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Abstract In this paper we introduce a new technique for approximation schemes for
geometrical optimization problems. As an example problem, we consider the follow-
ing variant of the geometric Steiner tree problem. Every point u which is not included
in the tree costs a penalty of π(u) units. Furthermore, every Steiner point that we use
costs cS units. The goal is to minimize the total length of the tree plus the penalties.
Our technique yields a polynomial time approximation scheme for the problem, if the
points lie in the plane.

Keywords Computational geometry · Steiner tree problem · Approximation
schemes

1 Introduction

1.1 Approximation Schemes for Geometric Problems

Let P denote a set of points in R
d and let dq(u, v) denote the distance between u ∈ P

and v ∈ P in the Lq -metric. In the sequel we consider graphs on P , like for instance
spanning trees and salesman tours. The length �q(e) of an edge e = {u,v} in such
a graph is the distance dq(u, v) between its endpoints. A natural question is to ask
for the shortest spanning tree or the shortest salesman tour on P in the Lq -metric.
Here, ‘shortest’ refers to the total length of the edges appearing in the correspond-
ing structure. Such optimization problems are not known to be in N P , since they
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involve the computation of square roots. However, it is possible to compute a shortest
spanning tree for P in polynomial time using standard algorithms. In contrast, no
such algorithm is known for the geometric traveling salesman problem. In fact, this
problem was shown to be strongly N P -hard by Garey, Graham and Johnson in the
late 70ies [11]. The same authors proved in [12] that also the geometric Steiner tree
problem, which is to find the shortest tree connecting P , is strongly N P -hard. Note
that a Steiner tree may include additional points, the so-called Steiner points, and
can thus be shorter than the minimum spanning tree. As these problems are strongly
N P -hard, a polynomial time approximation scheme (PTAS) is the best we can hope
for, unless P = N P .

There is a vast literature on approximation algorithms for geometrical problems.
The progress until 1996 is discussed in the survey of Bern and Eppstein in [7]. An
important breakthrough was made in 1996 when Arora [2, 3] and Mitchell [18, 19]
independently introduced (different) polynomial time approximation schemes for the
geometric traveling salesman problem, and the geometric Steiner tree problem, and
other N P -hard problems in the plane. Later Arora extended his method to arbitrary
fixed dimension [3]. In case of the traveling salesman problem this is nearly best
possible, as Trevisan [27] showed that there exists no PTAS in dimension O(logn),
unless P = N P .

Arora’s technique applies to a wide class of problems for which the so-called
Patching Lemma holds, which essentially states that one can reduce the number of
crossings over a given line segment without much increase in the cost of the solution.
However, there are quite a number of geometric problems, where it seems unclear
whether such a result is true. This is, for example, the case for the k-MEDIAN prob-
lem, MINIMUM WEIGHT TRIANGULATION, MINIMUM WEIGHT STEINER TRIAN-
GULATION or BOUNDED-DEGREE MINIMUM SPANNING TREE. Nevertheless, for
some of these problems polynomial time approximation schemes were recently ob-
tained by different methods. For example, we have a PTAS for k-MEDIAN [6, 17] and
a quasi-polynomial time approximation scheme (QPTAS) for both the BOUNDED-
DEGREE MINIMUM SPANNING TREE problem [5] and MINIMUM WEIGHT TRIAN-
GULATION problem [22]. Recall that it is well-known, that the existence of a QPTAS
implies that the problem is not A P X -hard, provided SAT /∈ DTIME[npolylog(n)].
1.2 Our Contribution

The main aim of our paper is to provide a variant of Arora’s approximation scheme
that avoids the use of the Patching lemma. From a technical viewpoint (see Sect. 3 for
details) this is achieved by characterizing partial solutions by their structure within
a subrectangle instead of by their intersection with the boundary of the rectangle.
We explain our technique by developing an approximation scheme for the NODE-
WEIGHTED GEOMETRIC STEINER TREE problem, a generalization of the geometric
Steiner tree problem. In the plane, our method yields a PTAS for the problem. For
(fixed) dimensions d ≥ 3, we are still able to derive a QPTAS.

1.3 Outline

The remainder of the paper is organized as follows. In Sect. 2 we formally introduce
the problem NODE-WEIGHTED GEOMETRIC STEINER TREE (NWGST). In Sect. 3
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we outline the basic principles of our algorithmic strategy. In Sect. 4 and Sect. 5
we provide fundamental definitions and properties of (restriced) optimal solutions of
NWGST. In Sect. 6 we then present and analyse the polynomial time approximation
scheme. Finally, in Sect. 7 we extend the algorithm to higher dimensions and present
further generalizations.

2 The Node-Weighted Geometric Steiner Tree Problem

2.1 Problem Statement

An instance of the node-weighted geometric Steiner tree problem in R
d , or

NWGST(d) for short, consists of a set of points P in R
d , a function π : P → Q+

and a cS ∈ Q+. A solution S T is a (geometric) spanning tree on V (S T ) ∪ S(S T ),
where V (S T ) ⊆ P and S(S T ) ⊂ R

d . The points in S(S T ) are called Steiner points.
Let E(S T ) denote the set of line segments or edges used by S T . We minimize

val (S T ) =
∑

{u,v}∈E(S T )

dq (u, v) +
∑

u∈P−V (S T )

π(u) + |S(S T )|cS. (1)

The objective function can be intuitively understood as follows. We pay for the total
length of the tree plus a penalty of cS units for every Steiner point we use. Further-
more, we are charged π(u) units for every point u ∈ P which is not included in
the tree. In network design, for instance, additional switches could reduce the cable
length of the computer network but they are expensive to install.

Recall that it is easy to compute a spanning tree of minimum length. The main
difficulty in the node weighted Steiner tree problem is therefore the choice of ap-
propriate sets V (S T ) and S(S T ). Throughout the paper S T ∗ denotes the optimal
solution for the input set P . For the sake of brevity we will also use the following
notations in this paper. For a solution S T , �q(S T ) denotes the total length of the tree
S T . Furthermore, π(S T ) and cS(S T ) denote the total amount of penalties we pay
for unconnected points and the use of Steiner points, respectively. That is, (1) rewrites
to val(S T ) = �q(S T ) + π(S T ) + cS(S T ).

NWGST(d) covers several well-known problems as special cases. If we choose
cS = 0 and π(u) = ∞ then we obtain the geometric Steiner tree problem [9, 14].
Furthermore, by choosing just cS = 0, we have the prize-collecting variant of the
geometric Steiner tree problem. If both cS = ∞ and π(u) = ∞ then NWGST(d) is
equivalent to MINIMUM SPANNING TREE. In this paper we will prove

Theorem 1 For fixed ε > 0, there is a polynomial time algorithm which computes a
(1 + ε)-approximation to NWGST(2).

This means that NWGST(2) and thus also the PRIZE-COLLECTING GEOMETRIC

STEINER TREE admit a polynomial time approximation scheme (PTAS). In Sect. 7
we show

Theorem 2 For fixed ε > 0 and fixed d ≥ 3, there is a quasi-polynomial time algo-
rithm which computes a (1 + ε)-approximation to NWGST(d).
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In other words, the problem admits a quasi-polynomial time approximation scheme
in arbitrary fixed dimensions. In this section, we also discuss how far our method
extends to variants of the problem.

2.2 Related Work

The input of the Steiner tree problem in networks is a weighted graph G = (V ,E) and
a set K ⊆ V . The goal is to find a tree of minimum weight in G which includes all
vertices in K . This problem is known to be A P X -complete [8] and it does therefore
not admit a PTAS unless P = N P . However, there are many constant-factor approx-
imation algorithms for this problem. The currently best algorithm is by Robins and
Zelikovsky [23]. It yields a (1 + ln 3

2 )-approximation. There is also a node-weighted
version of this problem [14, 24] which is similar to our model. It was shown by
Klein and Ravi [16] that there is an approximation algorithm with performance ratio
2 ln |K|. Furthermore, they proved that it is not possible to achieve a ratio better than
logarithmic, unless SAT ∈ DTIME[npolylog(n)]. A similar setup was considered by
Moss and Rabani [20]. In essence they combined the unweighted Steiner tree problem
with packing problems. A 2-approximation algorithm for the prize-collecting variant
of the Steiner tree problem in networks is due to Goemans and Williamson [13].

As already mentioned the geometric Steiner tree problem admits a PTAS [3, 19]
and is strongly N P -hard [12]. Thus, from complexity theoretic point of view there
is not much room for improvements. Arora claimed in [4] that there is a QPTAS for
the prize collecting variant. Talwar [26] shows that Arora’s method extends to met-
rics that satisfy certain properties but the complexity of his approximation scheme is
quasi-polynomial. The Steiner tree problem is extensively discussed in the textbooks
of Hwang, Richards and Winter [14] and Prömel and Steger [21].

3 Outline of the Algorithm

In this section we outline our algorithmic strategy for NWGST(2). First, we briefly
review the main ideas of Arora’s approximation scheme for the geometric Steiner
tree problem. Arora subdivides the smallest rectangle enclosing all points recursively
by using a quadtree such that the rectangles of the leaves of the quadtree contain at
most one point. The structure of a Steiner tree S T inside a rectangle of this quadtree
can be described by specifying (i) the locations where edges of S T cross the bound-
ary of the rectangle and (ii) how these locations are connected inside the rectangle.
Both parameters define the configuration of this rectangle. Given a rectangle and a
configuration, Arora’s algorithm optimizes locally as follows. It computes the best
solution for this configuration by enumerating all configurations of the children of
the rectangle and combining their optimum solutions. As the optimum solutions for
rectangles containing at most one point are easy to compute, the optimum solutions of
all rectangles can be computed bottom-up by dynamic programming. In other words,
a look-up table is maintained which contains for each configuration-rectangle pair
the corresponding optimum. The complexity of this dynamic program depends on
the size of this table, i.e., the size of the quadtree and the number of different con-
figurations per rectangle. We shall see later that the quadtree has logarithmic height
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and contains therefore polynomially many rectangles. In order to reduce the number
of configurations per rectangle, one has to do some rounding. This is achieved as
follows.

Firstly, edges are only allowed to cross the boundary of a rectangle at one out of
O(logn) prespecified locations, the so-called portals. Secondly, the tree may cross the
boundary of a rectangle at most constantly many times. In this way one can show that
there exist only polynomially many different configurations for each rectangle and
the dynamic program therefore terminates in polynomial time. On the other hand,
by reducing the number of configurations, the dynamic program optimizes only over
a subclass of all trees. One therefore also has to show that this subclass contains a
tree such that its length differs only slightly from that of an optimum tree. By using
Arora’s Patching Lemma and by introducing randomness into the quadtree one can
show that this is indeed the case.

Unfortunately, our problem NWGST(2) seems not to fit in this framework, as the
fact that additional Steiner points add additional costs to the tree makes it hard to
imagine that an optimum tree can always be changed in such a way that it crosses
the boundary of all rectangles only at constantly many positions. We therefore use a
completely different approach to define configurations. Instead of specifying the loca-
tions where the tree edges cross the boundary of a rectangle, we aim at specifying the
structure of the tree within a rectangle and at specifying at which locations it should
be connected to points outside of the rectangle. Basically, this is achieved by subdi-
viding the rectangle into O(logn) many cells. A configuration specifies which cells
contain an endpoint of an edge crossing the boundary and specifies to which compo-
nent inside of the rectangle those points belong. In this way we restrict the number
of different locations of end points of edges crossing the boundary of a rectangle, but
not the number of such edges.

4 Preliminaries

In the sequel we mainly consider an integral variant of NWGST(2) which we de-
note by NWLST(2). The difference to NWGST(2) is that we require that all input
points have odd integral coordinates and that the side length of the bounding box is
L = O(n2). That is, we have P ⊂ {1,3,5, . . . ,L − 1}2. Similarly, the Steiner points
contained in the solution must also have odd integral coordinates. This is similar to
the notion of well-rounded instances in [3].

Lemma 3 If there is a PTAS for NWLST(2) then there is also a PTAS for
NWGST(2).

For the proof of Lemma 3 we need an approximation algorithm for NWGST(2)
with constant performance ratio. This motivates the following statement.

Lemma 4 There is an algorithm which computes in polynomial time a 3-approxima-
tion to S T ∗.
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Proof By using the algorithm of Goemans and Williamson [13], we compute a
2-approximation to the optimal prize-collecting spanning tree on P . Let A denote
the total cost, i.e., length plus penalties, of this approximation. We claim that

A ≤ 3 · val
(

S T ∗).

Let S T ′ denote the minimum spanning tree on V (S T ∗) and note that cS(S T ′) = 0.
It was shown by Du and Hwang [10] that for every set of points P the length of the
MST is at most 3/2 the length of the optimal Steiner tree. Thus, S T ′ satisfies

val
(

S T ′) = �q

(
S T ′) + π

(
S T ′) ≤ 3

2
· �q

(
S T ∗) + π

(
S T ∗) + cS

(
S T ∗)

≤ 3

2
· val

(
S T ∗),

since V (S T ′) = V (S T ∗) and thus π(S T ′) = π(S T ∗). Clearly, the cost of the opti-
mal prize-collecting spanning tree P C T ∗ on P is at most val(S T ′). Since the algo-
rithm described above computes a 2-approximation to the optimum prize-collecting
MST, we obtain

A ≤ 2 · val
(

P C T ∗) ≤ 2 · val
(

S T ′) ≤ 3 · val
(

S T ∗). �

Proof of Lemma 3 Note that we can improve every solution to NWGST(2) by delet-
ing Steiner points that are either leaves or have just two neighbors in the tree. Hence,
every Steiner tree which is optimal in this sense contains at most n Steiner points
and thus at most 2n points. Let A denote the value of the solution obtained by the
approximation algorithm of Lemma 4. Furthermore, let M denote the side length of
the bounding box of P . We scale cS, the penalties and all coordinates by

ρ = 24n

εA

and move every point (including the Steiner points) to the nearest points with odd
integral coordinates. This means that all points lay on a grid of granularity 2 which
we call the 2-grid. We denote this rounded point set by P ′. If more points are moved
to a grid point then we treat them as single point. The penalty associated with this
point is the sum of the penalties of the points moved to this coordinate. The side
length of the bounding box is now L = Mρ. By moving the points we may have
increased the length of the optimum solution. However, we move at most 2n points
by at most 4 units. Since we have at most 2n − 1 edges, we obtain

val
(

S T ∗′) ≤ ρ · val
(

S T ∗) + 8n,

where S T ∗′ is the optimal Steiner tree on P ′. Assume for the moment, we have a
solution S T ′ for P ′ such that

val
(

S T ′) ≤ (1 + ε)val
(

S T ∗′) ≤ (1 + ε)
(
ρ · val

(
S T ∗) + 8n

)
. (2)
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Transforming S T ′ into a solution S T for P can be achieved by moving the points
back to their original position and by scaling by 1/ρ. If P ′ contains n′ points, the
length of each of at most 2n′ −1 edges in S T ′ increases by at most 4 units. Moreover,
if points q1, . . . , qk ∈ P were treated as a single point, we keep q1 in the tree and
connect each of q2, . . . , qk to q1 by an edge of length at most 4. Thus we have

val (S T ) ≤ 1

ρ

(
val

(
S T ′) + 8(n′ − 1) + 4(n − n′)

)
<

1

ρ

(
val

(
S T ′) + 8n

)
.

That is, we have

val (S T ) ≤ 1

ρ

(
val

(
S T ′) + 8n

) ≤ 1

ρ

(
(1 + ε) · (ρ · val

(
S T ∗) + 8n

) + 8n
)

= (1 + ε) · val
(

S T ∗) + 1

ρ
8n(2 + ε) = (1 + ε) · val

(
S T ∗) + 1

3
εA(2 + ε)

≤
(

1 + 3ε + ε2
)

· val
(

S T ∗) .

If we want a (1 + ε′) approximation for P , we have to choose ε appropriately.
It remains to be shown that we can find a solution S T ′ satisfying (2). If A ≥ M/n

then L ≤ 24n2/ε and we are done. Since L = O(n2) for fixed ε, we can simply use
the PTAS for NWLST(2).

Thus assume that A < M/n. Consider a grid of granularity g = 24n2/ε such that
the grid lines have even integral coordinates. We call this grid the g-grid. Clearly,
there are at most g2/4 = O(n4) such grids. We claim that there exists at least one
g-grid such that the (scaled) optimum solution is completely contained within a box
of this grid. Thus, we can enumerate all g-grids, treat every box in such a g-grid as
a separate instance, apply the PTAS for NWLST(2) to it, and finally return the best
solution obtained during this process.

It remains to show that such a grid exists. To see this, we choose the grid uniformly
at random. Every edge e of the scaled optimum solution crosses lines of the 2-grid.
One can easily check that the number of lines crossed is a lower bound for the weight
of the scaled optimum (note that the lines have even coordinates and that �q(e) ≥
�∞(e) ≥ �1(e)/2). Thus, the optimum solution, scaled by ρ, intersects at most ρA

lines of the 2-grid. On the other hand, the probability that a fixed line of the 2-grid is
also used in the g-grid is at most 2/g. Thus, the probability that the optimal Steiner
tree crosses a line of g-grid is at most

ρA
2

g
= 2

n
.

Therefore, there is at least one g-grid such that the optimum solution is completely
contained within a box of this grid. �

Next, we adapt the concept of shifted quadtrees or shifted dissections [3, 4] to
our purposes. We require that L is a power of 2. If this is not the case, we simply
enlarge the bounding box appropriately. We choose two integers a and b with a, b ∈
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Fig. 1 The shifted quadtree. The dashed lines indicate the enlarged rectangles at level 0 and the dissection
lines within

{0,2, . . . ,L − 2}. The vertical line with x-coordinate a and the horizontal line with
y-coordinate b split the bounding box into four smaller rectangles. We enlarge those
rectangles such that their side length is L. By S0 we denote the area covered by the
four enlarged rectangles. Note that S0 is a square of side length L0 = 2L. We now
subdivide S0 using an ordinary quad tree until we obtain squares of size 2 × 2. We
denote the quadtree generated in this fashion by QTa,b to emphasize that its structure
depends on the choice of a and b.

Throughout we denote vertical dissection lines with even x-coordinates by V and
horizontal ones with even y-coordinates by H . A vertical line V with x-coordinate
x has level l with respect to a if there is an odd (potentially negative) integer i, such
that x = a + i · L

2l . Throughout, lev(V , a) = l denotes the smallest l for which such
an i exists. Similarly, we define the level of horizontal lines and lev(H,b). The level
of a square S in the quadtree QTa,b is defined as follows: The squares in the very
first subdivision have level 0 and a square S at level l is subdivided by a horizontal
line H and a vertical line V with lev(H,b) = lev(V , a) = l + 1 into four squares at
level l + 1. The level of a square S is denoted by lev(S). Let us shortly summarize
salient properties of shifted quadtrees.

Observation 5 For a shifted quadtree QTa,b the following is true:

(1) The subdivision uses only horizontal and vertical lines that have even coordi-
nates.

(2) The depth of QTa,b is logL =: t .
(3) The side length of a square S at level l is S = L/2l .
(4) The number of vertical (horizontal) lines in QTa,b at level l is at most 2l .
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Note that t is integral by choice of L. This property will turn out to be useful in
Sect. 5.1. Figure 1 illustrates the definitions we made above as well as Observation 5.

5 (s, t)-Maps and Standardized Solutions

5.1 (s, t)-Maps

From now on, we only consider the problem NWLST(2). As already mentioned, we
need some subdivision of a square S ∈ QTa,b into cells. A natural idea would be to
use a regular (m × m)-grid. Indeed, such grids already appear in quasi-polynomial
approximation schemes of [6, 26]. Unfortunately, it will later turn out that we would
have to choose

m = �(st) = �(logn)

to obtain a (1 + 1/s)-approximation, where s = O(1/ε). Therefore, this grid has
�(log2 n) many cells. This is too much, since we later store some bits per square and
since we require that we have polynomial many states per square.

This problem is solved by using so-called (s, t)-maps which have only O(logn)

cells. The intuition behind (s, t)-maps is very simple. In the PTAS, special care has
to be taken for edges that cross boundaries of squares. Due to complexity, we do not
explicitly specify the endpoints of such edges. Instead, we will argue that it suffices
to describe them as ‘edges’ between cells. This has the effect that our PTAS can only
reconstruct that the endpoints are somewhere within the cells. However, the length
of the edge varies by at most twice the side length (L1-metric) of the cells. The
definition of (s, t)-maps comes directly from the following simple observation. We
can estimate the endpoints of long edges more roughly than those of short edges,
since we have only to assure that the absolute error is at most 1/s of the edge’s
optimal length. Edges that reach deep into S are long and thus we can make the
cells inside S larger than those which are close to the boundary. The definition of an
(s, t)-map follows exactly this idea. We will ensure that the side length of a cell C is
at most

max

{
1

st
〈side length of S〉, 1

s
〈distance between C and boundary of S〉

}

and that the map has O(s2t) cells. In essence, an (s, t)-map can be regarded as a
(st × st)-grid with cell sizes growing to the interior.

Now we define (s, t)-maps more formally. For arbitrary s ∈ N, we define a func-
tion β : N0 → N0 as

β(j) =

⎧
⎪⎪⎨

⎪⎪⎩

⌊
j
4s

⌋
, j < 8s,

2, 8s ≤ j ≤ 9s − 1,⌊
j−s
4s

⌋
, j ≥ 9s.
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Fig. 2 The upper-left part of an
(s, t)-map with s = 1. The cell
size doubles for each group of
rings. Each group has 4s = 4
rings except the 3rd group
which has 5s = 5 rings

Let m = m(s) = 8s2τ . Here τ is the smallest integer such that 2τ ≥ t , where t is the
depth of the shifted quadtree. Note that this implies τ < 1 + log t . Therefore, we have
8st ≤ m < 16st .

Let S be the side length of S. We subdivide S in rings, as illustrated in Fig. 2
for s = 1. The j th ring has width 2β(j)S/m and consists of congruent axis parallel
squares of the same size. We call this subdivision the (s, t)-map and write M[S].
We have groups of 4s rings of same size. The only exception is the third group which
contains 5s rings. Since we later require that the cells partition the square, we assume
that the upper and left boundary always belong to the corresponding neighboring cell
if there is any.

Let γ count the number of groups. Since the width of a ring in the ith group

is 2i−1S/m, γ must satisfy (5s − 4s)22 S
m

+ 4s
∑γ

i=1
2i−1S

m

!= S
2 , and thus γ =

log(m/8s) = τ ≤ 1 + log t . Note that γ is integral by definition of τ . In the remain-
der of this section we state some properties of (s, t)-maps. In some sense, (s, t)-maps
and grids share salient properties. However, the number of cells in a m × m grid is
m2 = 
(s2t2) while an (s, t)-map has much fewer cells.

Lemma 6 M[S] contains O(s2t) cells.

Proof In each of the 4s outermost rings, we have less than 4m cells per ring. Since
the size of the cells doubles from group to group, we have at most

4ms +
γ∑

i=1

16ms

2i−1
≤ 36ms = O

(
s2t

)

cells in M[S], where the first term counts the number of the s many additional rings
in the third group. �
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Lemma 7 Let C ∈ M[S] have side length C ≥ 2S/m and let p ∈ P be a point which
is contained in C. Then the distance of p to the boundary of S in any Lq -metric is at
least 2sC.

Proof Assume that C = 2k−1S/m for k ≥ 2, i.e. C is in the kth group. Then the
minimum distance of p to the boundary of S is simply the orthogonal distance to the
nearest boundary line of S. This is true for any Lq -metric. In order to obtain a lower
bound to this distance, it suffices to add up the widths of the rings between C and its
nearest boundary of S. This sum is at least

k−1∑

i=1

4s
2i−1S

m
= 2k+1s

S

m
− 4s

S

m
≥ 2ks

S

m
= 2sC

for all k ≥ 2. �

Let S be a square at level l and let M[S] be an (s, t)-map on S. Furthermore,
let S′ be a child of S in QTa,b and let C′ be a cell of M[S′]. A cell C in M[S]
is a parent of C′ if C′ ∩ C �= ∅, i.e. if the cells overlap. We write child[C] for the set
of children of C. The next lemma states that the parent-child relation is unambiguous
and that all the children of a cell are contained in the same rectangle of QTa,b .

Lemma 8 Every cell has a unique parent. Moreover, for each cell C ∈ M[S], we
have child[C] ⊆ M[S′] for some child S′ of S.

Proof We first show that every cell has a unique parent. Without loss of general-
ity, we assume that S′ is the top left child of S. We partition S′ into two regions
A and B where the latter is the lower right quarter of S′. Region B only contains
the 4s innermost rings of M[S], since the rings of the γ th group have side length
2γ−1S/m = S/16s and thus 4s rings have width S/4. This is also illustrated in Fig. 3
for s = 1. Thus, every C ∈ M[S] is either completely contained in A or in B . The
same is, by definition true for all C′ ∈ M[S′]. Note that this already implies the
moreover-part of the lemma.

Fig. 3 The partition of S′ into
regions A and B
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Let ρ(i) denote the distance of the ith group from the boundary of S. By con-
struction of the (s, t)-map, we have

ρ(i) =
i−1∑

k=1

4s2k−1 S

m
+

{
0, i ≤ 3,

4s S
m

, i > 3

and therefore we obtain

ρ(i) =
{

4s(2i−1 − 1) S
m

, i ≤ 3,

4s2i−1 S
m

, i > 3.

Note that ρ(i) does not depend on s, as m = 8s2τ . Moreover, let δ(i, j) denote the
distance of the j th ring in the ith group from the boundary of S. We have

δ(i, j) = ρ(i) + (j − 1)2i−1 S

m
.

Similarly, we define ρ′(i) and δ′(i, j) for S′. Note that the side length of S′ is
S′ = S/2.

We first show that every cell of M[S′] in region A has an unique parent in M[S].
That is, we need to show that there exists (i′, j ′) for all (i, j) such that δ′(i′, j ′) =
δ(i, j). If i > 3 then ρ′(i + 1) = ρ(i) and thus

δ(i, j) = ρ(i) + (j − 1)2i−1 S

m
= ρ(i − 1) + (j − 1)2i S

2m
= δ′(i + 1, j).

The case i ≤ 3 can be easily seen from Fig. 4 which illustrates the distances to the
boundary of S of the rings in the first three groups of M[S] (top) and those of the
rings in the first four groups of M[S′] (below) for the case s = 1. Note that choosing
s > 1 increases the granularity, but the situation remains the same.

Now we consider region B . We have to show that there exists for all 1 ≤ j < 4s a
(i′, j ′) such that

δ′(i′, j ′) = S

16s
j.

Fig. 4 The rings in the outermost groups of M[S] (top) and M[S′] (below) for the case s = 1. The
additional ring in third groups drawn shaded
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For fixed 1 ≤ j < 4s choose k ∈ Z such that 4s ≤ j2k < 8s. Note that k ≥ 1 and
k ≤ log(8s) � τ . Let i′ = τ − k +1 and observe that due to τ = 
(log logn) we may
assume without loss of generality that i′ ≥ 4. Furthermore, let j ′ = 1+2τ−i′+1j −4s.
Note that the choice of i′ implies that 1 ≤ j ≤ 4s. Now we easily check that

δ′(i′, j ′) = 4s2i′−1 S

2m
+ (j ′ − 1)2i′−1 S

2m
= (4s + j ′ − 1)2i′−1 S

2m

= (4s + j ′ − 1)2i′−1 S

16s2τ
= (4s + j ′ − 1)2i′−τ−1 S

16s
= S

16s
j,

as desired. �

5.2 Standardized Solutions

In this section, we will consider trees that enjoy certain structural properties. Roughly
speaking, our PTAS optimizes over all such trees. The main result of this section is
Theorem 10 which states that there exists an almost optimal tree having this struc-
ture. Let a and b be fixed and let QTa,b denote the corresponding shifted quadtree
with(s, t)-maps on all its squares. Furthermore, let S T be an arbitrary Steiner tree.
An internal component of S T with respect to S ∈ QTa,b is a connected component
in the induced Steiner forest S T [V (S T ) ∩ S]. Let k(S, S T ) count the number of
internal components of S. An edge {u,v} ∈ S T is an external edge of S, if exactly
one endpoint of {u,v} is contained in S. Let E(S, S T ) denote the set of endpoints
(within S) of external edges. An edge {u,v} ∈ S T has level l or appears at level l, if l

is the least level, where {u,v} is external. The level of {u,v} is denoted by lev({u,v}).

Definition 9 Let r ∈ N, r ≥ 2. A Steiner tree S T is (r, s)-standardized with respect
to a and b if every square S ∈ QTa,b is (r, s)-standardized, i.e., S satisfies

(S1) k(S, S T ) ≤ r .
(S2) For all C ∈ M[S], all points in E(S, S T ) ∩ C belong to the same internal

component of S.

Henceforth we need the following technical concepts. Let S∗ denote the set of
all Steiner trees which have the same point set as S T ∗, i.e., S T ∈ S∗ if and only if
V (S T ) = V (S T ∗) and S(S T ) = S(S T ∗). For fixed a and b, we define a transitive
relation � on S∗ as follows. For S T , S T ′ ∈ S∗ we have S T � S T ′ if and only
if there exists a bijection γ : E(S T ) → E(S T ′) such that lev(e) ≤ lev(γ (e)) for
all e ∈ E(S T ). We remind the reader that the dissection lines subdividing S0 have
level 0, and thus a small lev(e) means that e is cut near to the root.

Theorem 10 For all a, b ∈ {0,2,4, . . . ,L − 2} there exists an (r, s)-standardized
Steiner tree S T ∗

a,b ∈ S∗ with S T ∗ � S T ∗
a,b such that if a and b are chosen uniformly

at random then

E
[
val

(
S T ∗

a,b

) − val
(

S T ∗)] ≤ O
(

1

s
+ 1√

r

)
val

(
S T ∗).
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We need several preliminary lemmas for the proof of Theorem 10. We start with
the following simple statement which also appears implicitly in [3] and [6].

Lemma 11 Let a and b be chosen uniformly at random from {0,2, . . . ,L − 2} and
let S T be some fixed Steiner tree. Furthermore, let Ee,l denote the event that e ∈ S T
is an external edge at level l. Then

Pr
{

Ee,l

} ≤ 2l+2

L
�q (e).

Proof Let E ′
e,l denote the event that e crosses a horizontal or vertical line which has

level l in QTa,b . Clearly, we have

Pr
{

Ee,l

} = Pr

⎧
⎨

⎩

l⋃

j=0

E ′
e,j

⎫
⎬

⎭ ≤
l∑

j=0

Pr
{

E ′
e,j

}
.

If the edge e has length �q(e), it crosses at most �q(e)/2 horizontal dissection lines
and �q(e)/2 vertical ones. Recall, that dissection lines have even integral coordinates.
Therefore, we have L/2 horizontal (vertical) dissection lines. Since there are 2j dis-
section lines at level j , the probability that a fixed dissection line has level j is at
most 2j+1/L. Note that this only an upper bound, as for instance dissections lines
outside the (scaled) bounding box can never have level 0. Since e crosses at most
�q(e) dissection lines, we obtain

Pr
{

Ee,l

} ≤
l∑

j=0

2
2j

L
�q (e) = 2l+2

L
�q (e).

This completes the proof. �

Lemma 12 Let a, b ∈ {0,2,4, . . . ,L− 2} and let S T ′, S T be Steiner trees such that
S T ′ � S T . Furthermore let xl(S T ′) and xl(S T ) count the number of edges in S T ′
and S T , respectively that are external at level l. Then

xl

(
S T ′) ≥ xl(S T )

for all 0 ≤ l ≤ t .

Proof Note that every edge which is external at level l is also external at all levels
below l, i.e., at all levels l′ with l′ > l. Since S T ′ � S T , there is a bijection γ from
E(S T ′) to E(S T ) such that lev(e′) ≤ lev(γ (e′)) for all e′ ∈ E(S T ′). If γ (e′) is
external at level l, then e′ is also external at level l. Thus, if γ (e′) contributes to
xl(S T ) then e′ contributes to xl(S T ′). �

Lemma 13 For all a, b ∈ {0,2,4, . . . ,L − 2} there exists a Steiner tree S T a,b ∈ S∗
satisfying (S1) such that S T ∗ � S T a,b . Moreover, if a and b are chosen uniformly at
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random we have

E
[
�q

(
S T a,b

) − �q

(
S T ∗)] ≤ 9√

r
�q

(
S T ∗).

Proof Assume for the moment that a and b are fixed. In the sequel, we will con-
struct a sequence of Steiner trees S T t , S T t−1, . . . , S T 0 such that S T t = S T ∗ and
such that S T a,b := S T 0 has the desired properties. As in Sect. 4, let H and V de-
note horizontal and vertical dissection lines of the shifted quadtree. By definition, the
dissection lines have even coordinates. Furthermore, let π(H) and π(V ) count how
often S T ∗ crosses the dissection lines H and V , respectively. One easily checks that

∑

H

π(H) +
∑

V

π(V ) ≤ �q

(
S T ∗), (3)

where the sums are taken over all horizontal (vertical) dissection lines of the shifted
quadtree.

We proceed in bottom-up fashion, i.e., we start with S T t = S T ∗ and transform
S T l into S T l−1. In the leaves of QTa,b there is nothing to do, since every leaf con-
tains at most one point or Steiner point. At level l we check for every square whether
it satisfies (S1). If this is not the case, we perform some corrections to the tree. There-
after every square at level l will satisfy (S1) and we move to level l − 1.

Whenever we find a square S at the current level, say l, which contains more than
r internal components, we modify its interior as follows. Let K1, . . . , Kk(S,S T )=k

denote the internal components of S. For every such component, we choose a rep-
resentative point ui ∈ Ki . We connect u1, . . . , uk by a Hamiltonian path and remove
k − 1 external edges. We call this modification a reduction operation (Fig. 5). It is
well-known [15, 25] that the shortest salesman tour through k points in a square of
side length S has length at most S

√
k. Thus we can find a Hamiltonian path which

has length at most S
√

k, where S = L/2l is the side length of S. At level l, we can

Fig. 5 A reduction operation on S for r ≤ 3. Adding a Hamiltonian path (right) of length k allows us to
remove k − 1 external edges and reduces the number of internal components to 1
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thus charge to every external edge which we delete a cost of

δl := 1

k − 1
· L

√
k

2l
≤ 2L

2l
√

k
≤ 2L

2l
√

r
,

since k ≥ r ≥ 2. Now, (S1) is satisfied in S and we proceed similarly for the remain-
ing squares at level l.

Since the procedure above does not affect the point set of the tree, we have
S T a,b ∈ S∗. Note, that the edges we add have always greater level than those we
delete. We obtain the bijection γ : E(S T ∗) → E(S T a,b) by defining an arbitrary bi-
jection between the deleted external edges and those added within the square. Thus
S T ∗ � S T a,b .

Next, let us bound the expected increase of length due to all reduction operations.
Let c(H,a, b, l) count how many edges crossing H are charged and deleted due to
a reduction operation at level l. Clearly, we have c(H,a, b, l) = 0 if l < lev(H,b).
Otherwise, if l ≥ lev(H,b) then c(H,a, b, l) is independent of b. This can be easily
checked as follows. Recall, that if lev(H,b) ≤ l then H is present at levels l through t .
For fixed a and b, let Sl

a,b denote the set of squares on level l. Note, that the bound-

aries of the squares in Sl
a,b are horizontal and vertical dissection lines that have level

l or less. Let H denote a horizontal line with lev(H,b) = l. Changing b to b′ such
that lev(H,b′) < lev(H,b) does not affect the dissection at levels l through t , since
Sl

a,b′ = Sl
a,b . Hence, c(H,a, b′, l) = c(H,a, b, l) for all l ≥ lev(H,b). Thus, there

exist values c̃(H,a, l), such that

c(H,a, b, l) =
{

c̃(H,a, l), l ≥ lev(H,b),

0, otherwise.

With respect to the random choice of a and b let the random variable �H =∑
l c(H,a, b, l) count the increase of length along a horizontal line H . The expecta-

tion of �H can be bounded by

E[�H ] = 4

L2

∑

a

∑

b

t∑

l=lev(H,b)

2L

2l
√

r
c̃(H,a, l)

≤ 4

L2

∑

a

t∑

l=0

|{b : lev(H,b) ≤ l}| 2L

2l
√

r
c̃(H,a, l)

≤ 16

L
√

r

∑

a

t∑

l=0

c̃(H,a, l),

where the last inequality follows from Observation 5. Since every edge is only
charged once, we have

t∑

l=0

c̃(H,a, l) ≤ π(H)
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and thus

E[�H ] ≤ 16

L
√

r

∑

a

π(H) = 8√
r
π(H).

Proceeding similarly for the vertical lines and by using (3) we bound the total ex-
pected increase in length which is at most

E[�] ≤ 8√
r

(
∑

H

π(H) +
∑

V

π(V )

)

≤ 8√
r
�q

(
S T ∗).

This completes the proof. �

Proof of Theorem 10 We first show for fixed a and b how to obtain a tree for which
(S1) and (S2) holds. By Lemma 13 we obtain a Steiner tree S T a,b which satisfies
(S1). Furthermore, we know that S T a,b ∈ S∗ and S T ∗ � S T a,b .

All we have to do, is to make sure that (S2) holds. Proceeding bottom-up, we
transform S T a,b into a standardized tree S T ∗

a,b . As in the proof of Lemma 13, let
S T l denote the tree obtained after processing level l, that is we start with S T t =
S T a,b and end with S T 0 = S T ∗

a,b . Let S be a square at level l. Consider a cell
C ∈ M[S] with side length C. We have to make sure, that all points in E(S, S T l)∩C

belong to the same internal component of S. This is achieved as follows.
Let u,v ∈ E be two points which are contained in C and belong to different in-

ternal components. Furthermore, let eu and ev be external edges with endpoints u

and v, respectively. If adding {u,v} closes a cycle which contains eu or ev , we keep
{u,v} and remove either eu or ev whichever lies on the cycle. We call this operation,
which is illustrated in Fig. 6(a), a replacement of ev . Note, that lev({u,v}) ≥ lev(ev).
Otherwise, we redirect ev from v to u as illustrated in Fig. 6(b). This operation is
called redirection of ev . Note, that a redirection does not change the level of an edge.
Proceeding iteratively for all cells and squares at level l, we obtain S T l .

Fig. 6 Sketch for the proof of
Theorem 10. If {u,v} closes a
cycle which contains eu or ev ,
then we can add {u,v} to the
tree an delete eu or ev

instead (a). Otherwise, u and v

are not connected over eu

and ev . In this case we redirect
ev to u (b)
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We have to check that replacements and redirections do neither violate (S2) on
levels below l nor (S1) on any level. First, we show that (S1) is safe. This is quite
obvious for the levels below l, since we reduce the number of internal components
in the squares at level l. Consider a replacement which takes place in a square S

and let S′ denote any square containing S. The current tree induces a forest F ′
within S′. By inserting an edge {u,v} we either close a cycle in F ′ or connect two of
its components. In the first case the number of components does not change, since we
only remove this cycle by deleting eu or ev , respectively. In the second case, the edge
we delete might be completely contained in S′ and we obtain a new component. In
any case, the number of components within S′ does not increase.

If we have a redirection in S the situation is as follows. By construction, ev is
redirected. Let v′ denote the external endpoint of ev . If v′ is not contained in S′
then the number of components within S′ does not change. Otherwise, ev is con-
tained in S′. In this case redirecting ev does not change the number of components
within S′, regardless whether u and v are connected within S′ or not. Hence, neither
replacements nor redirections violate (S1) in any square of QTa,b .

Recall, that an edge which is external at level l is also external at levels l + 1
through t . The replacement operation thus connects two endpoints of external edges.
Since we proceed bottom-up, the cells on lower levels containing those endpoints are
clean in a sense that they already fulfill (S2). Thus adding this edge will not violate
(S2) on any level l′ > l. In case of redirections we can argue similarly.

Both replacements and redirections delete one edge, say e, from the tree and add
another edge e′. We call e′ the successor of e. For every e ∈ S T a,b we obtain a
sequence

S T a,b � e −→ e′ −→ e′′ −→ · · · −→ e0 ∈ S T ∗
a,b (4)

of successors. Every arrow stands for a single replacement or a single redirection.
Observe, that the edge level is monotonically nondecreasing in this sequence. We
denote the bijection which maps e to e0 by γ . Clearly, lev(γ (e)) ≥ lev(e) and thus
S T a,b � S T ∗

a,b . Since � is transitive and S T ∗ � S T a,b , we have S T ∗ � S T ∗
a,b .

Clearly, S T ∗
a,b ∈ S∗, since we neither added Steiner points nor lost connectedness

during the transformation process.
Finally, we bound the expected increase of length due to this transformation

process if a and b are chosen at random. Recall, that for every edge e ∈ S T a,b there
is an edge sequence as given in (4). This sequence can be rewritten as a sequence
σ(e) = (σ1, . . . , σk) of redirections and replacements. One can easily check that σi is
a redirection if i < k. In particular, σ(e) contains at most one replacement which is
then σk . If σk is a replacement, then the total cost of σ(e) is bounded by the length
of the edge we insert. This length is at most the length of the diagonal of the cell in
which the new edge was placed.

Otherwise, if σk is a redirection, an upper bound can be obtained as follows.
For every endpoint of e = {u,v}, we obtain a sequence of redirections σ(u) =
(σu

1 , . . . , σ u
ku

) and σ(v) = (σ v
1 , . . . , σ v

kv
), respectively. Recall, that by Lemma 8 every

cell C at level l has a unique parent C′ at level l − 1. Thus, C∩C′ �= ∅ implies C ⊆ C′.
If e = {u,v} is redirected in C to {u′, v} and again in C′ to {u′′, v} then C′ contains
both u and u′′, since u′ ∈ C ∩ C′. Thus every cell where a redirection of e occurs
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contains the corresponding original endpoint, i.e., u and v, respectively. Thus, the
total cost of σ(u) can be bounded by the diagonal length of the cell where σu

ku
takes

place, since this cell also includes the original endpoint u. The increase of length due
to σ(e) can now be bounded as follows. Let σu

ku
and σv

kv
occur in cells Cu and Cv ,

respectively.
Assume without loss of generality, that Cu has greater side length. Then clearly, the

cost of σ(e) is bounded by twice the diagonal length of Cu. We partition E(S T a,b)

into Eout and Ein. A cell which belongs to the first 4s rings of M[S] is called an
outer cell. All other cells are inner cells. If σk is a replacement, then e ∈ Eout if and
only if the new edge is contained in an outer cell. Otherwise, if σk is a redirection
then e ∈ Eout if and only if Cu (and thus also Cv) is an outer cell. Note, that Ein and
Eout are random variables as they are defined with respect to S T a,b , which depends
on the choice of a and b. The random variables �out and �in count the increase of
length due to Eout and Ein, respectively.

First, we consider Eout. In this case it is convenient to estimate the error just
roughly. As the side length of a square at level l is L/2l (cf. Observation 5), we
deduce that the length of the diagonal of an outer cell in every Lq -metric is at level l

at most

δl = L

m
21−l . (5)

We charge at level l a cost of at most δl to e ∈ Eout if we apply a replacement to e.
Otherwise, if we apply a redirection we have a cost of at most δl per endpoint. Hence,
we may assume that we charge at most 2δl to e. That is we obtain the following rough
upper bound:

�out ≤
t∑

l=0

2δl · xl(S T a,b), (6)

where the random variable xl(S T a,b) counts the number edges in S T a,b that are
external at level l. Together with S T ∗ � S T a,b , Lemma 12 yields xl(S T a,b) ≤
xl(S T ∗). Thus we obtain

E
[
xl(S T a,b)

] ≤ E
[
xl(S T ∗)

] =
∑

e∈E(S T ∗)
Pr

{
Ee,l

}
. (7)

Thus by using Lemma 11 and m = m(s) ≥ 8st , combining (6) and (7) yields

E[�out] ≤
t∑

l=0

∑

e∈E(S T ∗)
Pr

{
Ee,l

}
2δl

≤
∑

e∈E(S T ∗)

t∑

l=0

2l+2

L
�q (e)

2L

m
21−l

≤
∑

e∈E(S T ∗)

t∑

l=0

16

m
�q (e) = 4

s
�q

(
S T ∗).
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For e ∈ Ein the situation is as follows. Observe, that by Lemma 7 the diagonal
of an inner cell is less than its distance from the boundary of the enclosing square.
Thus the length of the tree decreases if the last operation in σ(e) is a replacement.
Otherwise, let Cu denote the largest cell in which a redirection takes place. By the
considerations we made above, the total increase of length due to σ(e) is at most
twice the diagonal length of Cu. By Lemma 7 we know that this diagonal length is at
most �q(e)/s. That is, we have

�in ≤
∑

e∈Ein

2�q (e)

s
≤

∑

e∈S T a,b

2�q (e)

s
≤ 2

s
�q

(
S T a,b

)
.

Finally, we bound the total expected increase of length, i.e., E[lq(S T ) −
lq(S T ∗)]. First, we estimate the expectation of � := �q(S T ∗

a,b) − �q(S T a,b). By
linearity of expectation and Lemma 13, we have

E[�] = E[�out] + E[�in]

≤ 4

s
�q

(
S T ∗) + 2

s
E

[
�q

(
S T a,b

)]

≤ 4

s
�q

(
S T ∗) +

(
2

s
+ 16

s
√

r

)
�q

(
S T ∗)

and hence again using Lemma 13,

E
[
�q

(
S T ∗

a,b

) − �q

(
S T ∗)] ≤ E[�] + E

[
�q

(
S T a,b

) − �q

(
S T ∗)]

≤
(

6

s
+ 16

s
√

r
+ 8√

r

)
�q

(
S T ∗)

= O
(

1

s
+ 1√

r

)
�q

(
S T ∗).

Observe that S T ∗
a,b = S T 0 spans the same points and Steiner points as S T ∗. Hence,

we can bound val(S T ∗
a,b) as claimed. �

6 The Approximation Scheme

Although (r, s)-standardized trees have nice properties, we do not see an approach to
compute an optimal one in polynomial time. Instead, our PTAS computes an almost
optimal (r, s)-standardized tree. For fixed a and b, consider the optimal standardized
Steiner tree S T ∗

a,b and two squares Su and Sv at level l. Assume that the two squares
have a common parent S. Let e = {u,v} be an edge that is contained within S but
has one endpoint in Su and the other in Sv , i.e, e appears at level l. There are cells
Cu and Cv containing the endpoints of e in Su and Sv , respectively. The tree S T ∗

a,b

has the following structural property. All edges which appear at level l and have an
endpoint in Cu connect to the same internal component of Su. The points in Cu which
belong to this component are from a structural point of view equivalent, since instead
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of connecting v to u we can connect v to any other of those points without adding a
cycle or losing connectivity. Although the length of such an edge may be greater than
�q(e), the absolute error is at most twice the side length of Cu. Of course, the same
is true for Cv . Therefore, the distance between the centers of Cu and Cv is a good
estimation to the length of e.

Under the assumption that this estimation suffices, it is quite obvious that the fol-
lowing information is sufficient to describe a standardized Steiner tree within S.
Firstly, we specify in which cells we have endpoints of external edges. Intuitively
speaking, such cells, later called portals, represent the component to which all exter-
nal edges should be connected. Secondly, we encode which cells represent the same
internal component of S. This motivates the following strategy for our PTAS. In a
first phase we compute the “optimal” structure of our solution. This structure is de-
scribed by edges between centers of cells and we minimize the total length of the
cell-to-cell edges we use. In a second phase, those cell-to-cell edges are replaced by
“real” edges.

6.1 Square Configuration

We describe the encoding in more detail. Let S be a square in QTa,b . The config-
uration C(S) of S is with respect to the irregular map M[S] and is given by the
following parameters.

(1) For every cell C we store a bit ρ(C) which indicates whether C is a portal cell.
(2) For every cell C we store a bit α(C) which indicates whether C is an anchor cell.

We require, that every anchor cell is also a portal cell, i.e., α(C) ⇒ ρ(C).
(3) A partition Z of the portal cells of S into at most r sets.

The anchor bit is not required to encode the interior of a square but necessary to
guarantee that our PTAS returns a connected tree. Intuitively speaking, ρ(C) indicates
an obligation to connect to C on some larger square. In this context the anchor bit
indicates that this obligation is handed over to the next larger square.

Lemma 14 The number of configurations for S is at most 2O(s2t log r).

Proof By Lemma 6, M[S] contains at most O(s2t) cells. We store two bits per cell,
ρ(C) and α(C). Furthermore, the partition of the portal cells into at most r compo-
nents can be encoded as a r-coloring of the cells. Altogether, we have

(
2O

(
s2t

))2 · 2O
(
s2t log r

)
= O

(
2O

(
s2t log r

))

configurations per rectangle. �

The configuration, where no bit is set is called the empty configuration. We write
C(S) = ©. The configuration of QTa,b , denoted by C(QTa,b) is a set which con-
tains tuples 〈S, C(S)〉 representing the configurations of all the squares in QTa,b

including S0.
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6.2 The Algorithm: First Phase

For every square S and every configuration C(S), we compute a value T [S, C(S)]
which can be seen as an almost tight upper bound to the cost of the optimal subtree
within S which has the structural properties specified by C(S). Hence, T [S0,©] is
an upper bound to val(S T ∗

a,b). Since val(S T ∗
a,b) is a good upper bound to val(S T ∗),

it suffices to quantify the gap between val(S T ∗
a,b) and T [S0,©]. This will be done

in Sect. 6.4.
If S is a leaf of QTa,b then we have exactly one cell C0 which contains a point

with odd integral coordinates. This point need not be contained in P . First we
check whether ρ(C) = 0 for all C ∈ M[S] − {C0}. If this is not the case, we store
T [S, C(S)] = ∞. Otherwise, we determine the penalty we pay in S. We have three
cases. If ρ(C0) = 1 and P ∩ C0 = ∅ then we place a Steiner point into C0 and set
T [S, C(S)] = cS. If ρ(C0) = 0 and P ∩C0 = {u} then we store T [S, C(S)] = π(u).
In all other cases, T [S, C(S)] = 0.

If S is an internal node of QTa,b we proceed as follows. Assume that S has level
l and let S1, . . . ,S4 denote its children. We enumerate all combinations of config-
urations for S1, . . . ,S4. Let C(S1), . . . , C(S4) be such a choice of configurations.
For every square Si , C(Si ) defines a partition Z(Si ) of the portal cells in Si into
at most r classes. We now construct a (not necessarily unique) forest Z(Si ) with the
portal cells of Si as vertices such that Z(Si ) has the property that two portal cells C1

and C2 belong to the same connected component of Z(Si ) if and only if they are in
the same partition of Z(Si ). For the sake of brevity, we use Z ′ = ⋃4

i=1 Z(Si ). Let
C be a portal cell and let C′ ∈ child[C]. If α(C′) = 1 then we say that C′ is an hook
cell of C. Recall, that Z ′ is a graph on the portal cells of the children of S. A choice
of configurations C(S1), . . . , C(S4) is admissible for a configuration C(S) if each of
the following conditions holds.

(C1) Every portal cell in S has at least one hook cell.
(C2) The parent in S of every anchor cell in some Si is a portal cell, unless S = S0.
(C3) All hook cells of a portal cell in S belong to the same connected component

of Z ′. Furthermore, there exists a graph D on the portal cells of
⋃

i Si which
has the following properties.

(C4) D uses only edges which cross the dissection lines that divide S into its chil-
dren.

(C5) Every connected component of D ∪ Z ′ contains at least one anchor cell, unless
S = S0.

(C6) Two portal cells C1 and C2 of S belong to the same partition class of Z(S) if
and only if their hook cells belong to the same connected component of D ∪ Z ′.

Remark 15 The relaxations of (C2) and (C5) are necessary to compute T [S0,©].
As the configuration © does not contain any portal cell at all, there would otherwise
be no admissible configuration of the children.

The length of an edge in D is the distance of the centers of the portal cells which
it connects in the Lq -metric. Let �q(D) denote the total length of D. If there is no
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combination which is admissible, we store ∞ in T [S, C(S)]. Otherwise, we choose
admissible configurations C(S1), . . . , C(S4) and a graph D such that

4∑

i=1

T [Si , C(Si )] + �q (D) +
∑

{C1,C2}∈D
[C(C1) + C(C2)] (8)

is minimal, where C(C1) and C(C2) denote the side length of the portal cells C1
and C2, respectively. In essence, the third part (the sum over all edges in D) of the
formula above is necessary to bound the deviation in length from the optimal stan-
dardized solution. This will later be explained in more detail.

Given C(S1), . . . , C(S4), we can use the following simple algorithm to compute
the graph D for which

�q(D) +
∑

{C1,C2}∈D
[C(C1) + C(C2)]

is minimal. Let K1, . . . , Kk denote components of the Z ′. Let B denote a com-
plete weighted graph on K1, . . . , Kk . If Ki and Kj belong to the same square, then
ω(Ki , Kj ) = ∞ due to (C4). Otherwise,

ω(Ki , Kj ) = min
c1∈V (Ki ),c2∈V (Kj )

{
dq (c1, c2) + C(c1) + C(c2)

}
, (9)

where dq(c1, c2) denotes the distance between the centers of c1 and c2. To compute
D, it suffices to compute minimum spanning forest on B subject to (C5) and (C6).
Due to (S1) we have at most r internal components in each Si and thus k ≤ 4r ,
i.e., the graph B has 4r vertices. As there are less than (4r)4r spanning forests on B
(cf. [1]), we can find D by enumeration in time O((4r)4r ).

It is quite obvious that we can find the configurations C∗(S1), . . . , C∗(S4) that
minimize (8) by exhaustive search. Let D∗

S
denote the optimal graph D correspond-

ing to C∗(·). We compute T [S0,©] by using a dynamic programming approach.
If we proceed bottom-up, it suffices to read the T [Si , C(Si )] from the lookup ta-
ble. We obtain T [S0,©] which corresponds to some configuration C(QTa,b) that
we have computed implicitly. One can easily check, that the running time of this
dynamic program is

(
2O

(
s2t log r

))5 · O
(
(4r)4r

)
· poly(n) = 2O

(
s2t log r

)
· O

(
(4r)4r

)
· poly(n)

= O
(
(4r)4rnO

(
s2·log r

))
.

6.3 The Algorithm: Second Phase

Note that the first phase of our algorithm can be easily modified such that it not only
returns T [S0,©] but also a configuration for QTa,b corresponding to T [S0,©] as
well as a collection of graphs

D(P ) := {
D∗

S : S ∈ QTa,b

}
.
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Intuitively speaking, this collection specifies which of the components are con-
nected in which square. Even more, the edges to be used are roughly described
by edges between centers of cells. During the second phase of our approximation
scheme, we construct a Steiner tree S T from D(P ). This time, we proceed in top-
down fashion. Let S T = ∅. For some square S at level l, we consider the graph D∗

S
.

Let c be some edge in D∗
S

which connects (the centers) of two cells C1 and C2. By
recursively following the hook cells of both C1 and C2 we determine points u1 and
u2 which serve as endpoints. In other words, starting at portal cell C1 we choose one
of its hook cells, then we choose an hook cell of this anchor cell, and so on. Thus,
we go to lower and lower levels in QTa,b until we reach a leaf. In a leaf, we find
by construction a point in P or Steiner point which we choose as u1. We proceed
similarly for C2, add the edge {u1, u2} to S T and mark c as done. As u1 and u2 are
within C1 and C2, (8) implies

Lemma 16 �q(S T ) ≤ T [S0,©].

In addition, we have to prove that S T is a Steiner tree on V (S T ) ∪ S(S T ), that
is, S T is cycle free and connected and spans all points in V (S T ) ∪ S(S T ).

Lemma 17 S T is a Steiner tree on V (S T ) ∪ S(S T ).

Proof From conditions (C1) and (C3) we obtain the following simple observation.
Assume we follow recursively all the hook cells of some portal cell C in a square
S—not just one path as in the second phase of PTAS. Then the points we reach
belong to the same internal component of S. We say that the portal cell C represents
those points. Thus, in the second phase of our PTAS, we may choose any of the points
that are represented by C. Now, one can easily check that S T is cycle free. It remains
to show, that S T is connected.

By (C3), (C5) and (C6) it is clear, that for every square S the points represented
by two portal cells C and C′ in S belong to the same internal component of S if
C and C′ belong to the same connected component of Z(S). We say that C and
C′ represent this component. Finally, the conditions (C2), (C5) and (C6) make sure
that S T is connected. Assume S T is just a Steiner forest and let K be a connected
component in S T . Let l be the highest level where K was represented by some portal
cell C. If α(C) = 1 then by (C2) its parent is portal cell. Otherwise, by (C5) we
would have connected K to some other component of S T which is by condition (C5)
represented by some anchor cell. Thus, K is also represented at level l − 1 which is a
contradiction. �

Note, that S T may in general be self-intersecting. It is well-known, that the length
of a Steiner tree which intersects can be improved by replacing crossing edges. We
can thus improve our solution in a last step.

6.4 Analysis

From Theorem 10, we obtain the following statement which yields together with
Lemma 16 the approximation ratio of our algorithm.
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Theorem 18 There are a, b ∈ {0,2,4 . . . ,L − 2} such that

T [S0,©] ≤ O
(

1 + 1

s
+ 1√

r

)
val

(
S T ∗).

Proof For a random choice of a and b, Theorem 10 guarantees that there is a stan-
dardized Steiner tree S T ∗

a,b such that

E
[
val

(
S T ∗

a,b

) − val
(

S T ∗)] = O
(

1

s
+ 1√

r

)
val

(
S T ∗), (10)

V (S T ∗
a,b) = V (S T ∗), S(S T ∗

a,b) = S(S T ∗) and S T ∗ � S T ∗
a,b . We later construct a

configuration of QTa,b from S T ∗
a,b which proves that

E
[
T [S0,©] − val

(
S T ∗

a,b

)] ≤ 4

s
val

(
S T ∗) + 4

s
E

[
val

(
S T ∗

a,b

)]
. (11)

Thus, we deduce from (10) that

E
[
T [S0,©] − val

(
S T ∗

a,b

)] ≤ 4

s
val

(
S T ∗) + 4

s
O

(
1 + 1

s
+ 1√

r

)
val

(
S T ∗)

= O
(

1

s
+ 1√

r

)
val

(
S T ∗).

Therefore both E[T [S0,©] − val(S T ∗
a,b)] and E[val(S T ∗

a,b) − val(S T ∗)] are
O(1/s + 1/

√
r)val(S T ∗), and we finally have

E
[
T [S0,©] − val

(
S T ∗)] = O

(
1

s
+ 1√

r

)
val

(
S T ∗).

Hence, there are a, b ∈ {0,2,4, . . . ,L − 2} such that

T [S0,©] ≤ O
(

1 + 1

s
+ 1√

r

)
val

(
S T ∗).

It remains to construct a configuration of QTa,b from S T ∗
a,b which proves (11).

Again, we proceed in bottom-up fashion. In the leaves of QTa,b we set the portal-bits
of those cells which contain a point of V (S T ∗

a,b)∪S(S T ∗
a,b). Then we move to level

t − 1. Let S be a square at level l. Assume there is a cell C ∈ M[S] which contains a
set E(C) of endpoints of external edges. Since edges which are external at level l are
also external at levels l + 1 through t , all children of C which contain points of E are
already portal cells. We set the anchor-bit of all those portal cells and set ρ(C) = 1.
Then clearly, both (C1) and (C2) hold. Note that we can derive the partition Z from
the internal components of S. As S T ∗

a,b is standardized, we deduce that (C3) holds.
Let E(S) denote the edges which appear at level l + 1 and have both endpoints

in S. All those edges cross at least one of the dissection lines which subdivide S

into its children. We construct D from E(S). Let {u1, u2} ∈ E(S) and let C1 and C2
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denote the cells in the children of S which contain u1 and u2, respectively. We add
the edge connecting C1 and C2 to D.

Recall that the length of edges in D is defined to be the distance between the cells’
centers. This distance may be longer than {u1, u2}, but the absolute difference is at
most C1 + C2, where C1 and C2 denote the side length of C1 and C2, respectively. In
addition, we have to pay C1 + C2 for the third part of the sum in (8). Thus, this edge
contributes at most dq(u1, u2) + 2C1 + 2C2 to T [S,∅]. Proceeding similarly for all
edges in E(S), we obtain D which clearly satisfies (C4) through (C6).

Let � = |T [S,©] − �q(S T ∗
a,b)| denote the total cost of this procedure. As in the

proof of Theorem 10, we will split � into �in and �out such that � = �in + �out. In
order to bound �out we use S T ∗ � S T ∗

a,b to charge the increase of length to edges
of the optimum. Let δl be defined as in (5). Thus we have to charge a cost of at most
2δl per endpoint. The remainder of this proof mimics that of Theorem 10. Finally, we
have

E[�out] ≤
t∑

l=0

∑

e∈E(S T ∗)
Pr

{
Ee,l

}
4δl

≤
∑

e∈E(S T ∗)

t∑

l=0

2l+1

L
�q (e)

4L

m
21−l

≤
∑

e∈E(S T ∗)

t∑

l=0

16

m
�q (e) = 4

s
�q

(
S T ∗).

For all other edges, we simply have

�in ≤
∑

e∈Ein

4�q (e)

s
≤

∑

e∈S T ∗
a,b

4�q (e)

s
≤ 4

s
�q

(
S T ∗

a,b

)

by Lemma 7, and thus also

E[�in] ≤ 4

s
E

[
�q

(
S T ∗

a,b

)]
.

We obtain (11) due to � = �in + �out. This completes the proof. �

Finally, using Theorem 10 and Lemma 16 one immediately obtains the following
statement.

Corollary 19 �q(S T ) ≤ O(1 + 1
s

+ 1√
r
)val(S T ∗).

Proof of Theorem 1 Recall, that the first phase of our PTAS has complexity
nO(s2·log r) whereas the running time of the second phase is clearly polynomial. Now,
choosing s = O(1/ε) and r = O(1/ε2) completes the proof. �
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7 Higher Dimensions and Other Generalizations

A natural question is, whether there is also PTAS in higher fixed dimension. If d ≥ 3
the number of cells in a (s, t)-map is �(td−1) and thus the running time of our algo-
rithm is no longer polynomial. However, we can construct a quasi-polynomial time
approximation scheme. Instead of using (s, t)-maps it is more convenient to place a
d-dimensional grid of granularity O(Sε/t) on a square of side length S. The remain-
ing parts of our proofs have straight-forward equivalents, so one can show Theorem 2.
Indeed, the whole analysis simplifies a lot if we use regular grids.

Our approach also extends to other tree problems. For example, assume that the
input contains an additional points set S0 which restricts locations for Steiner points,
i.e., every solution should satisfy S(S T ) ⊆ S0. This problem has a simple PTAS,
if Steiner points have zero cost. It is then sufficient to add S0 to P , to set the cor-
responding penalties to 0 and to chose cS = ∞. If we assign (potential different)
costs to the locations in S0, the problem still admits a PTAS which can be obtained
by slightly modifying our algorithm. This is insofar surprising, as the corresponding
network problem is not likely to be in A P X [16].
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