Algorithmica (2009) 55: 729-740
DOI 10.1007/s00453-008-9165-3

A Lower Bound for Scheduling Mechanisms

George Christodoulou - Elias Koutsoupias -
Angelina Vidali

Received: 7 May 2007 / Accepted: 3 January 2008 / Published online: 24 January 2008
© Springer Science+Business Media, LLC 2008

Abstract We study the mechanism design problem of scheduling tasks on n unre-
lated machines in which the machines are the players of the mechanism. The problem
was proposed and studied in the seminal paper of Nisan and Ronen on algorithmic
mechanism design, where it was shown that the approximation ratio of mechanisms
is between 2 and n. We improve the lower bound to 1 4 +/2 for 3 or more machines.

Keywords Algorithmic mechanism design - Scheduling unrelated machines -
Lower bound

1 Introduction

The study of mechanisms in game-theoretic settings is an important area at the inter-
section of Computer Science and Game Theory. A particular type of mechanisms, for
which auctions is a typical example, is the mechanism design problem. Mechanisms
are a special class of algorithms and the study of their computational properties was
initiated by Nisan and Ronen in their seminal paper [21]. The focus of their paper was

Supported in part by IST-15964 (AEOLUS) and the Greek GSRT.

G. Christodoulou ()
Max-Planck-Institut fiir Informatik, Saarbriicken, Germany
e-mail: gchristo@mpi-inf.mpg.de

E. Koutsoupias - A. Vidali
Department of Informatics, University of Athens, Athens, Greece

E. Koutsoupias
e-mail: elias@di.uoa.gr

A. Vidali
e-mail: avidali@di.uoa.gr

@ Springer

mailto:gchristo@mpi-inf.mpg.de
mailto:elias@di.uoa.gr
mailto:avidali@di.uoa.gr

730 Algorithmica (2009) 55: 729-740

on the task allocation problem on unrelated machines. They showed that no mech-
anism can have approximation ratio better than 2. They conjectured that this lower
bound is not tight. In this paper,' we confirm this and improve the lower bound of the
approximation ratio to 1 + +/2.

The scheduling problem we consider here is one of the most fundamental schedul-
ing problems [13, 18]. There are n machines and m tasks and each task may have dif-
ferent execution times on the machines. Let #;; be execution time of task j on machine
i. The objective is to schedule the tasks on the machines to minimize the makespan,
that is, the time by which all tasks are finished. In the mechanism design setting, each
machine i knows its own times (the #;;’s), but the algorithm does not know them.
We consider direct revelation mechanisms which first ask the machines to declare
their times #;; and then proceed to allocate the tasks according to a policy known to
machines in advance. The machines are selfish players who are lazy and don’t want
to execute the tasks, so they may lie. To deal with this problem, the mechanism pays
the machines according to their declarations. Thus the mechanism design problem
consists of two algorithms: an allocation algorithm and a payment algorithm. They
both take as input the declaration of times by the machines and produce an allocation
and a set of payments, one for each machine.

The objective of each machine is to minimize the load of tasks allocated to it, mi-
nus its payment. On the other hand, the objective of the mechanism is to minimize
the makespan of the allocation. Notice that the mechanism does not care how much
it pays the machines. The payments are given to machines as an incentive to tell the
truth. A mechanism is called truthful when telling the truth is a dominant strategy
for each player, independently of the declarations of the other players. A classical re-
sult in mechanism design, the Revelation Principle, states that for every mechanism,
in which each player has a dominant strategy, there is a truthful mechanism which
achieves the same objective. The reason is that given a non-truthful mechanism, we
can transform it to a truthful one by promising the players that the mechanism it-
self will simulate their (lying) strategy. With the Revelation Principle, we are free to
concentrate on truthful mechanisms (at least for the class of centralized mechanisms).

There are two major classes of problems in algorithmic mechanism design. For
every problem of the first class, there exists an optimal truthful mechanism but the
problem is NP-hard (i.e., the problem of computing the optimal allocation is NP-
hard). For this kind of problems, we are interested in truthful polynomial-time ap-
proximation algorithms. Two typical problems in this class are the problem of com-
binatorial auctions and the problem of scheduling related machines. The second class
contains problems that need not be NP-hard, but for which no optimal mechanism is
truthful. The quintessential problem in this class is the scheduling unrelated machines
problem. For this kind of problems, we can ask either about the optimal approxima-
tion ratio of all algorithms, or the optimal approximation ratio of polynomial-time
algorithms. In this paper, we deal with the approximation ratio of all algorithms, not
necessarily polynomial-time ones. In other words, the lower bound of 1 +~/2 is based
on the restrictions imposed only by truthfulness, not by the computational hardness
of the problem.

A preliminary version of this paper appeared in [9].

@ Springer

Algorithmica (2009) 55: 729-740 731

2 Related Work

The scheduling problem on unrelated machines is one of the most fundamental
scheduling problems [13]. Lenstra, Shmoys, and Tardos [18] gave a 2-approximation
polynomial-time algorithm for the classical version of the problem. They also showed
that the problem cannot be approximated in polynomial time within a factor less
than 3/2.

Here we study its mechanism design version and we improve the results of Nisan
and Ronen [21, 22], who introduced the problem and initiated the algorithmic theory
of Mechanism Design. They gave a truthful n-approximate (polynomial-time) algo-
rithm; they also showed that no mechanism (polynomial-time or not) can achieve
approximation ratio better than 2. They conjectured that there is no deterministic
mechanism with approximation ratio less than n. On the other hand, they gave a ran-
domized truthful mechanism for two players, that achieves an approximation ratio
of 7/4.

Recently, Mu’alem and Schapira [19] proved a lower bound of 2 — % for any ran-
domized truthful mechanism for » machines and generalized the mechanism in [21]
to give a 7n/8 upper bound. In [8], the authors showed that no fractional truthful
mechanism can achieve an approximation ratio better than 2 — 1/n. They also showed
that fractional algorithms that treat each task independently cannot do better than
(n + 1)/2 and they showed that this bound is tight, by giving a fractional truthful
mechanism that achieves this ratio.

Lavi and Swamy [16] aim at improving the upper bound instead of producing
improved lower bounds. They consider a special case of the same problem—namely
when the processing times have only two possible values low or high—and devise a
deterministic 2-approximation truthful mechanism.

A simpler variant of the scheduling problem is the problem on related machines.
In this case, for each machine there is a single value (instead of a vector), its speed.
Myerson [20] gave a characterization of truthful algorithms for this kind of problems
(one-parameter problems), in terms of a monotonicity condition. Archer and Tardos
[3] found a similar characterization and using it obtained a variant of the optimal
algorithm which is truthful (albeit exponential-time). They also gave a polynomial-
time randomized 3-approximation mechanism, which was later improved to a 2-
approximation, in [2]. This mechanism is truthful in expectation. Andelman, Azar,
and Sorani [1] gave a 5-approximation deterministic truthful mechanism, in the same
framework. Kovéacs improved the approximation ratio to 3 [14] and to 2.8 [15].

Much more work has been done in the context of combinatorial auctions (see for
example [4-7, 10, 11] and the references within).

Saks and Yu [24] proved that, for mechanism design problems with convex do-
mains which includes the scheduling problem, a simple necessary monotonicity prop-
erty is also sufficient for truthful mechanisms, generalizing results of [12, 17].

3 Problem Definition

Definition 1 (The scheduling problem) The input to the scheduling problem is a
nonnegative matrix ¢ of n rows, one for each machine-player, and m columns, one

@ Springer

732 Algorithmica (2009) 55: 729-740

for each task. The entry #;; (of the i-th row and j-th column) is the time it takes for
machine i to execute task j. Let ¢; denote the times for machine i, which is the vector
of the i-th row. The output is an allocation x = x(¢), which partitions the tasks into
the n machines and a payment rule p ().

Here we follow the usual notation of game theory literature where n denotes
the number of players/machines. This is different from the standard notation of the
scheduling literature where n is the number of tasks and m the number of machines.
We will also use the standard game-theoretic convention a_; to denote what remains
from a vector a when we drop its i-th element; similarly, (af , a_;) denotes the vector
that we get when we replace a; by a;.

We describe the partition of the allocation rule using indicator values x;; € {0, 1}:
x;j = 1 iff task j is allocated to machine i. Of course, we should allocate each task
to exactly one machine, or more formally Z'j": 1xij =1

Let also p; (#) denote the payment which the mechanism pays to player i when the
players declare times 7.

For truthful mechanisms, the payments do not depend directly on the declaration #;
of player i, but indirectly through the allocation x; = x; (¢) and the times of the other
players as the following lemma [17] states. For completeness, we prove the lemma
here.

Lemma 1 ([17]) The price pi(t) of a truthful mechanism does not depend on the
declaration t; of player i, but only on its allocation x;(t) and the declarations of the
other players, that is p;(t) = pi(x;i(t), t—;).

Proof Suppose towards a contradiction that there exist #;, ¢ such that x; (#;, ;) =
X; (ti/, t_i), but p;(ti,t—;) < pi (ti/, t_;). Then the player whose true processing times
are #; has incentive to declare falsely that its processing times are ¢/ in order to in-
crease his utility, as we have p; (t;,1_;) — Z’};l tixij < pi(t], 1_;) — Z'}‘zl tix;j; this
contradicts the assumption that the mechanism is truthful. (|

A mechanism consists of two algorithms, an allocation mechanism and a payment
algorithm. However, we are interested only in the approximation ratio of the alloca-
tion algorithm. We can then ask which allocation algorithms admit some payment
algorithm so that the resulting mechanism is truthful. It turns out that there is a very
simple and appealing property that these allocation mechanisms satisfy, monotonic-
ity. More precisely:

Definition 2 (Monotonicity Property) An allocation algorithm is called monotone if
it satisfies the following property: for every two sets of tasks ¢ and ¢’ which differ
only on machine i (i.e., on the i-the row) the associated allocations x and x’ satisfy

(xi —x})-(t; — 1) <0,
where - denotes the dot product of the vectors, that s, Z;-"zl (xij —x] j)(tl- =t) =< 0.

@ Springer

Algorithmica (2009) 55: 729-740 733

The property, which sometimes in the literature is called weak monotonicity, es-
sentially states that when we increase the times of the tasks for machine 7, the alloca-
tion for the machine can only become smaller. Notice that the monotonicity property
involves only the allocation of one player (the i-th player). The following proposition
was shown in [22].

Proposition 1 Every truthful mechanism satisfies the Monotonicity Property.
Proof When player i gets f;, he has no incentive to declare 7/ when

tixi — pi(xi, t—i) < tix; — pi(x],1_;).
Similarly, when we inverse the roles of ¢ and ¢/, we have

tix; — pi(xj, 1) <tixi — pi(xi, 1’;).

Now if we add the above inequalities and take into account that the instances differ
only on the i-th player, that is, r_; =’ ,, we get the lemma. d

The Monotonicity Property states that (x; — x,f)-(t; — ti’) <0 is a necessary con-
dition for truthfulness. It turns out that it is also sufficient condition [24], but we will
not use this fact here. The implications are that we don’t have to consider at all the
payment algorithm. This transforms the problem from the realm of Game Theory to
the realm of Algorithms. To design a good mechanism, we can completely forget
about mechanisms, payments, truthfulness etc, and simply focus on the subclass of
monotone allocation algorithms.

Monotonicity, which is not specific to the scheduling task problem but it has much
wider applicability [24], poses a new challenging framework for designing algo-
rithms. In the traditional theory of algorithms, the algorithm designer could con-
centrate on how to solve every instance of the problem by itself. With monotone
algorithms, this is no longer the case. The solutions for one instance must be consis-
tent with the solutions of the remaining instances—they must satisfy the Monotonic-
ity Property. Putting it in another way, monotone algorithms are holistic algorithms:
they must consider the whole space of inputs together.

4 The Tools for the Proof

In our proof of the lower bound, we will exploit the Monotonicity Property of truthful
mechanisms. In this section, we present three important lemmas that follow from the
Monotonicity Property and will be the tools for our proof.

The first lemma will be used repeatedly and is due to Nisan and Ronen [22]. They
have used it to obtain their lower bounds in their original paper. It is a specific and
direct way to take advantage of the Monotonicity Property. It states that if a machine
gets a set of tasks when it declares ¢;, it will get exactly the same set of tasks if
we lower the execution time of the tasks allocated to the machine and increase the
execution time of the remaining tasks.

@ Springer

734 Algorithmica (2009) 55: 729-740

It is convenient to allow instances with times #;; = co. When only finite times
are allowed, all the statements are still true; in this case oo will simply denote an
appropriate arbitrarily high value.

Lemma 2 (a) Let t be a matrix of processing times and let x = x(t) be the allocation
produced by a truthful mechanism. Suppose that we change only the processing times
of machine i and in such a way that tl.’j > tij when x;j =0, and ti’j <tijj when x;j = 1.
The mechanism does not change the allocation to machine i, i.e., x;(t') = x; (1).
(However, it may change the allocation of other machines).

(b) We can strengthen the lemma for mechanisms of bounded approximation ratio
when all times t;; of some task j are oo except of the value t;j = 0. When we change
the values as in the first part of the lemma and we now set t! ;= 1 (or any other
bounded value), the mechanism again does not change the allocation to machine i.

Proof By the Monotonicity Property, we have

Z(tij — /) (xij (1) — x;5(¢)) < 0.

j=1

For the first property, observe that all terms of the sum are nonnegative (by the
premises of the lemma). The only way to satisfy the inequality is to have all terms
equal to 0, that is, x;; (1) = x;; (t').

The second property has very similar proof. Simply observe that task j can only be
processed by machine i for mechanisms of bounded approximation ratio. Therefore
xij (1) = xjj (t') = 1. The remaining terms of the Monotonicity Property sum must be
nonnegative and the lemma follows. g

To simplify the presentation, when we apply Lemma 2, we will increase or de-
crease only some values of a machine, not all its values. The understanding will be
that the rest of the values increase or decrease appropriately by a tiny amount which
we omit to keep the expressions simple.

The second lemma is a useful 2-dimensional property of truthful mechanisms. Fix
all values of tasks ¢ except for the values #;; and f;;. A truthful mechanism partitions
the two dimensional orthant of (7, t;x) € R%r into 4 regions

Rap = {(j, tix) : the mechanism allocation has x1;(¢) = a and x1,(¢) = b}.
The following lemma says that the regions have a particular shape:

Lemma 3 Every region Ry, is bounded by a convex polygon and is separated from
region R, by the line

(a —atij + (b —b)tix = kapa'ty

where kyp.q11y is constant (it may however depend on the other values of t except t
and ti).

@ Springer

Algorithmica (2009) 55: 729-740 735

Fig. 1 The two possible ways tik tik
to partition the positive orthant
Rm ROO RlO ROO
Ru R01 Rll ROI
tij tZ]
Fig.2 Lemma4 tik Lik
Ry Roo Ryg Ryo
a a
1 1 ERERE
‘Ri1 Rox R R
1 a t;j 1 a t;j

Proof By the Monotonicity Property, for every (#;, tix) € Rup and (tl./ it ti’) € Rup
we must have (a —a’)(t;; —] DEACES b')(tix — ;) < 0. Equivalently we can write
(a—a)tj+ b —b)t < (a— a’)ti/j + (b — b)t],.. Let now

kab:a’b’ = lnf {(Cl - Cl/)tl/j + (b - b/)tl/k}

/ /
(W]))ER 1y

and the lemma follows. O

Figure 1 depicts the two possibilities of how the positive orthant is partitioned into
the four regions (the slope of the inclined parts is +45%). Notice that the lemma
does not specify what happens exactly at the boundaries between regions, but this
is inconsequential. A useful property that we can extract from the above lemma,
and which is going to play an important role in the proof of our main result, is the
following:

Lemma 4 Fix all values of m tasks except of the values t;; and t;;. Assume that a
truthful mechanism assigns both tasks to machine i when (t;;, t;;) = (1, 0) and when
(tij, tir) = (0, 1). Assume also that the mechanism assigns exactly one of the 2 tasks
to machine i when (t;j,tix) = (a, a) for some a > 1. Then the mechanism assigns
both tasks to machine i when (t;;, tix) = (1, 1).

The proof is a simple case analysis and it is essentially shown in Fig. 2.

@ Springer

736 Algorithmica (2009) 55: 729-740

5 The Proof of the Main Result

We will employ instances with 3 machines and 5 tasks. We will assume throughout
that the allocation algorithm does not allocate these values (otherwise the mechanism
has arbitrarily high approximation ratio).

The general idea of the proof is the following: We start with the set of tasks

0 o0 o© a a
t=loo 0 o0 a a
oo oo 0 a a

where a > 1 is a parameter which will be fixed later. This set of tasks has enough
symmetries so that it essentially admits two distinct allocations (up to symmetry).
For each allocation, we increase or decrease some values appropriately. With the help
of the lemmas of the previous section, we show (in Lemma 6 below) that in order to
keep the approximation ratio low, the following set of tasks must have the allocation
indicated by the stars (in which the first machine gets both tasks 4 and 5):

0* o0 oo 1* 1*
t=|loo 0 o0 a a

oo oo 0 a a

This is sufficient to obtain the lower bound as we will see later.

Lemma 5 For the instance

0 o0 o0 0 1
o 0 o a a
oo oo 0 a a

if the first machine does not get both tasks 4 and 5, then the approximation ratio of
the algorithm is at least 1 + a.

Proof Suppose that the premises of the lemma hold. As a result, one of machines 2
and 3 will get one of tasks 4 and 5. Suppose without loss of generality that machine
2 gets one of tasks 4 and 5. We raise the 0 of the second player and make it 1 and by
Lemma 2 its allocation does not change.

That is, if machine 2 gets task 5, we have

0* oo oo 0 1 0* oo oo 0 1
oo 0 o0 a a*l—=>|oo 1* oo a a*],
oo oo 0 a a © oo 0 a a

whichever the allocation of the 4th task is (that’s what is meant by the absence of a
star in the 4th column). Similarly, if machine 2 gets task 4, we have

0* o0 oo 0 1 0* oo oo 0 1
oo 0 o0 a* al—=oo 1* o a* a
oo oo 0 a a oo oo 0 a a

@ Springer

Algorithmica (2009) 55: 729-740 737

whichever the allocation of the 5th task is. In either case the cost is at least 1 + a,
while the optimal cost is 1 and is achieved by the allocation

0* oo oo 0* 1*
oo 1* oo a a
oo oo 0 a a d

By symmetry, the previous lemma holds also for the case when the processing
times of the first player is (0, oo, 0o, 1, 0) instead of (0, co, o0, 0, 1).

Lemma 6 If a truthful mechanism has approximation ratio less than 1 + a then the
first machine should get both tasks 4 and 5 of the matrix of processing times

0 o0 o0 1 1
t=loo 0 o0 a a
co oo 0 a

Q

Proof Consider the matrix of processing times

0 o0 o0 a a
t=loo 0 o0 a a
oo oo 0 a a

Without loss of generality, the third machine gets none of the tasks 4 and 5. We
essentially have two cases.

Case 1: One of machines 1 and 2, suppose without loss of generality that this is
machine 1, gets both tasks 4 and 5.

Using Lemma 2, we can lower the values of 714 and #15 to 1 without changing the
allocation. So we have the indicated allocation for the instance

0* o0 oo 1* 1*
oo 0 oo a a
oo oo 0 a a

Case 2: Tasks 4 and 5 are allocated to different machines. Without loss of gen-
erality, machine 1 gets task 4 (as shown in the first of the three sets of tasks and
allocations below). Recall that in the previous lemma (Lemma 5) we showed that the
middle matrix of processing times below must have the allocation shown in order to
keep the approximation ratio lower than 1 + a. By symmetry, the same is true for the
third matrix of processing times below

0* o0 o0 a* a 0* oo oo 0* 1* 0* oo oo 1* OF
oo 0 oo a a*],loo 0 o0 a al,loo 0 o© a a
oo oo 0 a a oo oo 0 a a oo oo 0 a a

@ Springer

738 Algorithmica (2009) 55: 729-740

This is the point in our proof where we consider the geometry of the mechanism. We
use Lemma 4 for i =1, j =4, and k = 5. The lemma implies that the following set
of tasks have the indicated allocation

0* oo oo 1* 1*
oo 0 o0 a all,
oo oo 0 a a

which proves the lemma. O
We now have all the necessary ingredients to prove our main theorem.

Theorem 1 There is no deterministic mechanism for the scheduling problem with 3
or more machines with approximation ratio less than 1 + /2.

Proof We will prove that the approximation ratio of any truthful algorithm is at least
min{l + a, 1 +2/a}; for a = +/2, we have 1 + a = 1 +2/a and the approximation
ratio is at least min{1 +a, 1 +2/a} =1 + /2.

By Lemma 6, in order to have approximation ratio lower than 1 4 a, the allocation
of the following matrix of processing times should be as indicated by the stars

0* o0 oo 1* 1*
t=loo 0 o© a a
oo oo 0 a a

We can now increase #1] to a. By Lemma 2, this does not change the allocation of the
first machine. But then for the matrix of processing times and the indicated allocation
below

a* oo oo 1*¥ 1*

oo 0 oo a a
oo oo 0 a a

the cost is 2 + a, while the optimum cost is a. The approximation ratio is
1 4+ 2/a. Consequently any truthful algorithm has approximation ratio at least
min{l +a,14+2/a}.

Of course, if the number of machines is more than 3, the approximation ratio can-
not be lower (by setting, for example, all times of the additional machines to co). [

6 Conclusions

Our result improves the existing lower bound of a fundamental problem in the area of
mechanisms. The improvement from 2 to 1 + +/2 may not be large if one takes into
account that the upper bound is still z, but the real importance of our result lies in
the fact that it is the only improvement on this important question since the original
paper of Nisan and Ronen.

The question is whether the approach of the paper can give better results. In our
opinion, it is possible to improve the lower bound to a better constant. But in order

@ Springer

Algorithmica (2009) 55: 729-740 739

to close the huge gap between 1 + +/2 and n in a substantial way, we need to find
more structural properties of truthful mechanisms, or even better, to obtain a global
useful characterization. The Monotonicity Property characterizes the class of truthful
mechanisms but it is only a local property which should be satisfied by every pair of
inputs and their corresponding allocations. In analogy, although a similar monotonic-
ity property characterizes the class of truthful mechanisms for unrestricted domains,
a much more useful global characterization is provided by Roberts’ Theorem [23]
which states that the class of truthful mechanisms is exactly the weighted VCG mech-
anisms. Our work, and especially Lemma 3, may be a starting point in this direction.

References

1. Andelman, N., Azar, Y., Sorani, M.: Truthful approximation mechanisms for scheduling selfish re-
lated machines. In: 22nd Annual Symposium on Theoretical Aspects of Computer Science (STACS),
pp. 69-82 (2005)

2. Archer, A.: Mechanisms for discrete optimization with rational agents. Ph.D. thesis, Cornell Univer-
sity (January 2004)

3. Archer, A., Tardos, E.: Truthful mechanisms for one-parameter agents. In: 42nd Annual Symposium
on Foundations of Computer Science (FOCS), pp. 482-491 (2001)

4. Archer, A., Papadimitriou, C.H., Talwar, K., Tardos, E.: An approximate truthful mechanism for com-
binatorial auctions with single parameter agents. In: Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 205-214 (2003)

5. Babaioff, M., Lavi, R., Pavlov, E.: Mechanism design for single-value domains. In: Proceedings, The
Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications
of Artificial Intelligence Conference (AAAI), pp. 241-247 (2005)

6. Bartal, Y., Gonen, R., Nisan, N.: Incentive compatible multi unit combinatorial auctions. In: Proceed-
ings of the 9th Conference on Theoretical Aspects of Rationality and Knowledge (TARK), pp. 72-87
(2003)

7. Briest, P., Krysta, P., Vocking, B.: Approximation techniques for utilitarian mechanism design. In:
Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pp. 39—48
(2005)

8. Christodoulou, G., Koutsoupias, E., Kovécs, A.: Mechanism design for fractional scheduling on unre-
lated machines. In: Automata, Languages and Programming, 34th International Colloquium (ICALP),
pp- 40-52 (2007)

9. Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for scheduling mechanisms. In:
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 1163-1169 (2007)

10. Dobzinski, S., Nisan, N., Schapira, M.: Approximation algorithms for combinatorial auctions with
complement-free bidders. In: Proceedings of the 37th Annual ACM Symposium on Theory of Com-
puting (STOC), pp. 610-618 (2005)

11. Dobzinski, S., Nisan, N., Schapira, M.: Truthful randomized mechanisms for combinatorial auctions.
In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC), pp. 644-652
(2006)

12. Gui, H., Miiller, R., Vohra, R.V.: Dominant strategy mechanisms with multidimensional types. In:
Computing and Markets (2005)

13. Hochbaum, D.S.: Approximation Algorithms for NP-Hard Problems. PWS, Boston (1996)

14. Kovécs, A.: Fast monotone 3-approximation algorithm for scheduling related machines. In:
Algorithms—ESA 2005: 13th Annual European Symposium, pp. 616-627 (2005)

15. Kovécs, A.: Fast algorithms for two scheduling problems. Ph.D. thesis, Universitit des Saarlandes
(2007)

16. Lavi, R., Swamy, C.: Truthful mechanism design for multi-dimensional scheduling via cycle-
monotonicity. In: Proceedings 8th ACM Conference on Electronic Commerce (EC) (2007)

17. Lavi, R., Mu’alem, A., Nisan, N.: Towards a characterization of truthful combinatorial auctions. In:
44th Symposium on Foundations of Computer Science (FOCS), pp. 574-583 (2003)

@ Springer

740 Algorithmica (2009) 55: 729-740

18. Lenstra, J.K., Shmoys, D.B., Tardos, E: Approximation algorithms for scheduling unrelated parallel
machines. Math. Program. 46(1), 259-271 (1990)

19. Mu’alem, A., Schapira, M.: Setting lower bounds on truthfulness. In: Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1143-1152 (2007)

20. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58-73 (1981)

21. Nisan, N., Ronen, A.: Algorithmic mechanism design (extended abstract). In: Proceedings of the
Thirty-First Annual ACM Symposium on Theory of Computing (STOC), pp. 129-140 (1999)

22. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games Econ. Behav. 35, 166-196 (2001)

23. Roberts, K.: The characterization of implementable choice rules. In: Aggregation and Revelation of
Preferences, pp. 321-348 (1979)

24. Saks, M.E., Yu, L.: Weak monotonicity suffices for truthfulness on convex domains. In: Proceedings
6th ACM Conference on Electronic Commerce (EC), pp. 286-293 (2005)

@ Springer

	A Lower Bound for Scheduling Mechanisms
	Abstract
	Introduction
	Related Work
	Problem Definition
	The Tools for the Proof
	The Proof of the Main Result
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

