Approximating Clustering of Fingerprint Vectors with Missing Values

Paola Bonizzoni

Gianluca Della Vedova

Riccardo Dondi

Abstract

The problem of clustering fingerprint vectors is an interesting problem in Computational Biology that has been proposed in [6]. In this paper we show some improvements in closing the gaps between the known lower bounds and upper bounds on the approximability of some variants of the biological problem. Namely we are able to prove that the problem is APXhard even when each fingerprint contains only two unknown position. Moreover we have studied some variants of the orginal problem, and we give two 2-approximation algorithm for the IECMV and OECMV problems when the number of unknown entries for each vector is at most a constant.

1 Introduction

High-throughput approaches for the examination of microbial communities are becoming increasingly important, especially after the oligonucleotide fingerprinting strategy has found wide application, allowing the identification of thousands of cDNA clones [3, 4, 5, 8, 9]. After the rDNA clone libraries are constructed, the clones are classified by individual hybridization experiments on DNA microarrays with a series of short DNA oligonucleotides into *clone types* or *operational taxonomic units* (OTUs), where a an OTU is a set of DNA clones sharing the same set of oligonucleotides that have successfully hybridized. Once classified, the nucleotide sequence of representative clones from each OTU can then be obtained by DNA sequencing to provide phylogenetic descriptions of the microorganisms. One of the key features of this strategy is that after a comprehensive database, that correlates hybridization patterns with nucleotide sequence data, has been compiled, little additional rDNA clone sequencing will be required, resulting in significant reduction of cost and effort. The effectiveness of this general strategy has been demonstrated in the biotechnology arena, where it is currently being used to screen and identify millions of cDNA clones [3].

The oligonucleotide fingerprinting method is commonly used to study DNA clone libraries. Such method naturally leads to a combinatorial problem where for each oligonucleotide we are give a fingerprint over the alphabet $\{0, 1, N\}$, where the values 0 or 1 means respectively that the a hybridization has happened or not with a certain clone, while the value N stands for the fact that we are unable to determine if the hybridization has happened or not (typically it is due to the fact that there are two control signals, and the values between those two control signals mean that either result might have happened).

The combinatorial problem that naturally arises is called CMV. In such problem we are given a set of fingerprints and we would like to change each N-symbol in the input fingerprints

into 0 or 1, so that the total number of distinct fingerprints (over $\{0,1\}$) is minimized. Actually we are not interested into the actual fingerprints over $\{0,1\}$, but only in determining the clusters of fingerprints.

Unfortunately the problem is NP-hard, therefore it is important to study if some restrictions become tractable. For instance it is possible to restrict the problem to instances where each input fingerprint contains at most p N-symbols, and we will call such problem CMV(p). It is already known that CMV(2) is NP-hard[7], while CMV(1) can be solved in polynomial-time[6], so for all interesting values of p we have to concentrate on developing approximation algorithms. CMV(p) is known to be approximable within factor 2^p [6] and min($1 + \ln n, 2 + p \ln l$)[7], where l is the lenght of the fingerprint vectors. In this paper we strengthen the NP-hardness result proving that CMV(2) is APX-hard, that is it cannot be approximated within an arbitrarily small ($1 + \epsilon$)-factor polynomial-time algorithm unless P=NP [2].

Moreover we will study two related optimization problems, namely IECMV and OECMV where we want to minimize the number of pairs of compatible fingerprints that are not clustered together and the number of pairs of incompatible fingerprints that are clustered together, respectively. Again we are interested in the restrictions of IECMV and OECMV with at most pmissing values in each fingerprint (those problems are denoted by IECMV(p) and OECMV(p) respectively). The IECMV(p) problem is known to be approximable within factor 2^{2p-1} for any $p = O(\log n)$ [7], while the restriction of OECMV where no two compatible fingerprint vectors can have value N at the same position can be approximated within factor $2(1 - \frac{1}{2n})$ [7].

In this paper we improve those approximation results, proving that both IECMV(p) and OECMV(p) problems are APX-hard, and we show that a simple greedy algorithm achieves a 2 approximation ratio for both problems.

2 Preliminary Definitions

In this section, we introduce some basic notations and definitions that we will need later. A fingerprint vector (in short *fingerprint*) is a vector over the alphabet $\{0, 1, N\}$, where 1 represents a hybridization, 0 represents no hybridization and N represents unknown data (that is we are unable to determine if hybridization has happened or not). In all instances of the problems that we will study, all fingerprints have the same length, that is they contain the same number of elements. Usually we will denote by l the length of a fingerprint.

Two fingerprints vectors $v_1 = \langle v_1[1], v_1[2], \ldots, v_1[l] \rangle$ and $v_2 = \langle v_2[1], \ldots, v_2[l] \rangle$ are compatible if for any position *i* where they differ, at least one of $v_1[i]$ and $v_2[i]$ is equal to *N*. A resolved vector $r = \langle r[1], \ldots, r[k] \rangle$ of a fingerprint vector $v = \langle v[1], \ldots, v[k] \rangle$ is a vector over alphabet $\{0, 1\}$ such that for each $1 \leq i \leq l$, if $v[i] \neq N$ then v[i] = r[i], that is *r* and *v* agree on each position where *v* is not unknown. Sometimes it is useful the analyze the effect of a parameter, the maximum number of *N*s allowed in a fingerprint; we will denote by *p* such parameter. We are now ready to present the problem we will study.

CLUSTERING WITH p MISSING VALUES(CMV(p)): We are given a set F of fingerprint vectors with at most p Ns and we want to partition F into disjoint subsets F_1, \ldots, F_k such that any two vectors in F_i are compatible and the cardinality of the partition is minimized.

INSIDE CLUSTERING WITH p MISSING VALUES(IECMV(p)): We are given a set F of fingerprint vectors with at most p Ns and we want to partition F into disjoint subsets F_1, \ldots, F_k such that any two vectors in F_i are compatible and the number of compatible pairs of vectors within the same clusters is maximized.

OUTSIDE CLUSTERING WITH p MISSING VALUES(OECMV(p)): We are given a set F of fingerprint vectors with at most p Ns and we want to partition F into disjoint subsets F_1, \ldots, F_k such that any two vectors in F_i are compatible and the number of compatible pairs of vectors belonging to different clusters is minimized.

Notice that for all the aforementioned problems, the instance is a set F of fingerprints and the output is a partition of F where in a set of the partition there are only pairwise compatible fingerprints. It is easy to notice that pairwise compatibility is a sufficient condition to prove the existence of a common resolution for all fingerprints in the set. For simplicity's sake in the following we will denote by n the number of fingerprints in an instance F.

3 An approximation algorithm for IECMV(p) and OECMV(p)

In this section we present an approximation algorithm for both IECMV(p) and OECMV(p) problems, where p is any fixed constant. We are able to provide two different analysis, one for each problem, showing that we achieve a 2-approximation for both problems.

Given a set F of fingerprints, since p is a constant we are able (in $O(2^p n)l$ time) to compute the set $R = \{r_1, \ldots, r_k\}$ of all possible resolved fingerprints that are compatible with at least one fingerprint in F. Given a resolved fingerprint r, we denote by s(r) the set of fingerprints in F that are compatible with r, and denote by p(s(r)) the set of pairs of vectors in s(r). The *degree* of a fingerprint r, denoted by d(r), is defined as the cardinality of s(r).

The algorithm constructs a partition P of F greedily as follows: initially let P be an empty set and let U be equal to F. At each iteration the algorithm computes the resolved fingerprint r of maximum degree (i.e. r is the resolved fingerprint compatible with the maximum number of fingerprints in U), adds s(r) as a set of the solution P and removes all fingerprints in s(r)from U. The algorithm iterates such step until U is empty.

3.1 Analysis for IECMV(p)

Let $S = \{s_1, \ldots, s_k\}$ be a solution S of IECMV(p). The value of S is the number of compatible fingerprints vectors co-clustered by S and is denoted by V(S). It holds that $V(S) = \sum_{i=1}^{t} |P(s_i)|$, where $P(s_i)$ is the set of pairs of fingerprints in s_i . Generalizing such notion, we denote by P(S)the set of all the pairs co-clustered in the partition S, that is $P(S) = \bigcup_{i=1}^{|S|} P(s_i)$. Let $W \subseteq U$ be a subset of fingerprint vectors, we denote by P(S, W) the set of pairs (x, y) in P(S) such that at least one of x, y is in W.

In the following we will show that the algorithm has approximation factor 2. The algorithm computes a sequence $\langle r_1, \ldots, r_k \rangle$ of resolved fingerprints, one at each iteration. At the *i*-th iteration the algorithm contructs a set of the partition containing r_i and all fingerprints that are compatible with r_i and have not been put in a partition during one of the previous iterations (we will denote such set by s_i). For ease of the analysis, we will denote by U_i the set U at the beginning of the *i*-th iteration, consequently $U_1 = F$, $U_{i+1} = U_i \setminus s_i$, for $1 \le i < k$, where k is the number of sets in the output partition. Recall that the partition output by the algorithm is denoted by $S = \{s_1, \ldots, s_k\}$. The optimal partition is denoted by $Opt = \{opt_1, \ldots, opt_l\}$, where l can be different from k.

By definition, the value of the optimal solution is |P(Opt)|; our goal will be to show that $|P(Opt)| \leq 2|P(S)|$. We introduce some sets as follows: $P(Opt, 1) = P(Opt, s_1)$, and $P(Opt, i + 1) = P(Opt, s_i) \setminus \bigcup_{1 \leq j \leq i} P(Opt, j)$ for $1 \leq i < k$. A fundamental property is that $\{P(Opt, i) : 1 \leq i < k\}$ is a partition of P(Opt).

In fact the sets P(Opt, i) are disjoint by construction. Since $S = \{s_1, \ldots, s_k\}$ is a partition of F, then $P(Opt) = \bigcup P(Opt, s_i)$. Let (x, y) be a pair of P(Opt). W.l.o.g. we can assume that $x \in s_i, y \in s_j$, with $i \leq j$. Then $(x, y) \in P(Opt, s_i)$ and (x, y) does not belong to any P(Opt, h)with h < i, therefore $(x, y) \in P(Opt, i)$. Consequently the sets P(Opt, i) are a partition of P(Opt), and the value of the optimal solution is equal to $\sum_i |P(Opt, i)|$.

Consequently, in order to prove that our greedy algorithm achieves a 2 approximation, it suffices to show that, for each i, $|P(Opt, i)| \leq 2|P(s_i)|$.

Lemma 3.1. Let $S = \{s_1, \ldots, s_k\}$ be the solution computed by the algorithm, and let Opt be an optimal solution. Then $|P(Opt, i)| \leq 2|P(s_i)|$ for $1 \leq i \leq k$.

Proof. Let s_i be the set added to the solution S at the *i*-th step of the algorithm. All pairs in P(Opt, i) must belong to $U_i \times U_i$, by definition of P(Opt, i). Each element x in U_i is in the same set of the optimal solution with at most $|s_i| - 1$ other fingerprints of U_i , for otherwise the algorithm would not have chosen s_i at the *i*-th iteration, but x and all fingerprints in U_i that are in the same set of the optimal solution. By definition of P(Opt, i), there are at most $|s_i|(|s_i| - 1)$ pairs in P(Opt, i), which completes the proof, since in s_i there are $|s_i|(|s_i| - 1)/2$ pairs.

It is easy to see that approximation factor is tight. Consider three resolved vectors r_1 , r_2 , r_3 and four fingerprint vectors $\{f_1, f_2, f_3, f_4\}$ such that $s(r_1) = \{f_1, f_2\}$, $s(r_2) = \{f_1, f_3\}$, $s(r_2) = \{f_2, f_4\}$. The approximation algorithm choose $s(r_1)$ as the first set and then $\{f_3\}$, $\{f_4\}$ as the sets to complete the partition. Thus value of the approximated solution is 1, since one pair is selected. It is easy to see that the optimal solution consists of set $s(r_2) = \{f_1, f_3\}$, $s(r_2) = \{f_2, f_4\}$, thus having value 2.

3.2 Analysis for OECMV(p)

The analysis in this section follows the one for IECMV(p). Let $S = \{s_1, \ldots, s_k\}$ be a solution S of OECMV(p). The value of S is the number of compatible fingerprints vectors that are not coclustered in S and is denoted by V(S). It holds that $V(S) = \frac{1}{2} \sum_{i=1}^{k} |L(s_i)|$, where $L(s_i)$ is the set of pairs (x, y) of compatible fingerprints where exactly one of x and y is in s_i . Generalizing such notion, we denote by L(S) the set of all unordered pairs of compatible fingerprints that are not co-clustered in the partition S, that is $L(S) = \bigcup_{i=1}^{|S|} L(s_i)$. Notice also that each pair in L(S)appears in exactly two sets $L(s_i)$, therefore $|L(S)| = \frac{1}{2} \sum_{i=1}^{|S|} |L(s_i)|$. Let $W \subseteq U$ be a subset of fingerprint vectors, we denote by L(S, W) the set of pairs (x, y) in L(S) such that at least one of x, y is in W.

In the following we will show that the algorithm has approximation factor 2. The algorithm computes a sequence $\langle r_1, \ldots, r_k \rangle$ of resolved fingerprints, one at each iteration. At the *i*-th iteration the algorithm contructs a set of the partition containing r_i and all fingerprints that are compatible with r_i and have not been put in a partition during one of the previous iterations (we will denote such set by s_i). For ease of the analysis, we will denote by U_i the set U at the beginning of the *i*-th iteration, consequently $U_1 = F$, $U_{i+1} = U_i \setminus s_i$, for $1 \le i < k$, where k is

the number of sets in the output partition. Recall that the partition output by the algorithm is denoted by $S = \{s_1, \ldots, s_k\}$. The optimal partition is denoted by $Opt = \{opt_1, \ldots, opt_l\}$, where l can be different from k.

By definition, the value of the optimal solution is |L(Opt)|; our goal will be to show that $2|L(Opt)| \ge |L(S)|$. We introduce some sets as follows: $L(Opt, 1) = L(Opt, s_1)$, and $L(Opt, i) = L(Opt, s_i) \setminus \bigcup_{1 \le j < i} L(Opt, j)$ for $1 \le i \le k$. A fundamental property is that $\{L(Opt, i) : 1 \le i \le k\}$ is a partition of L(Opt). In fact the sets L(Opt, i) are disjoint by construction. Since $S = \{s_1, \ldots, s_k\}$ is a partition of F, then $L(Opt) = \bigcup L(Opt, s_i)$. Let (x, y) be a pair of L(Opt). W.l.o.g. we can assume that $x \in s_i, y \in s_j$, with $i \le j$. Then $(x, y) \in L(Opt, s_i)$ and (x, y) does not belong to any L(Opt, h) with h < i, therefore $(x, y) \in L(Opt, i)$. Consequently the sets L(Opt, i) are a partition of L(Opt), and the value of the optimal solution is equal to $\sum_i |L(Opt, i)|$.

Similarly we introduce the sets $L(S,1) = L(s_1)$, $L(S,i) = L(s_i) \setminus \bigcup_{1 \le j < i} L(S,j)$ for $1 \le i \le k$. A fundamental property is that $\{L(S,i) : 1 \le i \le k\}$ is a partition of L(S) and thus $|L(S)| = \sum_i |L(S,i)|$. Consequently, in order to prove that our greedy algorithm achieves a 2 approximation, it suffices to show that, for each $i, 2|L(Opt,i)| \ge |L(S,i)|$.

Lemma 3.2. Let $S = \{s_1, \ldots, s_k\}$ be the solution computed by the algorithm, and let Opt be an optimal solution. Then $2|L(Opt, i)| \ge |L(S, i)|$ for $1 \le i \le k$.

Proof. Let s_i be the set added to the solution S, at the *i*-th step of the algorithm. Given a fingerprint $x \in s_i$, we define C(x) as the set of all fingerprints in U_i that are compatible with x, and D(x) as the set $C(x) \cap L(Opt, i)$, that is the pairs in C(x) that are not co-clustered in Opt. Since x is clustered with $|s_i| - 1$ elements of U_i in S, there are exactly $|C(x)| - |s_i| + 1$ pairs in L(S,i) containing x. It follows that $|L(S,i)| = \sum_{x \in s_i} (|C(x)| - |s_i| + 1)$.

All pairs in L(Opt, i) must belong to $(U_i \setminus U_{i+1}) \times U_i$, by definition of L(Opt, i) (for simplicity, we will assume that $U_{k+1} = \emptyset$). Notice that, by construction of s_i , $|D(x)| \ge |C(x)| - |s_i| + 1$. Clearly $L(Opt, i) = \bigcup_{x \in U_i} D(x)$, by definition of D(x). Since each pair $(y, z) \in L(Opt, i)$ appears only in the two (not necessarily distinct) sets D(y) and D(z), then $|L(Opt, i)| \ge \frac{1}{2} \sum_{x \in U_i} |D(x)| \ge \frac{1}{2} \sum_{x \in U_i} (|C(x)| - |s_i| + 1)$ and the proof is completed.

It is easy to see that also in this case the approximation factor is tight. Consider three resolved vectors r_1 , r_2 , r_3 and four fingerprint vectors $\{f_1, f_2, f_3, f_4\}$ such that $s(r_1) = \{f_1, f_2\}$, $s(r_2) = \{f_1, f_3\}$, $s(r_2) = \{f_2, f_4\}$. The approximation algorithm choose $s(r_1)$ as the first set and then $\{f_3\}$, $\{f_4\}$ as the sets to complete the partition. Thus the value of the approximated solution is 2, since the pairs of compatible fingerprint vectors that are not co-clustered are (f_1, f_3) and (f_2, f_4) . It is easy to see that the optimal solution consists of set $s(r_2) = \{f_1, f_3\}$, $s(r_2) = \{f_2, f_4\}$, hence the only pair of compatible fingerprint vectors not co-clustered in the optimal solution is (f_1, f_2) and the cost of the optimal solution is 1.

4 APX-hardness of CMV(2)

In this section we will prove that CMV(p) is APX-hard via an *l*-reduction from minimum vertex cover on cubic graph, whose APX-hardness has been proved in [1].

Figure 1: A vertex gadget VG_i

Figure 2: An edge gadget EG_{ij}

In particular we will combine two l-reductions: (1) from minimum vertex cover on a graph G to minimum vertex cover on a gadget graph; (2) from minimum vertex cover on a gadget graph to CMV(p).

First Reduction

First we will define gadget graphs. Given a graph G = (V, E) for each vertex $v_i \in V$ we define a vertex gadget VG_i consisting of 5 vertex. Three vertices, c_{i_1} , c_{i_4} , c_{i_5} are called docking vertices. Observe that the minimum vertex cover of a vertex gadget consists of 2 vertices, c_{i_2} , c_{i_3} , and denote this cover as type 1. Observe that there is a cover of VG_i consisting of 3 vertices c_{i_1} , c_{i_4} , c_{i_5} , and denote this cover as type 2.

For each edge (v_i, v_j) we define an edge gadget $EG_{i,j}$ joining vertex gadgets VG_i , VG_j in two of their docking vertices. An edge gadget consists of six vertices, the two docking vertices shared with the vertex gadgets and other four vertices.

Theorem 4.1. Let $C \subseteq V$ be a cover of G, with |C| = k. Then there is a cover of the graph gadget of size 3k + 2(n - k) + 2m.

Proof. Consider a vertex v_i in C, associate with the corresponding vertex gadget VG_i a cover of type 2 (of size 3). For each vertex $v_j \notin C$, associate with the corresponding vertex gadget VG_j a cover of type 1 (size 2). Observe that for each edge gadget at least one of the adjacent

vertex gadget has a type 2 cover. Thus we just need to cover two vertices for each edge gadget to obtain a cover of each edge gadget and thus of the entire graph gadget. \Box

Lemma 4.2. Let C be a cover of the graph gadget of size 3k + 2(n - k) + 2m. Then we can compute in polynomial time a vertex cover of size at most 3k + 2(n - k) + 2m such that it has only cover type 1 and type 2 and such that for each pair of adjacent vertex gadgets at least one has a cover of type 2.

Proof. It is easy to see that if a vertex gadget has not a cover of type 1 we can substitute this solution with a cover of type 2, obtaining a solution with at least the same size. Now assume that two adjacent vertex gadgets VG_i , VG_j have both a cover of type 1. Then observe that the edge gadget EG_{ij} must be cover with at least 4 vertices. By covering VG_j with a cover of type 2, the edge gadget $EG_{i,j}$ needs to be covered just with 2 elements thus obtaining a cover of size less than 3k + 2(n-k) + 2m.

Theorem 4.3. Let C be a cover of the graph gadget of size 3k + 2(n-k) + 2m. Then there is a cover of the graph G of size k.

Proof. Consider a vertex cover of size 3k + 2(n-k) + 2m. Then from previous lemma we can construct a solution of size at most 3k + 2(n-k) + 2m and such that for each edge gadget EG_{ij} at least one of VG_i , VG_j is of type 2. Thus, we can define a cover for G taking all the vertices corresponding to vertex gadgets with a cover of type 2. Since there are at most k vertex of this kind the theorem follows.

Since a vertex cover of a cubic graph contains at least |V|/4 vertices and $|E| = \frac{3}{2}|V|$, it follows that the above reduction is an l-reduction.

Second Reduction

Now we reduce minimum vertex cover on gadget graph to CMV(p). The idea in our description is that it is possible to assign a resolved fingerprint to each vertex and an unresolved fingerprint to each edge. The set of unresolved fingerprints will be our instance of CMV(p), and all interesting solutions will pick their resolved fingerprints from those assigned to the vertices. More precisely we will show that each unresolved fingerprint (assigned to an edge) will be resolved to the fingerprints of such edge.

Let *n* denote the number of vertex gadgets. Each fingerprint consists of *n* chunks of 7 positions, and each vertex in the vertex gadget VG_i consists only of 0s, except for the *i*-th chunk. Denote with $v(c_{i_1})$, $v(c_{i_2})$, $v(c_{i_3})$, $v(c_{i_4})$ and $v(c_{i_5})$ the resolved vectors associated with the vertices of VG_i , define the *i*-th chunk of these vectors as follows: $v(c_{i_1}) \rightarrow 1110000$, $v(c_{i_2}) \rightarrow 1111000$, $v(c_{i_3}) \rightarrow 1110011$, $v(c_{i_4}) \rightarrow 1001100$, $v(c_{i_5}) \rightarrow 10000111$. For example, the vertex $v(c_{i_4})$ of the *i*-th vertex gadget has fingerprint $0^{7(i-1)}10011000^{7(n-i+1)}$.

The vertices belonging exclusively to an edge gadget will have two chunks that are not completely made of 0s. More precisely, let VG_i and VG_j be two adjacent vertex gadgets, we denote with $v(e_{i,j,1})$, $v(e_{i,j,2})$, $v(e_{i,j,3})$, $v(e_{i,j,4})$ the resolved vector associated with the vertices of the edge gadgets VG_{ij} . Only the *i*-th and the *j*-th chunks are not completely consisting of 0s, and those chunks are represented in Table 1.

chunk	VG_i	VG_j	$v(e_{i,j,1})$	$v(e_{i,j,2})$	$v(e_{i,j,3})$	$v(e_{i,j,4})$
i-th	1110000	0000000	1100000	0100000	1010000	0010000
j-th	0000000	1110000	0100000	1100000	0010000	1010000
i-th	1110000	0000000	1100000	0100000	1010000	0010000
j-th	0000000	1001100	0001000	1001000	0000100	1000100
i-th	1110000	0000000	1100000	0100000	1010000	0010000
j-th	0000000	1000011	0000010	1000010	0000001	1000001
<i>i</i> -th	1001100	0000000	1001000	0001000	1000100	0000100
$j ext{-th}$	0000000	1110000	0100000	1100000	0010000	1010000
<i>i</i> -th	1001100	0000000	1001000	0001000	1000100	0000100
j-th	0000000	1001100	0001000	1001000	0000100	1000100
i-th	1001100	0000000	1001000	0001000	1000100	0000100
j-th	0000000	1000011	0000010	1000010	0000001	1000001
<i>i</i> -th	1000011	0000000	1000010	0000010	1000001	0000001
$j ext{-th}$	0000000	1110000	0100000	1100000	0010000	1010000
<i>i</i> -th	1000011	0000000	1000010	0000010	1000001	0000001
$j ext{-th}$	0000000	1001100	0001000	1001000	0000100	1000100
<i>i</i> -th	1000011	0000000	1000001	0000010	1000001	0000001
j-th	0000000	1000011	0000010	1000010	0000001	1000001

Table 1: Possible values of fingerprints for an edge gadget

Assume that $e_{i,j,1}$, $e_{i,j,3}$ are adjacent to a vertex of VG_i , c_{i_x} , and that $e_{i,j,2}$, $e_{i,j,4}$ are adjacent to a vertex of VG_j , c_{j_y} . We define these resolved vectors as follows:

Next we discuss the properties of the resolved vectors defined above. Each pair of resolved vectors associated with adjacent vertices has hamming distance 2. Each pair of resolved vectors associated with not adjacent vertices has hamming distance at least 3.

Now we construct the instance of the problem, that is the fingerprint vectors. We associate a fingerprint with each edge of the graph gadget. Now, let y = (a, b) be an edge of the graph gadget, v_a and v_b the resolved vectors associated with vertices a and b respectively, we associate with y the fingerprint vector v_y as follows: for each position l such that $v_a[l] = v_b[l]$, it follows $v_e[l] := v_a[l]$; for each position l such that $v_a[l] \neq v_b[l]$, it follows $v_e[l] := N$.

Lemma 4.4. Each fingerprint vector has exactly two positions with value N.

Proof. It is easy to see that by construction two resolved vectors associated with an edge differ in exactly two positions. Thus, the fingerprint vector associated with that edge has value N in those positions.

A fundamental property of the instance of CMV(p) is the following:

Lemma 4.5. Two fingerprint vectors can have a common resolution only it the edges encoded by such fingerprints share a common vertex.

Proof. First observe that by construction each fingerprint vector f_i can have at most 4 resolutions. Moreover, if r_{i_1} and r_{i_2} are resolutions of f_i having hamming distance 2, any other

resolution have hamming distance 1 from both r_{i_1} and r_{i_2} . Let f_i be a fingerprint vector encoding edge $e_i = (j_1, j_2)$. There is at least one pair of resolved vectors associated with the endpoints of e_i and e_j having hamming distance at least 3; assume w.l.o.g. those vectors are $r(i_1)$ and $r(j_1)$. Note that none of $r(i_1)$ and $r(j_1)$ can be a common resolution for both f_i and f_j . Any resolution r_i^* of f_i different from $r(i_1)$ and $r(i_2)$, has hamming distance 1 from $r(i_1)$. Similarly, any resolution r_j^* of f_j different from $r(j_1)$ and $r(j_2)$ has hamming distance 1 from $r(j_1)$. Thus, r_i^* and r_j^* have hamming distance at least 1 and thus are not be identical. It follows that none of r_i^* and r_j^* can be a common resolution for both f_i and f_j have a common resolution only if $r(i_2)$ and $r(j_2)$ are the same vector, that is they encode the same vertex.

Theorem 4.6. Let C be a cover of the graph gadget of size 3k + 2(n-k) + 2m. Then there is a solution of CMV(p) of size 3k + 2(n-k) + 2m.

Proof. Consider a vertex cover of size 3k + 2(n - k) + 2m. Thus, we can define a solution of CMV(p) taking as resolution the set of vertices associated with the cover.

Theorem 4.7. Let C be a solution of CMV(p) of size 3k + 2(n-k) + 2m, then there is a cover of the graph gadget of size 3k + 2(n-k) + 2m.

Proof. Consider a solution for CMV(p). If a fingerprint vector is associated with a resolved vector not associated with a vertex of the gadget graph, then this resolution is not common to any other fingerprint vector of the instance. Thus, we can replace it with a resolved vector associated with a vertex of the graph without increasing the size of the solution. Then for each resolution chosen, add the corresponding vertex to the cover of the gadget graph.

It is easy to see that also this second reduction is an l-reduction.

5 MAX-SNP hardness of IECMV(2)

In the following section we prove that IECMV(p) is MAX-SNP hard via an l-reduction from Maximum Independent Set on Cubic Graphs (MISCG). Let G = (V, E) be a cubic graph, the MISCG problem asks for the subset $V' \subseteq V$ of maximum cardinality, such that vertices in V' are not adjacent.

We associate with a vertex v_i of V a set of 9 fingerprint vectors. First we introduce a set of 8 resolved vectors, $C_i = \{c_{i_1}, c_{i_2}, c_{i_3}, c_{i_4}, c_{i_5}, c_{i_6}, c_{i_7}, c_{i_8}\}$, such that the resolved vectors in C_i are possible solutions of the fingerprint vectors. We represent this situation through a graph, denoted as *compatibility graph* CG_i , such that the resolved vectors in C_i are the vertices of CG_i , while the fingerprint vectors are the edges of CG_i . A fingerprint vector associated with an edge (c_{i_u}, c_{i_v}) can be resolved by both c_{i_u} and c_{i_v} and by no other resolved vector in $C = \bigcup_i C_i$. Three vertices of CG_i, c_{i_1}, c_{i_3} and c_{i_8} are called docking vertices.

For each edge $e = (v_i, v_j) \in E$, define a fingerprint vector that is compatible with a resolved vector associated with a docking vertex of CG_i and a resolved vector associated with a docking vertex of CG_j . We represent this fingerprint vector in the graph as an edge, $E_{i,j}$ that joins the compatibility graphs associated with vertices CG_i and CG_j . The graph obtained will be denoted as CG.

Figure 3: A compatibility graph CG_i

Assume that |V| = n and |E| = m. The complete vectors of the instance of IECMV(p) have length 5n, 5 positions are associated with each vertex. Assume w.l.o.g. that vertex v_i is adjacent to vertices v_j , v_h and v_k and in particular that c_{i_1} is adjacent to CG_j , c_{i_3} is adjacent to CG_h and c_{i_8} is adjacent to CG_k . Complete vectors associated with CG_i are defined as follows:

- c_{i_1} has value 1 in the position 5j 4, c_{i_3} has value 1 in the position 5h 4, c_{i_8} has value 1 in the position 5k 4.
- for any other position not in [5i 4, 5i] all the complete vectors associated with CG_i have value 0.
- for the positions in [5i 4, 5i], $c_{i_1} = 11000$, $c_{i_2} = 11010$, $c_{i_3} = 10010$, $c_{i_4} = 11100$, $c_{i_5} = 10110$, $c_{i_6} = 11110$, $c_{i_7} = 11011$, $c_{i_8} = 10100$.

Let R be the set of the resolved vectors associated with vertices of the graph. Now we construct the instance of the problem, that is the fingerprint vectors. We associate a fingerprint vector with each edge of the graph gadget. For an edge of the compatibility graph, let y = (a, b) be an edge of the graph gadget, v_a and v_b the resolved vectors associated with a and b respectively, we associate with y the fingerprint vector v_y as follows: for each position l such that $v_a[l] = v_b[l]$, it follows $v_y[l] := v_a[l]$; for each position l such that $v_a[l] \neq v_b[l]$, it follows $v_y[l] := N$.

It is easy to see that each fingerprint vector will have at most 2 positions having value N, since two resolved vectors associated with adjacent vertices will have at most hamming distance equal to 2.

Lemma 5.1. Let S be a solution of IECMV(p), then there is a solution S' having at most the same cost and such that each resolved vector of the solution is a resolved vector in R.

Proof. Let f_x , f_y be two fingerprint vectors, they are compatible if and only if are associated with two edges incident on a common vertex. Moreover, observe that there exists a unique resolved vertex that can be a common resolution of both f_x and f_y , unless they are associated with an edge incident on the same docking vertex c_z . In this case they can have two common resolutions, r_{z_1} and r_{z_2} . Assume that r_{z_1} is associated with C_z , there is a single position l not in [5z - 4, 5z] where r_{z_1} has value 1. r_{z_2} is the resolved vector having a 0 in position l and equal

Figure 4: A compatibility graph E_{ij}

to r_{z_1} in any other position. Since no other vertices is compatible with r_{z_2} it follows that we can substitute r_{z_2} with r_{z_1} without decreasing the cost of the solution.

Thus we can restrict to the solution where each set s_v corresponds to a resolved vector r_v associated with a vertex v of the graph CG and the fingerprint vectors associated with (some) edges incident on v are assigned to s_v . In what follows we show that for a solution of IECMV(p)of a compatibility graph CG_i we can restrict to the following cases:

- Solution A: 9 pairs of fingerprint vectors are co-clustered; this means that c_{i_2} , c_{i_4} and c_{i_5} are resolved vectors of the solution.
- Solution B: 4 pairs of fingerprint vectors are co-clustered; this means that c_{i_1} , c_{i_3} , c_{i_6} and c_{i_8} are resolved vectors of the solution.

Lemma 5.2. Solution B is the maximum solution that has 1 pair for each of the docking vertex of CG_i .

Proof. Let Z be a solution such that the sets associated with resolved vectors c_{i_1} , c_{i_3} , c_{i_8} have all one pair. It is easy to see that the set associated with resolved vector c_{i_6} is the only set that can have more than one element. Thus the lemma follows.

Let Z be a solution of IECMV(p) for CG_i such that it has one set s_x associated with a resolved vector x of a docking vertex. The set s_x will contain two fingerprint vectors. If we assign the fingerprint vector associated with the edge $E_{i,j}$ incident on x to s_x , we gain 2 pairs. If we have a solution A for a compatibility graph VG_i and we assign the fingerprint vectors of EG_{ij} to c_{i_1} , we gain 0 pairs. Note that if two adjacent compatibility graphs have as solutions the sets corresponding to the two docking vertices, it follows that only one of these sets can gain pairs. Next we show that, gaining pairs from $E_{i,j}$, no solution different from solution B can become better than solution A. Let Z be a solution of IECMV(p) different from solution A and solution B. If exactly one of the sets of Z corresponds to a docking vertex, it follows that it can have at most 6 pairs. In fact, the optimal solution in this case has one set with 3 pairs and three sets each one with one pair. If exactly two of the sets of Z correspond to docking vertices, it follows that it can have at most 4 pairs. In fact, the optimal solution in this case has four sets, each one with one pair. Since no other solution can gain pairs from EG_{ij} it follows that no solution except solution B can become better than solution A.

Thus the optimal solution for CG_i and $EG_{i,j}$, $EG_{i,h}$, $EG_{i,k}$ is to have solution B for CG_i and add fingerprint vectors associated with $EG_{i,j}$, $EG_{i,h}$, $EG_{i,k}$ to the sets corresponding to the docking vertices. Each of these sets will have three elements, thus 3 pairs, and the solution has 10 pairs. In what follows we will denote such a solution with solution B. Moreover, any solution different from the solution constructed above, it is worse than solution A. It follows that the problem of maximizing the number of co-clustered pairs of fingerprint vectors consists of building an independent set of compatibility graphs (each one is associated with solution B).

Lemma 5.3. There exists an independent set of size k if and only if exists a solution of IECMV(p) having at least 10k + 9(n - k) pairs.

Proof. Let V' an independent set of G such that |V'| = k, construct a solution S of IECMV(p) such that the component graphs associated with vertices in V' have a solution of type B and any other component graph has a solution of type A. Then it follows c(S) = 10k + 9(n - k).

Now let S be a solution with cost 10k + 9(n - k). Now we can construct a solution having at least the same cost defining for each component graph that has a cost less than 10 a type A solution. Since the component graphs having cost 10 must not be adjacent, at least k independent component graph must have type B solution in S and thus the corresponding vertices are an independent set of size k.

Since for each cubic graph $|E| = \frac{3}{2}|V|$ and there exists an independent set of size at least |V|/4, it follows that the above reduction is an l-reduction.

5.1 MAX-SNP hardness of OECMV(2)

It is easy to see that the l-reduction described above to prove the MAX-SNP hardness of IECMV(p) can be used also to prove the MAX-SNP hardness of OECMV(p). Note that considering the set of fingerprint vectors associated with a component graph CG_i and with edges $EG_{i,j}$, $EG_{i,h}$, $EG_{i,k}$, we can have 19 compatible pairs of fingerprint vectors. As in the previous reduction, the best solution for this set of fingerprint vectors is type B solution. Since type B solution co-clusters 10 pairs of compatible fingerprint vectors, it follows that it does not co-cluster 19 - 10 = 9 pairs of compatible fingerprint vectors. Similarly type A solution does not co-cluster 19 - 9 = 10 pairs of compatible vectors and no other solution different from type B solution is better than type A solution. Hence the l-reduction for OECMV(p) follows directly from the l-reduction for IECMV(p).

References

- P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. *Theoretical Computer Science*, 237(1–2):123–134, 2000.
- [2] G. Ausiello, P. Crescenzi, V. Gambosi, G. Kann, A. Marchetti-Spaccamela, and M. Protasi. Complexity and Approximation: Combinatorial optimization problems and their approximability properties. Springer-Verlag, 1999.

- [3] R. Drmanac. cDNA screening by array hybridization. *Methods in Enzymology*, 303:165–178, 1999.
- [4] S. Drmanac and R. Drmanac. Processing of cDNA and genomic kilobase-size clones for massive screening mapping and sequencing by hybridization. *Biotechniques*, 17:328–336, 1994.
- [5] S. Drmanac, N. Stavropoulos, I. Labat, J. Vonau, B. Hauser, M. Soares, and R. Drmanac. Gene-representation cDNA clusters defined by hybridization of 57 419 clones from infant brain libraries with short oligonucleotite probes. *Genomics*, 37:29–40, 1996.
- [6] A. Figueroa, J. Borneman, and T. Jiang. Clustering binary fingerprint vectors with missing values for dna array data analysis. *Journal of Computational Biology*, 11(5):887–901, 2004.
- [7] A. Figueroa, A. Goldstein, T. Jiang, M. Kurowski, A. Lingas, and M. Persson. Approximate clustering of fingerprint vectors with missing values. In *Proc. 11th Computing: The Australasian Theory Symposium (CATS)*, volume 41 of *CRPIT*, pages 57–60, 2005.
- [8] L. Valinsky, G. Della Vedova, T. Jiang, and J. Borneman. Oligonucleotide fingerprinting of rrna genes for analysis of fungal community composition. *Applied and Environmental Microbiology*, 68(12):5999–6004, 2002.
- [9] L. Valinsky, G. Della Vedova, A. Scupham, S. Alvey, A. Figueroa, B. Yin, R. Hartin, M. Chrobak, D. Crowley, T. Jiang, and J. Borneman. Analysis of bacterial microbial community composition by oligonucleotide fingerprinting of rrna genes. *Applied and Environmental Microbiology*, 68(7):3243–3250, 2002.