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Abstract

Given a polyhedral terrai’ with n vertices, thewo-watchtoweproblem for7" asks to find
two vertical segments, calledatchtowersof smallest common height, whose bottom endpoints
(bases) lie o7", and whose top endpoinggiard 7', in the sense that each point BHis visible
from at least one of them. There are three versions of thdgmolliscrete semi-discreteand
continuousdepending on whether two, one, or none of the two basesstreected to be among
the vertices ofl’, respectively.

In this paper we present the following results for the twdelitower problem ilR? andR?:
(1) We show that theliscretetwo-watchtowers problem iiR? can be solved i (n2 log? n)
time, significantly improving previous solutions. The alfon works, without increasing its
asymptotic running time, for the semi-continuous verswinere one of the towers is allowed to
be placed anywhere dh. (2) We show that theontinuouswo-watchtower problem iiR? can
be solved inO(n?a(n)log® n) time, again significantly improving previous results. (3)IS
in R2, we show that the continuous version of the problem of guardi finite setP c T of
m points by two watchtowers of smallest common height can besdan O (mn log* n) time.
(4) We show that the discrete version of the two-watchtoweblem inR? can be solved in
O(n'1/3 polylog(n)) time; this is the first nontrivial result for this problem .
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1 Introduction

A polyhedral terrain ifR? is the graph of a continuous, piecewise-linéar- 1)-variate function.
Thus, a terrain irR? is anz-monotone polygonal chain, while a terrainli{ is anzy-monotone
polyhedral surface. Avatchtowers a vertical line segment whose bottom endpooasg lies on
T. A pointw € T is seen(or guarded by a watchtower- if the top endpoint of- seesw, that is,
the segment connecting it to lies fully aboveT'. Two watchtowers placed dh are said to guard
T if each point ol is visible from the top endpoint of at least one of the towers.

In this paper we study thgvo-watchtoweproblem for polyhedral terrains iR? andRR3, which
is defined as follows. Given a polyhedral terrdinvith n edges, find the smallest height> 0
for which there exist two points, v € T such that the watchtowers of heigherected at: andv
guard’'.

Two versions of the problem have been studied in the literature. ludlidweeteversion, the
bases: andv are restricted to be among the verticegofor, for that matter, could belong to any
prespecified finite point set). In th@ntinuousversion,u andv can be located anywhere @n
In this paper we study these two versions and also address a new yeadledsemi-discretgin
which the base of one tower is restricted to be among the vertic&svanile the base of the other
tower can be anywhere ¢h (see Figure 1). We further introduce a variant of the problem when
not all of T' needs to be guarded. Instead, we specify a finitePsef m “critical” points on T,
and the goal is to find two watchtowers of minimum common height that togethed gué.e.,
every point of P is visible from at least one of the towers). Again, we may consider theatéscr
semi-continuous, or the continuous versions of this problem.

0] (ii) (iii)

Figure 1. The three versions of the problemI¥: (i) discrete, (ii) semi-discrete, and (iii) continuous.

Of course, similar problems can be stated for any number of watchtowedspree can also
consider variants, such as the one where the héeigbit the watchtowers is specified, and one
wishes to find themallesihumber of watchtowers of that height that collectively guard

Related work. Guarding a terrain by watchtowers is a special case of the generabtiasibility
problems in two and three dimensions, knowraggjallery problemswhich have been extensively
studied for more than two decades. These problems have numerous tapmida surveillance,
navigation, computer vision, modelling and graphics, GIS, and many more[2Sgfr a recent
survey of art gallery problems.



The problem of guarding a terrain R by two watchtowers has been studied in several recent
papers. Bespamyatnildt al. [4] show that for the discrete casel? deciding whether there exist
two watchtowers of given heightthat guardl’ can be done i (n?) time. Using parametric search
[18], they obtain ar (n? log? n)-time algorithm for the optimization problem. They also present an
O(n*)-time solution that avoids parametric search. Ben-Masthal. [2] also address the discrete
version of the problem ifR? and give anO(n?5% 1og? n)-time algorithm, based on parametric
search and on the computation of all dominances for a setpafints inR™. The continuous case
for R? is solved in [4] by an algorithm that tak€¥n* log? n) time, using parametric search.

Much less is known about terrain guardingRA. Early work on terrain guarding, due to Cole
and Sharir [10], shows that the problem of finding the minimum number afigia NP-complete,
even if the guards are placed on the terrain (no elevation is allowed). \ldovike case of a single
watchtower guarding the terrain has been shown by Sharir [21] to bakdelinO(n log® n) time.
An O(nlog n)-time algorithm for this problem was later obtained by Zhu [24].

Attention has also been given to the problem of guarding a two-dimensianaintsvith the
minimum number of guards placed on the terrain. If the guards are at soedehight, the min-
imum number of guards can be found in polynomial time [19]. Recently, Beskd, Katz, and
Mitchell [3], and, independently, Clarkson and Varadarajan [8],alisced constant-factor approxi-
mation algorithms for the problem. Eidenbenz et al. [12] show that the relabétep of guarding
a simple polygon with a minimum number of guards is APX-hard. So for the probfeguarding
polygons there is an such that it is NP-hard to obtain(a + ¢)-approximation for the minimum
number of guards.

Our results. we study the problem of guarding a terrain by two watchtowef®4mandR>. For
the planar case we obtain the following results.

(i) We show that the discrete two-watchtower problem can be solvéx{irt log* n) time, sig-
nificantly improving the previous solutions cited earlier. The algorithm wonkghout af-
fecting its asymptotic running time, for the semi-continuous version as well, inhwdrie of
the bases can be anywhere’Brand the other has to be placed at a verteX of

(i) We show that the continuous two-watchtower problem can be solved(irto(n)log® n)
time, again significantly improving previous results.

(i) We show that the continuous version of the problem of guarding a figté’>sc T' of m
points by two watchtowers can be solvedimn log? n) time.

We also study the problem of guarding a terrain by two watchtowei&?jnand present an
O(n''/3 polylog(n)) time algorithm for the discrete two-watchtower problem. This is the first
nontrivial algorithm for the problem: A trivial solution for the discrete geoh takes abouD(n?)
time.

All the results derived in this paper are based on the parametric-segtelsimique [18]. For
each result, we first designdecision procedur¢hat, given?” and a real valué > 0, determines
whetherT" can be guarded by two watchtowers of height at niodtlext, we apply the parametric



searching technique to the decision procedure, to obtain an algorithmnitiswfhere to place two
watchtowers of smallest possible height.

The parametric searching step involves developing a parallel algorithtmefatecision problem
and simulating it generically at the unknown value of the smallest height. While#ne contri-
butions of the paper lie in developing the decision procedures, theirigemgrlementations for
parametric searching are also nontrivial and we describe them too in défaihote that previous
results on the problem do not detail the parametric searching steps.)

Section 2 describes the algorithms for the discrete and semicontinuous talakeveer prob-
lems inR2. Section 3 describes the algorithm for the continuous two-watchtowetgonoin R2.
Section 4 discusses the continuous version in which only a given setim&pm 7" need to be
guarded. Section 5 describes the algorithm for the discrete two-watahpoalelem inR3. We
conclude the paper in Section 6 with a brief discussion and some openmgoble

2 TheDiscrete and Semi-Continuous Problemsin R2

Let T be anz-monotone polygonal chain iR?, with n edges, and let’ be the set of its vertices.
For a pointu € T"andh > 0, letu(h) be the point that is vertically abowe at distance:. We
call the vertical segmentu(h) the watchtowewith baseu and height:, but we often refer to the
watchtower just by its top endpoin{h), for short.

Thediscrete two-watchtoweauroblem asks for the smallest height> 0 such that there exist
two verticesu,v € V, so that the two points(h) andv(h) (the topsof the towers at height
erected at, andwv, respectively), guard’. The semi-continuous two-watchtowegssoblem is the
same, except that only one af v is required to be a vertex &, and the second one can lie
anywhere orif’. We present algorithms that solve these two problems in @€ log* 7). Both
algorithms employ parametric searching [18], and therefore relydeceion procedureto guide
the search for the optimum height.

Let 7" be a polygonal terrain in the plane withedges, and let > 0 be a fixed parameter. To
solve the decision problem we need to determine whether there exist two paindsT, with both
u,v € V (discrete case) or at least onewgfv a vertex ofT" (semi-continuous case), such that the
top endpoints:(h), v(h) of the watchtowers of heighit atu, v guard7’. We present a procedure
that does much more than that: Given one towgr), it finds theshortestsecond tower that can be
placedanywhereon the terrain, so that both towers guérd This serves as a decision procedure
for both the discrete and the semi-continuous versions of the problem. ife ipedescribing a
procedure that is a main step in the decision procedure. Next, we dedw@iecision procedure,
and then discuss how to plug the parametric searching.

2.1 Computing visibility pairs

Let P be a set of points off’, and letV be the set of vertices af. We want to find, for each vertex
v € V, apointp € P (if one exists), that satisfies the following conditions:

(i) p lies to the left ofv;



(i) p seesv; and

(iii) p is the rightmost point inP that satisfies (i) and (ii). Alternatively, among the pointsFof
that satisfy (i) and (ii), the segmept has the largest slope (it is easily verified that these
alternative formulations are equivalent).

Figure 2. Some pairs of[(P, V).

Denote bylI(P, V') the set of these pairs. See Figure 2. We assumg®at O(n), which
will be the case in our application. We solve this problem using the followinglelimnd-conquer
technique. Consider the sBtU V' and let/ be the vertical line that splits it into two subsets of equal
size. LetPp, V, (resp.,Pr, Vi) denote the subsets éf andV that lie to the left (resp., right) of.
We clearly have

(P, V)=1(P, V) U(Pg, Vg) UIL(PL, V},),

whereVy, is the subset of all points € Vi for which there is no poinp € Pr that forms with
v a pair inlI(Pg, Vg). Letn’ denote the size oV),. We computell(Pr, Vy) andII(Pg, Vr)
recursively, extract the subsgf,, and computéI( Pz, V) in the following direct way.

Without loss of generality, assume titas they-axis. We pass to the dual plane, using a duality
transform that maps a poifitz, p) to the liney = ma + p. For eactp € P, let~, denote the dual
representation of the locus of all lingghat pass through, such thap sees the interceptn /. In
the dual planey, is a rightward directed ray, contained in the line dugh tmd emanating from the
pointw, that represents the shallowest line thropghith the above property. Note that the rays
are pairwise openly disjoint, because an intersection point of two sushysay,, is dual to a line
that passes throughandyp’, so that both points see the intercept. Since both points liE, dhis is
impossible (except at an endpoint of one of the rays, namely, the regspanding to the leftmost
point amongp, p’).

In complete analogy, for each poipte V7, let d, denote the dual representation of the locus
of all lines A that pass througl, such that sees the interceptn ¢ (hereq sees the intercept to its
left). In the dual planej, is a leftward directed ray, emanating from the paipthat represents the
shallowest line through with the above property. Here too the raysare pairwise openly disjoint.
See Figure 3(i).

Letq € V}, and letp € Py, be the point that satisfid, ¢) € II(Pr, V};) (assuming that such
a point exists). The point dual to the line that passes thrgughdg is a point that lies on both
rays-p,, d4, and is therightmostpoint of intersection ob, with some rayy, (it corresponds to the
line of largest slope in condition (iii)). Le® denote the unbounded (and degenerate) ‘comb-like’
simple polygon, whose boundary consists of all the rgysand of a vertical lin€y atx = +oc.
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Figure 3. (i) The raysy, and a query ray,. (ii) The polygonQ.

(In practice, we placé, at a sufficiently large:-coordinate, and trim the rays, at their intercepts
with ¢y; see Figure 3(ii).) Then the poipte P;, that forms withg a pair inII(Pr, V}) is simply
the output of a ray-shooting query insiealongd,.

We first construct). For this, we need to compute the (apices of the) ray$or p € Pr,. Let
Ty, (resp.,Tr) denote the region consisting of all points that lie ab®\@nd to the left (resp., right)
of /. Let b, denote the intersection poifitn ¢. We construct the shortest-path map insidewith
by as a source, as in [13]. This allows us to find, in linear time, the terminal segrogall the
shortest paths frorb, to the points ofP;,. For eaclp € Pr, the apex ofy, is then the dual of the
line containing the respective terminal segmentsee Figure 4. The total cost of this step is linear.

be

Figure4. Constructing the rays, from the shortest-path map froba.

To complete the construction @, we need to sort the rayg, by their intercepts with/,.
However, this order is equal to the order of the slopes of these raysh whturn is the same as the
order of the abscissas of the pointsif, and this order can be computed prior to the beginning of
the divide-and-conquer process (the compuation of the order ababsover requiresO(n log n)
time). Hence, this substep also takes linear time.

Using the algorithm of Guibast al.[13] (see also [5]), we next preproce3sn linear time for
ray shooting queries that take logarithmic time each. We then construct tbegap the) rays,,
for ¢ € V. Thisis done, in a symmetric manner to the construction of theygayssing the region
TR instead of7,. This step also runs in linear time. We then perform ray shooting queri@s in
with the raysd,, for ¢ € V}, thereby obtaining the sét(P,V},). Hence, the overall cost of the
‘merge’ step of the recursion 8(n log n) time, so the entire procedure tak@én log? n) time.



In summary, we have an algorithm that computes th&$&t V) in O(n log® n) time.

2.2 Thedecision procedure

Let H be the region of the plane that lies abdveln the decision procedure, we fix a vertexf T,

erect the first tower, of heiglit, overu, and compute theisibility polygonW (u(h)), which is the
portion of H that is visible fromu(k). The polygoni (u(h)) can be computed in linear time [13].

Let 9W (u(h)) denote the boundary &% (u(h)). The portion ofoW (u(h)) that lies onl’ consists

of subsegments of the edgesiafat most one subsegment for each edge, which are delimited either
by the vertices off", or by intercepts of visibility rays that emanate frarth) and pass through
some vertex off. In either case, at least one endpoint of each visibility segment is a \arfEex

See Figure 5.

Let P = P(u, h) denote the set of all the endpoints of the portions of the edgé€sludt are not
visible fromwu(h). Clearly,u(h) and another tower top(h’) (with a possibly different height’)
guardT if and only if v(h') sees all the points aP. This follows from the easy observation that if
a pointu(h') abovel’ sees both endpoints of a subsegment of some edgjelan it sees the entire
subsegment.

The following lemma provides the crucial geometric property on which ouritlgo relies.

Lemma 2.1. For a pointv onT" and height?’, the tower topu(4') sees all the points dP that lie
to the left ofv if and only ifv(h’) lies above all the linepw such that(p, w) € II(P, V) andw lies
to the left of (or coincides withy).

Equivalently,u(h') sees all the points aP that lie to the left ofv if and only if, for eactp € P to
the left ofv, v(h’) lies above the steepest lipe such that(p, w) € TI(P, V) andw lies to the left
of (or coincides with).

Figure5. The visible portions of” from u(h), and the seP(u, h) (highlighted alondl’").

Proof: If v(h') sees all the points dP that lie to the left ofv then it must lie above all the lingav
as in the first statement of the lemma, or else the correspondingpwiotild not be visible from
v(h'). Conversely, suppose thath’) lies above all these lines, and jebe a point inP to the left
of v. If v(h') does not sep then the shortest path fromto v(4’) that lies abovel” must bend at
some vertices of . Letw be the leftmost such vertex. (p, w) € II(P, V), then(p, w) satisfies
the conditions in the lemma, and?’) passes below the lingw, contrary to our assumption. If
(p,w) ¢ II(P,V) then there must exist another popite P that lies betweem andw so that



(p',w) € II(P,V). The linep'w is even steeper thamv, andv (k') thus lies below it, again a
contradiction. The second statement of the lemma is obvidus.

Lemma 2.1 has a symmetric version, which handles visibility from a towen{ép to the
points of P to its right. For this version we need a symmetric versiofloP, V'), involving pairs
(p,v) € P x V with p lying to the right ofv, which is defined and constructed in a fully symmetric
manner.

After computing the left and right visibility of(h'), for eachv € V, we sweep the plane with
a vertical line? from left to right, starting with the leftmost vertex @f, and construct &eight
functionhy, so that, for eacly € 7', hz(q) is the height of the shortest tower erected ayéhnat
sees all the points aP to its left. Equivalently, in view of Lemma 2.14,;,(¢) is the distance from
to theupper envelopé’ of the linespw, for all the pairs(p, w) € II(P, V') with w lying to the left
of (or coinciding with)q.

As we sweeft, hy(q) remains a linear function, equal to the vertical distance between an edge
of £ and an edge df’, until £ reaches a vertex of eithér or T'. If it reaches a vertex o, we pass
to another edge af/, and the corresponding update/qf is easy and obvious. Hreaches a vertex
v of T, in addition to the obvious local update fof , we need to dynamically update, by adding
the linepv, for the unique pailp, v) € II(P, V), to the set of lines that forn&’, or do nothing if
such a pair does not exist. This has the effect of either leakiingchanged or, sincg' is convex,
creating two new vertices df' and deleting the old vertices between them, and can easily be done
in overall timeO(logn). After each update is performed, we also need to find the next vertex of
E to the right of the current position &f which can be done i®)(1) time per update. Hence, the
construction ofh;, can be done iO(nlogn) time (after the preprocessing stage of constructing
II(P, V), which takesO(nlog? n) time). Note that this algorithmic analysis also implies that the
combinatorial complexity (number of vertices of the graph) of the fundtipiis O(n).

We then apply a symmetric process, in which we sweep the plane from rigfftt &tdeting with
the rightmost vertex of’, and construct the symmetrically defined height functign We then
construct the upper envelopé of h;, andhg, in time O(n), using a standard merging procedure.
The global minimum of.* is the shortest height of a second tower, erected anywhefe timat
sees, together with(h), the entire terrain.

Since we need to repeat this step for each ventex 7', the entire decision procedure runs in
O(n?log®n) time. In summary, we thus have:

Lemma 2.2. (a) Given a terrainT in the plane withm edges, a vertex of T', and a heighth > 0,
one can find, inO(n log2 n) time, the shortest second tower, erected anywheré othat sees,
together withu (%), the entire terrain.

(b) Given a terrainT' in the plane withn edges, and a height > 0, one can determine, in
O(n?log?n) time, whetherh is smaller than, equal to, or greater than the optimum height for
the discrete or the semi-continuous two-towers problent for

Remark: An obvious open problem is to improve the efficiency of the construction efstt
II(P, V). Can it be done it (n logn) time? This is the bottleneck step in the decision procedure,
and the above improvement, if possible, would have reduced the total gutimi@ toO (n? log n).



2.3 Plugging the parametric search

In this section we show how to find the optimum height in the discrete and setiivgons cases by
applying the parametric searching technique [18]. That is, we run aigesesion of the decision
procedure, in whiclh is left as an unknown parameter. Comparisons that depehdoa resolved

by finding the few critical values of at which the answer to the comparison may change, and by
running (a concrete version of) the decision procedure at these khiéigats, thereby finding the
noncritical range that contains the optimum heigghtand is delimited by two consecutive critical
heights. This determines the outcome of the comparison, and at the same tiovesndown the
range! that is known to contairh*. We proceed in this manner through the execution of the
generic decision procedure. Af is found during one of these comparison resolutions, we stop
and report it. Otherwise, upon termination, we output the smaller endpoithtedinal interval

I. Since the functionf(h) corresponding to the portion @f visible from two towers of height

h is a monotonically increasing function, the overall problem can be castadramotonic root
finding problem, for which the parametric searching procedure is gteedio produce the optimal
solutionh*.

To reduce the cost of the generic execution, we need to run a paraigbwef it. More
precisely, the only steps in the algorithm that need be parallelized are dsomnsthat depend on
All such comparisons that arise in a single parallel step of the algorithnesoé/ed simultaneously,
by running a binary search on all the resulting critical heights. If the @lgorruns inT); parallel
steps and usgsprocessors, then its overall costQ$7}.(p + Dlogp)), whereD = O(n?log?n)
is the cost of the decision procedure.

We describe two such generic parallel implementations of the decision preceoche for
the discrete problem and one for the semi-continuous problem. Both implemastatiquire
O(logn) parallel steps. The first algorithm requir€$n? logn) processors, and the second re-
quiresO(n?log® n) processors. Hence, both result in algorithms w2 log* n) running time.

We begin by preprocessingas follows. For each vertaxof T', we compute the visibility map
from the vertical halfline above, with an endpoint at;, using the algorithm of [13]. This takes
overall timeO(n?), since computing the visibility map from the vertical halfline abaakesO ()
time. For eachy, the output contains all mutually visible paifs, v") of vertices, such that some
point aboveu sees both andv’ along the linevv’ (note that andv’ are on the same side @j. In
addition, we also have the first point along that line, as we trace it fromdime aboveu towardsv
andv’, where it crosse¥’ into the region belowl” (which may happen at the farthest vertex among
v andv’ or at another further point ¢f). As shown in [13], the number of such critical events is
linear for eachu. We thus obtair©(n) critical heights ovet:, one for each of these visibility events
(see Figure 6). Repeating this step for each vertexe obtain a setl, of a total ofO(n?) critical
heights, and a corresponding $eif intercepts along the edgesBf where the above visibility rays
vv’ ‘enter’ the region belowr".

We run a standard binary search throully, using the decision procedure described above.
After O(logn) calls to that procedure, with overall ca8tn? log® n), we obtain an initial interval
Iy that contains the optimum height. For each: € V' and for eacth € I, the visibility polygon
W (u(h)) has a fixed combinatorial structure. In particular, for each visible podfcem edgee
of T, the nature of its endpoints is fixed, in the sense that each of them is eitlxedavéirtex of



Figure 6. The critical heights ovet.

T, or the intercept along of a visibility ray that emanates from(h) and passes through a fixed
vertex ofT" before hittinge. Let P(u, h) denote the set of those endpoints of the visibility segments
of W (u(h)) that are not vertices df, and setP (%) to be the union of these sets, over all vertices
u. Clearly, P(h) has sizeD(n?). The parametek reminds us that these are parametric points that
depend orh.

Our next step is to locate the pointsi@fh) among the points df. We run the following process
iteratively. At each stage we have a partitiSrof the edges of” into subsegments, each delimited
by points ofJ U V, an intervalls C I, and a corresponding partition &f(~) into subsets, each
known to be contained in a fixed segmentf S, for all h € Ig. Initially, S is the set of edges
of T, Is := Iy, and the set®s(h) := P(h) N s, for s an edge ofl’, form the desired partition of
P(h). (Recall that, forh € I, the points ofPs(h) move continuously along, and no point enters
or leaves this set.) Each iterative step refifiess follows.

For each segmentc S, setd, := J Nint(s). Segments € S with I, = () are removed from
S, and we report the corresponding s&t$h) as part of the output of this stage. For any remaining
segment, let ¢, denote the median point 6f. For eaclp € Ps(h), let h, be the (unique) height
at whichp coincides withg,. If there is no such height, or if,, lies outside the rangés, then we
know which half ofs containsp, and we ignore in the remainder of the present step. Repeating
this over all segments € S, we obtain a sefig of O(n?) critical heights, and we run a binary
search through them, as above, to obtain a subintéhal Is, so that for eacth € I’, s € S, and
p € Ps(h), we know which half ofs containsp. The next partitions’ is then obtained by splitting
each surviving segmente S at the median poinj. We setls, := I’, and get the new partition of
P(h) by assigning each poiptto the new half-segment it belongs to. After at mOs$tog n) steps,
all segments of are removed, and each pomt P(h), for anyh in the final rangds, is located
between two successive pointslafl V, as required. The overall cost of this steig? log* n).

Let I; denote the final rangés. For eachh € I; and for eachu € V, the setlI(P(u,h),V)
is now fixed, as is easily seen. This follows from the observation that evleehl(P(u, h), V)
changes, some point iR(/) must coincide with a point ifi U V. This allows us to run the left-to-
right sweeping procedure, for each fixed V', without having to fix the value df, and obtain, for
each swept vertex, the setZ,, of all theactivelinespw, for (p, w) € II(P(u, h), V'), namely, the
lines corresponding to those paiys w) with w lying to the left ofv. In the discrete problem, we
need to find which of these lines attain the maximum heightand assert that this maximum height
is no more thamm*; see below for more details. Handling the semi-continuous case is somewhat
more involved, and will be discussed later.

To parallelize this step, we store the verticed ait the leaves of a minimum-height binary tree



7. Each internal nodg¢ of 7 represents the sét(¢) of all vertices stored at the leaves of the subtree
7(&) rooted at. Let L(£) denote the set of all the lingsv, for (p, w) € TI(P, V), andw € V(£),
and letE (&) denote the upper envelope of the linedlift). Note thatF (&) is an envelope ofL(¢)|
lines, so its complexity i)(|L(£)|). We haved ... |L()| = O(nlogn). Hence, the overall
complexity of all the envelopeB (&) is O(nlogn), for a fixed first tower base. We construct each
of the envelope# () as follows. We dualize the respective lines to points in the dual plane,
and run the parallel algorithm of [1] for constructing the upper conudkdf these (parametric)
points. For a set af: points, this algorithm use3(m) processors and runs ((log m) time. Each
generic comparison that the algorithm performs is either betweenr-twordinates of two dual
points (that is, between the slopes of two input lines), or a left-turn teslvimgpthree dual points.
Clearly, all the envelopeB (), over all the nodeg of  and over all the first tower basasin V,

can be constructed in parallel, using a totatxf.? log n) processors an@(logn) parallel steps.
This yields an overall parametric searching stage that runs ind@imé log* n), as follows from the
general time bound for parametric searching given above. Note thatithat@nvelopes are still
parametric and vary with. However, their combinatorial structure is fixed (within the restricted
subrange oh computed so far): For each envelope we know the sequence of lineat{r, pairs
(p, w) defining those lines) that attain the envelope from left to right, and thus atse the nature

of each breakpoint of the envelope.

We next apply another parallel stage, in which we locate, for each gre/ElE) and each of its
breakpointsy, the edge ofl" that lies vertically above or below We process these breakpoints in
parallel, and for each breakpoiptve run a binary search with its (parametrictoordinate among
thez-coordinates of the vertices @f. This stage use®(n? logn) processors and runs (log n)
parallel steps, so its overall cost is at86n? log? n).

This initial part of the algorithm applies to both the discrete and the semi-conrzases.

Proceeding with the discrete case is now easy: Keeping the first toner iaxed, we process
all the verticesv of T' in parallel. For each vertex, we obtain the set of vertices that lie to the
left of v as the (disjoint) union 0O (logn) subtrees of-. For each of these treeg¢), we locate
v among the vertices of/(¢), using binary search. Since we have already located the vertices
of eachE(¢) among the vertices df’ in their left-to-right order, these binary searches can be
performed explicitly, without having to use generic parametric searchirencelthis step can be
performed in overalD(n?log® n) time. We now have, for each pair v, a set ofO(logn) lines,
each attaining a respective subenveléji€) atv, and we compute their maximum heightafThis
is still a parametric step, which can be easily performed in parallel, us{ng log n) processors
andO(logn) parallel depth, so that its overall cost is, as above;? log* n). To end the algorithm,
we output a paitu,v € V for which the height computed at as described above, is no more
thanh. This step is also parametric, and can be performed within the time bound forabeding
step. It narrows down the range fofto its final value, and we terminate by returning the minimum
of this interval (unless the optimum heighit has already been detected in one of the comparison
resolution steps). Hence we obtain:

Theorem 2.3. The discrete two-watchtower problem for a terrairiRA with » edges can be solved
in O(n?log*n) time.

We next handle the semi-continuous case. We proceed through thelipgestages, up to the
point where all the envelopds({) have been constructed, and their vertices have been located over
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the edges off’. We then proceed as follows. Consider a fixed first tower haseor each edge

e = v'v of T, take its right endpoint and obtain, as above, the set of vertices that lie to the left of
as the (disjoint) union af(log n) subtrees of. We need to find the shortest vertical distance from
e to the upper envelope of the(log n) envelopedZ (&), over the corresponding subtregg). See
Figure 7.

(ii) (iii)

Figure 7. (i) The shortest vertical distance from an edgelofo the corresponding upper envelope. (ii) The shortest
vertical distance frone to the envelope is attained at a vertex of a single subenvelope. (iii) Theeshdistance is
attained at an intersection point between two subenvelopes.

Note that the shortest vertical distance is attained (i) either at an endpain(ip at a vertex
q of one of the envelopeg (&), or (iii) at a pointg of intersection between two envelopEg¢),
E(¢'). In case (ii), the edge df () incident tog and lying to its left (resp., right) must have slope
smaller than (resp., larger than) thateofin case (iii),q is incident to an edge af({) and to an
edge ofE(¢’), so that the slope aflies in between the slopes of these two edges. See Figure 7 (iii).

Consider such a shortest vertical distance of type (iii). Both subere®lbfx), F (') corre-
spond to subtrees(&), 7(¢') that are left children of nodes along the pathrifitom the leaf storing
v to the root. Without loss of generality, suppose that deeper in the tree thgh. Then if7(¢) is
part of the output for a vertexof 7', 7(¢") must also be part of that output. We will refer to this case
by saying that’ is aleft great uncleof £. In other words, we have argued that, independent af
subenvelope” (&) can form intersection points of type (iii) with onty (log n) other subenvelopes
E(¢) for which ¢’ is higher inT, and all these nodes are left great uncles &f. See Figure 8.

T

&3
&2
&1

v v’

Figure 8. The treer. If a subtreer (&) is part of the output for a vertex all subtrees that are left children of nodes on
the path from¢; to the root are also part of that output.

We therefore proceed as follows. We only fix the first tower hasad obtain the corresponding
setP = P(u, h) and treer. We fix a pair(¢, £’) of nodes ofr such thatt’ is a left great uncle of
&. We construct an implicit representation of the upper envelopg(6§ U E(¢’), by merging the
vertices and edges d(¢) into E(¢'), as follows. For each vertexof E(¢), locate it among the
vertices ofE£(¢’), with respect to the-coordinate, using binary search (which is parametric). Next,
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for each edge of E(¢), find its intersections, if any, witi’(¢’); sinceE(¢’) is a convex polygonal
chain,e can meet it in at most two points, and they can be found using (parametrigylsiearch.
We assign a processor to each vertex and edde(6f for each such paif¢, ¢'). Since the overall
size of all the envelopeB(¢) is O(nlogn), and each has oni§(log n) left great uncles, we need
a total of O(nlog®n) processors, an@(logn) parallel steps. We run this procedure for all first
tower bases: in parallel, and thus us@(n? log? n) processors an@(logn) parallel steps, so the
overall cost of this parametric searching step is, as aiye? log* n).

We next construct the sé? of all breakpoints of the individual envelopéX¢), of the break-
points of envelopes of pairs of envelopg$¢), E(¢'), and of the vertices df’, over all the first
tower bases. The preceding analysis implies that the sizeBois O(n?log? n). Using the same
parametric binary search as in a previous stage, we locate the newdirdaKpf envelopes of pairs
of envelopes) among the verticesf This step too take® (n? log? n) time.

For each fixed first tower basg we next process each edgef T'. We query inl” with the right
vertexv of e and obtain the sdt(v) of linespw, as defined above, as the union(flog »n) disjoint
subtrees of-. Let B(v) denote the subset @ consisting of the two endpoints ef and of all the
breakpoints of subenvelopes and of pairs of subenvelopes thaspord to the abov@(logn)
subtrees, with the additional requirement that they lie above or beldgxcept for vertices of’,
the setsB(v) are pairwise disjoint, and their overall size is at most twice the siZe. &ll the sets
B(v), over all tower bases, can be retrieved i0(| B|) = O(n? log? n) time (note that this step is
no longer parametric).

With « andv fixed, we now assign a processor to each pair of a ppiatB(v) and a suben-
velopeE(¢") in the output ofv. The overall number of processors$n? log® n). The processor
assigned tg and E(¢”) has to determine whetheties belowE(¢”), which it can do using (para-
metric) binary search over the verticesiof¢”). Hence, withO (n? log® n) processors an@(log 1)
parallel depth, we can collect all poinis= B that are not hidden from above by another subenve-
lope. Itis easily verified that, for each fixedandv, among the points that pass these tests, exactly
one pointg has the property that the slopecdies between the slopes of the two envelope edges in-
cident tog. This surviving point yields the desired shortest vertical distance &rtmthe envelope.
We find this point by testing the slope condition at each of the surviving points

To end the algorithm, we need to test (parametrically) that among the surgeings there
exists one for which the corresponding vertical distance is no more/th@ihis step narrows down
the range ot to its final value, and we terminate by returning the minimum of this interval.

The overall running time of this algorithm @(n? log” n), which leads to the following result.

Theorem 2.4. The semi-continuous two-towers problem, for a terraiiRiwith n edges, can be
solved inO(n? log* n) time.

3 The Continuous Two-Tower Problem

In this section we consider the continuous version of the problem, whersvtheowers can be
erected anywhere on the terrain. We first describe the decision preged which we are given
heighth, and wish to determine whether there exist two towers of heigthiat together see the
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entire terrain. We give the full algorithm, including the parametric searchaniy im Section 3.2.

Figure 9. Creating a simple polygoR’ from T" ande; (k).

3.1 Thedecision procedure

Let e1, eo be two fixed distinct edges @f, and consider the subproblem of determining whether
there exist point® € e1, ¢ € ez such that the two tower topgh), ¢(h) see together the entife.
We parametrize the locations pfandq by their respective-coordinates andt.

Let e; (k) denote the segment obtained by translatipgipwards by distanck. Compute the
visibility structureof 7' from e;(h). To do this efficiently, since;(h) is not an edge of", we
form frome; (h) andT a simple polygon”’ in two steps. We first trim the halfplane aboVeto
a bounded region, using two vertical segments and one horizontal segtaeed sufficiently far.
Next we ‘hook’ e; (h) to the ceiling of the new region by a vertical segm¢gnthat connects an
endpoint ofe; (h) to the ceiling. This yields the desired simple polygBh in which f ande; (h)
are regarded as double edges. See Figure 9.

Applying the algorithm of [6] (see also [13]) t8’, we obtain, inO(n log n) time, the visibility
structure ofP’ from e, (h), as explained below. This is not quite what we want, though, bechuse
may block some visibility rays that emanate freqa{/) and otherwise reach. We can overcome
this problem by creating a second simple polydg®h by hooking the other endpoint ef (h) to
the ceiling, and by computing the visibility structure frea(k) in P”. Merging the two resulting
visibility structures, we obtain the visibility of’ from e;(h). More specifically, this involves a
partition ofe; (h) into O(n) intervals, delimited by points that see two verticeg'along a common
ray. We extend each such ray to the point where it first crdBss®d enters the region below it. The
sequence of all these crossing points that lie on a specificedf@ is denoted by (e, g). If the
line containinge; intersectsl’ on g, we add this intersection point 8(e;1, g). (This adds at most
two points to the union o (ey, g) over allg € T.)

As the pointp moves along:; from left to right, the corresponding tower top traces the segment
e1(h). For each value of the z-coordinate ofy, denote the point asp(s), and the corresponding
tower top a®(s, h). Let g be another edge @f. The pointp(s, h) sees a portion of which, if not
empty, is delimited by the endpoint gffarthest frome;, and by a point(s) = z4(s) that moves
continuously withp. As long asp(s, h) does not cross a critical point of the visibility structure,
z(s) is either the endpoint of nearest tae;, or is the intercept of a visibility ray that emanates
from p(s, h) and passes through a fixed vertexf 7. Whenp(s, h) crosses a critical point, and
zq4(s) crosses the matching point l(e;, g), the ‘pivot’ vertexv may change, but the motion of
z(s) remains continuous.

The motion ofz,(s) is alsomonotone The direction of motion ot (s) depends on whether
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lies to the left or to the right oé;, and on whether the pivot vertex through which the segments
p(s, h)zq(s) pass lies above or below the line containingh). It is easily seen that when the pivot
vertex changes, the new vertex continues to lie on the same side of the linghth§da), and thus

the motion ofz,(s) continues in the same direction. See Figure 10 for some examples.

er(n) &M

p(s)

@ (ii)

Figure 10. As p(s, h) tracese; (h) from left to right, the corresponding poinj (s) moves to the right in (a), and to the
leftin (b).

Abusing the notation slightly, let us denote by(s) the z-coordinate of this point. Then the
collection of functionsz,(s), over all edgeg of T', is a collection of continuous piecewise linear
rational functions of.

To see this, refer to Figure 11. Letandb be two points ore;(h), and letc andd be the
endpoints of the two corresponding visibility subintervalsgorwhere the visibility segmentsc
and bd pivot about the same vertexof 1. Regardingo as the origin, we can write = —¢&a,

d = —nb, for positive scalarg,n. Take a pointp = p(s,h) onei(h), and letz = z,4(s) be
the corresponding endpoint of the subintervalofisible fromp. Write p = Aa + (1 — \)b, for
A€ (0,1), andz = pc+ (1 — p)d, for p € (0,1). Sincep, o, andz are collinear, the vectors
Aa+ (1 —=XNbanduc+ (1 — p)d = —péa — (1 — p)nb are parallel and, sinceandb are linearly
independent, we must have

pE (L= p)n

A 1—X 7
or
pE(L = A) = (1= p)nA,
or
nA
W= ————.
§(1=A) +nA

Since\ is a linear function o andy is a linear function ot;, it follows thatz,(s) is indeed a linear
rational function ofs, for the subintervala, b] of e; (k).

The overall number of linear rational portions of these functions, ollezdgesg, is O(n).
Indeed, such a portion ends either at an endpoirt 0f), or at a critical visibility point ore; (h)
that sees two vertices @f along a common ray, and the number of such points,gh) is only
O(n).

We apply an analogous construction to the edgedenote the point that moves along by
g = q(t), the corresponding tower top lay¢, i), and the collection of functions that trace the (
coordinates of the) endpoints of the visibility subsegments of egg#sl’, as seen frong(¢, h),
by {wy(t)}. Let C denote the rectangle x e in the st-plane, where:}, e5 denote respectively
the z-projections ofe;, 5. PartitionC', only for the purpose of analysis, in@(n?) subrectangles,
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by the vertical and horizontal lines corresponding todheoordinates of the critical points of the
visibility structures ore; (h) andes(h), respectively.

Fix an edgey of 7', different fromey, e>. Let 3, denote the curve,(s) = wy(t), drawn inC.
Within each subrectangle @f that 3, crosses, it is a hyperbolic arc. Indeed, by what we have just
argued, the equation ¢f, is of the form

ais+ 01 aot+ P
Y18 + 01 Yot + 03’

for appropriate coefficients;, 3;,v;, d;, i = 1,2. This equation can be rewritten ast + Bs +
Ct+ D = 0, and this defines a hyperbola in thieplane.

er(h)

Figure 11. The relation between the poipts, h) one; (k) andzy(s) ong. Hereo is the pivot vertex off".

Moreover, 3, is a connected curve which is both and¢-monotone, and its endpoints lie on
0C. Indeed, for each fixed, there is at most one pointfor which w,(t) = z,(s), because the
monotonously moving poini, () can sweep at most once through the stationary pgifx). A
symmetric argument applies to any fixedt is also easily seen tha}, cannot have an endpoint in
the interior ofC' and that it remains connected when crossing from one subrectar@l®ainother
subrectangle.

The preceding argument implies that the number of hyperbolic arcs thstitcoa the curves
By, over all edgeg of 7', is only O(n). Indeed, an endpoint of such an arc that lies in the interior
of the corresponding rectangiéis such that either its-coordinate or itg-coordinate represents a
critical visibility event on eithee; (k) or onez(h), and the overall number of such event£ig).
Moreover, only one curvg, can have such a transition point at the sanoet-coordinate, namely,
the curved, whose edgg is hit by the critical visibility ray corresponding to the critical event. This
implies the asserted linear bound on the number of pieces.

Each curves, thus partitionsC' into two portions, one of which, denotedV,, consists of
all points (s, t) that represent placements of two towerse@rand e; that guardg, whereas the
complement ofM 'V, consists of points representing placements of towers where not allisf
visible. Figure 12 exhibits four types of such portionsCaf The classification depends (i) on the
left-to-right order of the edges, es, g, (ii) on whether the pivot vertex through which the segments
p(s, h)zq(s) pass lies above or below the line containingh), and (jii) on whether the pivot vertex
through which the segmenigt, h)w,(t) pass lies above or below the line containingh). As
already remarked, when either of these pivot vertices changes, theamex continues to lie on
the same side of the line through(h) or ez (h).
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(b) (d)

Figure12. The four types of mutual visibility of an edgefrom a pair of moving towers, and the correspondingegions
where the entirg is guarded.

The decision procedure then continues as follows. Keeping the paimeked e, fixed, we
first construct, in linear time, the regiodgVy, or rather the curves,, over all the edges of T'.
This is done by merging the sequené&g;, g) andX(eq, g) into a common sequenég ey, s, g).
We then process the subintervalsgofielimited by the points oE(e;, es, g). Each such interval
I defines a piece off;, in which the common visible poini,(s) = wy(t) moves inl. Clearly,
only intervals/ that lie in the range of both functions contribute nonempty portions,toThe
computation of all the regiond/ V, takesO(n log n) time for fixede; andes.

Next, we compute the intersectiqmg MYV, of these regions. If this intersection is nonempty,
any point(s, t) in it represents a placement of two towersegrandes that guardl’. Conversely, if
the intersection is empty, no such placement exists. Since each region delduna curve that is
s—monotoneﬂg MV, is asandwich regiorbetween the upper envelope of the cur@gsfor which
MYV, lies aboves, (in thet-direction), as depicted in Figure 12(b,c), and the lower envelope of the
curvesg,, for which MV, lies belowj,, as depicted in Figure 12(a,d). Since any pair of hyperbolic
arcs, with equations of the formdst + Bs + Ct + D = 0, intesect at most twice, it follows that
the complexity of either envelope, and thus also of the sandwich regi@ng(n)), and that it
can be computed in tim@(\3(n) logn), using the algorithm of Hershberger [15, 22]. We repeat
this procedure for every pair , eo of edges ofl’. We stop as soon as we find a pair for which the
intersectiorﬂg MYV, is nonempty, and then report a corresponding placement of the two tafvers
all these intersections are found to be empty, we report that no pair oft@iveeighth can see the
entireT. Hence, the overall cost of the decision proceduK@(is®a(n) log n).

3.2 Plugging the parametric search

As in the preceding discrete and semi-continuous problems, we solve the @ptimigroblem by
applying the parametric searching paradigm to the decision procedumepgmibed. That is, we
run it generically at the unknown optimal heigtit, parallelizing as much as possible comparisons
that depend o, and resolving them by binary search over the corresponding list ofatntdues

of h at which some comparison outcome changes. While running the generic simuedigro-
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gressively narrow down the range that contains the optirhtinandh* is output either during one
of the comparison resolution stages, or as the minimum of the final range.

For each vertex of 7', we compute the visibility structure from the vertical rayemanating
upwards fromw. This takes a total of)(n?) time [13]. For each edge = uv of T, let 7. denote
the semi-unbounded trapezoid boundedeby,, and p,. There are onlyO(n) critical visibility
rays, namely rays that pass through two vertice§ potvhich cross eithep, or p,, and thusr,.
We construct the arrangement of these rays, and clip it to withinWith each vertex; of the
arrangement we associate a critical heighequal to the vertical distance gffrom e. Repeating
this procedure to each edgewe obtain a collection 0O (n?) critical heights. We add to these
heightsO(n?) additional critical heights, at which a shifted edgé) becomes collinear with a
vertex of . We run a standard binary search, guided by the decision procetitnegh these
critical heights, to locate an initial intervé) between two successive critical heights that contains
the optimum height*. This step takes a total 6¥(n3«(n) log? n) time. The visibility structure of
e(h), for any edger, is now combinatorially determined, for ahye 1. That is, the nature of each
critical event along:(h*), and their left-to-right order, are now determined and are the same for alll
h € I.

In addition, for any pair of edges g, the critical visibility rays that emanate from points on
e(h), pass through a pivot vertex @f, and then hity, are all determined combinatorially, and the
order of their intercepts witly is fixed, for anyh € Iy. As above, we denote the sequence of
these intercepts b¥.(e, g). In the next step, we take each edgand collect the intercepts along
with the critical rays from all shifted edge$h). For each paieq, e; of edges, we merge the two
sequence&i(ey, g), X(e2, g) INnto a common sequenc&(ey, e, g). We implement this step by a
sorting network of deptl®(log n). The total number of processors that are needed is

5 (1ze0) +2(e.0) ) < 20 Y [2(er,) = 00,

€1,€2,9 €1,9

Hence, using Cole’s improvement of the parametric searching methodif9%tép takes a total of
O(na(n)log?n) time.

In the next step, we process in parallel all pairs of edgés, @nd construct, for each such pair
e1, e2, the curves3,, for all other edgeg of 7. Giveney, e2, andg, we process the subintervals of
g delimited by the points oE (e, ez, g). Each such interval defines a piece aof,, in which the
common visible point,(s) = w,(t) moves in/. We construct in parallel all these pieces, each with
its explicit linear rational equation. Since 1X(e1,e2,9)] = O(n?), this step take®)(n?)
time, and is in fact non-parametric.

€1,€2,9

In the next step, we process in parallel all pairs of edge#,ofnd construct, for each such
pair (e1, e2), the sandwich region between the upper envelope of an appropriatlsghbon of the
curvesf, and the lower envelope of the complementary subcollection.

We compute the lower envelopemafhyperbolic arcs by running in parallel the standard divide-
and-conquer algorithm for constructing envelopes (see [22]). ©Mdedand-conquer process has
O(logn) parallel depth, and each stage of it requires merging two sequenceseibge break-
points into a common sequence, which can be dor@(ing n) parallel steps. Overall, the parallel
depth isO(log? n), so this simulation, enhanced with Cole’s technique [9], entails an overstll co
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of O(n3a(n)log®n). This also subsumes the cost of the subsequent stage that ‘mergegptire u
and the lower envelopes to produce the sandwich region between them.

This completes the description of the generic parallel simulation of the decigioagure, and
thus yields the following result:

Theorem 3.1. The continuous two-tower problem, for a planar terrain witledges, can be solved
in O(n3a(n)log®n) time.

4 Guarding a Fixed Set of Points

Let 7" be a terrain withn vertices, and le® = {pi,...,p,} be a set ofn points, all lying on
T, and sorted in this left-to-right order aloriy We assume that: is polynomial inn, so that
logm = O(logn). The goal is to place two towers(h),v(h) of the smallest possible height
anywhereonT', so that they guard the entire gt We show that this problem can be solved in time
close toO(mn).

We first develop a decision procedure that for a fikdothds placements for two towers of height
h over a terrain that together cover the entireBebr determines that no such pair of towers exists,
and then apply the paramatric search technique.

We denote byl}, the terraini” shifted up by distance in the y-direction, such that each point
(z,y) onT maps to the pointx, y + h) onT},.

4.1 Thedecision procedure

For each point. € T, letr(u) (resp.,t(u)) denote the leftmost (resp., rightmost) pging P that
lies to the right ofu and is not visible fromu(h), or +o00 (resp.,—oo) if there is no such point. For
each pointu € T, let P, C P be the set of points that(~) does not see.

Lemma4.l. Letu,v € T with u to the left ofv. Thenu(h) andv(h) guard the sef”*™ C P of all
points of P to the right ofv if and only ifr(v) > t(u).

tu) (V)
e 0o 000 00 (00 o o

seen‘W'WByu(h)
0}

Figure 13. (i) Proof of the “if” part. (ii) The case:(v) < t(u).

Proof: The ‘if’ part is trivial; see Figure 13 (i). Suppose then th@t) is not to the right of
t(u). The case(v) = t(u) is also trivial: neitheru(h) nor v(h) sees this common point if.
Assume then that(v) < t(u). If u(h) does not see(v) or if v(h) does not see(u) then we
are done: one of(v), t(u) is not guarded. Hence we may assume i@t seesr(v) andv(h)
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seest(u); see Figure 13 (ii). Since(h) andr(v) are not mutually visible, it easily follows that
v(h)t(u) lies counterclockwise to(h)r(v), andr(v)u(h) lies clockwise tor(v)v(h). Hence the
segments(h)r(v) andv(h)t(u) must intersect, from which it easily follows thath) sees (u), a
contradiction that completes the proai.

For each poinp; € P, let W; = 0W (p;) denote the boundary of the visibility polygon of
p; With respect to the terraifi’. As discussed abové}; is a sequence of connected portions of
T, interleaved with segmentg:, whereq is a vertex ofl’, r € T, and the ray emanating from
towardsg sees botly andr and crosse$ atr. See Figure 14.

Figure 14. Two pointsp;, p; and their visibility polygonst; andW;. Only the right portions of these polygons are
drawn. The portion$V;, W ; of the boundaries of these polygons that lie strictly ab6vare drawn as dashed-dotted
and solid, respectively.

Lemma 4.2. Lets be a segment that lies fully abo¥e Thens intersectsiV; at most once to the
left of p; and at most once to its right.

Proof: Suppose without loss of generality thalies fully to the left ofp;, and letq be a point in
sNW;. Then any point o that lies above the ling;q must be visible fronp;, as is easily checked.
This implies that assertion of the lemnia.

Let E; be the set of points whefg, intersectdV;. By Lemma 4.2, each edge @}, intersects
W, at most once, with the possible exception of the edge that lies directly abowdich may
intersectl; twice. It thus follows thatE;| < n + 1. Let E = |J;*, E;. Letw andv be two
consecutive points af alongTj,. Clearly, from any point on T, that lies betweem andv, we see
the same subset @f. Therefore if there are two tower-tops @j that guardP, then there are two
points in E that do the same. Our algorithm will therefore determine whether there exigtdints
u,v € E that guardP.

The algorithm first compute®/;, for i = 1,...,m using the algorithm of [13]. This takes a
total of O(mn) time. Then we compute the sefis, for 1 < i < m, by traversing in parallelW;
and Ty, from left to right, locating intersections between edge&ptind W; whosez-projections
overlap. Since botff}, andW; are connected-monotone polygonal chains with(n) edges each,
this step take®)(n) time for eachiV;, for a total ofO(mn) time. We organizeé® in a list sorted by
z-coordinate, represented as a balanced searclitree

We next compute the pointer¢u) andt(u) for everyu € E by traversing the points ift from
left to right alongT},, while maintaining the subsét, C P of points that are not visible from the
current pointu. We start out from-oo, with P_,, = (). When we advance from a pointe E
to the next point on T}, we add and/or delete a point to/froR) to obtainP, as follows. Letp;
be the point such that is an intersection ofV; with T}, and letp;, be the point such thatis an
intersection ofiV;, with 77,. If to the right ofu we cannot seg;, then we adg, to P,. Similarly if
to the right ofv we seep,. then we delete,. from P,. Note that ifj = k and between, andv we
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cannot seg, thenP, = P, and we do not have to delete and agd After these updates we have
the setP,, and we set:(v) (resp.,t(v)) to be the leftmost (resp., rightmost) point#) which is to
the right ofv, or to+oo (resp.,—o0) if P, is empty. We perform this computation @(mn log n)
time, by maintainingP, in a search tree, sorted by increasingoordinate.

Let W/ (resp.,W}) be the portion ofi¥; that lies to the right (resp., left) of;. It is easily
checked that¥;" has the followingorder property Let a,b € W/, with a lying to the left ofb.
Then the slope gf;a is smaller than or equal to the slopemgb. (A symmetric property holds for
W, but we shall not use it.)

The core of our algorithm is based on the following lemma and its corollary.

Lemma4.3. Leti < j, and letu be the leftmost intersection point Bf]” and 7. Then to the left
of u, W7 lies belowlV;", and to the right of., W7 lies above or overlaps with/;".

Proof: Both segmentg;u andp;u are contained in the region of the plane bounded from below by
T. We refer to this region as the closed halfplane lying aldv&his implies thap; lies belowp;u,
unlessp; = w. In the former case; is invisible fromp; and thus lies belowV". The continuity of

W andW; implies that the entire portion 0¥’} betweerp; andu lies strictly belowV;.

It therefore remains to consider the portionVBf to the right ofu, and to show that this portion
lies above, or partially overlaps with/;/". In other words, we need to show that every peirt W}
to the right ofu is visible fromp;. To see this we note that, by the order propertyidf, p;z must
lie counterclockwise tp;u, which is easily seen to imply that the segmentsandp, z intersect at
some poiny; see Figure 15. But then the polygonal chajgz lies abovel’, and thug; z also lies
aboveT’, implying thatz is visible fromp;, as claimed. This shows that, to the right.ofiV;" lies
below, or partially overlaps withy’;.

The case whep; = u follows immediately from above.]

__ez
g
B

Figure 15. Pointsz € WJ to the right ofu are visible fromp;.

As a consequence of Lemma 4.3, we obtain:

Corollary 4.4. Letp;,,...,p;, be asubset of the points &% ordered from left to right. Then the
upper envelope oft’/ ..., W/ is a concatenation of connected portionsi&f. , ..., W/ , such
that, for eachi = 1,...,k — 1, the portion ofWi; precedes the portion dﬂ/g;ﬂ. Some of the

portions may be empty.
Proof: We use the convention that when a poirtbelongs to several of the chaifis/ , ..., W/,

we regard it as belonging to the chain with the largest ingexThe assertion is now immediate
from Lemma 4.3
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For each point, € F, recall thatP, C P is the set of points that does not see. As in the
computation ofr(u) and¢(u), our algorithm traverses the points bBffrom left to right along7},
while maintaining the set®&, incrementally. For each pointthat we traverse, we decide whether
there is another point € E to the rightof u, such that all points itP, are visible fromw. To that
end we also maintain the upper enveldde) of {W; | p; € P,}. By definition, any point of’
on or abovet (u) sees all the points aP, to its left Letv € E be the point on or abové(u) that
lies to the right ofu and has maximum(v). By Lemma 4.1, ifr(v) > t(u), thenu andv cover the
entire setP, and otherwise there is no point fithat can sees the entirg,.

We maintainP, as a binary search trée A leaf in T corresponds téV;", for somep; € P,.
Each internal node of T represents the upper envelopg of the chaing¥’", for all pointsp; in
its subtree. It follows that if is the root of T then&, = E(u). Forx € T, the envelope,, is
represented as a search tfee Each nodex € T, represents an edgg, of €,. T, is organized
such that if we traverse it in symmetric order we obtain the edges on the pavedon left to right.
We associate with each nodec T, another search treg, ,, that represents the points Bfthat
lie on or above the corresponding edge, ordered from left to right.

The representation af, , is as follows. Recall that the points éf are stored in a static search
tree, sorted from left to right along,. T}, intersects,, at points that belong t&. These points
delimit contiguous subsequencesiofwhich alternate between lying abowg and lying below it.

We collect the subsequences that lie abayeand represent each of them by a leafipf,, where

these leaves are sorted from left to rightiip,. Each such leaf simply stores pointers to the two
nodes of the’-tree that delimit the corresponding subsequence. In addition, eadf [Eaf, stores

the maximum value (v) of the pointsv in the subsequence @f that it represents, and the point
where this maximum is attained. Each internal ngdeT, . stores the maximum valu€v) of the
pointsv € FE which are above,, in all the subsequences represented by the leaves of the subtree
rooted att, as well as the point where this maximum is attained.

We propagate points with maximungv) value further up ir,, as well. Each node € T, has,
in the root of7T, ,, the maximum value(v) of the pointsv € E abovee,. We also store in each
nodea € T, the maximumr(v) value of a pointy € E which is above any of the edges &f that
reside in the subtree rooted by

To support updates, at each node of the tree representing all poibtssorted alondl},, we
also store the maximum(v) value of a point in its subtree, together with the pointwhere this
maximum is attained.

As we move from a point. € E to the next pointy € E to the right alondl},, we update)
so that it store€ (v) — the upper envelope of the functiofig/, for p; € P,, in the manner just
described. Lep; be the point such that is an intersection ofV; with 7}, and letp;, be the point
such thaw is an intersection ofV;, with T},. If to the right ofu we cannot seg;, then we have to
addW; to the treeJ. Similarly if to the right ofv we seep;, then we deletéV;” from 7. Note that
if j = k and between andv we cannot seg; then we can just leavé unchanged sincg, = P,.

ConsiderJ when we are at a point as we move alond;,. The rootr of T stores inT,. the
upper envelopé (u) of W/ for all pointp; € P,. Letv be the point o that (i) lies to the right of
u, (ii) lies above all chain$V/, for p; € P, (which is equivalent ta seeing all the points aP, to
its left), and (iii) has the maximum valuév) among all such points. Thancan be retrieved from
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T, as follows.

Search inT, with the z-coordinate ofu. The nodex where this search path ends stores the
edgee,, of £(u) that lies vertically above or below. We examine each of the subtreesIpfthat
hang to the right of the search pathdpand extract from each of them the pointvith maximum
r(v) among all the points oF that are stored in that subtree. Lgtbe the point that attains the
maximumr-value among all these points. Finally, we go to the tertiary Tigg, and find there the
leaf¢ that stores the subsequen€gof &(u) that lies above,, and containg,, if v does indeed lie
abovee,, or else the subsequenég of €(u) that lies above:, immediately to the right ofi. In
either case, we examine each of the subtre@s gfthat hang to the right of the search path, extract
from each of them the pointwith maximumr(v) among all the points of that are stored in that
subtree, and let; denote the point with largestvalue among these points. If the subsequefice
lies abovee,, immediately to the right ofi we extract the points € E¢ with maximumr-value. If
the subsequencg:; lies above, and contains, we search in thé/-tree for the points of E; that
lies to the right ofu and has maximum-value. We now return the pointamonguy, v, v3 that
attains the maximum-value.

By what has been argued above, we test whether > ¢(u). If so, w andv cover the entire set
P, and we stop and report them. Otherwise there is no poifat that, together with:, coverspP,
and then we move to the next point bf

We now describe how to updafe That is, we describe how to add a cthj to the set of
chains that determine the upper envelop& ar how to delete a chain from that set. To add a chain
W7, we insert a new leaf int@ using a standardNISERT operation for binary search trees. This
insertion requires to update the envelopes of the nodes on the patirom the root to the new
leaf. We proceed to describe how to update these envelopes duringeeroimsDeletion of a chain
Wi from T is carried out analogously.

Letx be the left child ang be the right child of a nodein 7. To obtainé . from £, and¢,, we
first locate the leftmost intersection potnof £, andé,. Then we split€,; atb into two connected
piecest’, and&’, containing the portions df, that lie to the left and to the right &f respectively.
Similarly, we split, atb into its left portionei and its right portiorc}. By Corollary 4.4, is
the concatenation df’, and&j.

We find the leftmost intersectianof the two envelope§, andé,, as follows. We first find the
edgee of €, that containg. We start with the edge’ at the root ofT,, the tree that represents
&, and check whether its endpoints are above or be&lpwEach of these checks can be done in
logarithmic time. If both endpoints ef are abovet,, we continue the search in the right child of
¢’. If both endpoints ot’ are below€, we continue with the left child of’. If the left endpoint
of ¢’ is above&, and the right endpoint of’ is below &, thene = ¢’ and we stop the search.
By Corollary 4.4, the symmetric positions of the endpoints’afith respect tc€,, are impossible.
Handling cases where one or both endpoints’die on &, is done similarly, by regarding those
endpoints as lying below,. We locate the edgé¢ € &, such thab € f analogously. After having
founde and f, b is easily computed in constant time.

Next we describe how to split, and€, atb. We implement each of these splits using a standard
SPLIT operation on search trees. We also splti tite secondary trees, .., T, o, associated with
the edgeg and f, respectively, that contain the points Bfon or above these edges. The left part
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of the treeT, , is associated with the portion efon £, and the right portion of the tre®, . is
associated with the portion gfon £7.

When we split a tertiary tre®, ., atb andb falls within the range of a leaf of T, .., we have
to split¢ into two leavess; and&,. Let the leaf¢ represent the sequence of pointstbiboveT),
from ey to es. The leafé; represents the subsequencerbfrom e to the point of £ just before
b. The leaf¢, represents the subsequencd-ofrom the point right afteb to e5. The leaf¢; is the
rightmost in the left tree produced by the split®f .., and the leat, is the leftmost in the right
tree produced by the split df, ,,. We find the maximum(v) value to store ir¢; by taking the
maximum among the(v) values of the subtrees which are to the left of the search pdifatal
to right of the search path t@ in the tree containing all the points ii. Similarly, we find the
maximumr(v) value to store af,.

Finally we concatenaté’ and &’ to obtainé&., using a standard GNCATENATE operation
on binary search trees. It is straightforward to maintain the maxima of-tfedues while doing
rotations in binary search trees. Since split and concatenate of bireghgdeees change the tree
only via rotations, it is easy to maintain these maxima ofritivalues during split and concatenate.

Itis easy to see that each update (insertion or deletion of a &Higjrio T takesO (log® n) time:
(i) the search path ifi visits O(log n) nodes, (i) for each such node the corresponding patfis in
andT, haveO(log n) nodes, and (iii) at each node . (or 7)) we needD(log n) time to perform
the required computation (see above). Thus, the entire algorithm rung:im log® n) time. That
is, we have shown:

Theorem 4.5. Let T' be a terrain withn edges in the planeP a set ofm points lying onT’,
andh > 0 a parameter. We can determine,Wmn log® n) time, whether there exist two points
u,v € T such that each point dP is visible from either (%) or v(h).

4.2 Plugging the parametric search

Next we apply parametric searching to the decision procedure jusiliedcio obtain an algorithm
that finds the smallest height of two towers that cover the entire sBt As usual, this is done
by running a parallel generic simulation of the decision procedure at tkreowm optimal height
h*, resolving comparisons that depend/onby finding their criticalk-values and running a binary
search through them, thereby progressively shrinking the rangeewhéias to lie.

Fortunately, most of the steps in the decision procedurdralependendf the value ofh.
Specifically, afterE? has been computed and sorted al@jgall subsequent steps are independent
of h, since they mostly maintain structures that depend on the visibility polygofs), which do
not depend olh. Hence, after the generic simulation reaches the stage vihbes been computed
and sorted, we can stop, take the smaltest the current range, which we know to be equahto
call the decision procedure with this speciiic and output the two resulting towers.

Since the visibility polygon$V; do not depend oh, we start the algorithm by computing them
explicitly, in a total ofO(mn) time. We then process all thé;'s in parallel. For eachV;, we
merge the sequence of its vertices, sorted in left-to-right order, with the dirslarted sequence
of the vertices ofl},. Note that thex-coordinates of the vertices @f, coincide with those of the
vertices off’, and thus are independent/gfso all the merges can be done explicitly.
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Consider a fixedV;, and let! be an interval between two consecutive vertices in the merged
sequencel! is contained in the:-projection of a single edgg of W, and of a single edge of T},.
There are two critical values; < h;, so thate andg intersect wherh; < h < h;, and they
are disjoint wherh lies outside that range. By binary search over all these critical valsesyas
usual, the decision procedure to guide the search), we identify all the pbiAtseach represented
as the intersection point of a specific edgdpfwith a specific edge of somé’;. The total cost of
this step isO(mn log* n).

Next, we need to sort the points Bffrom left to right. For this we use ail(log n)-depth sorting
network withO(mn) processors, and apply the speed-up technique of Cole [9], to accbrtipss
step also irO(mnlog? n) time. As argued above, we can terminate the parametric search after this
stage, and complete the algorithm with a call to the decision procedure withrtheet® value oh
equal to the minimum of the feasiblerange.

In summary, we thus have:

Theorem 4.6. Given a terrainT" with n edges in the plane, and a setc T of m points, we can
find, in O(mnlog?n) time, two towers of smallest height that can be placed anywhefg and
together cover the entire sét

5 TheDiscrete Two-Tower Problem in 3-Space

Let T be a polyhedral terrain iiR? with n edges, and let > 0 be a real parameter. Without loss
of generality we can assume that each facefl & a triangle. We wish to determine whether there
exist two vertices:, v of T', so that the watchtowetg k), v(h) of heighth erected at:, v guard the
entire terrain, as defined in the introduction. We call any such(patr) aguarding pairof 7'. Let

V' denote the set of vertices @f. For eachv € V and a facelf of T, let H,(f) denote the portion
of f that is invisible fromw(h); we call it theinvisibility regionof v in f. The regionsH,(f) can

be constructed as follows.

a )

Figure 16. The truncated wedg#’, . and the prisniV, ..

For each vertex € V and for each edgeof 7" not adjacent ta, let W, . denote the truncated
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planar wedge that is the union of all rays emanating frgin) and passing through, minus the
triangle spanned by(h) ande. Let 7, . denote the plane containiig, ., and let, . denote the
unbounded prismatic region consisting of all points that lie vertically bélgw. The prismiV, " is
bounded byV, ., and by three vertical walls (semi-unbounded vertical strips) bourrded dbove
by the three edges d¥, .. Informally, W, is the portion ofR? that is invisible fromu(h) if T
degenerates to the single vertical wall bounded from above(bge Figure 16).

For each vertew € V, let W, denote the set of all wedgé¥, ., for edgese of T" that are
not adjacent tw. LetIl, andW, denote the set of all corresponding plamgs and prismdV, .,
respectively. PUW := (J,cyy Wo, I := U, ¢y Ho, andW™ := oy W,

For each faceff of 7' and each vertex € V not adjacent tof, we can construcH,(f) by
intersecting each prisi/,, € W, with f, and by taking the union of all the resulting regions.
The complemenf \ H,(f) is thevisibility regionof v (in f). The set of visibility regions, over all
facetsf of T, is the so-calledisibility mapfrom v(h); its complexity is©(n?) in the worst-case,
and it can be computed i@(n?) time [22].

It is easy to establish the following properties8f,(f). The intersection of{,(f) with any
vertical halfplane bounded by the vertical ling throughwv, is a (possibly empty) line segment
contained inf, and having one endpoint (the one nearer)ton df. As the halfplane rotates about
Ay, the other endpoint of the invisibility segment traces a polygonal patlfi) < f, which is
monotone with respect to the horizontal polar orientatiarf the halfplane about,. The edges of
H,(f) that lie inint( f) are portions of intersections of wedgé§ . with f. Moreover,y,(f) can
be interpreted as the upper envelope of these intersection edges, ipraprégie polar coordinate
system within the plane containinfg Hence, the combinatorial complexity &F,(f) is O(na(n))
[22]. The overall complexity of all these regions, for a fixed verteis O(n?), as each of its vertices
corresponds to a vertex of the visibility map Bffrom v(h); as noted above, all the invisibility
regionsH,(f), over all facetsf of T, can be computed i@ (n?) time.

By definition of H,( f), two verticesu, v of T form a guarding pair of" if and only if H,,(f) N
H,(f) = 0 for every facetf of T, or equivalently,H, (f) is fully visible from wu(h) for every f.
Moreover, as is easily checkeH,, (f) is entirely visible fromu(h) if and only if u(h) sees every
point on its boundarg H,( f).

A

Figure 17. The segmend(u, s).

T

For a pairu, s € V, if s is visible fromu(h), let o(u, s) be the segment whose endpoints are

and the first intersection point withi of the ray froms in directionu(h)s, as illustrated in Figure 17.
If sis not visible fromu(h), o(u, s) is not defined.

Lemmab5.1. Letu,v € V, and letf be a facet off’. 9H,(f) is entirely visible fromu(h) if and
only if the following two conditions hold:
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(V1) u(h) sees every vertex &f,(f).

(V2) There does not exist a vertexc V' such that the segmentu, s) passes vertically above an
edge ofH,(f).

@ (i)

Figure 18. (i) Intersection ofy and a prismi¥,, .. (i) The vertical stripl and its intersection with the wedg#s, ..

Proof. Indeed, ifu(h) sees the entire boundaty,(f) then (V1) and (V2) hold. Conversely,
suppose for the sake of contradiction that (V1) and (V2) hold but ae gaf H,(f) is not fully
visible fromu(h). Let ¥ be the vertical strip containingand bounded by the vertical lines passing
through its endpoints. Singgis not fully visible fromw(h) it must intersect some prisiv,, ..
Moreover, the endpoints gf do not lie insidelV,,, because (V1) holds, therefogeintersects the
vertical or top boundaries ¥/, ; see Figure 18 (i). Let, . be the point ofV,, . N ¥ of the largest
vertical distance frony; p, . lies on the ray emanating from an endpoint. of e in direction
u(h)oy, .. Among the prismsV, . intersectingg let W, be the one so that the (vertical) distance

of p, . from g is the largest; see Figure 18 (ii). Since no segmeni®’pf N ¥ lies abovep,, ./, and
_—
thusp, . does not lie in any prisiv/,,, the rayu(h)o, . intersects the terrain after the pojnt..

1,e

Hence, the segmeawtu, o, ) passes vertically abovg thereby violating (V2). O

Conditions (V1) and (V2) are equivalent to the following respectived@mns.

(V1) There does not exist a wedd#, ., for an edgee of 7' not adjacent ta:, such thati, ",
contains a vertex off,(f).

(V2’) There does not exist a vertexe V' such that thery-projections of the segmeantu, s) and
of some edge off, (f) intersect.

The equivalence of (V2) and (V2’) follows from the fact that the segtwe(u, s) lie aboveT’,
whereas all the edges &f,(f) lie onT. Recall that conditions (V1') and (V2’) are formulated for
a fixed tripleu, v, f of two vertices and a facet @f. The algorithm has to determine whether there
exists a pait, v for which (V1") and (V2’) hold for every facef of T.

The algorithm proceeds in two stages. The first (resp., second) €pges the selN; (resp.,
Ny) of all pairs(u,v) € V x V for which condition (V1') (resp., (V2)) is violated for some facet
f. Any pair of verticegu, v) ¢ N1 UNj is a guarding pair of’, and thus constitutes a solution to
the decision procedure. If all pairs of vertices are disqualified, thisidagrocedure has a negative
answer.
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Computing N;.  We wish to report all pairgu, v) € V' x V for which there exist an edgec T
and a facetf € 7' such thatV, . contains a vertex off,(f). A vertexy € H,(f) liesin W, if
and only if (i) thexzy-projectiony™ of x lies inside thery-projectionWy . of W, ., and (i) x lies
below the planer, . containingi,, ..

We fix a vertexv € T" and report all pairgu, v) € Ny in two stages. LeE be the set of vertices
in H,(f), and letW be the set of all wedged’,, ., as defined in the beginning of the section. The
first stage reports all pairs B x W that satisfy (i). The second stage reports a paiv) € V x V
if there is a pair(x, W, ) reported in the first stage for whighlies belowr, ..

In more detall, let=* = {x* | x € E}, and letW* = {W* | W € W}. We have
|Z%], [W*| = O(n?). EachW* is an unbounded triangle in the/-plane. Using a triangle range-
searching data structure [17], we report,(iin®/? polylog(n)) time, all pairs(x, W) € = x W
such thaty* € W*, as the disjoint union of complete bipartite graphs. That is, we report a family
F={(E,W1),...,(E,W,)} where (i)=; C ZandW; C W, (ii) for any (x, W) € Z; x W,,

x* € W*, and for every paify, W) € £ x W such thaty* € W*, there is an indexwith x € Z;
andW € W;. Moreover,>";(|Z;| + |[W;]) = O(n®*/3 polylog(n)).

Fix a complete subgraptE;, W;) € F. We preprocess;, in O(|Z;|log|Z;|) time, into a data
structure so that a halfspace-emptiness query (i.e., determine whetheryahglfspace contains
any point of=;) can be answered i@ (log |=;|) time. This can be accomplished by constructing
the Dobkin-Kirkaptrick hierarchy [11] on the convex hull®f. For eachV,, . € W;, we query the
data structure with the halfspaeg , lying belowr, .. If 7./, N Z; # (), we add the paifu, v) to
N1. The total time spent over all complete bipartite graphg & O(n®/ polylog(n)). Repeating
this procedure for all vertices € T, we construct the sét; in O(n'/? polylog(n)).

Computing No. Let R be the set of segmentgu, s) over all pairsu, s € V wheres is visible
from u(h). We computeR as follows. We fix a vertex. € V' and preprocess in O(nlogn) time
into a data structure, so that the first intersection poiff efith a ray emanating from(h) can be
computed inO(logn) time [22]. For each vertex € V' \ {u}, we determine the first poirgt hit
by the rayu(h)s. If £ lies betweers andwu(h) on the ray,o(u, s) is not defined; otherwise we set
o(u,s) = s&. We repeat this procedure for all verticess 7'. The total time spent in this step is
O(n*logn).

Fix a vertexv € V. We compute inD(n?) time the visibility map of7" from v(h) and thus
the seté of edges of all the region&,,(f); |€| = O(n?). For a geometric objeet in R3, let v*
denote, as above, itsy-projection. SelR* = {p* | p € R} and&* = {y* | v € £}. Each ofR*
and€* is a set ofO(n?) segments iR2. Using the algorithm described in [17], we compute, in
O(n®/3 polylog(n)) time, the set of all intersecting paifg*, e*) € R* x &* as the disjoint union
of complete bipartite graphs, so that the overall size of their vertex 39(91%/3 logn).

For each complete bipartite subgragh x €7 C R* x £* in the output, we output all pairs
(u,v), such thatR} contains (the projection of) a segmertt, s), for somes € V. The total cost
of this step isO(n%/3 polylog(n)), and we repeat it for eaadh e V, to obtain an output collection
Ny of all pairs(u,v) € V x V, with the property that the projection of some segment of the form
o(u, s) intersects the projection of an edge of sofig f). In view of the preceding discussion, no
pair (u, v) in Ny is a guarding pair of". The total cost of this step 8(n'/3 polylog(n)).

27



Putting everything together, we can find@n'!/? polylog(n)) time whethefl” can be guarded
by two watchtowers of height at mostplaced at two vertices df.

The parametric search. To obtain the full algorithm, we apply parametric searching to the deci-
sion procedure just described. We briefly sketch the generic parall&@nmeptation of this proce-
dure. We first construct the invisibility regioti$, (). Each such region is computed as the upper
envelope ofD(n) segments, which is easy to do in polylogarithmic parallel time (see the parametric
searching steps for the 2-dimensional problems). Next we compute theesegp(u, s). This can

be done for each pair, s in parallel, by considering a vertical planar cross-sectio tfiroughu

ands (again, see the corresponding routines in the 2-dimensional problero#).oBthese steps

can be implemented in near-cubic time, and are thus far from being bottleiepsk s

Next, we simulate the construction of the sdtsandNs. Each of these constructions uses a
collection of two-level range searching structures, each of which eaobstructed in polylogarith-
mic parallel depth; we omit details of these standard constructions, whiagh@sty routine. We
can thus conclude the following.

Theorem 5.2. For a polyhedral terrain inR3 with n edges, the discrete version of the two-watchtower
problem can be solved i (n'/? polylog(n)) time.

6 Conclusion

In this paper we have presented efficient algorithms for many variantg dfvtirwatchtower prob-
lem. There are of course many additional variants and extensions tHdtlm®studied, such as
guarding a terrain with three or more guards, guarding with various visibiligttaints or costs,
maximizing the portion of the terrain that can be guarded by two (or any otimber of) guards
of a fixed height, guarding more general 3-dimensional polyhedraksc@nd so on.

The immediate open problems are to improve the running time of the algorithms.tilcujzay
(i) Can the 2-dimensional continuous version of the problem be solvedkagic time? (i) Can
the 3-dimensional problem be solved by a faster algorithm? say, by auk@ralgorithm?

The bottleneck in improving the algorithm for the 3-dimensional problem seerbs to the
analysis of visibility along edges of the terrain: We h&ve:) edges, and each of them h@gn)
collections of invisibility intervals, where each collection is induced by somexeaf the terrain,
and consists 0P (n) intervals. If we could find, in near-quadratic time, the set of all pairs dfaes
that have a common point of invisibility along a fixed edge of the terrain, thecowlel have solved
the whole problem in near-cubic time.

This 1-dimensional subproblem seems to be very basic, and is a spedaifganeralized (or
colored) intersection searchings studied by Gupta et al. and others (see the survey [14]). Recent
progress on this problem has been made by Kaplan et al. [16], butstraddead to an improved
solution in our special setting. (It yields an algorithm with running tidign >++)/2) ~ O (n?68%),
wherew < 2.376 is the exponent for matrix multiplication, which is just slightly worse than our
solution.)
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