n nonempty subsets. We seek a y ∈ R

n so that

cT ≥ yT A (23)

and

for every i ∈ [n], there is some j ∈ �i with cj = (yT A)j . (24)

The matrix A is assumed to have property P (in particular, it has full rank n). This
implies that there is a unique vector y ∈ R

n satisfying conditions (23) and (24), see
Theorem 2.4.

Let Â be an (N − n) × N matrix for which the row space is the orthogonal com-
plement in R

N of the row space of A. A set of columns of Â indexed by a set K

will be called complementary if |�i\K| ≥ 1 for all i ∈ [n]. A cone generated by a
complementary set of columns of Â will be called a complementary cone.

Note that the index set of a largest complementary set of (N − n) columns is
always the complement in [N ] of a �-vertex. From property P and the construction
of Â it is not hard to deduce that such a complementary set of columns of Â is linearly
independent, so the complementary cones are all simplicial.

Here is the relation between this new setup and our original PGLCP setup
(Sect. 2.1).

Claim Fix A and c. The following statements hold for all y ∈ R
n.

(i) y satisfies condition (23) if and only if q := Âc is contained in the cone generated
by the columns of Â that correspond to the nonzero components of c − AT y.

(ii) y satisfies condition (24) if and only if q := Âc is a linear combination of the
complementary set of columns of Â that correspond to the nonzero components
of c − AT y.
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Putting (i) and (ii) together shows that the PGLCP with A and c can equivalently
be expressed dually as the problem of finding x ∈ R

N such that Âx = q, x ≥ 0, and
with the complementarity property that for every i ∈ [n], there is a j ∈ �i with
xj = 0. We remark that this generalizes our reduction to PGLCP in the version of
Cottle & Dantzig [9] from Sect. 2.1.

To prove the claim, we first fix y. We note that Â(c − AT y) = Âc = q , by the
choice of Â. If (23) holds, q is in the cone generated by the columns of Â that corre-
spond to the nonzero components of c − AT y, and if (24) holds, q is a linear combi-
nation of complementary columns.

For the other direction, let x satisfy Âx = q . We get Â(x − c) = q − q = 0, so
(x − c)T is in the row space of A and can be expressed as −yT A for some y. This
gives xT = cT − yT A. If x ≥ 0, then (23) holds, and if the nonzero components of x

correspond to a complementary set of columns of Â, we get (24).

The existence of the PGLCP solution for all c implies that the complementary
cones cover R

N−n, and the uniqueness implies that the intersection of two comple-
mentary cones is a complementary cone. The complementary cones therefore form a
complete pointed simplicial fan. In proving our result for fans, we will replace, for
the time being, the dimension N − n by d . We follow the notation of Ziegler [49].

Definition 4.2 A fan in R
d is a family

F = {C1,C2, . . . ,Ct }
of nonempty polyhedral cones, so that

(i) Every nonempty face of a cone in F is also a cone in F .
(ii) The intersection of any two cones in F is a face of both.

A fan F is complete if the union of its cones is R
d . It is pointed if the zero vector is

one of its cones. From now on, we will use the term fan to denote a complete pointed
fan. A d × N matrix Â is said to realize a fan F if the columns of Â are a set of
generators for the 1-dimensional faces of F .

The dual graph GF of a fan has as its vertex set the set of d-dimensional cones
of F , with two cones joined by an edge if their intersection is a (d − 1)-dimensional
face of F .

For our PGLCP application, note that two (N − n)-dimensional complementary
cones meet in an (N − n − 1)-dimensional complementary cone if and only if the
complements of their index sets are adjacent in the graph G defined in Sect. 2. There-
fore this dual graph is a grid graph.

A vector q ∈ R
d is said to be in general position with respect to F if it is not

contained in any hyperplane that contains a (d − 1)-dimensional cone of F . If a
vector q is in general position with respect to a fan F , we can define an orientation
�q,F of the dual graph, in which an edge joining cones C and C′ is oriented from C

to C′ if C\C′ and q are on opposite sides of the hyperplane containing C ∩ C′. The
digraph �q,F has a unique sink and source, which are the faces of F that contain q

and −q .
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We now show that this orientation coincides with the one defined in Sect. 2.1, if
we start with the fan F consisting of all complementary cones determined by the
matrix Â.

A generic vector c from our PGLCP application yields a vector q ∈ R
d in general

position by the formula q = Âc. To determine the orientation of the edge joining
cones C and C′, we express q as a linear combination of the complementary columns
that generate C. If this set of columns is indexed by K , we get q = Âx = ÂKxK .
This yields a unique vector x, since ÂK is an invertible square matrix. Let xk be the
component of x corresponding to the unique element of K that is not in K ′, the index
set of the complementary columns that generate C′. It is now easy to see that the edge
is oriented from C to C′ if and only if xk < 0.

On the other hand, according to part (ii) of the above Claim, we can write
xT = cT − yT A, where y satisfies the complementarity condition (24). It follows
that the grid orientation defined here is the same as that defined in Sect. 2.1 through
the reduced costs in (4).

A set of directed paths from the source to the sink of a grid USO will be called
vertex-disjoint if no two of the paths share any vertices other than the source or sink.

Theorem 4.3 There is a set of d vertex disjoint directed paths in �q,F from the
source to the sink.

The previous discussion immediately implies

Corollary 4.4 Any PGLCP-induced grid USO ψ satisfies the Holt-Klee condition.

The special case of the theorem in which F is the normal fan of a polytope was
proved by Holt and Klee [27]. Our proof uses Menger’s theorem, which was em-
ployed by Holt and Klee, but does not use the geometry of a polytope. Our proof
may be seen as an alternate way to prove the Holt-Klee theorem. The graph �q,F has
been used by Kleinschmidt and Onn to prove that fans are signable [33]. Restricted
to PGLCP-induced fans, their result simply says that the undirected grid graph �F

underlying �q,F has a unique sink orientation, namely �q,F . Theorem 4.3 strength-
ens the result of Kleinschmidt and Onn by showing that the signings they produce
have an interesting additional property.

In our PGLCP application, the complementary cones form the normal fan of a
polytope when there is a vector b so that the LP: min cT x subject to Ax = b, x ≥ 0
is �-compatible. In this case, the associated digraph �q,F is acyclic. The following
example, taken from Stickney and Watson [43], shows that the orientations associated
with PGLCP properly generalize those from �-compatible linear programs, because
its digraph �q,F contains a cycle.

Example 4.5 Let

Â =
⎡

⎣
1 0 0 −1 0 −2
0 1 0 −2 −1 0
0 0 1 0 −2 −1

⎤

⎦ .
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Set n = 3, choose �i = {i, i + 3} for i ∈ [n], and let F be the collection of comple-
mentary cones of Â. Then F is a fan in which the cones fit together like the faces
of an octahedron. Let q = (1,1,1)T . The digraph �q,F is isomorphic to the one in
Fig. 2.

For more exotic examples of fans, see Chap. III of Ewald’s book [14]. We now
return to the proof of the theorem. In the following, we assume that F is a complete
pointed fan in R

d generated by the columns of a matrix Â, and that q is in general
position with respect to F . The following is the key lemma.

Lemma 4.6 Let K = {K1,K2, . . . ,Kd−1} be d-dimensional cones of F , and suppose
that none of these cones contains q or −q . Then there exists a vector w orthogonal to
q so that the line segments from q to w and from −q to w both have empty intersection
with each of the cones of K.

Proof We assume without loss of generality that q is the d th unit vector (0, . . . ,0,1).
Let K ∈ K and let ÂK be the submatrix of Â containing the generators of K . Now let
AK be the matrix obtained from ÂK by deleting the last row. The columns of AK are
the projections of the columns of ÂK onto the hyperplane Hq orthogonal to q , and
the cone generated by these columns is the projection of the cone K .

Because neither q nor −q is in K , the systems ÂKx = q, x ≥ 0 and ÂKx =
−q, x ≥ 0 have no solution. The pointedness of the fan implies that the system
ÂKx = 0, x ≥ 0 has no nontrivial solution. It follows that the system AKx = 0, x ≥
0, x = 0 has no solution. By Gordan’s Theorem [24] there exists a vector zK so that
zT
KAK > 0. For such a zK , any sufficiently small perturbation of it will also satisfy

the inequality. Therefore we can find a linearly independent set {zK1 , zK2 , . . . , zKd−1}
so that zT

Ki
AKi

> 0, i = 1, . . . , d − 1. This implies zT
Ki

w > 0 for all nonzero vectors

w in the cone generated by AKi
.

Now let Z be a (d − 1) × (d − 1) matrix that has as its rows the vectors zT
Ki

, i =
1, . . . , d − 1. Stiemke’s Theorem [44] says that the system Zw ≤ 0,Zw = 0 has a
solution if and only if the system yT Z = 0, y > 0 has no solution. But the matrix
Z is nonsingular, so the second system has no solution. Therefore there must be a
vector w ∈ Hq such that zT

Ki
w ≤ 0 for all i = 1, . . . , d − 1. This vector w is nonzero

(because Zw is nonzero) and thus not contained in any of the cones AK for K ∈ K.
The vector w constructed in this way satisfies the requirements of the lemma,

because any intersection of a cone of K with the line segment from q to w or the
line segment from −q to w would project to the cone generated by w and the cone
generated by AK , contradicting the choice of w. In the proof of Theorem 4.3 we will
also need that the set of w satisfying the requirements of the lemma is open: since the
cones AK are closed, the intersection of their complements in Hq is an open set. �

Now we are ready to prove the main theorem.

Proof of Theorem 4.3 The directed vertex version of Menger’s theorem states that
there will be d disjoint directed paths from the source of �q,F to the sink if and only
if there do not exist d − 1 vertices of the graph other than the source and the sink that
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cover all directed paths from the source to the sink. A set of d − 1 vertices of �q,F
other than the source and the sink corresponds to a set K = {K1,K2, . . . ,Kd−1} as
in the lemma. Because the set of vectors w satisfying the conditions of the lemma is
open, we can choose a w for which the line segments from w to q and from w to −q

do not meet any cones of F of dimension less than d − 1. We claim that the sequence
of d-dimensional cones met by the directed line segment from −q to w, followed
by the sequence of d-dimensional cones met by the directed line segment from w

to q , corresponds to a directed path from the source to the sink of �q,F . Suppose
Ci and Cj are two d-dimensional cones of F , and that the directed line segment
from −q to w crosses, in order, (Ci,Ci ∩ Cj ,Cj ). Then Ci\(Ci ∩ Cj ) and q are on
opposite sides of the hyperplane spanned by Ci ∩Cj , so the edge of �q,F connecting
Ci and Cj is oriented from Ci to Cj . Similarly, the edges connecting cones met by
the directed line segment from w to q are oriented consistently with the direction of
the line segment. �

4.4 Projected USO and Edge Flipping

In this part, we present two examples showing that in general, the Holt-Klee property
is lost under the operations of taking projected USO (Definition 2.9 and Lemma 2.11)
and flipping edges (Theorem 2.12). For the projected USO, consider the LP

max z = 101
100x1 + 99

100x3 + x5 + 1
2x6

subject to x1 + x2 = 1,

2x1 + x3 + x4 = 3,

2x1 + 2x3 + x5 + x6 + x7 = 9,

x1, . . . , x7 ≥ 0.

Let n = 3,N = 7 and �1 = {1,2}, �2 = {3,4}, �3 = {5,6,7}. Then the LP is seen
to be �-compatible and yields the unique sink orientation of Fig. 3 which can be
verified to satisfy the HK condition.

We have already seen that the choice of the hypervertices as in the figure gener-
ates a projected orientation isomorphic to the double twist of Fig. 7A, which is not
HK. Consequently, Corollary 4.4 tells us that projected USO coming from PGLCP-
induced USO are not necessarily PGLCP-induced.

For the edge flipping operation, consider the 4-cube orientation of Fig. 12. Flip-
ping all edges between the two 3-cubes in the figure leads to a USO that is not HK.
Therefore, Corollary 4.4 together with Theorem 2.5 let us conclude that the HK-
orientation of Fig. 12 is not PGLCP-induced. We therefore have a new and purely
combinatorial necessary condition for PGLCP-induced orientations: all 2n reorienta-
tions arising from edge flips according to Theorem 2.5 must be HK. This condition
is not sufficient: there is an earlier example of a 4-cube USO which is HK but not
PGLCP-induced, although all its reorientations are HK as well [38].
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Fig. 12 An AUSO of the 4-cube satisfying the Holt-Klee condition. The arcs between the two depicted
3-cube facets go from the dark to the light vertices. Flipping the latter arcs leads to a USO not satisfying
HK

5 Two-dimensional Grids

In this section we prove that no directed cycles can occur in a grid USO of dimension
n = 2. Previously, this was only known to hold for USO of 2-dimensional grids that
satisfy the Holt-Klee condition [15, 46].

Assuming that cycles are possible, let C be a shortest one. C will contain at most
two vertices from each grid row and column, otherwise, a shortcut is possible. This
implies that C alternates between vertical and horizontal edges, and that it has even
length. This length must be at least 6, because we would get a cyclic 2-cube orienta-
tion otherwise, in direct contradiction to the USO property. After shuffling rows and
columns, we may therefore assume that C has the form of a staircase, see Fig. 13.
In the following, we restrict the grid to the rows and columns (at least three each)
touched by C.

From the earlier refined index result (Theorem 2.14), we can deduce the existence
of a vertex J with all horizontal incident edges incoming, and all vertical incident
edges outgoing. J must be a vertex of C, otherwise we would immediately find a
shorter cycle by connecting C to its two closest staircase vertices in vertical and hori-
zontal direction. By swapping rows and columns again, we may assume that J is the
vertex formed by the second row and the third column of the grid, and subsequently
we focus on the 3 × 3-subgrid with ‘center’ J , see Fig. 13.

By definition of J , we already know the orientations of two off-staircase edges,
see Fig. 14 (left). We now claim that this partial orientation cannot be completed to
a USO, yielding the desired contradiction. For this, we show that the USO properties
together with the assumption that C is a shortest cycle determine a partial orientation
that cannot be completed to a USO. Figure 14 (right) depicts the order in which we
‘fix’ the orientations.

In order to avoid bad 2-cubes, the edges labeled 1 and 2 must be oriented as in the
figure. The orientations of edges 3 and 4 prevent shortcuts of the cycle that bypass J .
Then, having edge 5 the other way around would (prematurely) fix edge 7 through a
suitable 2-cube, resulting in a shortcut of C along the boundary of the grid. Edge 6
keeps the first column cycle-free. The orientation of edge 7 then avoids a bad 2-cube
again, and in order for the last row to remain acyclic, edge 8 must be as in the figure.
The contradiction occurs in form of two sinks K and K ′ in the 2-cube spanned by
them.
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Fig. 13 The shortest cycle in a
2-dimensional grid and the
subgrid defined by the special
vertex J

Fig. 14 Contradiction in the
subgrid

We have proved the following

Theorem 5.1 Any unique sink orientation of a 2-dimensional grid is acyclic.

Acknowledgements We thank Falk Tschirschnitz for many helpful discussions and David Loeffler for
suggesting the simple proof of Lemma 3.4.
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