
ar
X

iv
:c

s/
05

11
08

2v
1

 [
cs

.D
S]

 2
3

N
ov

 2
00

5

Approximating Clustering of Fingerprint Vectors with Missing

Values

Paola Bonizzoni Gianluca Della Vedova Riccardo Dondi

Abstract

The problem of clustering fingerprint vectors is an interesting problem in Computational
Biology that has been proposed in [6]. In this paper we show some improvements in closing
the gaps between the known lower bounds and upper bounds on the approximability of some
variants of the biological problem. Namely we are able to prove that the problem is APX-
hard even when each fingerprint contains only two unknown position. Moreover we have
studied some variants of the orginal problem, and we give two 2-approximation algorithm
for the IECMV and OECMV problems when the number of unknown entries for each vector
is at most a constant.

1 Introduction

High-throughput approaches for the examination of microbial communities are becoming in-
creasingly important, especially after the oligonucleotide fingerprinting strategy has found wide
application, allowing the identification of thousands of cDNA clones [3, 4, 5, 8, 9]. After the
rDNA clone libraries are constructed, the clones are classified by individual hybridization ex-
periments on DNA microarrays with a series of short DNA oligonucleotides into clone types or
operational taxonomic units (OTUs), where a an OTU is a set of DNA clones sharing the same
set of oligonucleotides that have successfully hybridized. Once classified, the nucleotide sequence
of representative clones from each OTU can then be obtained by DNA sequencing to provide
phylogenetic descriptions of the microorganisms. One of the key features of this strategy is that
after a comprehensive database, that correlates hybridization patterns with nucleotide sequence
data, has been compiled, little additional rDNA clone sequencing will be required, resulting
in significant reduction of cost and effort. The effectiveness of this general strategy has been
demonstrated in the biotechnology arena, where it is currently being used to screen and identify
millions of cDNA clones [3].

The oligonucleotide fingerprinting method is commonly used to study DNA clone libraries.
Such method naturally leads to a combinatorial problem where for each oligonucleotide we are
give a fingerprint over the alphabet {0, 1, N}, where the values 0 or 1 means respectively that
the a hybridization has happened or not with a certain clone, while the value N stands for the
fact that we are unable to determine if the hybridization has happened or not (typically it is due
to the fact that there are two control signals, and the values between those two control signals
mean that either result might have happened).

The combinatorial problem that naturally arises is called CMV. In such problem we are
given a set of fingerprints and we would like to change each N -symbol in the input fingerprints

1

http://arxiv.org/abs/cs/0511082v1

into 0 or 1, so that the total number of distinct fingerprints (over {0, 1}) is minimized. Actually
we are not interested into the actual fingerprints over {0, 1}, but only in determining the clusters
of fingerprints.

Unfortunately the problem is NP-hard, therefore it is important to study if some restrictions
become tractable. For instance it is possible to restrict the problem to instances where each
input fingerprint contains at most p N -symbols, and we will call such problem CMV(p). It is
already known that CMV(2) is NP-hard[7], while CMV(1) can be solved in polynomial-time[6],
so for all interesting values of p we have to concentrate on developing approximation algorithms.
CMV(p) is known to be approximable within factor 2p [6] and min(1 + lnn, 2 + p ln l)[7], where
l is the lenght of the fingerprint vectors. In this paper we strengthen the NP-hardness result
proving that CMV(2) is APX-hard, that is it cannot be approximated within an arbitrarily
small (1 + ǫ)-factor polynomial-time algorithm unless P=NP [2].

Moreover we will study two related optimization problems, namely IECMV and OECMV

where we want to minimize the number of pairs of compatible fingerprints that are not clus-
tered together and the number of pairs of incompatible fingerprints that are clustered together,
respectively. Again we are interested in the restrictions of IECMV and OECMV with at most p
missing values in each fingerprint (those problems are denoted by IECMV(p) and OECMV(p)
respectively). The IECMV(p) problem is known to be approximable within factor 22p−1 for any
p = O(log n) [7], while the restriction of OECMV where no two compatible fingerprint vectors
can have value N at the same position can be approximated within factor 2(1− 1

2p)[7].
In this paper we improve those approximation results, proving that both IECMV(p) and

OECMV(p) problems are APX-hard, and we show that a simple greedy algorithm achieves a 2
approximation ratio for both problems.

2 Preliminary Definitions

In this section, we introduce some basic notations and definitions that we will need later. A
fingerprint vector (in short fingerprint) is a vector over the alphabet {0, 1, N}, where 1 represents
a hybridization, 0 represents no hybridization and N represents unknown data (that is we are
unable to determine if hybridization has happened or not). In all instances of the problems that
we will study, all fingerprints have the same length, that is they contain the same number of
elements. Usually we will denote by l the lenght of a fingerprint.

Two fingerprints vectors v1 = 〈v1[1], v1[2], . . . , v1[l]〉 and v2 = 〈v2[1], . . . , v2[l]〉 are compatible
if for any position i where they differ, at least one of v1[i] and v2[i] is equal to N . A resolved
vector r = 〈r[1], . . . , r[k]〉 of a fingerprint vector v = 〈v[1], . . . , v[k]〉 is a vector over alphabet
{0, 1} such that for each 1 ≤ i ≤ l, if v[i] 6= N then v[i] = r[i], that is r and v agree on each
position where v is not unknown. Sometimes it is useful the analyze the effect of a parameter,
the maximum number of Ns allowed in a fingerprint; we will denote by p such parameter. We
are now ready to present the problem we will study.

Clustering with p missing values(CMV(p)): We are given a set F of fingerprint vectors
with at most p Ns and we want to partition F into disjoint subsets F1, . . . , Fk such that any
two vectors in Fi are compatible and the cardinality of the partition is minimized.

Inside Clustering with p missing values(IECMV(p)): We are given a set F of finger-
print vectors with at most p Ns and we want to partition F into disjoint subsets F1, . . . , Fk such

2

that any two vectors in Fi are compatible and the number of compatible pairs of vectors within
the same clusters is maximized.

Outside Clustering with p missing values(OECMV(p)): We are given a set F of
fingerprint vectors with at most p Ns and we want to partition F into disjoint subsets F1, . . . , Fk

such that any two vectors in Fi are compatible and the number of compatible pairs of vectors
belonging to different clusters is minimized.

Notice that for all the aforementioned problems, the instance is a set F of fingerprints and
the output is a partition of F where in a set of the partition there are only pairwise compatible
fingerprints. It is easy to notice that pairwise compatibility is a sufficient condition to prove
the existence of a common resolution for all fingerprints in the set. For simplicity’s sake in the
following we will denote by n the number of fingerprints in an instance F .

3 An approximation algorithm for IECMV(p) and OECMV(p)

In this section we present an approximation algorithm for both IECMV(p) and OECMV(p)
problems, where p is any fixed constant. We are able to provide two different analysis, one for
each problem, showing that we achieve a 2-approximation for both problems.

Given a set F of fingerprints, since p is a constant we are able (in O(2pn)l time) to compute
the set R = {r1, . . . , rk} of all possible resolved fingerprints that are compatible with at least
one fingerprint in F . Given a resolved fingerprint r, we denote by s(r) the set of fingerprints
in F that are compatible with r, and denote by p(s(r)) the set of pairs of vectors in s(r). The
degree of a fingerprint r, denoted by d(r), is defined as the cardinality of s(r).

The algorithm constructs a partition P of F greedily as follows: initially let P be an empty
set and let U be equal to F . At each iteration the algorithm computes the resolved fingerprint
r of maximum degree (i.e. r is the resolved fingerprint compatible with the maximum number
of fingerprints in U), adds s(r) as a set of the solution P and removes all fingerprints in s(r)
from U . The algorithm iterates such step until U is empty.

3.1 Analysis for IECMV(p)

Let S = {s1, . . . , sk} be a solution S of IECMV(p). The value of S is the number of compatible
fingerprints vectors co-clustered by S and is denoted by V (S). It holds that V (S) =

∑t
i=1 |P (si)|,

where P (si) is the set of pairs of fingerprints in si. Generalizing such notion, we denote by P (S)

the set of all the pairs co-clustered in the partition S, that is P (S) = ∪
|S|
i=1P (si). Let W ⊆ U be

a subset of fingerprint vectors, we denote by P (S,W) the set of pairs (x, y) in P (S) such that
at least one of x, y is in W .

In the following we will show that the algorithm has approximation factor 2. The algorithm
computes a sequence 〈r1, . . . , rk〉 of resolved fingerprints, one at each iteration. At the i-th
iteration the algorithm contructs a set of the partition containing ri and all fingerprints that are
compatible with ri and have not been put in a partition during one of the previous iterations
(we will denote such set by si). For ease of the analysis, we will denote by Ui the set U at the
beginning of the i-th iteration, consequently U1 = F , Ui+1 = Ui \ si, for 1 ≤ i < k, where k is
the number of sets in the output partition. Recall that the partition output by the algorithm is
denoted by S = {s1, . . . , sk}. The optimal partition is denoted by Opt = {opt1, . . . , optl}, where
l can be different from k.

3

By definition, the value of the optimal solution is |P (Opt)|; our goal will be to show that
|P (Opt)| ≤ 2|P (S)|. We introduce some sets as follows: P (Opt, 1) = P (Opt, s1), and P (Opt, i+
1) = P (Opt, si) \

⋃
1≤j≤i P (Opt, j) for 1 ≤ i < k. A fundamental property is that {P (Opt, i) :

1 ≤ i < k} is a partition of P (Opt).
In fact the sets P (Opt, i) are disjoint by construction. Since S = {s1, . . . , sk} is a partition

of F , then P (Opt) =
⋃

P (Opt, si). Let (x, y) be a pair of P (Opt). W.l.o.g. we can assume that
x ∈ si, y ∈ sj, with i ≤ j. Then (x, y) ∈ P (Opt, si) and (x, y) does not belong to any P (Opt, h)
with h < i, therefore (x, y) ∈ P (Opt, i). Consequently the sets P (Opt, i) are a partition of
P (Opt), and the value of the optimal solution is equal to

∑
i |P (Opt, i)|.

Consequently, in order to prove that our greedy algorithm achieves a 2 approximation, it
suffices to show that, for each i, |P (Opt, i)| ≤ 2|P (si)|.

Lemma 3.1. Let S = {s1, . . . , sk} be the solution computed by the algorithm, and let Opt be an
optimal solution. Then |P (Opt, i)| ≤ 2|P (si)| for 1 ≤ i ≤ k.

Proof. Let si be the set added to the solution S at the i-th step of the algorithm. All pairs
in P (Opt, i) must belong to Ui × Ui, by definition of P (Opt, i). Each element x in Ui is in the
same set of the optimal solution with at most |si| − 1 other fingerprints of Ui, for otherwise the
algorithm would not have chosen si at the i-th iteration, but x and all fingerprints in Ui that are
in the same set of the optimal solution. By definition of P (Opt, i), there are at most |si|(|si|−1)
pairs in P (Opt, i), which completes the proof, since in si there are |si|(|si| − 1)/2 pairs.

It is easy to see that approximation factor is tight. Consider three resolved vectors r1,
r2, r3 and four fingerprint vectors {f1, f2, f3, f4} such that s(r1) = {f1, f2}, s(r2) = {f1, f3},
s(r2) = {f2, f4}. The approximation algorithm choose s(r1) as the first set and then {f3}, {f4}
as the sets to complete the partition. Thus value of the approximated solution is 1, since one
pair is selected. It is easy to see that the optimal solution consists of set s(r2) = {f1, f3},
s(r2) = {f2, f4}, thus having value 2.

3.2 Analysis for OECMV(p)

The analysis in this section follows the one for IECMV(p). Let S = {s1, . . . , sk} be a solution S
of OECMV(p). The value of S is the number of compatible fingerprints vectors that are not co-
clustered in S and is denoted by V (S). It holds that V (S) = 1

2

∑k
i=1 |L(si)|, where L(si) is the

set of pairs (x, y) of compatible fingerprints where exactly one of x and y is in si. Generalizing
such notion, we denote by L(S) the set of all unordered pairs of compatible fingerprints that are

not co-clustered in the partition S, that is L(S) = ∪
|S|
i=1L(si). Notice also that each pair in L(S)

appears in exactly two sets L(si), therefore |L(S)| = 1
2

∑|S|
i=1 |L(si)|. Let W ⊆ U be a subset of

fingerprint vectors, we denote by L(S,W) the set of pairs (x, y) in L(S) such that at least one
of x, y is in W .

In the following we will show that the algorithm has approximation factor 2. The algorithm
computes a sequence 〈r1, . . . , rk〉 of resolved fingerprints, one at each iteration. At the i-th
iteration the algorithm contructs a set of the partition containing ri and all fingerprints that are
compatible with ri and have not been put in a partition during one of the previous iterations
(we will denote such set by si). For ease of the analysis, we will denote by Ui the set U at the
beginning of the i-th iteration, consequently U1 = F , Ui+1 = Ui \ si, for 1 ≤ i < k, where k is

4

the number of sets in the output partition. Recall that the partition output by the algorithm is
denoted by S = {s1, . . . , sk}. The optimal partition is denoted by Opt = {opt1, . . . , optl}, where
l can be different from k.

By definition, the value of the optimal solution is |L(Opt)|; our goal will be to show that
2|L(Opt)| ≥ |L(S)|. We introduce some sets as follows: L(Opt, 1) = L(Opt, s1), and L(Opt, i) =
L(Opt, si) \

⋃
1≤j<i L(Opt, j) for 1 ≤ i ≤ k. A fundamental property is that {L(Opt, i) : 1 ≤

i ≤ k} is a partition of L(Opt). In fact the sets L(Opt, i) are disjoint by construction. Since
S = {s1, . . . , sk} is a partition of F , then L(Opt) =

⋃
L(Opt, si). Let (x, y) be a pair of

L(Opt). W.l.o.g. we can assume that x ∈ si, y ∈ sj, with i ≤ j. Then (x, y) ∈ L(Opt, si) and
(x, y) does not belong to any L(Opt, h) with h < i, therefore (x, y) ∈ L(Opt, i). Consequently
the sets L(Opt, i) are a partition of L(Opt), and the value of the optimal solution is equal to∑

i |L(Opt, i)|.
Similarly we introduce the sets L(S, 1) = L(s1), L(S, i) = L(si) \

⋃
1≤j<i L(S, j) for 1 ≤

i ≤ k. A fundamental property is that {L(S, i) : 1 ≤ i ≤ k} is a partition of L(S) and thus
|L(S)| =

∑
i |L(S, i)|. Consequently, in order to prove that our greedy algorithm achieves a 2

approximation, it suffices to show that, for each i, 2|L(Opt, i)| ≥ |L(S, i)|.

Lemma 3.2. Let S = {s1, . . . , sk} be the solution computed by the algorithm, and let Opt be an
optimal solution. Then 2|L(Opt, i)| ≥ |L(S, i)| for 1 ≤ i ≤ k.

Proof. Let si be the set added to the solution S, at the i-th step of the algorithm. Given a
fingerprint x ∈ si, we define C(x) as the set of all fingerprints in Ui that are compatible with x,
and D(x) as the set C(x)∩L(Opt, i), that is the pairs in C(x) that are not co-clustered in Opt.
Since x is clustered with |si| − 1 elements of Ui in S, there are exactly |C(x)| − |si|+ 1 pairs in
L(S, i) containing x. It follows that |L(S, i)| =

∑
x∈si

(|C(x)| − |si|+ 1).
All pairs in L(Opt, i) must belong to (Ui\Ui+1)×Ui, by definition of L(Opt, i) (for simplicity,

we will assume that Uk+1 = ∅). Notice that, by construction of si, |D(x)| ≥ |C(x)| − |si| + 1.
Clearly L(Opt, i) = ∪x∈Ui

D(x), by definition of D(x). Since each pair (y, z) ∈ L(Opt, i)
appears only in the two (not necessarily distinct) sets D(y) and D(z), then |L(Opt, i)| ≥
1
2

∑
x∈Ui

|D(x)| ≥ 1
2

∑
x∈Ui

(|C(x)| − |si|+ 1) and the proof is completed.

It is easy to see that also in this case the approximation factor is tight. Consider three
resolved vectors r1, r2, r3 and four fingerprint vectors {f1, f2, f3, f4} such that s(r1) = {f1, f2},
s(r2) = {f1, f3}, s(r2) = {f2, f4}. The approximation algorithm choose s(r1) as the first set
and then {f3}, {f4} as the sets to complete the partition. Thus the value of the approximated
solution is 2, since the pairs of compatible fingerprint vectors that are not co-clustered are
(f1, f3) and (f2, f4). It is easy to see that the optimal solution consists of set s(r2) = {f1, f3},
s(r2) = {f2, f4}, hence the only pair of compatible fingerprint vectors not co-clustered in the
optimal solution is (f1, f2) and the cost of the optimal solution is 1.

4 APX-hardness of CMV(2)

In this section we will prove that CMV(p) is APX-hard via an l-reduction from minimum vertex
cover on cubic graph, whose APX-hardness has been proved in [1].

5

i1
c

i5
c

i4
c

i2
c

i3
c

VG
i

Figure 1: A vertex gadget V Gi

i1
c

i5
c

i4
c

i2
c

i3
c j3

c

j2
c

j4
c

j5
c

j1
c

VG
i e e

e e

ij1 ij 2

3
ij ij 4

Figure 2: An edge gadget EGij

In particular we will combine two l-reductions: (1) from minimum vertex cover on a graph G
to minimum vertex cover on a gadget graph; (2) from minimum vertex cover on a gadget graph
to CMV(p).

First Reduction

First we will define gadget graphs. Given a graph G = (V,E) for each vertex vi ∈ V we define a
vertex gadget V Gi consisting of 5 vertex. Three vertices, ci1 , ci4 , ci5 are called docking vertices.
Observe that the minimum vertex cover of a vertex gadget consists of 2 vertices, ci2 , ci3 , and
denote this cover as type 1. Observe that there is a cover of V Gi consisting of 3 vertices ci1 , ci4 ,
ci5 , and denote this cover as type 2.

For each edge (vi, vj) we define an edge gadget EGi,j joining vertex gadgets V Gi, V Gj in
two of their docking vertices. An edge gadget consists of six vertices, the two docking vertices
shared with the vertex gadgets and other four vertices.

Theorem 4.1. Let C ⊆ V be a cover of G, with |C| = k. Then there is a cover of the graph
gadget of size 3k + 2(n − k) + 2m.

Proof. Consider a vertex vi in C, associate with the corresponding vertex gadget V Gi a cover
of type 2 (of size 3). For each vertex vj /∈ C, associate with the corresponding vertex gadget
V Gj a cover of type 1 (size 2). Observe that for each edge gadget at least one of the adjacent

6

vertex gadget has a type 2 cover. Thus we just need to cover two vertices for each edge gadget
to obtain a cover of each edge gadget and thus of the entire graph gadget.

Lemma 4.2. Let C be a cover of the graph gadget of size 3k + 2(n − k) + 2m. Then we can
compute in polynomial time a vertex cover of size at most 3k + 2(n − k) + 2m such that it has
only cover type 1 and type 2 and such that for each pair of adjacent vertex gadgets at least one
has a cover of type 2.

Proof. It is easy to see that if a vertex gadget has not a cover of type 1 we can substitute this
solution with a cover of type 2, obtaining a solution with at least the same size. Now assume
that two adjacent vertex gadgets V Gi, V Gj have both a cover of type 1. Then observe that the
edge gadget EGij must be cover with at least 4 vertices. By covering V Gj with a cover of type
2, the edge gadget EGi,j needs to be covered just with 2 elements thus obtaining a cover of size
less than 3k + 2(n− k) + 2m.

Theorem 4.3. Let C be a cover of the graph gadget of size 3k + 2(n − k) + 2m. Then there is
a cover of the graph G of size k.

Proof. Consider a vertex cover of size 3k + 2(n − k) + 2m. Then from previous lemma we can
construct a solution of size at most 3k+2(n− k)+2m and such that for each edge gadget EGij

at least one of V Gi, V Gj is of type 2. Thus, we can define a cover for G taking all the vertices
corresponding to vertex gadgets with a cover of type 2. Since there are at most k vertex of this
kind the theorem follows.

Since a vertex cover of a cubic graph contains at least |V |/4 vertices and |E| = 3
2 |V |, it

follows that the above reduction is an l-reduction.

Second Reduction

Now we reduce minimum vertex cover on gadget graph to CMV(p). The idea in our description is
that it is possible to assign a resolved fingerprint to each vertex and an unresolved fingerprint to
each edge. The set of unresolved fingerprints will be our instance of CMV(p), and all interesting
solutions will pick their resolved fingerprints from those assigned to the vertices. More precisely
we will show that each unresolved fingerprint (assigned to an edge) will be resolved to the
fingerprints assigned to one of the endpoints of such edge.

Let n denote the number of vertex gadgets. Each fingerprint consists of n chunks of 7
positions, and each vertex in the vertex gadget V Gi consists only of 0s, except for the i-th
chunk. Denote with v(ci1), v(ci2), v(ci3), v(ci4) and v(ci5) the resolved vectors associated with
the vertices of V Gi, define the i-th chunk of these vectors as follows: v(ci1) → 1110000, v(ci2) →
1111100, v(ci3) → 1110011, v(ci4) → 1001100, v(ci5) → 1000011. For example, the vertex v(ci4)
of the i-th vertex gadget has fingerprint 07(i−1)100110007(n−i+1) .

The vertices belonging exclusively to an edge gadget will have two chunks that are not
completely made of 0s. More precisely, let V Gi and V Gj be two adjacent vertex gadgets, we
denote with v(ei,j,1), v(ei,j,2), v(ei,j,3), v(ei,j,4) the resolved vector associated with the vertices
of the edge gadgets V Gij . Only the i-th and the j-th chunks are not completely consisting of
0s, and those chunks are represented in Table 1.

7

chunk V Gi V Gj v(ei,j,1) v(ei,j,2) v(ei,j,3) v(ei,j,4)

i-th 1110000 0000000 1100000 0100000 1010000 0010000
j-th 0000000 1110000 0100000 1100000 0010000 1010000

i-th 1110000 0000000 1100000 0100000 1010000 0010000
j-th 0000000 1001100 0001000 1001000 0000100 1000100

i-th 1110000 0000000 1100000 0100000 1010000 0010000
j-th 0000000 1000011 0000010 1000010 0000001 1000001

i-th 1001100 0000000 1001000 0001000 1000100 0000100
j-th 0000000 1110000 0100000 1100000 0010000 1010000

i-th 1001100 0000000 1001000 0001000 1000100 0000100
j-th 0000000 1001100 0001000 1001000 0000100 1000100

i-th 1001100 0000000 1001000 0001000 1000100 0000100
j-th 0000000 1000011 0000010 1000010 0000001 1000001

i-th 1000011 0000000 1000010 0000010 1000001 0000001
j-th 0000000 1110000 0100000 1100000 0010000 1010000

i-th 1000011 0000000 1000010 0000010 1000001 0000001
j-th 0000000 1001100 0001000 1001000 0000100 1000100

i-th 1000011 0000000 1000001 0000010 1000001 0000001
j-th 0000000 1000011 0000010 1000010 0000001 1000001

Table 1: Possible values of fingerprints for an edge gadget

Assume that ei,j,1, ei,j,3 are adjacent to a vertex of V Gi, cix , and that ei,j,2, ei,j,4 are adjacent
to a vertex of V Gj , cjy . We define these resolved vectors as follows:

Next we discuss the properties of the resolved vectors defined above. Each pair of resolved
vectors associated with adjacent vertices has hamming distance 2. Each pair of resolved vectors
associated with not adjacent vertices has hamming distance at least 3.

Now we construct the instance of the problem, that is the fingerprint vectors. We associate
a fingerprint with each edge of the graph gadget. Now, let y = (a, b) be an edge of the graph
gadget, va and vb the resolved vectors associated with vertices a and b respectively, we associate
with y the fingerprint vector vy as follows: for each position l such that va[l] = vb[l], it follows
ve[l] := va[l]; for each position l such that va[l] 6= vb[l], it follows ve[l] := N .

Lemma 4.4. Each fingerprint vector has exactly two positions with value N .

Proof. It is easy to see that by construction two resolved vectors associated with an edge differ
in exactly two positions. Thus, the fingerprint vector associated with that edge has value N in
those positions.

A fundamental property of the instance of CMV(p) is the following:

Lemma 4.5. Two fingerprint vectors can have a common resolution only it the edges encoded
by such fingerprints share a common vertex.

Proof. First observe that by construction each fingerprint vector fi can have at most 4 reso-
lutions. Moreover, if ri1 and ri2 are resolutions of fi having hamming distance 2, any other

8

resolution have hamming distance 1 from both ri1 and ri2 . Let fi be a fingerprint vector en-
coding edge ei = (i1, i2) and let fj be a fingerprint vector encoding edge ej = (j1, j2). There is
at least one pair of resolved vectors associated with the endpoints of ei and ej having hamming
distance at least 3; assume w.l.o.g. those vectors are r(i1) and r(j1). Note that none of r(i1) and
r(j1) can be a common resolution for both fi and fj. Any resolution r∗i of fi different from r(i1)
and r(i2), has hamming distance 1 from r(i1). Similarly, any resolution r∗j of fj different from
r(j1) and r(j2) has hamming distance 1 from r(j1). Thus, r∗i and r∗j have hamming distance
at least 1 and thus are not be identical. It follows that none of r∗i and r∗j can be a common
resolution for both fi and fj. Thus fi and fj have a common resolution only if r(i2) and r(j2)
are the same vector, that is they encode the same vertex.

Theorem 4.6. Let C be a cover of the graph gadget of size 3k + 2(n − k) + 2m. Then there is
a solution of CMV(p) of size 3k + 2(n− k) + 2m.

Proof. Consider a vertex cover of size 3k + 2(n − k) + 2m. Thus, we can define a solution of
CMV(p) taking as resolution the set of vertices associated with the cover.

Theorem 4.7. Let C be a solution of CMV(p) of size 3k+2(n− k)+ 2m, then there is a cover
of the graph gadget of size 3k + 2(n− k) + 2m.

Proof. Consider a solution for CMV(p). If a fingerprint vector is associated with a resolved
vector not associated with a vertex of the gadget graph, then this resolution is not common
to any other fingerprint vector of the instance. Thus, we can replace it with a resolved vector
associated with a vertex of the graph without increasing the size of the solution. Then for each
resolution chosen, add the corresponding vertex to the cover of the gadget graph.

It is easy to see that also this second reduction is an l-reduction.

5 MAX-SNP hardness of IECMV(2)

In the following section we prove that IECMV(p) is MAX-SNP hard via an l-reduction from
Maximum Independent Set on Cubic Graphs (MISCG). Let G = (V,E) be a cubic graph, the
MISCG problem asks for the subset V ′ ⊆ V of maximum cardinality, such that vertices in V ′

are not adjacent.
We associate with a vertex vi of V a set of 9 fingerprint vectors. First we introduce a set

of 8 resolved vectors, Ci = {ci1 , ci2 , ci3 , ci4 , ci5 , ci6 , ci7 , ci8}, such that the resolved vectors in Ci

are possible solutions of the fingerprint vectors. We represent this situation through a graph,
denoted as compatibility graph CGi, such that the resolved vectors in Ci are the vertices of CGi,
while the fingerprint vectors are the edges of CGi. A fingerprint vector associated with an edge
(ciu , civ) can be resolved by both ciu and civ and by no other resolved vector in C =

⋃
iCi.

Three vertices of CGi, ci1 , ci3 and ci8 are called docking vertices.
For each edge e = (vi, vj) ∈ E, define a fingerprint vector that is compatible with a resolved

vector associated with a docking vertex of CGi and a resolved vector associated with a docking
vertex of CGj . We represent this fingerprint vector in the graph as an edge, Ei,j that joins
the compatibility graphs associated with vertices CGi and CGj . The graph obtained will be
denoted as CG.

9

i1
c i2

c i3
c

i4
c i5

c

i8
c

i6
c

i7
c

iCG

Figure 3: A compatibility graph CGi

Assume that |V | = n and |E| = m. The complete vectors of the instance of IECMV(p) have
length 5n, 5 positions are associated with each vertex. Assume w.l.o.g. that vertex vi is adjacent
to vertices vj , vh and vk and in particular that ci1 is adjacent to CGj , ci3 is adjacent to CGh

and ci8 is adjacent to CGk. Complete vectors associated with CGi are defined as follows:

• ci1 has value 1 in the position 5j − 4, ci3 has value 1 in the position 5h − 4, ci8 has value
1 in the position 5k − 4.

• for any other position not in [5i− 4, 5i] all the complete vectors associated with CGi have
value 0.

• for the positions in [5i − 4, 5i], ci1 = 11000, ci2 = 11010, ci3 = 10010, ci4 = 11100,
ci5 = 10110, ci6 = 11110, ci7 = 11011, ci8 = 10100.

Ler R be the set of the resolved vectors associated with vertices of the graph. Now we
construct the instance of the problem, that is the fingerprint vectors. We associate a fingerprint
vector with each edge of the graph gadget. For an edge of the compatibility graph, let y = (a, b)
be an edge of the graph gadget, va and vb the resolved vectors associated with a and b respectively,
we associate with y the fingerprint vector vy as follows: for each position l such that va[l] = vb[l],
it follows vy[l] := va[l]; for each position l such that va[l] 6= vb[l], it follows vy[l] := N .

It is easy to see that each fingerprint vector will have at most 2 positions having value N ,
since two resolved vectors associated with adjacent vertices will have at most hamming distance
equal to 2.

Lemma 5.1. Let S be a solution of IECMV(p), then there is a solution S′ having at most the
same cost and such that each resolved vector of the solution is a resolved vector in R.

Proof. Let fx, fy be two fingerprint vectors, they are compatible if and only if are associated
with two edges incident on a common vertex. Moreover, observe that there exists a unique
resolved vertex that can be a common resolution of both fx and fy, unless they are associated
with an edge incident on the same docking vertex cz . In this case they can have two common
resolutions, rz1 and rz2 . Assume that rz1 is associated with Cz, there is a single position l not
in [5z− 4, 5z] where rz1 has value 1. rz2 is the resolved vector having a 0 in position l and equal

10

i8
c

i4
c

i5
c

i1
c i2

c
i3

c j1
c

j2
c j3

c

j4
c j5

c

j8
c

i7
c

i6
c

j6
c

j7
c

i jCG CG

E ij

Figure 4: A compatibility graph Eij

to rz1 in any other position. Since no other vertices is compatible with rz2 it follows that we
can substitute rz2 with rz1 without decreasing the cost of the solution.

Thus we can restrict to the solution where each set sv corresponds to a resolved vector rv
associated with a vertex v of the graph CG and the fingerprint vectors associated with (some)
edges incident on v are assigned to sv. In what follows we show that for a solution of IECMV(p)
of a compatibility graph CGi we can restrict to the following cases:

• Solution A: 9 pairs of fingerprint vectors are co-clustered; this means that ci2 , ci4 and ci5
are resolved vectors of the solution.

• Solution B: 4 pairs of fingerprint vectors are co-clustered; this means that ci1 , ci3 , ci6 and
ci8 are resolved vectors of the solution.

Lemma 5.2. Solution B is the maximum solution that has 1 pair for each of the docking vertex
of CGi.

Proof. Let Z be a solution such that the sets associated with resolved vectors ci1 , ci3 , ci8 have
all one pair. It is easy to see that the set associated with resolved vector ci6 is the only set that
can have more than one element. Thus the lemma follows.

Let Z be a solution of IECMV(p) for CGi such that it has one set sx associated with a
resolved vector x of a docking vertex. The set sx will contain two fingerprint vectors. If we
assign the fingerprint vector associated with the edge Ei,j incident on x to sx, we gain 2 pairs.
If we have a solution A for a compatibility graph V Gi and we assign the fingerprint vectors of
EGij to ci1 , we gain 0 pairs. Note that if two adjacent compatibility graphs have as solutions
the sets corresponding to the two docking vertices, it follows that only one of these sets can
gain pairs. Next we show that, gaining pairs from Ei,j, no solution different from solution B
can become better than solution A. Let Z be a solution of IECMV(p) different from solution A
and solution B. If exactly one of the sets of Z corresponds to a docking vertex, it follows that it
can have at most 6 pairs. In fact, the optimal solution in this case has one set with 3 pairs and
three sets each one with one pair. If exactly two of the sets of Z correspond to docking vertices,
it follows that it can have at most 4 pairs. In fact, the optimal solution in this case has four

11

sets, each one with one pair. Since no other solution can gain pairs from EGij it follows that
no solution except solution B can become better than solution A.

Thus the optimal solution for CGi and EGi,j , EGi,h, EGi,k is to have solution B for CGi

and add fingerprint vectors associated with EGi,j , EGi,h, EGi,k to the sets corresponding to
the docking vertices. Each of these sets will have three elements, thus 3 pairs, and the solution
has 10 pairs. In what follows we will denote such a solution with solution B. Moreover, any
solution different from the solution constructed above, it is worse than solution A. It follows
that the problem of maximizing the number of co-clustered pairs of fingerprint vectors consists
of building an independent set of compatibility graphs (each one is associated with solution B).

Lemma 5.3. There exists an independent set of size k if and only if exists a solution of
IECMV(p) having at least 10k + 9(n− k) pairs.

Proof. Let V ′ an independent set of G such that |V ′| = k, construct a solution S of IECMV(p)
such that the component graphs associated with vertices in V ′ have a solution of type B and
any other component graph has a solution of type A. Then it follows c(S) = 10k + 9(n− k).

Now let S be a solution with cost 10k + 9(n − k). Now we can construct a solution having
at least the same cost defining for each component graph that has a cost less than 10 a type A
solution. Since the component graphs having cost 10 must not be adjacent, at least k independent
component graph must have type B solution in S and thus the corresponding vertices are an
independent set of size k.

Since for each cubic graph |E| = 3
2 |V | and there exists an independent set of size at least

|V |/4, it follows that the above reduction is an l-reduction.

5.1 MAX-SNP hardness of OECMV(2)

It is easy to see that the l-reduction described above to prove the MAX-SNP hardness of
IECMV(p) can be used also to prove the MAX-SNP hardness of OECMV(p). Note that con-
sidering the set of fingerprint vectors associated with a component graph CGi and with edges
EGi,j , EGi,h, EGi,k, we can have 19 compatible pairs of fingerprint vectors. As in the previous
reduction, the best solution for this set of fingerprint vectors is type B solution. Since type
B solution co-clusters 10 pairs of compatible fingerprint vectors, it follows that it does not co-
cluster 19 − 10 = 9 pairs of compatible fingerprint vectors. Similarly type A solution does not
co-cluster 19 − 9 = 10 pairs of compatible vectors and no other solution different from type B
solution is better than type A solution. Hence the l-reduction for OECMV(p) follows directly
from the l-reduction for IECMV(p).

References

[1] P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. Theoretical
Computer Science, 237(1–2):123–134, 2000.

[2] G. Ausiello, P. Crescenzi, V. Gambosi, G. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and Approximation: Combinatorial optimization problems and their approxima-
bility properties. Springer-Verlag, 1999.

12

[3] R. Drmanac. cDNA screening by array hybridization. Methods in Enzymology, 303:165–178,
1999.

[4] S. Drmanac and R. Drmanac. Processing of cDNA and genomic kilobase-size clones for
massive screening mapping and sequencing by hybridization. Biotechniques, 17:328–336,
1994.

[5] S. Drmanac, N. Stavropoulos, I. Labat, J. Vonau, B. Hauser, M. Soares, and R. Drmanac.
Gene-representation cDNA clusters defined by hybridization of 57 419 clones from infant
brain libraries with short oligonucleotite probes. Genomics, 37:29–40, 1996.

[6] A. Figueroa, J. Borneman, and T. Jiang. Clustering binary fingerprint vectors with missing
values for dna array data analysis. Journal of Computational Biology, 11(5):887–901, 2004.

[7] A. Figueroa, A. Goldstein, T. Jiang, M. Kurowski, A. Lingas, and M. Persson. Aproxi-
mate clustering of fingerprint vectors with missing values. In Proc. 11th Computing: The
Australasian Theory Symposium (CATS), volume 41 of CRPIT, pages 57–60, 2005.

[8] L. Valinsky, G. Della Vedova, T. Jiang, and J. Borneman. Oligonucleotide fingerprinting
of rrna genes for analysis of fungal community composition. Applied and Environmental
Microbiology, 68(12):5999–6004, 2002.

[9] L. Valinsky, G. Della Vedova, A. Scupham, S. Alvey, A. Figueroa, B. Yin, R. Hartin,
M. Chrobak, D. Crowley, T. Jiang, and J. Borneman. Analysis of bacterial microbial commu-
nity composition by oligonucleotide fingerprinting of rrna genes. Applied and Environmental
Microbiology, 68(7):3243–3250, 2002.

13

	Introduction
	Preliminary Definitions
	An approximation algorithm for IECMV(p) and OECMV(p)
	Analysis for IECMV(p)
	Analysis for OECMV(p)

	APX-hardness of CMV(2)
	MAX-SNP hardness of IECMV(2)
	MAX-SNP hardness of OECMV(2)

