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Abstract Online search is a basic online problem. The fact that its optimal deter-
ministic/randomized solutions are given by simple formulas (however with difficult
analysis) makes the problem attractive as a target to which other practical online prob-
lems can be transformed to find optimal solutions. However, since the upper/lower
bounds of prices in available models are constant, natural online problems in which
these bounds vary with time do not fit in the available models.

We present two new models where the bounds of prices are not constant but vary
with time in certain ways. The first model, where the upper and lower bounds of
(logarithmic) prices have decay speed, arises from a problem in concurrent data struc-
tures, namely to maximize the (appropriately defined) freshness of data in concurrent
objects. For this model we present an optimal deterministic algorithm with compet-
itive ratio

√
D, where D is the known duration of the game, and a nearly-optimal

randomized algorithm with competitive ratio lnD

1+ln 2− 2
D

. We also prove that the lower

bound of competitive ratios of randomized algorithms is asymptotically lnD
4 .

The second model is inspired by the fact that some applications do not utilize the
decay speed of the lower bound of prices in the first model. In the second model,
only the upper bound decreases arbitrarily with time and the lower bound is con-
stant. Clearly, the lower bound of competitive ratios proved for the first model holds
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also against the stronger adversary in the second model. For the second model, we
present an optimal randomized algorithm. Our numerical experiments on the fresh-
ness problem show that this new algorithm achieves much better/smaller competitive
ratios than previous algorithms do, for instance 2.25 versus 3.77 for D = 128.

Keywords Search algorithms · Online algorithms · Competitive analysis ·
Game theory

1 Introduction

The online search problem is a fundamental on-line problem [5, 7]. In the problem,
a player searches for the maximum (minimum) price in a sequence of prices that un-
folds daily and varies unpredictably. For each day i, the player observes a price pi

and must decide whether to accept this price or to wait for a better one. The game
ends when the player accepts a price, which is also the result. The randomized on-
line search can be considered as a deterministic one-way trading problem in which
a player is exchanging her initial wealth in one currency (e.g. dollar) to another cur-
rency (e.g. yen) so as to maximize her final payoff while the price (or exchange
rate from dollar to yen) varies unpredictably. There is a known simple transforma-
tion of (randomized) online search to (deterministic) one-way trading [2, 5–7]: The
budget corresponds to probability 1 and exchanging some fraction of money (in de-
terministic one-way trading) means to stop the game with exactly that probability
(in randomized online search) [5, 7]. El-Yaniv et al. suggested optimal solutions for
several slight variants of the online search problem in which the upper/lower bounds
of prices are constants and known a priori to the player [5–7]. Since the optimal
solutions for these variants are quite simple computationally (that is, the amounts to
exchange are easy to compute, but the analysis is quite sophisticated), practical issues
can be transformed to online search in order to find optimal solutions [8–10]. Chen
et al. suggested another variant of the problem in which the next price r ′ depends on
the current price r in a geometric manner: r/θ ≤ r ′ ≤ rθ , where θ > 1 is the daily
fluctuation ratio [2]. For the variant, these authors presented closed-form solutions to
the competitive ratio.

However, there are still natural problems that cannot be transformed to any of
these variants in a tight way. One of them comes from the freshness problem of con-
current data objects. Freshness is a significant property of shared data objects and has
achieved great concerns in databases [3, 13, 17] as well as in caching systems [14–
16]. It is used to evaluate how recent the data (of a shared object) returned by a read
operation is when the object is continuously written by concurrent write operations.
Note that the object can be a set of registers that need to be read and written as a whole
atomically; the read/write operations in this case are multi-register read/write opera-
tions [11]. From the correctness point of view, the read-operation is allowed to return
any value concurrently written by one of the write-operations. However, from the ap-
plication point of view the read-operation is preferred to return the latest/freshest one
of the valid values, especially in reactive/detective systems. For instance, monitoring
sensors continuously concurrently input data via a shared object and the processing
unit periodically reads the data to make the system react accordingly. In such systems,
the freshness of data influences how fast the system reacts to environment changes.
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Fig. 1 An illustration for the
freshness problem

Figure 1 illustrates the freshness problem of concurrent data objects. The time
axis is from left to right. A read-operation R0 is running concurrently with three
write-operations W1,W2 and W3 and all the read/write operations access the same
data object. Each operation i starts at a point si and takes effect at a point ei (i.e.
linearization point [12]). The value returned by R0 will become fresher if more end-
points ei appear in the interval [s0, e0]. In the illustration, if R0 delays its endpoint
e0 by a time t , the value R0 returns at the time-point e′

0 = e0 + t will be fresher
than that returned at e0 since there are two more endpoints e2 and e1 included in the
interval [s0, e

′
0]. Note that either of e0 and e′

0 is valid to be R0’s linearization point
without changing R0’s semantics. However, the delay also makes R0 respond more
slowly. The freshness problem is to find an optimal delay t to maximize R0’s fresh-
ness value ft , for instance ft = |et |

t
where |et | is the number of new endpoints gained

by the delay t . In other words, if there are many points that are valid to be R0’s lin-
earization point, which point should R0 choose? The challenge is that endpoints of
concurrent write-operations will appear unpredictably and R0 must decide on-the-fly
whether to accept the current freshness value ft or to wait for a better one and lose
the current one. The freshness problem is a restricted case of online search [7] since
the upper/lower bounds of freshness values vary with time. Obviously, applying the
traditional online search algorithms [7] on the freshness problem will not give an
optimal result.

For more information on the freshness problem and how to model it as an online
search problem with time-varying bounds, the reader is referred to [4].

1.1 Our Contributions

Motivated by the freshness problem, we consider the following new online search
models in which the lower/upper bounds of prices vary with time instead of being
constants. Time-varying price bounds can be also an interesting problem in the finan-
cial setting where the time-varying bounds are expected to be determined sometimes
by microeconomic results.

The first model is a continuous model on time interval [1,D] with known duration
D and prices rt at time t that fulfill

rt ≤ ru · u

t
(1)
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for any times t < u and

M

D
≤ rt ≤ M

t
, ∀t ∈ [1,D], (2)

where M is the maximal allowed price at t = 1 and known a priori to the player.
With known D and M , the player needs to search for the maximum price, which is
unfolded on-the-fly over a continuous time interval. Given a current price, the player
has to decide whether to accept this price or to wait for a better one. The game ends
when the player accepts a price, which is also the result. The model is motivated by
the constraints on the freshness values in the freshness problem (cf. [4]). Particularly,
inequalities (1) and (2) come from the fact that the number of endpoints, which is
t · rt at time t in the model, always increases with time.

The second model is time-discrete with known duration D and known upper/lower
bounds of prices rt : m ≤ rt ≤ M(t), where the upper bound M(t) is a decreasing
function of time t . Prices are unfolded on-the-fly over a discrete time interval and
when a new price is observed, a new period starts. Note that the second model “con-
tains” the first one when D is large. Any instance of the first model can be transformed
to the second model where m = M

D
and M(t) = M

t
.

For the first model we present an optimal deterministic algorithm with competitive
ratio

√
D, where D is the known duration of the game, and a nearly-optimal random-

ized algorithm with competitive ratio lnD

1+ln 2− 2
D

. We also prove that no randomized

algorithm can achieve a competitive ratio better/less than, asymptotically, (lnD)/4.
Our analysis can be easily extended to more general models in which t in inequalities
(1) and (2) is replaced by tS , where S is any constant:

rt ≤ ru · uS

tS
, ∀t < u,

M

D
≤ rt ≤ M

tS
, ∀t ∈ [1,D].

For the second model, we suggest an optimal randomized algorithm with compet-
itive ratio

c∗ = max
1<t≤D

{
c

∣∣∣∣ c = t

(
1 −

(
c − 1

M(t)
m

− 1

)1/t)}
. (3)

Since this expression is hard to evaluate analytically, we add some numerical results
for M(t) = M

t
and m = M

D
in order to compare the competitive ratios in the case of

the freshness problem at the end of Section 3. We compare the new algorithm with
the previous algorithms, which are devoted to the previous models but now apply
to the new more restricted model. The results show that the new algorithm achieves
much better/smaller competitive ratios than the previous algorithms do, for instance
2.25 versus 3.77 for D = 128.

As for the relation between the new competitive ratio and the new lower bound,
since the adversary in the second model is less restricted (or stronger) than one in the
first model, the lower bound of competitive ratios (lnD)/4 holds also for the second
model. We chose to consider the stronger adversary in the second model because the
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randomized algorithm considers to stop with a certain probability only at increasing
prices, thus it does not even exploit the limited decay speed of prices in the first
model. Our numerical experiments suggest that the randomized algorithm with the
new competitive ratio c∗ is still not too far from the lower bound, despite the stronger
adversary. This is explained by the observation that slowly increasing prices seem
to be the worst case for the online player. In the lower-bound proof we consider
continuous time only because this simplifies the arguments. Note that when D is
large, the difference between continuous and discrete time models disappears.

The rest of this paper is organized as follows. Section 2 presents an optimal deter-
ministic algorithm and a nearly-optimal randomized algorithm for the first model. A
lower bound of competitive ratios for randomized algorithms in the first model is also
presented in this section. Section 3 presents an optimal randomized algorithm for the
second model. Section 4 concludes the paper with some remarks.

2 The First Model

In this section, we present an optimal deterministic algorithm and a nearly-optimal
randomized algorithm for the first model. We also present a lower bound on compet-
itive ratios of randomized algorithms.

We repeat our first online search model. With a duration D and the maximal al-
lowed price M at time t = 1 known a priori to the player, and prices rt at time t that
fulfill:

rt ≤ ru · u

t
, ∀t < u, (4)

M

D
≤ rt ≤ M

t
, ∀t ∈ [1,D] (5)

the player needs to search for the maximum price, which is unfolded on-the-fly over
a continuous time interval [1,D]. Given a current price, the player has to decide
whether to accept this price or to wait for a better one. The game ends when the
player accepts a price, which is also the result.

We define some notations, which are adapted to the geometry of the problem. In
particular, we work with logarithmic axes for both price and time. In the following,
let log-price be the logarithm of price. We normalize the log-price axis in such a way
that price M

D
corresponds to point 0 and price M to point lnD. This is convenient

because now, going one unit up the log-price axis increases the price by factor e

(Euler’s number).
We introduce some parameters characterizing the status of the game between on-

line player and adversary at any moment. Let t denote the time, initially t = 1. The
horizontal axis is for the logarithm of time t . We normalize it so that t = 1 corre-
sponds to point 0 and t = D corresponds to point lnD.

Defining f : Let f be the maximum log-price the adversary has already reached
during the history of the game, f (t) = maxu≤t ln(ru) − ln(M

D
).

Defining g: Let g be the maximum log-price the adversary can still achieve before
the game ends, g(t) = ln(M

t
) − ln(M

D
). In more detail, g corresponds to price M/t
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Fig. 2 Illustration for the proof
of Theorem 2

at time t , unless equality f = M/t is already reached, in which case we have g = f .
When g = f , the game is over without loss of generality, by the following argument:
The adversary herself cannot get higher than g and would therefore decrease the price
as quickly as possible, in order to make the player’s position worst. Hence the player
should stop immediately, exchanging all her remaining money. (The dotted polyline
in Fig. 2 illustrates the case f = g(t) in which the player should stop at time t .) We
also remark that, on a logarithmic time axis, g decreases at unit speed, starting at
point lnD, where lnD is an arbitrary scaling factor that will make the calculations
simpler (cf. Fig. 2).

Defining c: Let c denote the current log-price, as determined by the adversary.
Hence an instance of the problem is given by c as a function of time. Note that on a
logarithmic time axis, parameter c can decrease at most at unit speed (like g), but c

can jump upwards arbitrarily as long as c ≤ g (according to the model). Below we
always refer to the logarithmic time axis, without explicit mention.

2.1 Optimal Deterministic Algorithms

Unlike the original online search model [7], our first model has more restrictions on
the adversary (cf. inequalities (4) and (5)). The restrictions make the adversary in the
new model weaker than the adversary in the original model, and intuitively the player
in the new model should benefit from this. However, we will prove that this is not the
case for deterministic algorithms (cf. Theorem 2).

From inequality (5), we have the upper/lower bounds on the prices r :

M

D
≤ r ≤ M.
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Inspired by an online search algorithm called reservation price policy for the orig-
inal unrestricted model [7], we have the following deterministic algorithm for the
new restricted model:

Deterministic Algorithm RPP: The player accepts the first price that is not smaller
than r∗ = M√

D
.

Following the analysis of the reservation price policy in [7], we have Theorem 1.
The proof is presented here to make this paper self-contained.

Theorem 1 The suggested deterministic algorithm is competitive with competitive
ratio c = √

D.

Proof Let r∗ be the threshold for accepting a price and rmax be the highest price
chosen by the adversary. The player waits for a value rt ≥ r∗. If such a price appears
in the interval D, the player accepts it and returns it as the result. Otherwise, when
waiting until the time D, the player must accept the value rmin = M

D
.

Case 1: If the player chooses a large value as r∗, the adversary will choose
rmax < r∗, causing the player to wait until the time D and accept the value rmin = M

D
.

The competitive ratio in this case is c1 = rmax

M/D
< r∗

M/D
.

Case 2: If the player chooses a small value as r∗, the adversary will place r∗ at
a time t = 1, causing the player to accept the value and stop. Right after that, the
adversary lifts the price to the maximal value M . The competitive ratio in this case is
c2 = M

r∗ .
Therefore, the player chooses r∗ so as to make c1 = c2, which results in r∗ = M√

D

and the competitive ratio c = c1 = c2 = √
D. �

We now prove that no deterministic algorithm can do better for the new model.

Theorem 2 The optimal deterministic competitive ratio is asymptotically (subject to
lower-order terms)

√
D.

Proof We only need to show an adversary strategy that enforces the claimed com-
petitive ratio. Our logarithmic coordinates make the argument rather simple: The
adversary starts with c = lnD

2 . Then she decreases c at unit speed until the player
stops. Immediately after this moment, c jumps to g if c > 0 at the stop time (Case 1),
otherwise c keeps on decreasing at unit speed (Case 2). Clearly, we have constantly
g − c = lnD

2 until the stop time. Let p be the player’s value of log-price. In Case
(1) we finally get f = g, hence f − p = g − c = lnD

2 (cf. the dashed polyline c1 in
Fig. 2). In Case (2), f has still its initial value lnD

2 whereas p ≤ 0, hence f −p ≥ lnD
2

(cf. the line c2 in Fig. 2). Thus the competitive ratio is at least e
lnD

2 = √
D. �

We have shown that a deterministic player cannot benefit from the constraints on
the behavior of price in time (compared to the unrestricted online search problem).
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2.2 Competitive Randomized Algorithms

Next we present a randomized algorithm for the new online search model, against the
oblivious adversary [1]. It achieves a competitive ratio c = lnD

1+ln 2− 2√
D

.

As discussed in the previous section, the new model is a restricted case of online
search. In the model, the adversary’s payoff is the highest price ever reached. The
player’s payoff is the price at the moment when she stops. Note that for a player
running a randomized strategy, the payoff is the expected price, with respect to the
distribution of stops resulting from the strategy and input.

We shall make use of a known simple transformation of (randomized) online
search to (deterministic) one-way trading [7]: The player has some budget of money
(e.g. in dollars) and she wants to exchange (e.g. from dollars to yen) while the prices
may vary over time. Her goal is to maximize her gain. The transformation is given
as follows: The budget corresponds to probability 1, and exchanging some fraction
of money (in deterministic one-way trading) means to stop the game with exactly
that probability (in randomized online search). Note that a deterministic algorithm
for online search has to exchange all money at one point in time.

For the new model, it is possible to apply a well-known competitive randomized
algorithm EXPO [7]. Applying the EXPO algorithm on the new model achieves a

competitive ratio � 2�−1+1/ ln 2

2�−1+1/ ln 2− 1
ln 2

, where � = log2 D. That means for the new model

our randomized algorithm is better than the EXPO algorithm by a constant factor
1+ln 2

ln 2 when D becomes large.
We start with some conventions. Without loss of generality, the amount of money

of the online player is set to lnD. We imagine that all money, both the exchanged
and non-exchanged money, is distributed on the log-price axis. Moreover, the player
can temporarily have some of the money in her pocket. Formally, the allocation of
money on the log-price axis at any time is described by two non-negative real density
functions A and B , defined as follows. A(x) is the density of already exchanged
money in point x of the log-price axis. That is, A(x) represents the accumulated
density of the money being exchanged when point c = x has been visited. B(x) is
the density of not yet exchanged money in point x of the log-price axis. Unlike A,
function B is just an imaginary construct used for accounting purposes, to keep track
of the money not yet exchanged. The algorithm’s job is to transfer probability mass
from B to A without loss. The way this is done by the algorithm depends on the way
the adversary moves the price. This will be detailed in the proof below.

The value of every piece of exchanged money is the price corresponding to its
position on the log-price axis. Therefore the total value of exchanged money, which is
the integral over the value-by-density product, gives the player’s payoff in the game.

Theorem 3 There is a randomized algorithm for the freshness problem with expected
competitive ratio lnD

1+ln 2− 2√
D

against an oblivious adversary.

Proof First we describe how the algorithm works, using the status parameters and
density functions introduced earlier.
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0. In the beginning, we put the not-yet-exchanged money on interval [0, lnD] of the
log-price axis, with density 1. Formally: B(x) = 1 for all x ∈ [0, lnD].

1. As g decreases with unit speed, the player takes the money above g away
(B(x) := 0 for all x > g) and puts it in her pocket.

2. Whenever f increases, the player also takes the money below f away (B(x) := 0
for all x < f ) and puts it in her pocket.

3. The player continuously locates exchanged money on the log-price axis, observing
the following rule: Whenever you have money in your pocket and c is positive and
decreasing, and A(c) < 2 holds at the current c, then set A(c) := 2, by taking
money from your pocket.

4. If the game is over (because of f = g) and not all money is exchanged yet, the
player puts the rest r of her money on the current c.

Note that the adversary must set the final c nonnegative due to the lower bound on
prices c (cf. inequality (5)). It is obvious from steps 0-2 that we always have B = 1
on [f,g], and B = 0 outside [f,g].

The idea of the new algorithm is to guarantee some concentration of exchanged
money immediately below the final f , not too far from f . Locating much money
instantaneously is risky because c may jump upwards, and then this money has little
value compared to the adversary’s. On the other hand, since c can decrease only with
limited speed, the player may completely abstain from exchanging money as long as
c is increasing, and wait until c goes down again. This makes the main difference
between the new algorithm and the previous algorithms [7]: the former utilizes the
lower bound and exchanges money when the price is decreasing, whereas the latter
exchanges money when the price is increasing.

After these intuitive thoughts, we start proving the performance guarantee now.
First of all, the player is always able so set A(c) := 2 at the current c (as demanded

in 3): Note that the player can use the one unit of money from B she obtains per time
unit from the part above the falling g, and also the money from B she got directly
from the current c when f was going upwards.

In the following, δx refers to Dirac’s delta function, i.e., the distribution which has
infinite density at a single point x, density 0 elsewehere, and integral 1 on any interval
that contains x.

By construction, the player produces a density function A that is constantly 2 on
certain intervals and constantly 0 outside these intervals, plus a single component
rδc . In the following, a full interval is a maximal interval where A = 2 holds, or
the final point c where r units of money is located, and a gap is a maximal interval
between two full intervals, note that we have A = 0 in a gap. We make some crucial
observations regarding the final situation: (1) We have A(x) = 2 for all x ∈ (c, f ], or
it holds c = f ; (2) The gaps have total length at most r .

These claims follow easily from the algorithm: (1) Either c begins decreasing,
starting from the last f , and A(c) is set to 2 all the time when c > 0 (as we saw
above), or the final c equals the final f . (2) Whenever f went upwards, the player
has taken from B the money corresponding to the increase of f , and later she has
transferred it to A and located it at the same points again. Hence, we have A = 0 only
on intervals not “visited” again by c, and the money taken from B on these intervals
is still in the player’s pocket and thus contributes to r .
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Fig. 3 Illustration for the randomized algorithm

Figure 3A illustrates the player’s behavior. The dashed line represents a variation
of c in a game; point c is the final value of c when the game ends, i.e. f = g(t). For
all values v on the log-price axis between f and a and between a and c, the player
sets A(v) = 2.

Using (1), (2) we now analyze the payoff the player can guarantee herself. Re-
member that the value of exchanged money located on the log-price axis decreases
exponentially. Let x = f − c (final values). Both r and x depend on the input, i.e.,
the behavior of c in time. The total amount of money is fixed, it equals lnD. For
any fixed r, x, the worst case is now that the gaps sum up to the maximum length r

and are as high as possible on the log-price axis, that is, immediately below point c,
because in this case all exchanged money outside [c, f ] has the least possible value.
That is, [c − r, c] is the only gap.

Figure 3C illustrates the worst case corresponding to an instance 3B, where solid
lines represent full intervals. In the worst case, the adversary shifts all solid lines
except for [c, f ] to the lowest possible position so as to minimize the player’s payoff.
Let the lower solid line be [x + r, y] on the axis going down from f . The total amount
of money in the worst case is

2x + r + 2(y − (x + r)) = lnD ⇒ y = r + lnD

2
.

Hence, a lower bound on the player’s payoff, divided by the value at f , is given
by

min
r,x

(
2
∫ x

0
e−t dt + re−x + 2

∫ (r+lnD)/2

x+r

e−t dt

)
,
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where we started integration (with t = 0) at point f and go down the log-price axis
(cf. Fig. 3C). Verify that, in fact,

∫
T dt = lnD. The above expression evaluates to

2 + (r − 2 + 2e−r )e−x − 2e−(r+lnD)/2 > 2 + (r − 2 + 2e−r )e−x − 2/
√

D.

For any fixed x, this is minimized if 2e−r = 1, that is, r = ln 2. Since now r − 2 +
2e−r = ln 2 − 2 + 1 < 0, the worst case is x = 0, which gives 1 + ln 2 − 2/

√
D. The

adversary earns lnD times the value at f . �

2.3 The Lower Bound of Competitive Ratios for Randomized Algorithms

In this section, we present the lower bound of competitive ratios for randomized
online search (or deterministic one-way trading) in the first model.

Theorem 4 The competitive ratio for the first model is Ω(lnD). More precisely, for
every ε > 0 there exists Dε such that for all D > Dε , no algorithm for the first model
can achieve a competitive ratio better than (lnD)/4 − ε.

Proof First we consider a modified game where negative log-prices (prices below
M/D) are permitted. In the final analysis we will adjust this assumption and consider
the original game where log-prices must be nonnegative all the time.

(1) We describe two primitives that our adversary will use in her strategy below.
Firstly, the adversary can move not-yet-exchanged money to the player’s pocket.

Secondly, the adversary can modify A in a special way: She can move pieces of
exchanged money on the log-price axis, and multiply their amount (!) by 1/e if they
are moved one unit upwards (or multiply their amount by e if they are moved one unit
downwards). The effect is that the total value of exchanged money, i.e., the player’s
payoff, remains the same. This manipulation will only be used for keeping function
A simple.

According to the one-way trading setting, the player can only place money con-
tinuously on the log-price axis at the current point c and thus increase A(c).

Finally, let s be some parameter between 0 and 1 that we fix later.
(2) Now we are prepared to specify the adversary’s strategy. Let h be another time-

varying log-price value with f ≤ h ≤ g. At the beginning we set c = f = h = s lnD

and g = lnD. As an invariant, we keep B(x) = 1/(1 − s) for all x ∈ [h,g], and
B(x) = 0 for all x /∈ [h,g] all the time. (Since the total amount of money is lnD,
this is consistent in the beginning.) Other not-yet-exchanged money is always moved
to the player’s pocket. As long as the player keeps some handed-out money in her
pocket, the adversary decreases c at unit speed, and increases h at unit speed. When-
ever the player runs out of money, the adversary sets immediately c := h. If the player
even “raises a loan”, i.e., takes extra money from [h,g] for immediate exchange,
which is of course allowed by the game, the adversary increases h accordingly (go-
ing to higher c), so as to keep B(x) = 1/(1 − s) for all x ∈ [h,g]. Note that f = h

holds after every such increase. As soon as h = g is reached, all money not yet ex-
changed is in the player’s pocket, hence equality h = g is kept until the game ends
with f = h = g.
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Fig. 4 Illustration for the proof of Theorem 4

Figure 4 illustrates the adversary’s strategy. Up to point M the player exchanges all
money in her pocket and thus the adversary increases c at unit speed. At point M , the
player keeps some handed-out money in her pocket and thus the adversary decreases c

at unit speed. At point N , the player spends all money in her pocket and the adversary
in response sets immediately c := h, i.e. moves c upwards to point P . When h = g at
point Q, h, together with g, goes down at unit speed. The game ends when the player
has exchanged all money at C, where f = g = h.

(3) We have not yet specified how the adversary handles function A. (Remember
that the adversary may modify function A describing the exchanged money which
the player has put on the log-price axis.) This is not part of the strategy, but of the
analysis.

We show the following invariants: The adversary can always hold A(x) = 0 for all
x > f , A(x) ≤ 4/(1 − s) for all x ∈ [c, f ], and even A(x) ≤ 2/(1 − s) for all x < f

when f = h.
This is vacuously true in the beginning, since no money has been exchanged yet.

As long as the player exchanges all her money immediately, we have c = f = h,
increasing at unit speed, so that the player receives 2/(1 − s) units of money per time
unit. Hence A(x) ≤ 2/(1 − s) holds at all points x passed by c on the log-price axis
(e.g. from point K up to point M in Fig. 4). If the player withholds some money in her
pocket, c is going downwards while h is going upwards, both at unit speed. In such
periods, the player also receives 2/(1 − s) units of money per time unit. The player
gets the highest possible payoff if she exchanges this money immediately (up to an
infinitesimal rest). Any portion exchanged with delay can be moved upwards and
reduced by the adversary. This way the adversary can always hold A(x) ≤ 4/(1 − s)

for all x ∈ [c, f ].
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For instance, let AKM(x) and AMN(x) be the amounts of money put on each point
x of the path going from K up to M and of the path going from M down to N , re-
spectively. We have AKM(x) ≤ 2/(1− s) and AMN(x) ≤ 2/(1− s). Therefore, every
point x on the log-price axis between M and N has A(x) = AKM(x) + AMN(x) ≤
4/(1 − s).

Whenever the player decides to exchange all money she currently has in her
pocket, we are back to case c = h = f . Along with this jump of c, the adversary
can move exchanged money (e.g. AMN ) upwards to the gap between the previous
f (point M) and new f = h (point P ), so that A(x) ≤ 2/(1 − s) is recovered at
all points x < f . (The money fits because the gap between f and h had previously
increased at unit speed.)

(4) The final analysis step of our proof compares the payoffs of player and ad-
versary. We denote by F the final value of f . The invariants in (3) yield an upper
bound on the player’s payoff. More precisely, we only use that A(x) = 0 for x > F ,
and A(x) ≤ 4/(1 − s) for x ≤ F . For convenience we transform the log-price coordi-
nates by y := F − x, that is, y > 0 denotes the distance from F , of points x below F

(cf. Fig. 4B). Remember that the value of exchanged money decreases exponentially
down the log-price axis, hence it decreases now exponentially with y. The adversary
(as the optimal off-line player) would place all lnD units of money at F , that is, at
point y = 0 in the new coordinates. The ideal case for the player would be that A

has maximum density 4/(1 − s) everywhere below F . Thus, an upper bound on the
inverse competitive ratio is given by

4

(1 − s) lnD

(∫ ∞

0
e−ydy

)
= 4

(1 − s) lnD
.

However, in the original game, c ≥ 0 is required at every moment. We let our
adversary behave as before, as if negative c were allowed, but actually she stays on
c = 0 as long as the fictitious c is negative. Hence, all money exchanged at points
c < 0 must be finally moved to point 0. Since the adversary would exchange all
money at the final F ≥ s lnD, the best possible competitive ratio would be achieved
when F = s lnD (i.e. the player always keeps some money in her pocket from the
beginning, line c′ in Fig. 4). Therefore, the ideal case for the player would be that
A(y) = 4/(1 − s) for every point 0 ≤ y < s lnD and the remaining (1 − 4s

1−s
) lnD

units of money are exchanged at y = s lnD (cf. Fig. 4B). The upper bound on the
inverse competitive ratio is now given by

1

lnD

(
4

1 − s

∫ s lnD

0
e−ydy + e−s lnD

(
1 − 4s

1 − s

)
lnD

)

= 4

(1 − s) lnD

(
1 − 1

Ds

)
+ 1

Ds

1 − 5s

1 − s

= 4

(1 − s) lnD
+ O(1/Ds). (6)

For any fixed s > 0, and D large enough, 1/Ds becomes negligible compared
to 1/ lnD. Since this holds for arbitrarily small s > 0, the inverse competitive ratio
comes arbitrarily close to 4

lnD
. �
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As a remark, we can apply the same analysis and get the same results for more
general models with the bounds of prices decreasing like 1/tS , where S is any con-
stant:

rt ≤ ru · uS

tS
, ∀t < u,

M

D
≤ rt ≤ M

tS
, ∀t ∈ [1,D].

Note that the bound still decreases linearly in the logarithmic coordinates, the ex-
ponent is just turned into a factor, but scaling factors do not affect the competitive
ratios.

3 Optimal Randomized Algorithms for the Second Model

We repeat the second online search model. With a known duration D and known
upper/lower bounds of prices ri : m ≤ ri ≤ M(i), where the upper bound M(i) is a
decreasing function of time i, the online player is searching for the maximum price.
Prices are unfolded on-the-fly over a discrete time interval and when a new price is
observed, a new period starts. Given a current price, the player has to decide whether
to accept this price or to wait for a better one. The game ends when the player accepts
a price, which is also the result.

There is a known simple transformation of (randomized) online search to (de-
terministic) one-way trading [7]: The budget corresponds to probability 1 and ex-
changing some fraction of money (in deterministic one-way trading) means to stop
the game with exactly that probability (in randomized online search). Therefore, the
randomized online search in this section is presented in the form of a deterministic
one-way trading. The one-way trading model corresponding to the second model is
as follows. With a known duration D and known upper/lower bounds of prices (yen
per dollar) ri : m ≤ ri ≤ M(i), where the upper bound M(i) is a decreasing function
of time i, the online player or player needs to trade her initial wealth W0 given in
dollar to yen efficiently. Prices are unfolded on-the-fly over a discrete time interval
and when a new price is observed, a new period starts. Given a current price, the
player has to decide how many of her dollars should be exchanged to yen at the cur-
rent rate. Without loss of generality, assume that the player’s initial wealth is one
dollar, W0 = 1.

In this section, we find a new optimal competitive ratio c∗ for the second model,
which is then used in the threat-based policy [7] to create an optimal algorithm for
the second model. The algorithm is computationally simple: the amount of money to
exchange in every step follows a simple formula. This makes the algorithm suitable
for real applications.

Obviously, we can not achieve an optimal competitive ratio by directly applying
the threat-based algorithms of the original models [7], where the upper bound of
prices is a constant, to the new model, where the upper bound decreases with time.
In the new model the adversary is clearly more restricted and thus the player should
benefit from that. Hence, the analysis must adapt to the new model. We decide to
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use the same flow for our analysis as that of original models because we think it is
the most natural, but the technical details have to be adapted non-trivially at various
places.

Particularly, our analysis must exploit the time-decreasing upper bound M(i) to
achieve better competitive ratio than that of the original analysis in which the upper
bound is a constant, M(1), and known a priori to the player. However, the challenge
is that although the price ri at a time 1 < i ≤ D is less than M(i), previous prices rj ,
where 1 ≤ j < i, can be as high as M(1). Since the prices the player has observed
until a time i in the new model have the upper bound M(1) as in the original model,
simply adopting the original analysis for the new model cannot achieve any improve-
ment on the competitive ratio.

In order to exploit the time-decreasing upper bound, our analysis utilizes the in-
trinsic feature of the threat-based policy: the policy considers the current price only
if it is the highest seen so far. If the length k of increasing sequences of prices was
known a priori to the player, M(k) could be used as the actual upper bound of the
corresponding original sequences of prices. Although the length k is controlled by
the adversary and thus it is unknown to the player, the player only needs to know
the maximum competitive ratio c∗ achievable by the adversary to follow the threat-
based policy (explanation is given below). Therefore, unlike the original analysis, our
analysis first finds the maximum achievable competitive ratio c(k) for a known fixed
k and then computes c∗ = max1≤k≤D c(k).

Let k ≤ D be the length of an increasing sequence of prices m ≤ p1 < p2 < · · · <
pk ≤ M(K), where K is the index of pk in the original sequence, k ≤ K . Since M(i)

is a decreasing function, M(K) ≤ M(k). This follows m ≤ p1 < p2 < · · · < pk ≤
M(k).

For instance, if we have a sequence R of prices {1,2,4,3,7,5,6} with D = 7, then
the corresponding increasing sequence P of the prices is {1,2,4,7} with k = 4. Note
that R[5] = 7 is included in the increasing sequence as P [4] and R[4] = 3 is ignored
since R[3] > R[4]. We have P [4] ≤ M(5) < M(4), since P [4] corresponds to R[5]
(i.e. time/step 5) in the original sequence R and M(i) is a decreasing function.

We will prove that the optimal competitive ratio c∗ is

c∗ = max
k=2...D

{
c

∣∣∣∣ c = k

(
1 −

(
c − 1

M(k)
m

− 1

)1/k)}
. (7)

For each D given, we find the ratio c∗ that satisfies (7) by simply computing c for
each k = 2,3, . . . ,D and then choosing the maximum c as c∗. With the competitive
ratio c∗ found, the player follows the threat-based policy as in [7]:

– Consider exchanging dollar to yen at the current price only if it is the highest seen
so far;

– When exchanging dollar, exchange just enough dollar at the current price to ensure
the competitive ratio c∗ even if the adversary then drops the rate to the minimum
and keeps it there until the end.

The amount of dollar si that should be exchanged at the current price ri is:

s1 = 1

c
· r1 − mc

r1 − m
and si = 1

c
· ri − ri−1

ri − m
, ∀i ≥ 2, (8)
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where c = c∗, r1 ≥ mc∗ and ri−1 = max1≤j≤i−1 rj . If none of prices given is larger
than mc∗ until the end of game, the player can achieve the competitive ratio c∗ by
just exchanging all her dollars at the minimal price m at the end of game.

Since the threat-based algorithms is influenced only by the increasing sequence
of given prices (cf. Rule 1), henceforth we consider threat-based algorithms on the
increasing sequence P = p1,p2, . . . , pk , where p1 < p2 < · · · < pk . This implies

s1 = 1

c
· p1 − mc

p1 − m
and si = 1

c
· pi − pi−1

pi − m
, ∀i ≥ 2. (9)

As we know, the competitive ratio c used in formula (9) is the target competitive
ratio that the player tries to achieve. Obviously, the ratio cannot be an arbitrary small
number. For instance, if the player chooses c = 1, she will exchange all her dollars at
the first price r1 since s1 = 1. Then she will run out of dollars to exchange when the
adversary issues a higher price r2 in the next step and thus the player fails to achieve
the competitive ratio c = 1. Therefore, the player following the threat-based policy
achieves a competitive ratio only if the chosen ratio is large enough.

The following lemmas are inspired by the analysis of the original threat-based
policy in [7].

Definition 1 Given a sequence R of prices, a threat-based algorithm Ac as defined
by formula (9) with a ratio c, is c-proper with respect to R if

– the sum of daily exchanged dollars si computed by Ac is not larger than 1, the
initial wealth (i.e.

∑
1≤i≤k si ≤ 1) and

– the resulting ratio of optimal offline return to online return Ac(R) is not larger
than c (i.e. OPT(R)

Ac(R)
≤ c).

Lemma 1 The threat-based algorithm following formula (9) with c = c′ is guar-
anteed to achieve the competitive ratio c′ as long as there are enough dollars to
exchange until the end of the game.

Proof Let Di and Yi be the number of dollars and yen after the exchange at a step
i of an increasing sequence of prices P = p1,p2, . . . , pk . We will prove that at any
step i the algorithm always achieves a competitive ratio c′ even if the adversary drops
the rate to minimum in the next step and keeps it there until the end of a game, i.e.

pi

Yi + mDi

≤ c′,∀1 ≤ i ≤ k. (10)

We prove this lemma by induction. For the case i = 1, we have

p1

Y1 + mD1
= p1

p1s1 + m(1 − s1)
= c′.

Therefore, inequality (10) is correct for i = 1. Assume that the inequality is correct
for i = k − 1, i.e.,

pk−1

Yk−1 + mDk−1
≤ c′. (11)
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We will prove that the inequality is also correct for i = k, i.e.,

pk

Yk + mDk

≤ c′. (12)

Indeed, as long as there are enough dollars to exchange until the end, we have

pk

Yk + mDk

= pk

(Yk−1 + skpk) + m(Dk−1 − sk)

= pk

(Yk−1 + mDk−1) + sk(pk − m)

≤ pk

pk−1
c′ + pk−pk−1

c′
= c′ (inequality (11) and formula (9)). �

Lemma 2 If Ac is c-proper with respect to an price sequence R, then for any c′ ≥ c,
Ac′ is c′-proper with respect to R.

Proof Let si and s′
i are amount of dollars converted on day/step i by Ac and Ac′ ,

respectively. Following formula (9), we have

s1 − s′
1 = p1

p1 − m

(
1

c
− 1

c′

)
≥ 0,

si − s′
i = pi − pi−1

pi − m

(
1

c
− 1

c′

)
≥ 0, ∀i ≥ 2.

Therefore,
∑

i s
′
i ≤ ∑

i si ≤ 1 since Ac is c-proper. That means Ac′ satisfies
the first condition of c′-proper. Moreover, from Lemma 1 it follows that Ac′
achieves a competitive ratio c′ with respect to R, satisfying the second condition
of c′-proper. �

Lemma 2 implies the following corollary.

Corollary 1 If c∗ is the maximum competitive ratio that is achievable by the ad-
versary when the player follows the improved threat-based policy, Ac∗ is c∗-proper
regardless of the actual sequence of prices created by the adversary.

Indeed, for each sequence R of prices, there exists the smallest competitive ratio c

so that Ac is c-proper with respect to R. Since c∗ is the maximum competitive ratio
that is achievable by the adversary, c∗ ≥ c. From Lemma 2 it follows that Ac∗ is
c∗-proper with respect to R.

The main idea of the following analysis is to find the maximum competitive ratio
c∗ that is achievable by the adversary when the player follows the threat-based pol-
icy. The competitive ratio will then become the competitive ratio of the threat-based
policy for the new one-way trading model and will be known by the player since it is
computed using only known information: the duration D, the lower bound m and the
upper bound function M(i) (cf. equation (7)).
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Henceforth, we assume that if k is fixed, k is known to the online player. Since it
is trivial for the player to achieve the competitive ratio 1 when k = 1, without loss of
generality we assume k > 1.

Lemma 3 For fixed k > 1, the maximum competitive ratio that the adversary can
achieve is

c(k) = kp∗

km + (p∗ − m)
(13)

where p∗ is the unique root in [m,M(k)] of function

f (p) = (p − m)
k

k−1 + mk(p − m)
1

k−1 − m(k − 1)(M(k) − m)
1

k−1 = 0.

The maximum is achieved when

p1 = p∗ and
pi − pi−1

pi − m
= 1 −

(
p∗ − m

M(k) − m

)1/(k−1)

, ∀i ∈ [2, k]. (14)

Proof Since the player spends his dollars only on the increasing sequence p1,p2, . . . , pk ,
we have

∑k
i=1 si = 1. Replacing si using formula (9), we obtain

1

c

p1 − cm

p1 − m
+ 1

c

k∑
i=2

pi − pi−1

pi − m
= 1

which results in a formula for c

c = 1 + p1 − m

p1
·

k∑
i=2

pi − pi−1

pi − m
. (15)

On the other hand,

k∑
i=2

pi − pi−1

pi − m
=

k∑
i=2

(
1 − pi−1 − m

pi − m

)
= k − 1 −

k∑
i=2

pi−1 − m

pi − m

≤ k − 1 − (k − 1)

( k∏
i=2

pi−1 − m

pi − m

)1/(k−1)

= (k − 1)

(
1 −

(
p1 − m

pk − m

)1/(k−1))
.

Equality occurs if and only if pi−1−m

pi−m
= (

p1−m
pk−m

)1/(k−1) ∀i ∈ [2, k].
Applying the inequality on (15) follows

c ≤ 1 + p1 − m

p1
· (k − 1)

(
1 −

(
p1 − m

pk − m

)1/(k−1))
.
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Since the right side increases with pk and pk ≤ M(k), we have

c ≤ 1 + p1 − m

p1
· (k − 1)

(
1 −

(
p1 − m

M(k) − m

)1/(k−1))
. (16)

Let u = (p1 − m)1/(k−1) ≥ 0 and v = (M(k) − m)1/(k−1) > 0, the right side be-
comes

c(k)(p1) = 1 + (k − 1)

(
uk−1v − uk

p1v

)
.

The derivative of c(k)(p1) can be written as follows

dc(k)(p1)

dp1
= −uk + mku − m(k − 1)v

p2
1v

.

Let f (u) = uk + mku − m(k − 1)v. Since (i) f (u) increases with u ≥ 0 and
(ii) f (0) = −m(k − 1)v < 0 as well as f (v) = vk + mv > 0 for all v > 0, k > 1,
equation f (u) = 0 has a unique positive root u∗. Moreover,

d2c(k)(u∗)
dp1

= − k((u∗)k−1 + m)

p2
1v(k − 1)(u∗)k−2

< 0.

Therefore, c(k)(p1) achieves its maximum at u∗ or at p1 = p∗ = (u∗)k−1 + m.
From f (u∗) = (u∗)k + mku∗ − m(k − 1)v = 0, we have

u∗

v
= m(k − 1)

(u∗)k−1 + mk
, or

(
p∗ − m

M(k) − m

)1/(k−1)

= m(k − 1)

p∗ + m(k − 1)
.

Replacing p1 by p∗ in the right side of inequality (16) follows

c(k)(p∗) = 1 + p∗ − m

p∗ · (k − 1)

(
1 −

(
p∗ − m

M(k) − m

)1/(k−1))

= 1 + p∗ − m

p∗ · (k − 1)

(
1 − m(k − 1)

p∗ + m(k − 1)

)

= kp∗

km + (p∗ − m)
.

Inequality (16) becomes:

c ≤ kp∗

km + (p∗ − m)
.

The equality occurs when

p1 = p∗ and
pi − pi−1

pi − m
= 1 −

(
p∗ − m

M(k) − m

)1/(k−1)

, ∀i ∈ [2, k]
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where p∗ = (u∗)k−1 + m and u∗ is the unique positive root of function f (u) = uk +
mku − m(k − 1)v = 0. �

Lemma 4 For fixed k > 1, c(k) is the unique root, c, of

c = k ·
(

1 −
(

c − 1
M(k)

m
− 1

)1/k)
. (17)

Proof The worst k-step sequence P ′ = p′
1, . . . , p

′
k created by the adversary has the

following properties from Lemma 3.

p′
1 = p∗ and

p′
i − p′

i−1

p′
i − m

= 1 −
(

p∗ − m

M(k) − m

)1/(k−1)

, ∀i ∈ [2, k]

where c(k) = kp∗
km+(p∗−m)

.

Since s′
i = 1

c
· p′

i−p′
i−1

p′
i−m

,∀i ∈ [2, k], we have s′
2 = · · · = s′

k . On the other hand,

s′
1 = 1

c
· p′

1 − cm

p′
1 − m

= 1

c(k)
· p∗ − c(k)m

p∗ − m

= p∗ + m(k − 1))

kp∗ · p∗(p∗ − m)

(p∗ − m)(p∗ + m(k − 1))

= 1

k
.

Since
∑k

i=1 s′
i = 1, we have

s′
1 = s′

2 = · · · = s′
k = 1/k. (18)

From formula (9), we have:

s′
i = 1

c(k)
· p′

i − p′
i−1

p′
i − m

,∀i ≥ 2

⇒ 1

k
= 1

c(k)
·
(

1 −
(

p′
1 − m

M(k) − m

)1/(k−1))
(Lemma 3)

⇒ c(k) = k

(
1 −

(
p′

1 − m

M(k) − m

)1/(k−1))
. (19)

From formula (9), we also have:

1

k
= s′

1 = 1

c(k)
· p′

1 − c(k)m

p′
1 − m
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⇒ p′
1c

(k) − mc(k) = p′
1k − kmc(k)

⇒ p′
1 = mc(k)(k − 1)

k − c(k)
. (20)

Replacing p′
1 in c(k) (see (19)) by the right side of (20) follows

c(k) = k

(
1 −

(
mk(c(k) − 1)

(k − c(k))(M(k) − m)

)1/(k−1))
. (21)

Expanding (21) follows

k − c(k)

k
=

(
mk(c(k) − 1)

(k − c(k))(M(k) − m)

)1/(k−1)

⇒ k − c(k)

k

(
mk(c(k) − 1)

(k − c(k))(M(k) − m)

)
=

(
mk(c(k) − 1)

(k − c(k))(M(k) − m)

)k/(k−1)

⇒
(

c(k) − 1
M(k)

m
− 1

)1/k

=
(

mk(c(k) − 1)

(k − c(k))(M(k) − m)

)1/(k−1)

. (22)

Replacing the right side by the left side of (22) in (21), we obtain:

c(k) = k ·
(

1 −
(

c(k) − 1
M(k)

m
− 1

)1/k)
.

Let

f (c) = c + k

(
c − 1

M(k)
m

− 1

)1/k

− k.

Since i) f (c) is an increasing function with c ≥ 1 and ii) f (1) = 1 − k < 0 as well as
limc→+∞ f (c) > 0 due to k > 1 and M(k) > m, equation f (c) = 0 has a unique root
c ≥ 1. �

Up to this point, we have proved that for a fixed k, the maximum competitive ratio
with respect to k that the adversary can achieve is the unique root of (17). Therefore,
the maximum competitive ratio achievable by the adversary for the whole game with
a known duration D, where k is any value in range [1,D], is the maximum root
of (17), where k = 2, . . . ,D.

Corollary 2 The maximum competitive ratio c∗ achievable by the adversary for the
whole game with a known duration D is

c∗ = max
k=2...D

{
c

∣∣∣∣ c = k

(
1 −

(
c − 1

M(k)
m

− 1

)1/k)}
. (23)



640 Algorithmica (2009) 55: 619–642

For each D given, we find the ratio c∗ that satisfies (23) by simply computing c

for each k = 2, . . . ,D and then choose the maximum c as c∗. Since Ac∗ is c∗-proper
regardless of the actual sequence of prices created by the adversary (cf. Corollary 1),
the player that uses the algorithm Ac∗ is guaranteed to achieve the competitive ra-
tio c∗.

Theorem 5 The maximum competitive ratio c∗ achievable by the adversary is
the lowest possible competitive ratio for the one-way trading game with a time-
decreasing upper bound.

Proof Let ALG be any (deterministic) algorithm. Let k∗ is the k that corre-
sponds to c∗ in (23). Let the worst sequence of prices be R′ = p′

1,p
′
2, . . . , p

′
k∗ ,

mk∗+1, . . . ,mD , where p′
i are computed as those in the worst k-step sequence P ′

in the proof of Lemma 4. This also implies p′
i < p′

i+1, i = 1, . . . , k∗ − 1.
The adversary behaves as follows. At the first step, the adversary presents the

price p′
1 to ALG. If ALG spends less than 1/k∗ dollars at this rate, i.e. s1 < 1/k∗, the

adversary drops the price to the minimum m and keeps it there until the end of game.
Since p′

1 was chosen so that 1/k∗ is the minimum amount that needs to be converted
at p′

1 so as to ensure the competitive ratio c∗ even if the adversary subsequently drops
the price to the minimum and keeps it there until the end, ALG with s1 < 1/k∗ cannot
achieve the competitive ratio c∗.

If ALG spends more than 1/k∗ dollars at p′
1, the adversary presents p′

2 to ALG
in the next step. At each step i = 2, . . . , k∗, if amount of dollars ALG has exchanged
so far is smaller than i/k∗, the adversary stops (i.e., drops the price to the minimum
and keeps it there until the end of game). Otherwise, she presents the next price p′

i+1
to ALG. Clearly the adversary will stop at a step j ≤ k∗ since the player’s initial
wealth is one dollar. We have

j−1∑
i=1

si ≥ j − 1

k∗ ,

j∑
i=1

si <
j

k∗

which follows sj <
j
k∗ − j−1

k∗ = 1
k∗ . Since p′

j was chosen so that 1
k∗ is the minimum

amount that needs to be exchanged at p′
j in order to ensure the competitive ratio c∗,

ALG with sj < 1
k∗ cannot achieve the competitive ratio c∗.

That means ALG achieves the competitive ratio c∗ only if ALG keeps s1 = s2 =
· · · = sk∗ = 1

k∗ , otherwise ALG will end up with a worse/higher competitive ratio. �

Theorem 5 implies the following corollary

Corollary 3 The threat-based algorithm Ac∗ is an optimal competitive algorithm for
the one-way trading problem with a time-decreasing upper bound.
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Table 1 Numerical comparison of competitive ratios between different algorithms

Value of D

4 8 16 32 64 128 · · ·

Lower bound C 1.15 1.23 1.31 1.39 1.48 1.57 · · ·
Corresponding s 0.1823 0.1816 0.1810 0.1803 0.1795 0.1788 · · ·
Original TBP c 1.48 1.85 2.28 2.75 3.25 3.77 · · ·
Improved TBP c∗ 1.17 1.33 1.52 1.73 1.99 2.25 · · ·
Corresponding k 2 2 3 3 4 5 · · ·

Table 1 shows the competitive ratios c∗ and their corresponding k for each value
of D (rows Improved TBP c∗ and Corresponding k), which result from applying
the improved threat-based policy to the freshness problem, that is, M(t) = M/t and
m = M/D. The competitive ratios c∗ of the improved TBP turn out to be much bet-
ter/smaller than those of the original threat-based policy (row Original TBP c) and
close to the lower bounds (row Lower bound C ).

4 Conclusions

We have extended the set of practical problems that can be transformed to online
search by presenting new online search models. Unlike the previous models, the new
models allow the lower/upper bounds of prices to vary with time. The practicality of
the new models has been demonstrated by their use to deal with the freshness problem
of concurrent data objects [4].

For the first model we have presented an optimal deterministic algorithm with
competitive ratio

√
D, where D is the known duration of the game, and a nearly-

optimal randomized algorithm with competitive ratio lnD

1+ln 2− 2
D

. We have also proved

that the lower bound of competitive ratios of randomized algorithms is asymptotically
lnD

4 . A new technique that exploits the features of the new models has been used in
the randomized algorithm and the proof of the lower bound.

Secondly, we have presented an optimal competitive algorithm against a stronger
adversary, where the upper bound of prices decreases arbitrarily with time and the
lower bound is constant. The second model is inspired by the fact that some applica-
tions do not utilize the decay speed of the lower bound of prices in the first model.
Although the analysis flow in the new model looks similar to that in the previous mod-
els, the technical details have to be adapted non-trivially at various places. Obviously,
we cannot achieve an optimal competitive ratio by directly applying the threat-based
algorithms of the original models [7], where the upper bound of prices is constant, to
the new model, where the upper bound decreases arbitrarily with time. In the latter
the adversary is clearly more restricted and thus the player should benefit from that.
Our numerical experiments on the freshness problem [4] have shown that the new al-
gorithm obtains much better/smaller competitive ratios than the original threat-based
algorithms do.
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