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Abstract In the k-search problem, a player is searching for the k highest (respec-
tively, lowest) prices in a sequence, which is revealed to her sequentially. At each
quotation, the player has to decide immediately whether to accept the price or not.
Using the competitive ratio as a performance measure, we give optimal deterministic
and randomized algorithms for both the maximization and minimization problems,
and discover that the problems behave substantially different in the worst-case. As an
application of our results, we use these algorithms to price “lookback options”, a par-
ticular class of financial derivatives. We derive bounds for the price of these securities
under a no-arbitrage assumption, and compare this to classical option pricing.

Keywords Time series search · One-way trading · Online algorithms · Competitive
analysis · Option pricing

1 Introduction

1.1 k-Search Problem

We consider the following online search problem: a player wants to sell (respectively,
buy) k ≥ 1 units of an asset with the goal of maximizing her profit (minimizing her
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cost). At time points i = 1, . . . , n, the player is presented a price quotation pi , and
must immediately decide whether or not to sell (buy) one unit of the asset for that
price. The player is required to complete the transaction by some point in time n.
We ensure that by assuming that if at time n − j she has still j units left to sell
(respectively, buy), she is compelled to do so in the remaining j periods. We shall
refer to the profit maximization version (selling k units) as k-max-search, and to the
cost minimization version (purchasing k units) as k-min-search.

In this work, we shall make no modeling assumptions on the price path except that
it has finite support, which is known to the player. That is, the prices are chosen from
the real interval I = {x |m ≤ x ≤ M}, where 0 < m < M . We define the fluctuation
ratio ϕ = M/m. Let P = ⋃

n≥k I n be the set of all price sequences of length at least
k. Moreover, the length of the sequence is known to the player at the beginning of the
game.

Sleator and Tarjan [19] proposed to evaluate the performance of online algorithms
by using competitive analysis. In this model, an online algorithm ALG is compared
with an offline optimum algorithm OPT (which knows all prices in advance), on the
same price sequence. Here, the price sequence is chosen by an adversary out of the
set P of admissible sequences. Let ALG(σ ) and OPT(σ ) denote the objective values
of ALG and OPT when executed on σ ∈ P . The competitive ratio of ALG is defined
for maximization problems as

CR(ALG) = max

{
OPT(σ )

ALG(σ )

∣
∣
∣σ ∈ P

}

,

and similarly, for minimization problems

CR(ALG) = max

{
ALG(σ )

OPT(σ )

∣
∣
∣σ ∈ P

}

.

We say that ALG is c-competitive if it achieves a competitive ratio not larger than c.
For randomized algorithms, in the definitions above we substitute the expected ob-
jective value E[ALG] for ALG.

Related Work In 2001, El-Yaniv, Fiat, Karp and Turpin studied, among other prob-
lems, the case k = 1, i.e. 1-max-search, and the closely related one-way trading prob-
lem [7] with the competitive ratio (defined above) as performance measure. In the lat-
ter, a player wants to exchange some initial wealth to some other asset, and is again
given price quotations one-by-one. However, the player may exchange an arbitrary
fraction of her wealth for each price. Hence, the k-max-search problem for general
k ≥ 1 can be understood as a natural bridge between the two problems considered
in [7], with k → ∞ corresponding to the one-way trading problem. This connection
will be made more explicit later.

Several variants of search problems, which will be discussed below, have been
extensively studied in operations research and mathematical economics. However,
traditionally most of the work follows a Bayesian approach: optimal algorithms are
developed under the assumption that the prices are generated by a known distribution.
Naturally, such algorithms heavily depend on the underlying model.
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Lippmann and McCall [14, 15] give an excellent survey on search problems with
various assumptions on the price process. More specifically, they study the problem of
job and employee search and the economics of uncertainty, which are two classical
applications of series search problems. In [17], Rosenfield and Shapiro study the
situation where the price follows a random process, but some of its parameters may
be random variables with known prior distribution. Hence, the work in [17] tries
to get rid of the assumption of the Bayesian search models that the underlying price
process is fully known to the player. Ajtai, Megiddo and Waarts [1] study the classical
secretary problem. Here, n objects from an ordered set are presented in random order,
and the player has to accept k of them so that the final decision about each object is
made only on the basis of its rank relative to the ones already seen. They consider the
problems of maximizing the probability of accepting the best k objects, or minimizing
the expected sum of the ranks (or powers of ranks) of the accepted objects. In this
context, Kleinberg designed in [12] an (1 − O(1/

√
k))-competitive algorithm for the

problem of maximizing the sum of the k chosen elements.

Results & Discussion In contrast to the Bayesian approaches, El-Yaniv et al. [7]
circumvent almost all distributional assumptions by resorting to competitive analysis
and the minimal assumption of a known finite price interval. In this paper we also
follow this approach. The goal is to provide a generic search strategy that works with
any price evolution, rather than to retrench to a specific stochastic price process. In
many applications, where it is not clear how the generating price process should be
modeled, this provides an attractive alternative to classical Bayesian search models.
In fact, in the second part of the paper we give an application of k-max-search and
k-min-search to robust option pricing in finance, where relaxing typically made as-
sumptions on the (stochastic) price evolution to the minimal assumption of a price
interval yields remarkably good bounds.

Before we proceed with stating our results, let us introduce some notation. For
σ ∈ P , σ = (p1, . . . , pn), let pmax(σ ) = max1≤i≤n pi denote the maximum price,
and pmin(σ ) = min1≤i≤npi the minimum price. Let W denote Lambert’s W -function,
i.e., the inverse of f (w) = w exp(w). For brevity we shall write f (x) ∼ g(x), if
limx→∞ f (x)/g(x) = 1. It is well-known that W(x) ∼ lnx.

Our results for deterministic k-max-search are summarized in Theorem 1.

Theorem 1 Let k ∈ N, ϕ > 1. There is a r∗-competitive deterministic algorithm for
k-max-search, where r∗ = r∗(k,ϕ) is the unique solution of

ϕ − 1

r∗ − 1
=

(

1 + r∗

k

)k

, (1)

and there exists no deterministic algorithm with smaller competitive ratio. Further-
more, we have

(i) r∗(k,ϕ) ∼ k+1
√

kkϕ for fixed k ≥ 1 and ϕ → ∞,
(ii) r∗(k,ϕ) ∼ 1 + W(

ϕ−1
e

) for fixed ϕ > 1 and k → ∞.

The algorithm in the theorem above is given explicitly in Sect. 2. Interestingly,
the optimal competitive deterministic algorithm for the one-way trading problem
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studied in [7] has competitive ratio exactly 1 + W(
ϕ−1

e
) (for n → ∞), which coin-

cides with the ratio of our algorithm given by the theorem above for k → ∞. Hence,
k-max-search can indeed be understood as a natural bridge between the 1-max-search
problem and the one-way trading problem.

For deterministic k-min-search we obtain the following statement.

Theorem 2 Let k ∈ N, ϕ > 1. There is a s∗-competitive deterministic algorithm for
k-min-search, where s∗ = s∗(k,ϕ) is the unique solution of

1 − 1/ϕ

1 − 1/s∗ =
(

1 + 1

ks∗

)k

, (2)

and there exists no deterministic algorithm with smaller competitive ratio. Further-
more, we have

(i) s∗(k,ϕ) ∼
√

k+1
2k

ϕ for fixed k ≥ 1 and ϕ → ∞,

(ii) s∗(k,ϕ) ∼ (W(−ϕ−1
eϕ

) + 1)−1 for fixed ϕ > 1 and k → ∞.

The algorithm in the theorem above is also given explicitly in Sect. 2. Surpris-
ingly, although one might think that k-max-search and k-min-search should behave
similarly with respect to competitive analysis, Theorem 2 states that this is in fact not
the case. Indeed, according to Theorems 1 and 2, for large ϕ, the best algorithm for
k-max-search achieves a competitive ratio of roughly k k

√
ϕ, while the best algorithm

for k-min-search is at best
√

ϕ/2-competitive. Similarly, when k is large, the com-
petitive ratio of a best algorithm for k-max-search behaves like lnϕ, in contrast to
k-min-search, where a straightforward analysis (i.e. series expansion of the W func-
tion around its pole) shows that the best algorithm achieves a ratio of �(

√
ϕ). Hence,

algorithms for k-min-search perform in the worst-case rather poorly compared to al-
gorithms for k-max-search.

Furthermore, we investigate the performance of randomized algorithms for the
problems in question. In [7] the authors gave a O(lnϕ)-competitive randomized al-
gorithm for 1-max-search, but did not provide a lower bound.

Theorem 3 Let k ∈ N, ϕ > 1. For every randomized k-max-search algorithm RALG
we have

CR(RALG) ≥ (lnϕ)/2. (3)

Furthermore, there is a 2 lnϕ-competitive randomized algorithm for ϕ > 3.

Note that the lower bound above is independent of k, i.e., randomized algorithms
cannot improve their performance when k increases. In contrast to that, by consid-
ering Theorem 1, as k grows the performance of the best deterministic algorithm
improves, and approaches lnϕ, which is only a multiplicative factor away from the
best ratio that a randomized algorithm can achieve.

Our next result is about randomized algorithms for k-min-search.
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Theorem 4 Let k ∈ N, ϕ > 1. For every randomized k-min-search algorithm RALG
we have

CR(RALG) ≥ (1 + √
ϕ )/2. (4)

Again, the lower bound is independent of k. Furthermore, combined with Theo-
rem 2, the theorem above states that for all k ∈ N, randomization does not improve the
performance (up to a multiplicative constant) of algorithms for k-min-search, com-
pared to deterministic algorithms. This is again a difference between k-max-search
and k-min-search.

1.2 Application to Robust Valuation of Lookback Options

In the second part of the paper we will use competitive k-search algorithms to de-
rive upper bounds for the price of lookback options, a particular class of financial
derivatives (see e.g. [11]). An option is a contract whereby the option holder has the
right (but not obligation) to exercise a feature of the option contract on or before an
exercise date, delivered by the other party – the writer of the option. Thus, an option
is in general an asymmetric contract. Since the option gives the buyer a right, it will
have a price that the buyer has to pay to the option writer.

The most basic type of options are European options on a stock. They give the
holder the right to buy (respectively, sell) the stock on a prespecified date T (expiry
date) for a prespecified price K . Besides these standard and well-understood types,
there is also a plethora of options with more complex features. One type are so called
lookback options. A lookback call allows the holder to buy the underlying stock at
time T from the option writer at the historical minimum price observed over [0, T ],
and a lookback put to sell at the historical maximum.

A fundamental question is to determine the value of an option at time t < T . Black
and Scholes [2] studied European call and put options on non-dividend paying stocks
in a seminal paper. The key argument in their derivation is a no arbitrage condition.
Loosely speaking, an arbitrage is a zero-risk, zero net investment strategy that still
generates profit. If such an opportunity came about, market participants would im-
mediately start exploiting it, pushing prices until the arbitrage opportunity ceases to
exist. Black and Scholes essentially give a dynamic trading strategy in the underlying
stock by which an option writer can risklessly hedge an option position. Thus, the no
arbitrage condition implies that the cost of the trading strategy must equal the price
of the option to date.

In the model of Black and Scholes trading is possible continuously in time and
in arbitrarily small portions of shares. Moreover, a central underlying assumption
is that the stock price follows a geometric Brownian motion (see e.g. [18]), which
then became the standard model for option pricing. While it certainly shows many
features that resemble reality fairly, the behavior of stock prices in practice is not
fully consistent with this assumption. For instance, the distribution observed for the
returns of stock price processes are non-Gaussian and typically heavy-tailed [4], lead-
ing to underestimation of extreme price movements. Furthermore, in practice trading
is discrete, price paths include price jumps and stock price volatility is not constant.
As a response, numerous modifications of the original Black-Scholes setting have
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been proposed, examining different stochastic processes for the stock price (for in-
stance [5, 10, 16]).

In light of the persistent difficulties of finding and formulating the “right” model
for the stock price dynamic, there have also been a number of attempts to price fi-
nancial instruments by relaxing the Black-Scholes assumptions instead. The idea is to
provide robust bounds that work with (almost) any evolution of the stock price rather
than focusing on a specific formulation of the stochastic process. In this fashion,
DeMarzo, Kremer and Mansour [6] derive both upper and lower bounds for option
prices in a model of bounded quadratic variation, using competitive online trading al-
gorithms. In the mathematical finance community, Epstein and Wilmott [8] propose
non-probabilistic models for pricing interest rate securities in a framework of “worst-
case scenarios”. Korn [13] combines the random walk assumption with a worst-case
analysis to tackle optimal asset allocation under the threat of a crash.

In this spirit, using the deterministic k-search algorithms from Sect. 2 we derive in
Sect. 4 upper bounds for the price of lookback calls and puts, under the assumption of
bounded stock price paths and non-existence of arbitrage opportunities. Interestingly,
the resulting bounds are remarkably good, showing similar qualitative properties and
quantitative values as pricing in the standard Black-Scholes model. Note that the
assumption of a bounded stock price is indeed very minimal, since without any as-
sumption about the magnitude of the stock price fluctuation in fact no upper bounds
for the option price apply.

2 Deterministic Search

Let us consider the following reservation price policy RPPmax for k-max-search.
Prior to the start of the game, we choose reservation prices p∗

i (i = 1 . . . k). As the
prices are sequentially revealed, RPPmax accepts the first price that is at least p∗

1 and
sells one unit. It then waits for the first price that is at least p∗

2 , and subsequently
continues with all reservation prices. RPPmax works through the reservation prices in
a strictly sequential manner. Note that RPPmax may be forced to sell at the last prices
of the sequence, which may be lower than the remaining reservations, to meet the
constraint of completing the sale.

The proof of the lemma below generalizes ideas used for 1-max-search in [7].

Lemma 1 Let k ∈ N, ϕ > 1. Let r∗ = r∗(k,ϕ) be defined as in (1). Then the reserva-
tion price policy RPPmax with reservation prices given by

p∗
i = m

[

1 + (r∗ − 1)

(

1 + r∗

k

)i−1
]

, (5)

satisfies kpmax(σ ) ≤ r∗ · RPPmax(σ ) for all σ ∈ P . In particular, RPPmax is a r∗-
competitive algorithm for the k-max-search problem.

Proof For 0 ≤ j ≤ k, let Pj ⊆ P be the sets of price sequences for which RPPmax

accepts exactly j prices, excluding the forced sale at the end. Then P is the disjoint
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union of the Pj ’s. To shorten notation, let us write p∗
k+1 = M . Let ε > 0 be fixed and

define the price sequences

∀0 ≤ i ≤ k : σi = p∗
1,p∗

2, . . . , p∗
i , p

∗
i+1 − ε, . . . ,p∗

i+1 − ε
︸ ︷︷ ︸

k

, m,m, . . . ,m
︸ ︷︷ ︸

k

.

Observe that as ε → 0, each σj is a sequence yielding the worst-case ratio in Pj ,
in the sense that for all σ ∈ Pj

OPT(σ )

RPPmax(σ )
≤ kpmax(σ )

RPPmax(σ )
≤ kp∗

j+1

RPPmax(σj )
. (6)

Thus, to prove the statement we show that for 0 ≤ j ≤ k it holds kp∗
j+1 ≤ r∗ ·

RPPmax(σj ). A straightforward calculation shows that for all 0 ≤ j ≤ k

j∑

i=1

p∗
i = m

[
j + k(1 − 1/r∗)

(
(1 + r∗/k)j − 1

)]
.

But then we have for ε → 0, the competitive ratio is arbitrarily close to

∀0 ≤ j ≤ k : kp∗
j+1

RPPmax(σj )
= kp∗

j+1
∑j

i=1 p∗
i + (k − j)m

= r∗.

(Recall that p∗
k+1 = M .) Thus, from (6) the r∗-competitiveness of RPPmax follows

immediately. �

Remark 1 While the proof above shows that the reservation prices in (5) are in fact
the optimal choice, let us also briefly give an intuition on how to construct them. First,
note that we have to choose the p∗

i ’s such that

kp∗
1

km

!= kp∗
2

p∗
1 + (k − 1)m

!= · · · != kM
∑k

i=1 p∗
i

!= r∗. (7)

(The nominator is the objective value of OPT on σi from the proof of Lemma 1 as
ε → 0, whereas the denominator is the value of RPPmax on the same sequence.) For
0 ≤ i ≤ k, let ri = p∗

i /p
∗
1 . By comparing adjacent terms in (7), it is easy to see that ri

satisfies the simple recurrence

ri = ri−1
(
1 + p∗

1/(km)
) − 1/k, and r1 = 1,

and standard methods readily yield a closed formula for p∗
i in terms of p∗

1 . Further-
more, using (7) we obtain the explicit expression for p∗

1 .

From the choice of reservation prices in Lemma 1, we see that in fact no deter-
ministic algorithm will be able to do better than RPPmax in the worst-case.

Lemma 2 Let k ≥ 1, ϕ > 1. Then r∗(k,ϕ) given by (1) is the lowest possible com-
petitive ratio that a deterministic k-max-search algorithm can achieve.
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Proof Let ALG be any deterministic algorithm. We shall show that ALG cannot
achieve a ratio lower than r∗(k,ϕ). Let p∗

1, . . . , p∗
k be the price sequence defined

by (5). We start by presenting p∗
1 to ALG, at most k times or until ALG accepts it. If

ALG never accepts p∗
1 , we drop the price to m for the remainder, and ALG achieves

a competitive ratio of p∗
1/m = r∗(k,ϕ). If ALG accepts p∗

1 , we continue the price
sequence by presenting p∗

2 to ALG at most k times. Again, if ALG never accepts p∗
2

before we presented it k times, we drop to m for the remainder and ALG achieves a
ratio not lower than kp∗

2/(p∗
1 + (k − 1)m) = r∗(k,ϕ). We continue in that fashion by

presenting each p∗
i at most k times (or until ALG accepts it). Whenever ALG doesn’t

accept a p∗
i after presenting it k times, we drop the price to m. If ALG subsequentially

accepts all p∗
1, . . . , p∗

k , we conclude with k times M . In any case, ALG achieves only
a ratio of at most r∗(k,ϕ). �

With the above preparations we are ready to prove Theorem 1.

Proof of Theorem 1 The first statement follows directly from Lemmas 1 and 2. To
show (i), first observe that for k ≥ 1 fixed, r∗ = r∗(ϕ) must satisfy r∗ → ∞ as ϕ →
∞, and r∗ is an increasing function of ϕ. Let r+ = k

k
k+1 k+1

√
ϕ. Then, for ϕ → ∞, we

have

(r+ − 1)
(

1 + r+
k

)k = (1 + o(1))

(

k
k

k+1 k+1
√

ϕ ·
(
k− 1

k+1 k+1
√

ϕ
)k

)

= (1 + o(1))ϕ.

Furthermore, let ε > 0 and set r− = (1− ε)k
k

k+1 k+1
√

ϕ. A similar calculation as above
shows that for sufficiently large ϕ we have

(r− − 1)
(

1 + r−
k

)k ≥ (1 − 3kε)ϕ.

Thus, r = (1 + o(1)) k
k

k+1 k+1
√

ϕ indeed satisfies (1) for ϕ → ∞. For the proof of (ii),
note that for k → ∞ and ϕ fixed, (1) becomes (ϕ − 1)/(r∗ − 1) = er∗

, and thus

(ϕ − 1)/e = (r∗ − 1) er∗−1.

The claim follows from the definition of the W -function. �

Similarly, we can construct a reservation price policy RPPmin for k-min-search.
Naturally, RPPmin is modified such that it accepts the first price lower than the current
reservation price.

Lemma 3 Let k ∈ N, ϕ > 1. Let s∗ = s∗(k,ϕ) be defined as in (2). Then the reserva-
tion price policy RPPmin with reservation prices p∗

1 > · · · > p∗
k ,

p∗
i = M

[

1 −
(

1 − 1

s∗

)(

1 + 1

ks∗

)i−1
]

, (8)

satisfies RPPmin(σ ) ≤ s∗(k,ϕ) ·kpmin(σ ), and is a s∗(k,ϕ)-competitive deterministic
algorithm for k-min-search.
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Proof The proof is analogous to the proof of Lemma 1. Again, for 0 ≤ j ≤ k, let
Pj ⊆ P be the sets of price sequences for which RPPmin accepts exactly j prices,
excluding the forced sale at the end. To shorten notation, define p∗

k+1 = m. Let ε > 0
be fixed and define the price sequences

σi = p∗
1,p∗

2, . . . , p∗
i , p

∗
i+1 + ε, . . . ,p∗

i+1 + ε
︸ ︷︷ ︸

k

,M, . . . ,M
︸ ︷︷ ︸

k

, for 0 ≤ i ≤ k.

As ε → 0, each σj is a sequence yielding the worst-case ratio in Pj , in the sense that
for all σ ∈ Pj , 0 ≤ j ≤ k,

RPPmin(σ )

OPT(σ )
≤ RPPmin(σ )

kpmin(σ )
≤ RPPmin(σj )

kp∗
j+1

. (9)

Straightforward calculation shows that for ε → 0

∀0 ≤ j ≤ k : RPPmin(σj )

kp∗
j+1

=
∑j

i=1 p∗
i + (k − j)M

kp∗
j+1

= s∗,

and hence

∀σ ∈ P : RPPmin(σ )

kpmin(σ )
≤ s∗.

Since OPT(σ ) ≥ kpmin(σ ) for all σ ∈ P , this also implies that RPPmin is s∗-
competitive. �

Again, no deterministic algorithm can do better than RPPmin in Lemma 3.

Lemma 4 Let k ≥ 1, ϕ > 1. Then s∗(k,ϕ) given by (2) is the lowest possible com-
petitive ratio that a deterministic k-min-search algorithm can achieve.

The proof of Lemma 4 is identical to the proof of Lemma 2, except that the adver-
sary now uses the prices defined by (8) and the roles of m and M are interchanged.

Using Lemmas 3 and 4 we can now prove Theorem 2.

Proof of Theorem 2 The first part of the Theorem follows directly from Lemmas 3
and 4. To show (i), first observe that for k ≥ 1 fixed, s∗ = s∗(ϕ) must satisfy s∗ → ∞
as ϕ → ∞, and s∗ is an increasing function of ϕ. With this assumption we can expand
the right-hand side of (2) with the binomial theorem to obtain

1 − 1/ϕ

1 − 1/s∗ = 1 + 1

s∗ + k − 1

2k (s∗)2
+ �

(
(s∗)−3) =⇒ 1

ϕ
= k + 1

2k(s∗)2
+ �

(
(s∗)−3).

By solving this equation for s∗ we obtain (i). For the proof of (ii), first observe that
for ϕ ≥ 1 fixed, s∗ = s∗(k) must satisfy s∗(k) ≤ C, for some constant C which may
depend on ϕ. Indeed, if s∗(k) → ∞ with k → ∞, then by taking limits on both sides
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of (2) yields

1 − 1

ϕ
= lim

k→∞

(

1 + 1

ks∗(k)

)k

= 1,

which is a contradiction. Thus, s∗ = �(1) and we obtain from (2) by taking limits

1 − 1/ϕ

1 − 1/s∗ = lim
k→∞

(

1 + 1

ks∗

)k

= e1/s∗
,

and (ii) follows immediately by the definition of the W -function. �

3 Randomized Search

3.1 Lower Bound for Randomized k-max-search

We consider k = 1 first. The optimal deterministic online algorithm achieves a com-
petitive ratio of r∗(1, ϕ) = √

ϕ. As shown in [7], randomization can dramatically
improve this. Assume for simplicity that ϕ = 2� for some integer �. For 0 ≤ j < � let
RPPmax(j) be the reservation price policy with reservation m2j , and define EXPO to
be a uniform probability mixture over {RPPmax(j)}�−1

j=0.

Lemma 5 (Levin, see [7]) Algorithm EXPO is O(lnϕ)-competitive.

We shall prove that EXPO is in fact the optimal randomized online algorithm for
1-max-search. We will use the following version of Yao’s principle [20].

Theorem 5 (Yao’s principle) For an online maximization problem denote by S the
set of possible input sequences, and by A the set of deterministic algorithms, and
assume that S and A are finite. Fix any probability distribution y(σ ) on S , and let S

be a random sequence according to this distribution. Let RALG be any mixed strategy,
given by a probability distribution on A. Then,

CR(RALG) = max
σ∈S

OPT(σ )

E[RALG(σ )] ≥
(

max
ALG∈A

E

[
ALG(S)

OPT(S)

])−1

. (10)

Note that the first expectation is taken with respect to the randomization of the al-
gorithm RALG, whereas the second expectation is taken with respect to the input
distribution y(σ ).

The reader is referred to standard textbooks for a proof (e.g. Chaps. 6 and 8 in [3]).
In words, Yao’s principle states that we obtain a lower bound on the competitive
ratio of the best randomized algorithm by calculating the performance of the best
deterministic algorithm for a chosen probability distribution of input sequences. Note
that (10) gives a lower bound for arbitrary chosen input distributions. However, only
for well-chosen y’s we will obtain strong lower bounds.

We first need to establish the following lemma on the representation of an arbitrary
randomized algorithm for k-search.
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Lemma 6 Let RALG be a randomized algorithm for the k-max-search problem. Then
RALG can be represented by a probability distribution on the set of all deterministic
algorithms for the k-max-search problem.

Proof The proof of the statement is along the lines of the proof of Theorem 1 in [7].
Here we only sketch the proof idea. Using game-theoretic terminology, RALG may
be either a mixed strategy (a distribution on deterministic algorithms, from which
one is randomly chosen prior to the start of the game) or a behavioral strategy (where
an independent random choice may be made at each point during the game). As
we have perfect recall in k-search (player has no memory restrictions), k-search is
a linear game. For linear games, every behavioral strategy has an equivalent mixed
algorithm. Thus, we can always assume that RALG is a mixed strategy given by a
probability distribution on the set of all deterministic algorithms. �

The next lemma yields the desired lower bound.

Lemma 7 Let ϕ > 1. Every randomized 1-max-search algorithm RALG satisfies

CR(RALG) ≥ (lnϕ)/2.

Proof Let b > 1 and � = logb ϕ. We define a finite approximation of I by Ib =
{mbi | i = 0 . . . �}, and let Pb = ⋃

n≥k I n
b . We consider the 1-max-search problem

on Pb . As Pb is finite, also the set of deterministic algorithms Ab is finite. For 0 ≤
i ≤ � − 1, define sequences of length � by

σi = mb0, . . . ,mbi,m, . . . ,m. (11)

Let Sb = {σi | 0 ≤ i ≤ � − 1} and define the probability distribution y on Pb by

y(σ ) =
{

1/� for σ ∈ Sb,

0 otherwise.

Let ALG ∈ Ab . Note that for all 1 ≤ i ≤ �, the first i prices of the sequences σj

with j ≥ i − 1 coincide, and ALG cannot distinguish them up to time i. As ALG is
deterministic, it follows that if ALG accepts the i-th price in σ�−1, it will accept the
i-th price in all σj with j ≥ i − 1. Thus, for every ALG, let 0 ≤ χ(ALG) ≤ � − 1 be
such that ALG accepts the (χ(ALG) + 1)-th price, i.e. mbχ(ALG), in σ�−1. ALG will
then earn mbχ(ALG) on all σj with j ≥ χ(ALG), and m on all σj with j < χ(ALG).
To shorten notation, we write χ instead of χ(ALG) in the following. Thus, we have

E

[
ALG

OPT

]

= 1

�

⎡

⎣
χ−1∑

j=0

m

mbj
+

�−1∑

j=χ

mbχ

mbj

⎤

⎦ = 1

�

[
1 − b−χ

1 − b−1
+ 1 − b−(�−χ)

1 − b−1

]

,

where the expectation E[·] is with respect to the probability distribution y(σ ). If we
consider the above term as a function of χ , then it is easily verified that it attains its
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maximum at χ = �/2. Thus,

max
ALG∈Ab

E

[
ALG

OPT

]

≤ 1

�

(

1 − 1√
ϕ

)
2b

b − 1
≤ 1

lnϕ
· 2b lnb

b − 1
. (12)

Let ϒb be the set of all randomized algorithms for 1-max-search with possible price
sequences Pb . By Lemma 6, each RALGb ∈ ϒb may be given as a probability distrib-
ution on Ab . Since Ab and Sb are both finite, we can apply Theorem 5. Thus, for all
b > 1 and all RALGb ∈ ϒb , we have

CR(RALGb) ≥
(

max
ALG∈Ab

E

[
ALG

OPT

])−1

≥ lnϕ
b − 1

2b lnb
.

Let ϒ be the set of all randomized algorithms for 1-max-search on P . Since for
b → 1, we have Ab → A, ϒb → ϒ and (b − 1)/(2b lnb) → 1

2 , the proof is com-
pleted. �

In fact, Lemma 7 can be generalized to arbitrary k ≥ 1.

Lemma 8 Let k ∈ N and ϕ > 1. Let RALG be any randomized algorithm for
k-max-search. Then, we have

CR(RALG) ≥ (lnϕ)/2.

Proof Let 1 < b < ϕ and � = logb ϕ. We define Pb and Ab as in the proof of Lemma
7. For 0 ≤ i ≤ � − 1, define

σi = mb0, . . . ,mb0
︸ ︷︷ ︸

k

, . . . ,mbi, . . . ,mbi

︸ ︷︷ ︸
k

,m, . . . ,m
︸ ︷︷ ︸
k(�−i−1)

. (13)

Let Sb = ⋃
0≤i≤�−1 σi and define the probability distribution y on Pb by

y(σ ) =
{

1/� for σ ∈ Sb,

0 otherwise.

Similarly as in the proof of Lemma 7, we characterize every algorithm ALG ∈ Ab by
a vector (χi)1≤i≤k where mbχi is the price for which ALG sells the i-th unit on σ�−1.
By construction, we have χ1 ≤ · · · ≤ χk , as σ�−1 is the sequence that is increasing
until the very end. Note that for all 1 ≤ i ≤ �, the sequences {σj | j ≥ i − 1} are
not distinguishable up to time ik, since the first ik prices of those sequences are
identical. Let 0 ≤ j ≤ �−1 and t = max{i |χi ≤ j}. When presented σj , ALG accepts
all prices mbχi for which χi ≤ j . Hence, we have OPT(σj ) = kmbj and ALG(σj ) =
(k − t)m+∑t

s=1 mbχs , i.e. ALG can successfully sell for its first t reservation prices.
To abbreviate notation, let χ0 = 0 and χk+1 = �, and define δt = χt+1 − χt . Taking
expectation with respect to y(σ ), we have

E

[
ALG

OPT

]

= 1

�

�∑

i=1

ALG(σi)

OPT(σi)
= 1

�

k∑

t=0

χt+1−1∑

j=χt

(k − t)m + ∑t
s=1 mbχs

kmbj
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= 1

�

k∑

t=0

(
k − t + ∑t

s=1 bχs
)∑δt−1

j=0 b−j

kbχt

= 1

�

k∑

t=0

(
k − t + ∑t

s=1 bχs
)
(1 − b−δt )

kbχt (1 − b−1)
.

Straightforward yet tedious algebra simplifies this expression to

E

[
ALG

OPT

]

=
∑k

t=1 1 − b−χt + ∑k
t=1 1 − b−(�−χt )

�k(1 − b−1)
,

and the maximum over {χ1, . . . , χk} is attained at χ1 = · · · = χk = �/2. Thus, defin-
ing χ = �/2 we have

max
ALG∈Ab

E

[
ALG

OPT

]

≤ 1

�

[
1 − b−χ

1 − b−1
+ 1 − b−(�−χ)

1 − b−1

]

= 2b

� (b − 1)

(

1 − 1√
ϕ

)

,

which is exactly (12) in the proof of Lemma 7. Thus, we can argue as in the remainder
of the proof of Lemma 7, and let again b → 1 to conclude that CR(RALG) ≥ (lnϕ)/2
for all randomized algorithms RALG for k-max-search. �

Giving an optimal randomized algorithm for k-max-search is straightforward. For
1 < b < ϕ and � = logb ϕ, EXPOk chooses j uniformly at random from {0, . . . , �−1},
and sets all its k reservation prices to mbj .

Lemma 9 Let k ∈ N. EXPOk is an asymptotically optimal randomized algorithm for
the k-max-search problem with CR(EXPOk) = lnϕ · (b−1)

lnb
ϕ

ϕ−1 .

Proof We want to determine

CR(EXPOk) = max
σ∈P

R(σ ), where R(σ ) = OPT(σ )

E[EXPOk(σ )] . (14)

Obviously, a sequence σ that maximizes R is non-decreasing, since rearranging σ

does not change the objective value of OPT, but may increase the objective value of
EXPOk . Let

σ̂ = m, . . . ,m
︸ ︷︷ ︸

k

,mb1, . . . ,mb1
︸ ︷︷ ︸

k

,mb2, . . . ,mb2
︸ ︷︷ ︸

k

, . . . ,mb�−1, . . . ,mb�−1
︸ ︷︷ ︸

k

,M, . . . ,M
︸ ︷︷ ︸

k

.

In the following, we will prove that σ̂ is a worst-case sequence for (14). We will first
show that for every non-decreasing sequence σ = p1,p2, . . . , pN it holds

R(σ ) ≤ R(σ ◦ σ̂ ), (15)

where σ ◦ σ̂ is the concatenation of σ and σ̂ . Let P be the reservation price of
EXPOk , and let EXPO

j
k(σ ) = E[EXPOk(σ ) | P = mbj ]. To see the first inequality
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we shall show that for all 0 ≤ j < �,

EXPO
j
k (σ ◦ σ̂ )

OPT(σ ◦ σ̂ )
≤ EXPO

j
k (σ )

OPT(σ )
, (16)

which yields

1

R(σ )
= E

[
EXPOk(σ )

OPT(σ )

]

≥ E

[
EXPOk(σ ◦ σ̂ )

OPT(σ ◦ σ̂ )

]

= 1

R(σ ◦ σ̂ )
,

i.e., R(σ ) ≤ R(σ ◦ σ̂ ). To see (16), note that if pl is the first price accepted by EXPO
j
k

in σ , then EXPO
j
k will also accept pl+1, . . . , pl+k−1. This follows from the property

of σ being non-decreasing and from the fact that all reservation prices of EXPO
j
k are

identical. Now we distinguish two cases: either l = N − k + 1 (i.e. EXPO
j
k accepts

the last k prices in σ , possibly forced by the constraint to finish the sale by the end
of the sequence σ ) or l < N − k + 1 (i.e. EXPO

j
k can successfully sell all k units for

prices of at least its reservation price mbj ). In the first case, EXPO
j
k (σ ) = OPT(σ )

and (16) follows trivially, since we always have EXPO
j
k (σ ◦ σ̂ ) ≤ OPT(σ ◦ σ̂ ). In the

second case, OPT(σ ◦ σ̂ ) = kM ≥ OPT(σ ) and EXPO
j
k (σ ◦ σ̂ ) = EXPO

j
k (σ ), since

EXPO
j
k already accepted k prices before the end of σ was reached, and it cannot

accept any prices in the second part of σ ◦ σ̂ . Hence, (16) also holds in this case. This
shows (15).

Now observe that for any non-decreasing σ we have

E[EXPOk(σ ◦ σ̂ )] ≥ E[EXPOk(σ̂ )],
since for every j algorithm EXPO

j
k accepts k prices in σ ◦ σ̂ that are at least mbj ,

but in σ̂ it accepts k times exactly its reservation price mbj . Combined with the fact
that OPT(σ ◦ σ̂ ) = OPT(σ̂ ) = kM , this yields

R(σ ◦ σ̂ ) ≤ R(σ̂ ).

With (15), this implies that σ̂ is a worst-case sequence for (14). Therefore, we have

CR(EXPOk) = R(σ̂ ) = kM

1
�

∑�−1
j=0 kmbj

= �
ϕ (b − 1)

ϕ − 1
= lnϕ

ϕ

ϕ − 1
· (b − 1)

lnb
,

since M = ϕm and b� = ϕ. �

For ϕ > 3 and b < 3/2, we have ϕ
ϕ−1

(b−1)
lnb

< 2, and hence combining Lemmas 8
and 9 we immediately obtain Theorem 3.

3.2 Randomized k-Min-Search

The proof of the lower bound for k-min-search, Theorem 4, uses an analogous version
of Yao’s principle (see for instance Theorem 8.5 in [3]).
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Theorem 6 (Yao’s principle for cost minimization problems) For an online cost
minimization problem 
, let the set of possible input sequences S and the set
of deterministic algorithms A be finite, and given by S = {σ1, . . . , σn} and A =
{ALG1, . . . ,ALGm}. Fix any probability distribution y(σ ) on S . Let RALG be any
mixed strategy, given by a probability distribution x(a) on A. Then,

CR(RALG) = max
σ∈S

E[RALG(σ )]
OPT(σ )

≥ minALG∈AE

[
ALG

OPT

]

.

We are now ready to prove Theorem 4.

Proof of Theorem 4 We shall consider first the case k = 1. Let S = {σ1, σ2} with

σ1 = m
√

ϕ,M, . . . ,M and σ2 = m
√

ϕ,m,M, . . . ,M,

and let y(σ ) be the uniform distribution on S . For i ∈ {1,2}, let ALGi be the reser-
vation price policy with reservation prices p∗

1 = m
√

ϕ and p∗
2 = m, respectively. Ob-

viously, the best deterministic algorithm against the randomized input given by the
distribution y(σ ) behaves either like ALG1 or ALG2. Since

E

[
ALGi

OPT

]

= (1 + √
ϕ )/2, i ∈ {1,2},

the desired lower bound follows from the min-cost version of Yao’s principle. For
general k ≥ 1, we repeat the prices m

√
ϕ and m in σ1 and σ2 k times each. Observe

that in that case we can partition the set of all deterministic algorithms into k + 1
equivalence classes, according to the number price quotations accepted from the first
k prices m

√
ϕ, . . . ,m

√
ϕ, as σ1 and σ2 are not distinguishable until the (k + 1)th

price. Suppose ALG accepts j times the price m
√

ϕ. Then we have

E

[
ALG

OPT

]

= 1

2

(
jm

√
ϕ + (k − j)M

km
√

ϕ
+ jm

√
ϕ + (k − j)m

km

)

= (1 + √
ϕ )/2

for all 0 ≤ j ≤ k, and the lower bound follows again from Yao’s principle. �

4 Robust Valuation of Lookback Options

In this section, we use the deterministic k-search algorithms from Sect. 2 to derive up-
per bounds for the price of lookback options under the assumption of bounded stock
price paths and non-existence of arbitrage opportunities. We consider a discrete-time
model of trading. For simplicity we assume that the interest rate is zero. The price of
the stock at time t ∈ {0,1, . . . , T } is given by St , with S0 being the price when seller
and buyer enter the option contract.

Recall that the holder of a lookback call has the right to buy shares from the option
writer for the price Smin = min{St |0 ≤ t ≤ T }. We shall assume that the lookback call
is on k ≥ 1 units of the underlying stock.
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Note that since Smin ≤ ST , the option holder is never worse off executing the op-
tion at the expiry date T (and then immediately selling the shares for ST ) rather
than to forgo his option. Hence, a lookback call option can always be considered as
executed at expiry. This is in contrast to a European call option, where the option
holder is not interested in executing his option if the price ST at expiry is below the
pre-specified strike price K .

Neglecting stock price appreciation, upwards and downwards movement of the
stock price is equally likely. Consequently, we will assume a symmetric trading
range [ϕ−1/2S0, ϕ

1/2 S0] with ϕ > 1. We refer to a price path that satisfies St ∈
[ϕ−1/2S0, ϕ

1/2 S0] for all 1 ≤ t ≤ T as a (S0, ϕ) price path.

4.1 Upper Bounds for the Price of Lookback Options

Theorem 7 Assume (St )0≤t≤T is a (S0, ϕ) stock price path. Let s∗(k,ϕ) be given by
(2), and let

V ∗
Call(S0, ϕ) = S0(s

∗(k,ϕ) − 1)/
√

ϕ. (17)

Let V be the option premium paid at time t = 0 for a lookback call option on k

shares expiring at time T . Suppose we have V > V ∗
Call(k, S0, ϕ). Then there exists an

arbitrage opportunity for the option writer, i.e., there is a zero-net-investment strategy
which yields a profit for all (S0, ϕ) stock price paths.

Proof In the following, let Ct denote the money in the option writer’s cash account
at time t . At time t = 0, the option writer receives V from the option buyer, and
we have C0 = V . The option writer then successively buys k shares, one-by-one,
applying RPPmin for k-min-search with reservation prices as given by (8). Let H

be the total sum of money spent for purchasing k units of stock. By Lemma 3 we
have H ≤ ks∗(k,ϕ)Smin. At time T the option holder purchases k shares from the
option writer for kSmin in cash. As noted above, a lookback call option can always
be considered executed at the expiration time T ; if the option holder does not execute
his option, the option writer simply sells the k shares again on the market for kST ≥
kSmin.

After everything has been settled, we have

CT = V − H + kSmin ≥ V + kSmin(1 − s∗(k,ϕ)).

Because of Smin ≥ S0/
√

ϕ and V > V ∗
Call(S0, ϕ), we conclude that CT > 0 for all

possible (S0, ϕ) stock price paths. Hence, this is indeed a zero net investment profit
for the option writer on all (S0, ϕ) stock price paths. �

Under the no-arbitrage assumption, we immediately obtain an upper bound for the
value of a lookback call option.

Corollary 1 Under the no-arbitrage assumption, we have V ≤ V ∗
Call(k, S0, ϕ), with

V ∗
Call(k, S0, ϕ) as defined in (17).
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Using Lemma 1 and similar no-arbitrage arguments, also an upper bound for the
price of a lookback put option can be established.

Note that it is not possible to derive non-trivial lower bounds for lookback options
in the bounded stock price model, as a (S0, ϕ)-price path may stay at S0 throughout,
making the option mature worthless for the holder. To derive lower bounds, there
must be a promised fluctuation of the stock. In the classical Black-Scholes pricing
model, this is given by the volatility of the Brownian motion.

We shall remark that in practice there is certainly no trading range in which the
stock price stays with certainty; what we rather can give are trading ranges in which
the price stays with sufficiently high probability. V ∗

Call is then to be understood as a
bound for the option price up to a certain residual risk. Note that whereas the Black-
Scholes-type price (18), which shall be given in the next section, has no such residual
risk within the Black-Scholes model, it does certainly have significant model risk due
to the fact that the Black-Scholes assumptions might turn out to be incorrect in the
first place.

4.2 Comparison to Pricing in Black-Scholes Model

Goldman, Sosin and Gatto [9] give closed form solutions for the value of lookback
puts and calls in the Black-Scholes setting. Let σ be the volatility of the stock price,
modeled by a geometric Brownian motion, S(t) = S0 exp(−σ 2t/2 + σB(t)), where
B(t) is a standard Brownian motion. Let Φ(x) denote the cumulative distribution
function of the standard normal distribution. Then, for zero interest rate, at time t = 0
the value of a lookback call on one share of stock, expiring at time T , is given by

V BS
Call(S0, T , σ ) = S0

(
2Φ(σ

√
T /2) − 1

)
. (18)

The hedging strategy is a certain roll-over replication strategy of a series of European
call options. Everytime the stock price hits a new all-time low, the hedger has to
“roll-over” her position in the call to one with a new strike. Interestingly, this kind of
behavior to act only when a new all-time low is reached resembles the behavior of
RPPmin for k-min-search.

For a numerical comparison of the bound V ∗
Call(k, S0, ϕ,T ) with the Black-

Scholes-type pricing formula (18), we choose the fluctuation rate ϕ = ϕ(T ) such
that the expected trading range [E(min0≤t≤T St ), E(max0≤t≤T St )] of a geometric
Brownian motion starting at S0 with volatility σ is [ϕ−1/2S0, ϕ

1/2S0].
Figure 1 shows the results for σ = 0.2, S0 = 20 and k = 10. As can be seen from

the graph, the bound V ∗
Call is qualitatively and quantitatively similar to the Black-

Scholes-type pricing (18). However, it is important to note that the two pricing for-
mulas rely on two different models. In the Black-Scholes model, (18) is the correct
price for a lookback option. On the other hand, the key advantage of our price bound
are its weak modeling assumptions on the price dynamics, and hence the price bound
holds even in situations where the Black-Scholes assumptions might break down.
Certainly, both concepts have strengths and weaknesses, and a good analyst consults,
compares and combines both.
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Fig. 1 The left plot shows the expected trading range of a geometric Brownian motion with volatil-
ity σ = 0.2 and S(0) = 20. The right plot shows the price of a lookback call with maturity T in the
Black-Scholes model (solid line) and the bound V ∗

Call (dashed line), with k = 100 and ϕ(T ) chosen to
match the expected trading range
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