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Abstract In this paper we study collective additive tree spanners for special fam-
ilies of graphs including planar graphs, graphs with bounded genus, graphs with
bounded tree-width, graphs with bounded clique-width, and graphs with bounded
chordality. We say that a graph G = (V ,E) admits a system of μ collective addi-
tive tree r-spanners if there is a system T (G) of at most μ spanning trees of G

such that for any two vertices x, y of G a spanning tree T ∈ T (G) exists such that
dT (x, y) ≤ dG(x, y) + r . We describe a general method for constructing a “small”
system of collective additive tree r-spanners with small values of r for “well” decom-
posable graphs, and as a byproduct show (among other results) that any weighted pla-
nar graph admits a system of O(

√
n) collective additive tree 0-spanners, any weighted

graph with tree-width at most k − 1 admits a system of k log2 n collective additive
tree 0-spanners, any weighted graph with clique-width at most k admits a system of
k log3/2 n collective additive tree (2w)-spanners, and any weighted graph with size
of largest induced cycle at most c admits a system of log2 n collective additive tree
(2�c/2�w)-spanners and a system of 4 log2 n collective additive tree (2(�c/3�+1)w)-
spanners (here, w is the maximum edge weight in G). The latter result is refined for
weighted weakly chordal graphs: any such graph admits a system of 4 log2 n collec-
tive additive tree (2w)-spanners. Furthermore, based on this collection of trees, we
derive a compact and efficient routing scheme for those families of graphs.

Results of this paper were partially presented at the ISAAC’05 conference [14].
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1 Introduction

Many combinatorial and algorithmic problems are concerned with the distance dG

on the vertices of a possibly weighted graph G = (V ,E). Approximating dG by a
simpler distance (in particular, by tree-distance dT ) is useful in many areas such as
communication networks, data analysis, motion planning, image processing, network
design, and phylogenetic analysis. An arbitrary metric space (in particular a finite
metric defined by a general graph) might not have enough structure to exploit algo-
rithmically. Given a graph G = (V ,E), a spanning subgraph H is called a spanner if
H provides a “good” approximation of the distances in G. More formally, for t ≥ 1,
H is called a multiplicative t-spanner of G [31, 32] if dH (u, v) ≤ t · dG(u, v) for all
u,v ∈ V. If r ≥ 0 and dH (u, v) ≤ dG(u, v) + r for all u,v ∈ V, then H is called an
additive r-spanner of G [30]. The parameters t and r are called, respectively, the mul-
tiplicative and the additive stretch factors. When H is a tree one has a multiplicative
tree t-spanner [8] and an additive tree r-spanner [33] of G, respectively. For some
recent results on sparse spanners and tree spanners of graphs we refer the reader to
[17–19].

In this paper, we continue the approach taken in [10, 15, 16, 26] of studying col-
lective tree spanners. We say that a graph G = (V ,E) admits a system of μ collective
additive tree r-spanners if there is a system T (G) of at most μ spanning trees of G

such that for any two vertices x, y of G a spanning tree T ∈ T (G) exists such that
dT (x, y) ≤ dG(x, y) + r (a multiplicative variant of this notion can be defined analo-
gously). Clearly, if G admits a system of μ collective additive tree r-spanners, then
G admits an additive r-spanner with at most μ (n − 1) edges (take the union of all
those trees), and if μ = 1 then G admits an additive tree r-spanner. Note also that
any graph on n vertices admits a system of at most n − 1 collective additive tree
0-spanners (take n − 1 Shortest-Path-trees rooted at different vertices of G). In par-
ticular, we examine the problem of finding “small” systems of collective additive tree
r-spanners for small values of r on special classes of graphs such as planar graphs,
graphs with bounded genus, graphs with bounded tree-width, graphs with bounded
clique-width, and graphs with bounded chordality.

Previously, collective tree spanners of particular classes of graphs were considered
in [10, 15, 16, 26]. Paper [16] showed that any unweighted chordal graph, chordal
bipartite graph or cocomparability graph admits a system of at most log2 n collec-
tive additive tree 2-spanners. These results were complemented by lower bounds,
which say that any system of collective additive tree 1-spanners must have �(

√
n)

spanning trees for some chordal graphs and �(n) spanning trees for some chordal
bipartite graphs and some cocomparability graphs. Furthermore, it was shown that
any unweighted c-chordal graph admits a system of at most log2 n collective addi-
tive tree (2�c/2�)-spanners and any unweighted circular-arc graph admits a system
of two collective additive tree 2-spanners. Paper [15] showed that any unweighted
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AT-free graph (graph without asteroidal triples) admits a system of two collective
additive tree 2-spanners, any unweighted graph having a dominating shortest path
admits a system of two collective additive tree 3-spanners and a system of five col-
lective additive tree 2-spanners, and any unweighted graph with asteroidal number
an(G) admits a system of an(G)(an(G) − 1)/2 collective additive tree 4-spanners
and a system of an(G)(an(G) − 1) collective additive tree 3-spanners. In paper [10],
it was shown that no system of constant number of collective additive tree 1-spanners
can exist for unit interval graphs, no system of constant number of collective additive
tree r-spanners can exist for chordal graphs and r ≤ 3, and no system of constant
number of collective additive tree r-spanners can exist for weakly chordal graphs
and any constant r . On the other hand, [10] proved that any unweighted interval
graph of diameter D admits an easily constructable system of 2 log(D − 1) + 4 col-
lective additive tree 1-spanners, and any unweighted House-Hole-Domino-free graph
with n vertices admits an easily constructable system of at most 2 log2 n collective
additive tree 2-spanners. Only paper [26] has investigated (so far) collective (multi-
plicative) tree spanners in the weighted graphs (they were called tree covers there).
It was shown that any weighted n-vertex planar graph admits a system of O(

√
n)

collective multiplicative tree 1-spanners (equivalently, additive tree 0-spanners) and
a system of at most 2 log3/2 n collective multiplicative tree 3-spanners.

One of the motivations to introduce this new concept stems from the problem of
designing compact and efficient routing schemes in graphs. In [21, 35], a shortest path
routing labeling scheme for trees of arbitrary degree and diameter is described that, in
total O(n logn) time, assigns each vertex of an n-vertex tree a O(log2 n/ log logn)-
bit label. Given the label of a source vertex and the label of a destination, it is possible
to compute in constant time, based solely on these two labels, the neighbor of the
source that heads in the direction of the destination. Clearly, if an n-vertex graph
G admits a system of μ collective additive tree r-spanners, then G admits a routing
labeling scheme of deviation (i.e., additive stretch) r with addresses and routing tables
of size O(μ log2 n/ log logn) bits per vertex. Once computed by the sender in μ

time (by choosing for a given destination an appropriate tree from the collection to
perform routing), headers of messages never change, and the routing decision is made
in constant time per vertex (for details see [15, 16]).

1.1 Our Results

In this paper we generalize and refine the method of [16] for constructing a
“small” system of collective additive tree r-spanners with small values of r to
weighted and larger families of “well” decomposable graphs. We define a large
class of graphs, called (α, γ, r)-decomposable, and show that any weighted (α, γ, r)-
decomposable graph G with n vertices admits a system of at most γ log1/α n col-
lective additive tree 2r-spanners. Then, we show that all weighted planar graphs
are (2/3,

√
6n,0)-decomposable, all weighted graphs with genus at most g are

(2/3,O(
√

gn),0)-decomposable, all weighted graphs with tree-width at most k − 1
are (1/2, k,0)-decomposable, all weighted graphs with clique-width at most k are
(2/3, k,w)-decomposable, all weighted graphs with size of largest induced cycle
at most c are (1/2,1, �c/2�w)-decomposable, (1/2,5, �(c + 2)/3�w)-decomposable



Algorithmica

and (1/2,4, (�c/3� + 1)w)-decomposable, and all weighted weakly chordal graphs
are (1/2,4,w)-decomposable. Here and in what follows, w denotes the maximum
edge weight in G, i.e., w := max{w(e) : e ∈ E(G)}.

As a consequence, we obtain that any weighted planar graph admits a system of
O(

√
n) collective additive tree 0-spanners, any weighted graph with genus at most g

admits a system of O(
√

gn) collective additive tree 0-spanners, any weighted graph
with tree-width at most k − 1 admits a system of k log2 n collective additive tree
0-spanners, any weighted graph with clique-width at most k admits a system of
k log3/2 n collective additive tree (2w)-spanners, any weighted graph with size of
largest induced cycle at most c admits a system of log2 n (5 log2 n and 4 log2 n) col-
lective additive tree (2�c/2�w)-spanners (respectively, (2�(c+2)/3�w)-spanners and
(2(�c/3� + 1)w)-spanners), and any weighted weakly chordal graph admits a system
of 4 log2 n collective additive tree (2w)-spanners. Furthermore, based on this collec-
tion of trees, we derive compact and efficient routing schemes for those families of
graphs.

1.2 Basic Notions and Notation

All graphs considered in this paper are connected, finite, undirected, loopless and
without multiple edges. Our graphs can have (non-negative) weights on edges, w(e),
e ∈ E, unless specified otherwise. In a weighted graph G = (V ,E) the distance
dG(u, v) between the vertices u and v is the length of a shortest path connecting
u and v. If each edge of G has weight 1, then graph G is called unweighted.

The (open) neighborhood of a vertex u in G is N(u) = {v ∈ V : uv ∈ E} and
the closed neighborhood is N [u] = N(u) ∪ {u}. Define the (hop-)layers of G with
respect to a vertex u as follows: Li(u) = {x ∈ V : x can be connected to u by a
path with i edges but not by a path with i − 1 edges}, i = 0,1,2, . . . . In a path
P = (v0, v1, . . . , vl) between vertices v0 and vl of G, vertices v1, . . . , vl−1 are called
inner vertices. Let r be a non-negative real number. A set D ⊆ V is called an r-
dominating set for a set S ⊆ V of a graph G if dG(v,D) ≤ r holds for any v ∈ S.

A tree-decomposition [34] of a graph G is a tree T whose nodes, called bags, are
subsets of V (G) such that: (1)

⋃
X∈V (T ) X = V (G); (2) for all {u,v} ∈ E(G), there

exists X ∈ V (T ) such that u,v ∈ X; and (3) for all X,Y,Z ∈ V (T ), if Y is on the
path from X to Z in T then X ∩ Z ⊆ Y . The width of a tree-decomposition is one
less than the maximum cardinality of a bag. Among all the tree-decompositions of G,
let T be the one with minimum width. The width of T is called the tree-width of the
graph G and is denoted by tw(G). We say that G has bounded tree-width if tw(G) is
bounded by a constant. It is known that the tree-width of an outerplanar graph and of
a series-parallel graph is at most 2 (see, e.g., [4, 28]).

A related notion to tree-width is clique-width. Based on the following operations
on vertex-labeled graphs, namely (i) creation of a vertex labeled by integer l, (ii) dis-
joint union (i.e., co-join), (iii) join between all vertices with label i and all vertices
with label j for i �= j , and (iv) relabeling all vertices of label i by label j , the no-
tion of clique-width cw(G) of a graph G is defined in [20] as the minimum number
of labels which are necessary to generate G by using these operations. Clique-width
is a complexity measure on graphs somewhat similar to tree-width, but more pow-
erful since every set of graphs with bounded tree-width has bounded clique-width
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[11] but not conversely (cliques have clique-width 2 but unbounded tree-width). It is
well-known that the clique-width of a cograph is at most 2 and the clique-width of a
distance-hereditary graph is at most 3 (see [25]).

The chordality of a graph G is the size of the largest (in the number of edges)
induced cycle of G. Define c-chordal graphs as the graphs with chordality at most c.
Then, the well-known chordal graphs are exactly the 3-chordal graphs. An induced
cycle of G of size at least 5 is called a hole. The complement of a hole is called
an anti-hole. A graph G is weakly chordal if it has neither holes nor anti-holes
as induced subgraphs. Clearly, weakly chordal graphs and their complements are
4-chordal. A cograph is a graph having no induced paths on 4 vertices (P4s).

The genus of a graph G is the smallest integer g such that G embeds in a surface of
genus g without edge crossings. Planar graphs can be embedded on a sphere, hence
g = 0 for them. A planar graph is outerplanar if all its vertices belong to its outerface.

2 (α,γ, r)-Decomposable Graphs and Their Collective Tree Spanners

Let α be a positive real number smaller than 1, γ be a positive integer and r be a
non-negative real number. We say that an n-vertex graph G = (V ,E) is (α, γ, r)-
decomposable if there is a separator S ⊆ V , such that the following three conditions
hold:

Balanced Separator condition: the removal of S from G leaves no connected com-
ponent with more than αn vertices;

Bounded r-Dominating Set condition: there exists a subset D ⊆ V such that |D| ≤ γ

and for any vertex u ∈ S, dG(u,D) ≤ r (we say that D r-dominates S);
Hereditary Family condition: each connected component of the graph, obtained from

G by removing vertices of S, is also an (α, γ, r)-decomposable graph.

Note that, by definition, any graph G = (V ,E) having an r-dominating set (for V )
of size at most γ is (α, γ, r)-decomposable, for any positive α < 1. In many cases, in
what follows, D will be chosen to be S, resulting in 0-domination.

Using these three conditions, one can construct for any (α, γ, r)-decomposable
graph G a (rooted) balanced decomposition tree BT (G) as follows. If G has an
r-dominating set of size at most γ , then BT (G) is a one node tree. Otherwise, find
a balanced separator S with bounded r-dominating set in G, which exists according
to the first and second conditions. Let G1,G2, . . . ,Gp be the connected components
of the graph G \ S obtained from G by removing vertices of S. For each graph Gi

(i = 1, . . . , p), which is (α, γ, r)-decomposable by the Hereditary Family condition,
construct a balanced decomposition tree BT (Gi) recursively, and build BT (G) by
taking S to be the root and connecting the root of each tree BT (Gi) as a child of S.
Clearly, the nodes of BT (G) represent a partition of the vertex set V of G into clus-
ters S1, S2, . . . , Sq , each of them having in G an r-dominating set of size at most γ .
For a node X of BT (G), denote by G(↓X) the (connected) subgraph of G induced
by vertices ∪{Y : Y is a descendent of X in BT (G)} (here we assume that X is a
descendent of itself). See Fig. 1 for an illustration.

It is easy to see that a balanced decomposition tree BT (G) of a graph G with
n vertices and m edges has depth at most log1/α n, which is O(log2 n) if α is a
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Fig. 1 (a) A graph G, (b) its balanced decomposition tree BT (G) and (c) an induced subgraph G(↓X)

of G

constant. Moreover, assuming that a special balanced separator (mentioned above)
can be found in polynomial, say p(n), time, the tree BT (G) can be constructed in
O((p(n) + m) log1/α n) total time.

Consider now two arbitrary vertices x and y of an (α, γ, r)-decomposable graph
G and let S(x) and S(y) be the nodes of BT (G) containing x and y, respectively.
Let also NCABT (G)(S(x), S(y)) be the nearest common ancestor of nodes S(x) and
S(y) in BT (G) and (X0,X1, . . . ,Xt ) be the path of BT (G) connecting the root X0
of BT (G) with NCABT (G)(S(x), S(y)) = Xt (in other words, X0,X1, . . . ,Xt are
the common ancestors of S(x) and S(y)). The following lemmata are crucial to our
subsequent results.

Lemma 1 Any path P G
x,y , connecting vertices x and y in G, contains a vertex from

X0 ∪ X1 ∪ · · · ∪ Xt .

Let SPG
x,y be a shortest path of G connecting vertices x and y, and let Xi be the

node of the path (X0,X1, . . . ,Xt ) with the smallest index such that SPG
x,y ∩ Xi �= ∅

in G. Then, the following lemma holds.

Lemma 2 We have dG(x, y) = dG′(x, y), where G′ := G(↓Xi).

Let Di be an r-dominating set of Xi in G′ = G(↓Xi) of size at most γ . For the
graph G′, consider a set of |Di | Shortest-Path-trees (SP-trees) T (Di), each rooted at
a (different) vertex from Di . Then, there is a tree T ′ ∈ T (Di) which has the following
distance property with respect to those vertices x and y.

Lemma 3 For those vertices x, y ∈ G(↓Xi), there exits a tree T ′ ∈ T (Di) such that
dT ′(x, y) ≤ dG(x, y) + 2r .

Proof We know, by Lemma 2, that a shortest path SPG
x,y , intersecting Xi and not

intersecting any Xl (l < i), lies entirely in G′ = G(↓Xi). Let x′ be a vertex of SPG
x,y ∩

Xi , and denote by l1 the distance in SPG
x,y between x and x′ and by l2 the distance in

SPG
x,y between x′ and y. Since SPG

x,y is a shortest path of G, we have

dG(x, y) = dG′(x, y) = l1 + l2. (1)
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Since Di is an r-dominating set of Xi in G′, there exists a vertex c ∈ Di such
that dG′(c, x′) ≤ r . Consider any Shortest-Path-tree T ′ of G′ rooted at c. We have
dT ′(c, x) = dG′(c, x) ≤ dG′(c, x′) + dG(x′, x) ≤ r + l1. Similarly, dT ′(c, y) ≤ r + l2.
By triangle inequality, we have

dT ′(x, y) ≤ dT ′(c, x) + dT ′(c, y) ≤ (r + l1) + (r + l2). (2)

Combining (1) and (2), we obtain dT ′(x, y) ≤ dG(x, y) + 2r . �

Let now Bi
1, . . . ,B

i
pi

be the nodes on depth i of the tree BT (G) and let

Di
1, . . . ,D

i
pi

be the corresponding r-dominating sets. For each subgraph Gi
j :=

G(↓Bi
j ) of G (i = 0,1, . . . ,depth(BT (G)), j = 1,2, . . . , pi), denote by T i

j the set

of SP-trees of graph Gi
j rooted at the vertices of Di

j . Thus, for each Gi
j , we construct

at most γ Shortest-Path-trees. We call them local subtrees of G. Lemma 3 implies

Theorem 1 Let G be an (α, γ, r)-decomposable graph, BT (G) be its balanced
decomposition tree and LT (G) = {T ∈ T i

j : i = 0,1, . . . ,depth(BT (G)), j =
1,2, . . . , pi} be its set of local subtrees. Then, for any two vertices x and y of G,
there exists a local subtree T ′ ∈ T i′

j ′ ⊆ LT (G) such that

dT ′(x, y) ≤ dG(x, y) + 2r.

This theorem leads to two import results for the class of (α, γ, r)-decomposable
graphs. Let G be an (α, γ, r)-decomposable graph with n vertices and m edges,
BT (G) be its balanced decomposition tree and LT (G) be the family of its local
subtrees (defined above). Consider a graph H obtained by taking the union of all
local subtrees of G (by putting all of them together), i.e.,

H :=
⋃

{T : T ∈ T i
j ⊆ LT (G)} =

(
V,

⋃
{E(T ) : T ∈ T i

j ⊆ LT (G)}
)
.

Clearly, H is a spanning subgraph of G and for any two vertices x and y of
G, dH (x, y) ≤ dG(x, y) + 2r holds. Also, since for any level i (i = 0,1, . . . ,
depth(BT (G))) of balanced decomposition tree BT (G), the corresponding graphs
Gi

1, . . . ,G
i
pi

are pairwise vertex-disjoint and |T i
j | ≤ γ (j = 1,2, . . . , pi ), the union

⋃{T : T ∈ T i
j , j = 1,2, . . . , pi} has at most γ (n − 1) edges. Therefore, H has at

most γ (n − 1) log1/α n edges in total. Thus, we have proven the following result.

Theorem 2 Any (α, γ, r)-decomposable graph G with n vertices admits an additive
2r-spanner with at most γ (n − 1) log1/α n edges.

Let T i
j := {T i

j (1), T i
j (2), . . . , T i

j (γ −1), T i
j (γ )} be the set of SP-trees of graph Gi

j

rooted at the vertices of Di
j . Here, if p := |Di

j | < γ then we can set T i
j (k) := T i

j (p)

for any k, p + 1 ≤ k ≤ γ . By arbitrarily extending each forest {T i
1 (q), T i

2 (q), . . . ,

T i
pi

(q)} (q ∈ {1, . . . , γ }) to a spanning tree T i(q) of the graph G we can construct
at most γ spanning trees of G for each level i (i = 0,1, . . . ,depth(BT (G))) of the
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decomposition tree BT (G). Totally, this will result into at most γ × depth(BT (G))

spanning trees T (G) := {T i(q) : i = 0,1, . . . ,depth(BT (G)), q = 1, . . . , γ } of the
original graph G. Thus, from Theorem 1, we have the following.

Theorem 3 Any (α, γ, r)-decomposable graph G with n vertices and m edges admits
a system T (G) of at most γ log1/α n collective additive tree 2r-spanners. Moreover,
such a system T (G) can be constructed in O((p(n)+γ (m+n logn)) log1/α n) time,
where p(n) is the time needed to find a balanced separator S and its r-dominating
set D (|D| ≤ γ ) in an (α, γ, r)-decomposable graph.

From Theorem 3, results of [21, 35] and [16] we conclude.

Corollary 1 Every (α, γ, r)-decomposable graph G with n vertices admits a rout-
ing labeling scheme of deviation 2r with addresses and routing tables of size
O(γ log1/α n log2 n/ log logn) bits per vertex. Once computed by the sender in
γ log1/α n time, headers never change, and the routing decision is made in constant
time per vertex.

3 Particular Classes of (α,γ, r)-Decomposable Graphs

3.1 Graphs Having Balanced Separators of Bounded Size

In this section we consider graphs that have balanced separators of bounded size.
To see that planar graphs are (2/3,

√
6n,0)-decomposable, we recall the following

theorem from [29].

Theorem 4 [29] Let G be any n-vertex planar graph. Then the vertices of G can be
partitioned into three sets A,B,C, such that no edge joins a vertex in A with a vertex
in B , neither A nor B has more than 2/3n vertices, and C contains no more than
2
√

2n vertices. Furthermore A,B,C can be found in O(n) time.

Later, Djidjev [12] improved the constant 2
√

2 to
√

6. Obviously, every connected
component of G \ C is still a planar graph. This theorem was extended in [2, 13, 22]
to bounded genus graphs: a graph G with genus at most g admits a separator C of
size O(

√
gn) such that any connected component of G \ C contains at most 2n/3

vertices. Moreover, such a balanced separator C can be found in O(n + g) time [2].
Evidently, each connected component of G \ C has genus bounded by g, too. Hence,
the following results follow.

Theorem 5 Every n-vertex planar graph is (2/3,
√

6n,0)-decomposable. Every n-
vertex graph with genus at most g is (2/3,O(

√
gn),0)-decomposable.

There is another extension of Theorem 4, namely, to the graphs with an excluded
minor [3]. A graph H is a minor of a graph G if H can be obtained from a subgraph
of G by contracting edges. By an H -minor one means a minor of G isomorphic to
H . Thus the Pontryagin-Kuratowski-Wagner Theorem asserts that planar graphs are
those without K5 and K3,3 minors. The following result was proven in [3].
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Theorem 6 [3] Let G be an n-vertex graph and H be an h-vertex graph. If G has no
H -minor, then the vertices of G can be partitioned into three sets A,B,C, such that
no edge joins a vertex in A with a vertex in B , neither A nor B has more than 2/3n

vertices, and C contains no more than
√

h3n vertices. Furthermore A,B,C can be
found in O(

√
hn(n + m)) time, where m is the number of edges in G.

Since induced subgraphs of an H -minor free graph are H -minor free, we con-
clude.

Theorem 7 Let G be an n-vertex graph and H be an h-vertex graph. If G has no
H -minor, then G is (2/3,

√
h3n,0)-decomposable.

Now we turn to graphs with bounded tree-width. The following theorem is true.

Theorem 8 Every graph with tree-width at most k is (1/2, k + 1,0)-decomposable.

Proof It is well known that if tw(G) = k for a graph G = (V ,E), then G can be
transformed, by adding new edges, to a chordal graph G+ = (V ,E+) such that the
maximum clique of G+ is of size k+1 (see, e.g., [4, 28]). Moreover, if k is a constant,
then the chordal graph G+ can be constructed in at most O(|V | + |E+|) time [4, 5].
In [23] it was shown that every n-vertex chordal graph � contains a maximal clique
C such that if the vertices in C are deleted from �, every connected component in the
graph induced by any remaining vertices is of size at most n/2. Moreover, according
to [23], for any chordal graph on n vertices and m edges, such a separating clique C

can be found in O(n+m) time. Applying this result to an n-vertex chordal graph G+,
we obtain a set S ⊆ V of at most k + 1 vertices such that each connected component
of G+ \ S will have at most n/2 vertices. Since G is a spanning subgraph of G+, any
connected component of G \ S will have at most n/2 vertices, too.

Thus, any graph G with tw(G) = k has a balanced separator consisting of at most
k + 1 vertices. Since induced subgraphs of a graph with tree-width at most k have
also tree-width at most k (see, e.g., [4, 28]), the result follows. �

Table 1 summarizes the results on collective additive tree spanners of graphs
having balanced separators of bounded size. The results are obtained by combin-
ing Theorem 3 with Theorems 5, 7 and 8. Note that, for planar graphs, the num-
ber of trees in the collection is at most O(

√
n) (not

√
6n log3/2 n as would follow

from Theorem 3). This number can be obtained by solving the recurrent formula
μ(n) = √

6n + μ(2/3n). Similar argument works for other two families of graphs.
Those systems of collective tree spanners described in Table 1 can be constructed

in O((n+√
n(m+n logn)) logn) = O(n3/2 log2 n) time for planar graphs, in O((n+

g + √
gn(m + n logn)) logn) = O(n3/2g1/2 log2 n) time for graphs with genus g,

in O((
√

hnm + √
h3n(m + n logn)) logn) = O(h3/2n1/2(m logn + n log2 n)) time

for graphs without an h-vertex minor, and in O((n2 + km + kn logn) logn) time for
graphs with tree-width at most k − 1 (for any constant k ≥ 2).

Note that, any shortest path routing labeling scheme in n-vertex planar graphs
requires at least �(

√
n)-bit labels [1]. Hence, by Corollary 1, there must exist n-

vertex planar graphs, for which any system of collective additive tree 0-spanners
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Table 1 Collective additive tree spanners of n-vertex m-edge graphs having balanced separators of
bounded size

Graph class Number of trees Additive str. Construction

in the collection, μ factor, r time

Planar graphs O(
√

n) 0 O(n3/2 log2 n)

Graphs with genus g O(
√

gn) 0 O(n3/2g1/2 log2 n)

Graphs without an h-vertex minor O(
√

h3n) 0 O(h3/2n1/2(m logn + n log2 n))

Graphs with tree-width k − 1 k log2 n 0 O((n2 + km + kn logn) logn)

needs to have at least �(
√

n log logn/ log2 n) trees. We conclude this section with
another lower bound, which follows from a result in [10]. Recall that all outerplanar
graphs have tree-width at most 2.

Proposition 1 No system of constant number of collective additive tree r-spanners
can exist for outerplanar graphs, for any constant r ≥ 0.

3.2 Graphs with Bounded Clique-Width

In this section we will prove that each graph with clique-width at most k is
(2/3, k,w)-decomposable. Recall that w denotes the maximum edge weight in a
graph G, i.e., w := max{w(e) : e ∈ E(G)}.
Theorem 9 Every graph with clique-width at most k is (2/3, k,w)-decomposable.

Proof It was shown in [6] that the vertex set V of any graph G = (V ,E) with n

vertices and clique-width cw(G) at most k can be partitioned (in polynomial time)
into two subsets A and B := V \ A such that both A and B have no more than
2/3n vertices and A can be represented as the disjoint union of at most k subsets
A1, . . . ,Ak (i.e., A = A1∪̇ · · · ∪̇Ak), where each Ai (i ∈ {1, . . . , k}) has the property
that any vertex from B is either adjacent to all v ∈ Ai or to no vertex in Ai .

Using this, we form a balanced separator S of G as follows. Initially set S := ∅,
and in each subset Ai , arbitrarily choose a vertex vi . Then, if N(vi) ∩ B �= ∅, put
vi and N(vi) ∩ B into S. Since for any edge ab ∈ E with a ∈ A and b ∈ B , vertex
b must belong to S, we conclude that S is a separator of G, separating A \ S from
B \S. Moreover, each connected component of G \S lies entirely either in A or in B

and therefore has at most 2/3n vertices. By construction of S, any vertex u ∈ B ∩ S

is adjacent to a vertex from A′ := A ∩ S. As |A′| ≤ k and w is an upper bound on any
edge weight, we deduce that A′ w-dominates S in G.

Thus, S is a balanced separator of G and is w-dominated by a set A′ of cardinality
at most k. To conclude the proof, it remains to recall that induced subgraphs of a
graph with clique-width at most k have clique-width at most k, too (see, e.g., [11]),
and therefore, by induction, the connected components of G \ S induce (2/3, k,w)-
decomposable graphs. �

Combining Theorem 9 with the results of Sect. 2, we obtain the following corol-
lary.
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Corollary 2 Any graph with n vertices and clique-width at most k admits a system of
at most k log3/2 n collective additive tree 2w-spanners, and such a system of spanning
trees can be found in polynomial time.

To complement the above result, we give the following lower bound.

Proposition 2 There are (infinitely many) unweighted n-vertex graphs with clique-
width at most 2 for which any system of collective additive tree 1-spanners will need
to have at least �(n) spanning trees.

Proof Consider the complete bipartite graph G = Kn,n on 2n vertices. Since G does
not have any induced P4, it is a cograph. It is known that any cograph has clique-
width at most 2 (see. e.g., [25]). We show that G will require at least �(n) spanning
trees in any system of collective additive tree 1-spanners. Let T (G) be a system of μ

collective additive tree 1-spanners of G. Then, for any two adjacent vertices x and y

of G there must exist a spanning tree T such that dT (x, y) ≤ 2. If dT (x, y) = 2 then
a common neighbor z of x and y in G would form a triangle with vertices x and y,
which is impossible for G = Kn,n. Hence, dT (x, y) = 1 must hold. Thus, every edge
xy of G is an edge of some tree T ∈ T (G). Since there are n2 graph edges to cover
by spanning trees from T (G), we conclude μ ≥ n2/(2n − 1) > n/2. �

3.3 Graphs with Bounded Chordality

In this section, we consider the class of c-chordal graphs and its subclasses.
We show that every c-chordal graph is (1/2,1, �c/2�w)-, (1/2,5, �(c + 2)/3�w)-
and (1/2,4, (�c/3� +1)w)-decomposable, every 4-chordal graph is (1/2,6,w)-
decomposable and every weakly chordal graph is (1/2,4,w)-decomposable.

In what follows we will need a special ordering of the vertex set of a graph G =
(V ,E), which refines well known BFS-ordering produced by a breadth-first search.
Lexicographic breadth-first search (LexBFS), started at a vertex u, orders the vertices
of a graph by assigning numbers from n to 1 in the following way. The vertex u gets
the number n. Then each next available number k is assigned to a vertex v (as yet
unnumbered) which has lexically largest vector (sn, sn−1, . . . , sk+1), where si = 1
if v is adjacent to the vertex numbered i, and si = 0 otherwise. An ordering of the
vertex set of a graph G generated by LexBFS we will call a LexBFS-ordering of G,
and use σ to denote it. The number assigned to a vertex is called LexBFS-ordering
number. For any vertex v, σ(v) is used to denote its LexBFS-ordering number. For
convenience, in the sequel, σ(x) > σ(y) is simplified as x > y. The father of a vertex
v is the vertex in N [v] which has the largest LexBFS-ordering number. f (v) is used
to denote the father of v. LexBFS may be seen to generate a rooted tree T with vertex
u as the root.

The following properties of a LexBFS-ordering will be used in what follows (see,
e.g., [7, 24]).

(P1) If x ∈ Li(u), y ∈ Lj (u) and i < j , then x > y in σ .
(P2) If v ∈ Lq(u) (q > 0) then f (v) ∈ Lq−1(u) and f (v) is the vertex from N(v) ∩

Lq−1(u) with the largest number in σ .
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(P3) If x > y, then either f (x) > f (y) or f (x) = f (y).
(P4) If a < b < c and ac ∈ E and bc /∈ E then there exists a vertex d such that

c < d,db ∈ E and da /∈ E.

Note that, properties (P1)–(P3) are guaranteed even by any BFS-ordering. Property
(P4), which is the characteristic property of any LexBFS-ordering (see [7]), implies
all other three properties and generally is not fulfilled by an arbitrary BFS-ordering. In
most cases we will need only properties (P1)–(P3) and hence it would be sufficient to
use simply a BFS-ordering of a graph. The full power of LexBFS-orderings (property
(P4)) will be used only in the proof of Lemma 7. However, since a LexBFS-ordering
of a graph can be easily found in linear time, too (see [24, 27]), we will assume in the
sequel that a LexBFS ordering of a graph is given.

Arbitrary c-Chordal Graphs Here, we consider the class of c-chordal graphs, c ≥ 3.
We start with an easy consequence of a result from [16].

Theorem 10 Every n-vertex c-chordal graph is (1/2,1, �c/2�w)-decomposable.

Proof In [16], we showed that any c-chordal graph has a subset S ⊆ V of vertices
computable in O(n3) time such that any connected component of G \ S has at most
n/2 vertices and any two vertices x and y of S can be connected in G by a path
with at most �c/2� edges. Since in our weighted case any edge has weight at most w,
we conclude that in G any vertex x of S (�c/2�w)-dominates S. Hence, as induced
subgraphs of c-chordal graphs are c-chordal, the result follows. �

Corollary 3 Every n-vertex c-chordal graph admits a system of at most log2 n col-
lective additive tree (2�c/2�w)-spanners, and such a system of spanning trees can be
found in O(n3 logn) time.

In what follows we will show that every c-chordal graph with c ≥ 4 is also
(1/2,5, �(c + 2)/3�w)- and (1/2,4, (�c/3� +1)w)-decomposable. To prove these,
we first show that any graph has a special balanced separator S. Let N(C) :=⋃

v∈C N(v) \ C and N [C] = N(C) ∪ C, for any set C ⊆ V .

Lemma 4 Any graph G has a separator S such that each connected component of
G \ S contains at most n/2 vertices.

Proof Let σ = (v1, v2, . . . , vn) be a LexBFS-ordering of G and Bi := {vi, vi+1,

. . . , vn}. Clearly, for any i = 1,2, . . . , n − 1,Bi is connected. Let C∗(i) be a largest
(by number of vertices) connected component of G \ Bi . In what follows, i will be
chosen to be the largest index such that |V (C∗(i))| ≤ n/2. Evidently, i ≥ �n/2� and,
by maximality of i, a largest connected component C∗(i +1) of graph G\Bi+1 must
have more than n/2 vertices. It is easy to see that if C1,C2, . . . ,Ck,C

∗(i + 1) are
the connected components of G \ Bi+1, then the connected components of G \ Bi

will be C1,C2, . . . ,Ck,Ck+1, . . . ,Ck+p , where Ck+1, . . . ,Ck+p are the connected
components of the subgraph of G induced by vertices of C∗(i + 1) \ {vi}.
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Fig. 2 (a) A 4-chordal graph G with a LexBFS-ordering. (b) A largest connected component C∗(12) of
G \ B12 (circled). A balanced separator S = {11,12,13,14,15} and the connected components of G \ S

Since |V (C∗(i + 1))| > n/2, |Bi+1| + ∑k
i=1 |V (Ci)| < n/2 holds. Let C′ =

V (C∗(i + 1)),A = Bi+1 ∩ N(C′) and S = A ∪ {vi}. Clearly, all connected com-
ponents of G \ S have at most n/2 vertices as they coincide with components
Ck+1, . . . ,Ck+p and the connected components of the subgraph of G induced by
vertices of C1,C2, . . . ,Ck and Bi+1 \ A. �

From the proof of Lemma 4, one can easily design a procedure to find such a
balanced separator S in at most O(|V ||E|) time. Our goal in this section is to show
that in c-chordal graphs separator S has a small rc-dominating set.

Let G = (V ,E) be a c-chordal graph with c ≥ 4 and σ = (v1, v2, . . . , vn) be a
LexBFS-ordering of G (the LexBFS-ordering number of vi = σ(i) is i = σ−1(vi)).
For any vertex x ∈ V , define V>x = {u ∈ V : u > x} and G>x to be a subgraph of G

induced by V>x . Let also S = A ∪ {vi} be a separator of G computed as described
in the proof of Lemma 4. That is, C∗(i + 1) is the largest connected components
of G \ Bi+1 and A = N(C∗(i + 1)) ∩ Bi+1 (see Fig. 2 for an illustration). By the
properties of LexBFS-orderings, the following observation clearly holds.

Proposition 3 No vertex of C∗(i + 1) has a neighbor in V>f (vi).

We say that a vertex x has the level number l(x) if x ∈ Ll(x)(vn). Since for
any y ∈ A, vi < y ≤ f (vi) holds, all the vertices of S are either in Ll(vi )(vn) or
in Ll(vi )−1(vn). Let S1 := S ∩ Ll(vi )(vn) and S2 := S ∩ Ll(vi )−1(vn).
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Lemma 5 There is a set D of at most five vertices in G such that D (�(c + 2)/3�w)-
dominates S. Moreover, if G is a c-chordal graph with 4 ≤ c ≤ 6, then D consists of
only four vertices.

Proof Define vertices f0, . . . , fa(vi ) as follows: f0 := vi, f1 := f (vi), . . . , fa(vi ) :=
f (fa(vi )−1), where a(vi) := min{�(c + 2)/3�, l(vi)}. We claim that the set {f1,

fa(vi )−1, fa(vi )} is a (�(c + 2)/3�w)-dominating set for S1.
If a(vi) = l(vi) then fa(vi ) = vn and trivially S1 is (�(c + 2)/3�w)-dominated by

fa(vi ) = vn since S1 ⊆ La(vi)(vn). Therefore, assume that a(vi) �= l(vi), and let x be
an arbitrary vertex of S1 \ {vi}. Consider vertices f ′

0 := x,f ′
1 := f (f ′

0), . . . , f
′
a(vi )

:=
f (f ′

a(vi )−1). If there is an index i (0 ≤ i < a(vi)) such that fi coincides with f ′
i or

f ′
i fi ∈ E(G) or f ′

i fi+1 ∈ E(G), then the distance between fa(vi )−1 (or fa(vi )) and
x is at most �(c + 2)/3�w and the claim clearly holds. Hence, we may assume that
there is no such index i. Since fi < f ′

i (by property (P3) of LexBFS-orderings), one
concludes that fif

′
i+1 /∈ E(G), too, for any i = 0, . . . , a(vi) − 1.

Let PG(fa(vi ), f
′
a(vi )

) be an induced path between fa(vi ) and f ′
a(vi )

such that,
if (fa(vi ), f

′
a(vi )

) /∈ E(G), then all its inner vertices are from levels Lj , j ≤
l(fa(vi )) − 1. Let PG(f1, f ′

0) be an induced path of G obtained by concatenating
the two paths PG(f1, fa(vi )) := (f1, . . . , fa(vi )), PG(f ′

0, f
′
a(vi )

) := (f ′
0, . . . , f

′
a(vi )

)

with PG(fa(vi ), f
′
a(vi )

). Obviously, PG(f1, f
′
0) has at least �(c + 2)/3� − 1 + �(c +

2)/3� + 1 = 2�(c + 2)/3� edges. Let also P ′
G(f1, f

′
0) be an induced path between

f1 and f ′
0 all inner vertices of which are from C∗(i + 1). By construction of S,

we know that x > vi . This and property (P3) of LexBFS-orderings imply that all
inner vertices of PG(f1, f

′
0) are from V>f (vi ). By Proposition 3, no vertex from

V (P ′
G(f1, f

′
0)) \ {f1, f

′
0} is adjacent to a vertex from V (PG(f1, f

′
0)) \ {f1, f

′
0}. Now,

by concatenating the two induced paths P ′
G(f1, f

′
0) and PG(f1, f

′
0), we obtain a

chordless cycle in G. Since G is a c-chordal graph, the path P ′
G(f1, f

′
0) cannot

have more than �(c + 2)/3� edges (otherwise, G will have an induced cycle with
at least c + 1 edges). Hence d(f1, x) ≤ �(c + 2)/3�w and our claim that the set
{f1, fa(vi )−1, fa(vi )} is a (�(c + 2)/3�w)-dominating set for S1 is proven.

Clearly, if G is a c-chordal graph with 4 ≤ c ≤ 6, then a(vi) is at most 2 = �(c +
2)/3�. Therefore, in this case, S1 is w-dominated by fa(vi ) = vn, if a(vi) = l(vi) = 1,
or (2w)-dominated by fa(vi )−1 = f1 and fa(vi ) = f2, if a(vi) = �(c + 2)/3� = 2.

Let now v′ be the vertex of S2 with the smallest LexBFS-ordering number. De-
fine a(v′) := min{�(c + 2)/3�, l(vi) − 1}. Let f ′′

0 := v′, f ′′
1 := f (f ′′

0 ), . . . , f ′′
a(v′) :=

f (f ′′
a(v′)−1). Let x be an arbitrary vertex in S2 \{v′}. Note that, by the definition of S2,

both v′ and x have neighbors in C∗(i + 1). Since C∗(i + 1) is connected, there is an
induced path P ′

G(v′, x) all inner vertices of which are from C∗(i + 1). Using similar
arguments as before, one can show that the set {v′, f ′′

a(v′)−1} is a (�(c + 2)/3�w)-
dominating set for S2.

Set D := {v′, f ′′
a(v′)−1} ∪ {vi, fa(vi )−1, fa(vi )}. Clearly, D is a (�(c + 2)/3�w)-

dominating set for S. This concludes the proof of the lemma. �

In a similar way we can prove
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Lemma 6 There is a set D′ of at most four vertices in G such that D′ is a ((�c/3� +
1)w)-dominating set for S.

Proof Set a(vi) := min{�c/3�, l(vi)}. Let f0 := vi, f1 := f (f0), . . . , fa(vi ) :=
f (fa(vi )−1). We claim that the set {f1, fa(vi )} is a ((�c/3� + 1)w)-dominating set
of S1.

If a(vi) = l(vi), then fa(vi ) = vn and claim clearly holds. So, assume a(vi) �=
l(vi). Let x be an arbitrary vertex in S1 \ {vi}. Set f ′

0 := x,f ′
1 := f (f ′

0), . . . ,

f ′
a(vi )

:= f (f ′
a(vi )−1). If there is an index i, 0 ≤ i ≤ a(vi), such that fi = f ′

i or
fif

′
i ∈ E(G) or fi+1f

′
i ∈ E(G) (for i < a(vi)), then we are done. Hence, we may as-

sume that no such i exists. We have also fif
′
i+1 /∈ E(G), for any i = 0, . . . , a(vi)− 1

since fi < f ′
i holds by property (P3) of LexBFS-orderings. Let PG(fa(vi ), f

′
a(vi )

)

be an induced path (of length at least 2) between fa(vi ) and f ′
a(vi )

all inner ver-
tices of which are from levels Lj , j ≤ l(fa(vi )) − 1. By concatenating the paths
PG(f1, fa(vi )) := (f1, f2, . . . , fa(vi )), PG(f ′

0, f
′
a(vi )

) := (f ′
0, f

′
1, . . . , f

′
a(vi )

) with path
PG(fa(vi ), f

′
a(vi )

), one gets an induced path with at least (�c/3� − 1) + �c/3� + 2 =
2�c/3� + 1 edges. Since f1f

′
0 /∈ E(G), there must exist an induced path P ′

G(f1, f
′
0)

between f1 and f ′
0 all inner vertices of which are from C∗(i + 1). By Proposition 3

and the fact that x > vi , we have also that no inner vertex of P ′
G(f1, f

′
0) is adjacent to

inner vertices of PG(f1, f
′
0). Therefore, these two paths form an induced cycle. Since

G is a c-chordal graph, P ′
G(f1, f

′
0) must have at most �c/3� + 1 edges. This proves

the claim.
Let now v′ be the vertex with the smallest LexBFS-ordering number in S2. Define

a(v′) := min{�c/3�, l(vi)−1}. Let f ′′
0 := v′, f ′′

1 := f (f ′′
0 ), . . . , f ′′

a(v′) := f (f ′′
a(v′)−1).

Using similar arguments as before, one can show that the set {f ′′
0 , f ′′

a(v′)} is a
((�c/3� + 1)w)-dominating set for S2.

Set D′ := {f1, fa(vi ), f
′′
0 , f ′′

a(v′)}. Clearly, D′ is a ((�c/3� + 1)w)-dominating set
for S. This completes the proof. �

Clearly, for a given S, both sets D and D′ can be found in linear time. Thus, we
have proven the following results.

Theorem 11 Let G be a c-chordal graph. Then, G is (1/2,4, �(c + 2)/3�w)-
decomposable, if 4 ≤ c ≤ 6, and is (1/2,5, �(c + 2)/3�w)- and (1/2,4, (�c/3� +
1)w)-decomposable, if c > 6.

Corollary 4 Let G be an n-vertex and m-edge c-chordal graph. If c > 6, then G

admits a system of at most 5 log2 n collective additive tree (2�(c + 2)/3�w)-spanners
and a system of at most 4 log2 n collective additive tree (2(�c/3� + 1)w)-spanners.
If 4 ≤ c ≤ 6, then G admits a system of at most 4 log2 n collective additive tree
(2�(c + 2)/3�w)-spanners. Moreover, such systems of spanning trees can be found
in O(nm logn) time.

From Theorem 10 and Theorem 11 we conclude that any 3-chordal graph is
(1/2,1,w)-decomposable, any 4-chordal graph or 5-chordal graph is (1/2,1,2w)-
decomposable, any 6-chordal graph is (1/2,1,3w)- and (1/2,4,2w)-decomposable,
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any 7-chordal graph is (1/2,1, 3w)-decomposable, and any 8-chordal graph is
(1/2,1,4w)- and (1/2,4,3w)-decomposable. In the next section we will show that
the result for 4-chordal graphs can be refined. In Table 2 we present our decomposi-
tion results for all c-chordal graphs.

4-Chordal Graphs Here, we show that every 4-chordal graph is (1/2,6,w)-
decomposable and every weakly chordal graph is (1/2,4,w)-decomposable.

Let G = (V ,E) be a 4-chordal graph and σ = (v1, v2, . . . , vn) be a LexBFS-
ordering of G. Let also S = A ∪ {vi} be a separator of G computed as described
in the proof of Lemma 4. That is, C∗(i + 1) is the largest connected components of
G \ Bi+1 and A = N(C∗(i + 1)) ∩ Bi+1.

Denote by C6 the complement of an induced cycle C6 on 6 vertices. First we
will show that any 4-chordal graph not containing C6 as an induced subgraph is
(1/2,4,w)-decomposable. Clearly, these graphs contain all weakly chordal graphs.

Lemma 7 If G is a 4-chordal graph not containing C6 as an induced subgraph, then
there exists a set D of at most four vertices in G such that S ⊆ N [D].

Proof Let A− := {w ∈ A : wvi,wf (vi) /∈ E(G)}. We will show that there are at most
two vertices a, b in G such that A− ⊆ N [{a, b}]. Consider a vertex w ∈ A−. Obvi-
ously, w > vi . By properties (P2) and (P3) of LexBFS-orderings, f (vi) < f (w) must
hold. By Proposition 3, one concludes that w < f (vi) holds. Let x ∈ C∗(i + 1) be a
vertex from N(w) which can be connected to vi in C∗(i + 1) with minimum number
of edges.

Claim 1 f (vi)x ∈ E(G).

Proof The claim can be proved by contradiction. Assume f (vi)x /∈ E(G). Let
P = (vi = u0, u1, . . . , ul = x) be a path between vi and x in C∗(i + 1) with min-
imum number of edges. Clearly, N(w) ∩ P = {x}. Let ul′ be the vertex of P with
largest index which is adjacent to f (vi). Then path P1 = (f (vi), ul′ , ul′+1, . . . , ul,w)

is an induced path connecting f (vi) and w, and it consists of at least 3 edges. Since
f (vi) < f (w), there must be an induced path P2 between f (vi) and w all inner ver-
tices of which are from V>f (vi ). Moreover, no vertex from P2 can be adjacent to any
vertex from P1 \ {f (vi),w}. Since P2 consists of at least 2 edges, by combining P1
and P2, one gets an induced cycle in G with at least 5 edges. As G is a 4-chordal
graph, that is impossible. �

Consider a layering {vn},L1(vn),L2(vn),L3(vn), . . . of graph G, where Li(vn) =
{x ∈ V : x can be connected to vn by a path with i edges but not by a path with i − 1
edges}. Since all the vertices in Bi+1 have larger LexBFS-ordering numbers than vi ,
by property (P1) of LexBFS-orderings, each vertex in A− is either in level Ll(vi )(un)

or in level Ll(vi )−1(un) (recall that w < f (vi) for any w ∈ A−). Define Au = {u : u ∈
A− ∩ Ll(vi )(vn)} and Ad = {u : u ∈ A− ∩ Ll(vi )−1(vn)}. Set also N↓(x) := N(x) ∩
(Ll(x)−1(vn)∩V>f (vi )) for any x ∈ V . Since for every vertex w ∈ A−, f (w) > f (vi)

holds, N↓(w) is not empty for any w ∈ A−. We have l(vi) > 1, since otherwise,
f (vi) = vn and therefore w must be adjacent to or coincide with f (vi).
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Claim 2 For any vertex w ∈ A−, N↓(w) ⊆ N↓(f (vi)) holds.

Proof Assume that the statement is not true. Then, one can find a vertex w′ ∈ N↓(w)

such that w′ > f (vi) and w′f (vi) /∈ E(G). By Claim 1, there is a vertex x in
C∗(i + 1) which is adjacent to both f (vi) and w. We know also that x is not adjacent
to any vertex of V>f (vi ). We distinguish between two cases. First assume w ∈ Au.
There must exist an induced path Pf (vi ),w

′ between f (vi) and w′ such that its in-
ner vertices are all from layers Ls(vn), s ≤ l(f (vi)) − 1. This path has at least 2
edges. Moreover, no inner vertex of Pf (vi ),w

′ is adjacent to w or x. Therefore, paths
(f (vi), x,w,w′) and Pf (vi ),w

′ will form a chordless cycle with at least 5 edges in G,
which is impossible.

Assume now that w ∈ Ad . Since w < f (vi) < w′ and w′f (vi) /∈ E but w′w ∈ E,
by property (P4) of LexBFS-orderings, there is a vertex t > w′ such that tf (vi) ∈
E(G) and tw /∈ E(G). Let Pt,w′ be an induced path connecting t and w′ all inner
vertices of which are from

⋃
i≤l(w′)−1 Li(vn). Pt,w′ has at least one edge. Hence, the

path Pt,w′ together with (t, f (vi), x,w,w′) will form an induced cycle with at least
5 edges in G, which is impossible. �

Claim 3 For any two vertices w,z ∈ Au or w,z ∈ Ad , sets N↓(w) and N↓(z) are
comparable.

Proof The claim can be proved by contradiction. Assume w,z ∈ Au and N↓(w) and
N↓(z) are not comparable. Then, there exist two vertices w′ ∈ N↓(w) and z′ ∈ N↓(z)

such that w′z, z′w /∈ E(G). By Claim 2, we know f (vi)w
′, f (vi)z

′ ∈ E(G). Let
x, y ∈ C∗(i + 1) be two vertices such that xw,xf (vi), yz, yf (vi) ∈ E, the exis-
tence of which follows from Claim 1. As w′, z′ are from V>f (vi) and x, y are from
C∗(i + 1), there cannon be an edge between sets {x, y} and {z′,w′}.

First, we show that both wz and w′z′ must be in E(G). Assume w′z′ /∈ E(G). Let
Pw,z be an induced path between w and z such that all its inner vertices are from
G∗(i + 1). Pw′,z′ is used to denote an induced path between w′ and z′ such that its
inner vertices are from

⋃
i≤l(w′)−1 Li(vn). Clearly, the inner vertices of Pw′,z′ are not

adjacent to any vertex from Pw,z. Since Pw,z has at least one edge and Pw′,z′ has at
least 2 edges, Pw,z,ww′, zz′ and Pw′,z′ will form a hole in G, which is impossible.
This proves that w′z′ must be in E(G). Similarly, if wz /∈ E(G), then Pw,z has at
least 2 edges. Moreover, any inner vertex of Pw,z is adjacent neither to w′ nor to z′.
Hence, Pw,z,ww′,w′z′, z′z form an induced cycle with at least 5 edges in G, which
is impossible. Thus, both wz and w′z′ are in E(G).

Second, we claim that neither wy nor zx is in E(G). If wy ∈ E(G), then since
wz,w′z′ ∈ E(G), vertices w,y, z,w′, z′ and f (vi) would give an induced C6 which
is also forbidden in G. In a similar way, one can show that zx ∈ E(G) is impossible.

It is easy to see now that vertices w,z, y,f (vi),w
′ form an induced cycle with

5 edges in G. A contradiction obtained proves that N↓(w) and N↓(z) are compara-
ble for any w,z ∈ Au. When w,z ∈ Ad , one can show that N↓(w) and N↓(z) are
comparable in a similar way. �
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Claim 3 ensures that there can be found two vertices a and b in G such that
a ∈ ⋂

w∈Au
N↓(w) and b ∈ ⋂

w∈Ad
N↓(w). Hence, A− = Ad ∪Au is completely con-

tained in N [{a, b}], implying S ⊆ N [{vi, f (vi), a, b}]. �

Hence, we have the following results.

Theorem 12 Let G be a 4-chordal graph not containing C6 as an induced subgraph.
Then G is (1/2,4,w)-decomposable.

Corollary 5 Any n-vertex m-edge 4-chordal graph G not containing C6 as an in-
duced subgraph (in particular, any weakly chordal graph) admits a system of at most
4 log2 n collective additive tree (2w)-spanners. Moreover, such a system of spanning
trees can be constructed in O(nm logn) time.

Note that the class of weakly chordal graphs properly contains such known classes
of graphs as interval graphs, chordal graphs, chordal bipartite graphs, permuta-
tion graphs, trapezoid graphs, House-Hole-Domino-free graphs, distance-hereditary
graphs and many others. Hence, the results of this subsection generalize some known
results from [10, 16]. We recall also that, as it was shown in [10], no system of con-
stant number of collective additive tree r-spanners can exist for unweighted weakly
chordal graphs for any constant r ≥ 0.

The above results can easily be extended to all 4-chordal graphs (note that in the
proof of Lemma 7 the absence of C6 in G was important only for Claim 3). We can
show that every 4-chordal graph is (1/2,6,w)-decomposable.

Lemma 8 If G is a 4-chordal graph, then there exists a set D of at most six vertices
in G such that S ⊆ N [D].

Proof Let Au,Ad be the same vertex sets as defined in the proof of Lemma 7. Let x

be a vertex of Au with minimum |N↓(x)| among all vertices of Au. Similarly, let y

be a vertex of Ad with minimum |N↓(y)| among all vertices of Ad . We claim that for
any vertex z ∈ Au, if xz /∈ E(G), then zf (x) ∈ E(G) must hold.

Assume zf (x) /∈ E(G) for some z ∈ Au. By the choice of x, there must exist
a vertex z′ ∈ N↓(z) such that xz′ /∈ E(G). Since x, z are in Au, there must ex-
ist an induced path PG(x, z) all inner vertices of which are from C∗(i + 1). This
path has at least 2 edges. On the other hand, there is a path PG(f (x), z′) in G

such that, if f (x)z′ /∈ E(G), then all its inner vertices are from levels Ls(vn), s <

l(vi) − 1. Path PG(f (x), z′) has at least 1 edge. Furthermore, by Proposition 3,
no vertex on PG(f (x), z′) can be adjacent to inner vertices of PG(x, z). Therefore,
PG(f (x), z′),PG(x, z) and two edges xf (x), zz′ form an induced cycle with at least
5 edges, which is impossible. This contradiction proves our claim.

Analogously, one can show that for any vertex z ∈ Ad , if yz /∈ E(G), then
zf (y) ∈ E(G) must hold. Now, since S ⊆ N [vi] ∪ N [f (vi)] ∪ Au ∪ Ad and Au ⊆
N [x] ∪ N [f (x)], Ad ⊆ N [y] ∪ N [f (y)], we conclude that S ⊆ N [D], where D :=
{vi, f (vi), x,f (x), y, f (y)}. �

Thus, the following results true.
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Table 2 Summary of the decomposition results obtained for c-chordal graphs

Chordality of the graph Decomposition results

3 (1/2, 1, w)

4 (1/2, 1, 2w), (1/2, 6, w)

5 (1/2, 1, 2w)

6 (1/2, 1, 3w), (1/2, 4, 2w)

7 (1/2, 1, 3w)

8 (1/2, 1, 4w), (1/2, 4, 3w)

9 (1/2, 1, 4w), (1/2, 5, 3w)

c ≥ 10 (1/2, 1, �c/2�w), (1/2, 4, (�c/3� + 1)w)

c = 3k, k ≥ 4 (1/2, 1, �3k/2�w), (1/2, 4, (k + 1)w), (1/2, 5, kw)

Theorem 13 Every 4-chordal graph is (1/2,6,w)-decomposable.

Corollary 6 Any n-vertex m-edge 4-chordal graph G admits a system of at most
6 log2 n collective additive tree (2w)-spanners. Moreover, such a system of spanning
trees can be constructed in O(nm logn) time.

Corollary 7 Any n-vertex m-edge 4-chordal graph G admits an additive (2w)-
spanner with at most O(n logn) edges. Moreover, such a sparse spanner can be
constructed in O(nm logn) time.

The last result improves and generalizes the known from [9, 16, 31] results on
sparse spanners of unweighted chordal graphs.

In Table 2, we summaries all our decomposition results obtained for c-chordal
graphs.

4 Conclusion

In this paper, we continued the approach taken in [10, 15, 16, 26] of studying collec-
tive tree spanners of graphs. The method of [16] for constructing a “small” system of
collective additive tree r-spanners with small values of r was refined and generalized
to weighted and larger families of “well” decomposable graphs.

We defined a large class of graphs, called (α, γ, r)-decomposable, and showed that
any weighted (α, γ, r)-decomposable graph G with n vertices admits a system of at
most γ log1/α n collective additive tree 2r-spanners. Using this, we showed that any
weighted planar graph admits a system of O(

√
n) collective additive tree 0-spanners,

any weighted graph with genus at most g admits a system of O(
√

gn) collective ad-
ditive tree 0-spanners, any weighted graph with tree-width at most k−1 admits a sys-
tem of k log2 n collective additive tree 0-spanners, any weighted graph with clique-
width at most k admits a system of k log3/2 n collective additive tree (2w)-spanners,
any weighted c-chordal graph admits a system of log2 n (5 log2 n and 4 log2 n) col-
lective additive tree (2�c/2�w)-spanners (respectively, (2�(c+2)/3�w)-spanners and
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Table 3 Routing labeling schemes obtained via collective additive tree spanners. The scheme construction
time is equal to the time needed to construct an appropriate system of collective additive tree spanners plus
O(n logn) times the number of spanning trees in the system. Thus, the construction time is O(n3/2 log2 n)

for planar graphs, O(n3/2g1/2 log2 n) for graphs with genus g, O(h3/2n1/2(m logn + n log2 n)) for
graphs without an h-vertex minor, O((n2 + km + kn logn) logn) for graphs with tree-width k − 1, poly-
nomial for graphs with clique-width k, and O(nm logn) for c-chordal graphs (c ≥ 4)

Graph Addresses and Message Routing Deviation

class routing tables initiation decision

(bits per vertex) time time

Planar O(
√

n log2 n/ log logn) O(
√

n) O(1) 0

Of genus g O(
√

gn log2 n/ log logn) O(
√

gn) O(1) 0

w/o an h-vertex minor O(
√

h3n log2 n/ log logn) O(
√

h3n) O(1) 0

Of tree-width k − 1 O(k log3 n/ log logn) k log2 n O(1) 0

Of clique-width k O(k log3 n/ log logn) k log3/2 n O(1) 2w

c-chordal (c ≥ 5) O(log3 n/ log logn) log2 n O(1) 2�c/2�w

4 log2 n 2(�c/3� + 1)w

5 log2 n 2�(c + 2)/3�w

4-chordal O(log3 n/ log logn) 6log2n O(1) 2w

Weakly chordal O(log3 n/ log logn) 4 log2 n O(1) 2w

(2(�c/3�+1)w)-spanners), any weighted 4-chordal graph admits a system of 6 log2 n

collective additive tree (2w)-spanners, and any weighted weakly chordal graph admits
a system of 4 log2 n collective additive tree (2w)-spanners.

Combining our decomposition results also with Corollary 1, we obtain the follow-
ing routing labeling schemes presented in Table 3.

We conclude this paper with few open problems:

(1) Find the complexity of the problem “Given a graph G, an integers μ, and a real
number r , decide whether G has a system of at most μ collective additive tree r-
spanners” for different μ ≥ 1, r ≥ 0 on general graphs and on different restricted
families of graphs.

(2) Find better trade-offs between the number of trees μ and the additive stretch
factor r on planar graphs, graphs with genus g and graphs without an h-vertex
minor.

(3) Find some more applications where collective tree spanners could be useful. The
fact that collective tree spanners give a collection of (good) trees might make
it easy to adapt many tree algorithms for the graphs that have collective tree r-
spanners.

References

1. Abraham, I., Gavoille, C., Malkhi, D.: Compact routing for graphs excluding a fixed minor. In: 19th
International Symposium on Distributed Computing (DISC’05). Lecture Notes in Computer Science,
vol. 3724, pp. 442–456. Springer, Berlin (2005)

2. Aleksandrov, L., Djidjev, H.: Linear algorithms for partitioning embedded graphs of bounded genus.
SIAM J. Discrete Math. 9, 129–150 (1996)



Algorithmica

3. Alon, N., Seymour, P., Thomas, R.: A separator theorem for graphs with an excluded minor and its
applications. In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pp.
293–299. Assoc. Comput. Mach., New York (1990)

4. Bodlaender, H.L.: Discovering treewidth. In: SOFSEM 2005: Theory and Practice of Computer Sci-
ence, 31st Conference on Current Trends in Theory and Practice of Computer Science, January 22–28,
2005. Lecture Notes in Computer Science, vol. 3381, pp. 1–16. Springer, Berlin (2005)

5. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM
J. Comput. 25, 1305–1317 (1996)

6. Borie, R., Johnson, J.L., Raghavan, V., Spinrad, J.P.: Robust polynomial time algorithms on clique-
width k graphs. Manuscript (2002)

7. Brandstädt, A., Dragan, F.F., Nicolai, F.: LexBFS-orderings and powers of chordal graphs. Discrete
Math. 171, 27–42 (1997)

8. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Discrete Math. 8, 359–387 (1995)
9. Chepoi, V.D., Dragan, F.F., Yan, C.: Additive spanners for k-chordal graphs. In: Proceedings of the

5th Conference on Algorithms and Complexity (CIAC 2003), May 28–30, 2003. Lecture Notes in
Computer Science, vol. 2653, pp. 96–107. Springer, Berlin (2003)

10. Corneil, D.G., Dragan, F.F., Köhler, E., Yan, C.: Collective tree 1-spanners for interval graphs. In:
Proceedings of the 31st International Workshop Graph-Theoretic Concepts in Computer Science
(WG’05), June 2005. Lecture Notes in Computer Science, vol. 3787, pp. 151–162. Springer, Berlin
(2005)

11. Courcelle, B., Olariu, S.: Upper bounds to the clique-width of graphs. Discrete Appl. Math. 101,
77–114 (2000)

12. Djidjev, H.N.: On the problem of partitioning planar graphs. SIAM J. Algebr. Discrete Methods 3,
229–240 (1982)

13. Djidjev, H.N.: A separator theorem for graphs of fixed genus. Serdica 11, 319–329 (1985)
14. Dragan, F.F., Yan, C.: Collective tree spanners in graphs with bounded genus, chordality, tree-width,

or clique-width. In: Proceedings of the 16th Annual International Symposium on Algorithms and
Computation (ISAAC 2005), Hainan, China, December 19–21, 2005. Lecture Notes in Computer
Science, vol. 3827, pp. 583–592. Springer, Berlin (2005)

15. Dragan, F.F., Yan, C., Corneil, D.G.: Collective tree spanners and routing in AT-free related graphs.
J. Graph Algorithms Appl. 10, 97–122 (2006)

16. Dragan, F.F., Yan, C., Lomonosov, I.: Collective tree spanners of graphs. SIAM J. Discrete Math. 20,
241–260 (2006)

17. Elkin, M., Peleg, D.: Approximating k-spanner problems for k > 2. Theor. Comput. Sci. 337, 249–277
(2005)

18. Elkin, M., Peleg, D.: (1 + ε,β)-Spanner constructions for general graphs. SIAM J. Comput. 33, 608–
631 (2004)

19. Emek, Y., Peleg, D.: Approximating minimum max-stretch spanning trees on unweighted graphs. In:
Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004),
New Orleans, Louisiana, USA, January 11–14, 2004, pp. 261–270. SIAM, Philadelphia (2004)

20. Engelfriet, J., Rozenberg, G.: Node replacement graph grammars. In: Handbook of Graph Grammars
and Computing by Graph Transformation, Foundations, vol. I, pp. 1–94. World Scientific, Singapore
(1997)

21. Fraigniaud, P., Gavoille, C.: Routing in trees. In: Proceedings of the 28th Int. Colloquium on Au-
tomata, Languages and Programming (ICALP 2001). Lecture Notes in Computer Science, vol. 2076,
pp. 757–772. Springer, Berlin (2001)

22. Gilbert, J.R., Hutchinson, J.P., Tarjan, R.E.: A separator theorem for graphs of bounded genus. J. Al-
gorithms 5, 391–407 (1984)

23. Gilbert, J.R., Rose, D.J., Edenbrandt, A.: A separator theorem for chordal graphs. SIAM J. Algebr.
Discrete Methods 5, 306–313 (1984)

24. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
25. Golumbic, M.C., Rotics, U.: On the clique-width of perfect graph classes. In: Proceedings of the

25th International Workshop Graph-Theoretic Concepts in Computer Science (WG ’99), Ascona,
Switzerland, June 1999. Lecture Notes in Computer Science, vol. 1665, pp. 135–147. Springer, Berlin
(1999)

26. Gupta, A., Kumar, A., Rastogi, R.: Traveling with a pez dispenser (or, routing issues in MPLS). SIAM
J. Comput. 34, 453–474 (2005). Appeared also in FOCS 2001



Algorithmica

27. Habib, M., McConnell, R.M., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applica-
tions to transitive orientation, interval graph recognition and consecutive ones testing. Theor. Comput.
Sci. 234, 59–84 (2000)

28. Kloks, T.: Treewidth: Computations and Approximations. Lecture Notes in Computer Science,
vol. 842. Springer, Berlin (1994)

29. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36, 346–358
(1979)

30. Liestman, A.L., Shermer, T.: Additive graph spanners. Networks 23, 343–364 (1993)
31. Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13, 99–116 (1989)
32. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. In: Proceedings of the 6th ACM

Symposium on Principles of Distributed Computing, Vancouver, pp. 77–85 (1987)
33. Prisner, E., Kratsch, D., Le, H.-O., Müller, H., Wagner, D.: Additive tree spanners. SIAM J. Discrete

Math. 17, 332–340 (2003)
34. Robertson, N., Seymour, P.D.: Graph minors II: Algorithmic aspects of tree-width. J. Algorithms 7,

309–322 (1986)
35. Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of the 13th Ann. ACM Symp.

on Par. Alg. and Arch. (SPAA 2001), pp. 1–10. Assoc. Comput. Mach., New York (2001)


	Collective Tree Spanners in Graphs with Bounded Parameters
	Abstract
	Introduction
	Our Results
	Basic Notions and Notation

	(alpha, gamma, r)-Decomposable Graphs and Their Collective Tree Spanners
	Particular Classes of (alpha, gamma, r)-Decomposable Graphs
	Graphs Having Balanced Separators of Bounded Size
	Graphs with Bounded Clique-Width
	Graphs with Bounded Chordality
	Arbitrary c-Chordal Graphs
	4-Chordal Graphs


	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


