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Abstract Proportional symbol maps visualize numerical data associated with point
locations by placing a scaled symbol—typically an opaque disk or square—at the
corresponding point on a map. The area of each symbol is proportional to the nu-
merical value associated with its location. Every visually meaningful proportional
symbol map will contain at least some overlapping symbols. These need to be drawn
in such a way that the user can still judge their relative sizes accurately.

We identify two types of suitable drawings: physically realizable drawings and
stacking drawings. For these we study the following two problems: Max-Min—
maximize the minimum visible boundary length of each symbol—and Max-Total—
maximize the total visible boundary length over all symbols. We show that both
problems are NP-hard for physically realizable drawings. Max-Min can be solved
in O(n2 logn) time for stacking drawings, which can be improved to O(n logn) time
when the input has certain properties. We also implemented several methods to com-
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pute stacking drawings: our solution to the Max-Min problem performs best on the
data sets considered.

Keywords Geometric algorithms · NP-hardness · Cartography

1 Introduction

Proportional symbols maps, which are also known as graduated symbol maps, are a
well established cartographic tool to visualize quantitative data that is associated with
specific (point) locations. A symbol, most commonly a disk or a square, is scaled such
that its area corresponds to the data value associated with a point and then placed at
exactly that point on a geographic map. The spatial distribution of the data can then be
observed by studying the spatial distribution of the differently sized symbols. Typical
data that are visualized in this way include the magnitude of earthquakes (see Fig. 1),
the production of oil wells, or the temperature at weather stations.

One distinguishes between true point data and conceptual point data. The former
is actually measured at a point whereas the latter is aggregated over an area but is
conceived as being located at a point. Data collected within a city are commonly
considered to be true point data since a city is represented as a point on many maps
(that is, on maps which cover an area that is significantly larger than the city itself).
Conceptual point data include data that are collected in a province or state and that
are displayed at a location that is representative of the region in question. In this paper
we consider only proportional symbol maps for true point data.

A proportional symbol map communicates its message via the sizes of its
symbols—both the actual size of the symbols and the ratio between symbol sizes.
A large body of theoretical work and user studies discuss which sizing communi-
cates the difference between quantities in the most effective way. See the books by
Dent [5] and Slocum et al. [19] for an extensive overview. Here we mention only
three basic types of symbol scaling. The so-called mathematical scaling sizes the ar-
eas of the symbols in direct relation to the data. However, humans find it difficult
to judge the relative sizes of area symbols accurately, specifically, the sizes of larger
symbols are often underestimated. Perceptual scaling tries to compensate for this

Fig. 1 A classed proportional
symbol map depicting
Australian earthquakes of size
≥ 4.0 on the Richter scale [17]
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by enlarging larger symbols beyond their mathematically correct size. Finally, range
grading subdivides the data into classes and produces a map where all data in one
class are represented by a single symbol size. The resulting map is often referred to
as a classed map (see for example Fig. 1).

While it is commonly agreed upon that a map should appear “neither ‘too full’
nor ‘too empty’” [19] it is unclear how much the symbols on a proportional symbol
map should overlap. Small symbols create little or no overlap but spatial patterns are
difficult to detect. On the other hand, large symbols result in a cluttered map where
it is difficult to identify and judge individual symbols. Determining the ideal size for
the symbols is a major issue when constructing proportional symbol maps, but every
“good” map will contain at least some overlapping symbols (see the discussion in
Slocum et al. [19]).

In principle any two-dimensional shape can be used as a symbol on a propor-
tional symbol map. However, circles (transparent) and disks (opaque) are used most
frequently, since they are visually stable, they conserve map space, and users prefer
them. Also squares and triangles are occasionally seen. More complex, pictographic
symbols, for example beer mugs or oil wells, or three-dimensional symbols such as
spheres, make for a catchy and memorable map, but users have significant problems
to judge their relative sizes accurately. In this paper we concentrate on geometric
symbol shapes, in particular disks, squares, triangles and other convex shapes.

If the symbols are transparent, then the user can see through overlapping sym-
bols and still judge their sizes more or less accurately. Opaque symbols, on the other
hand, obscure anything that lies below them. Nevertheless, studies [9] have shown
that users (slightly) prefer opaque symbols since they contrast better with the under-
lying geographic map. Not too surprisingly other studies [10] show that there is a
strong correlation between the amount of overlap of opaque symbols and the error
that occurs when judging their respective sizes.

Clearly there are many different ways to arrange opaque symbols with respect to
each other and any choice of (partial) order makes some symbols more visible than
others. In this paper we address the algorithmic question of how to arrange a given
set of overlapping disks, squares or other convex symbols such that all of them can
be seen as well as possible.

Definitions and notation. Before we can formally state the problem we first need to
introduce some definitions and notation. To simplify the presentation we give all de-
finitions for disks, but they naturally extend to opaque squares or other shapes. Let S

be a set of n disks D1, . . . ,Dn in the plane. We denote by A the arrangement formed
by the boundaries of the disks in S. A drawing D of S is a subset of the arcs and
vertices of A which is drawn on top of the filled interiors of the disks in S. A drawing
is bounded if it includes the boundary of the union of the disks in S (see Fig. 2).

Not every drawing is suitable for the use on a proportional symbol map. A suitable
drawing needs to be bounded. It should be locally correct at the vertices: a drawing
is locally correct at a vertex v, formed by the intersection of the boundaries of two
disks Di and Dj , if locally around v the drawing corresponds to stacking Di onto
Dj or vice versa. We say that a drawing is vertex correct if it is locally correct at
every vertex. Furthermore, a suitable drawing must have only correct faces: a face of
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Fig. 2 An arrangement A, a drawing with A visible, a bounded drawing

Fig. 3 A bounded, vertex correct drawing, which is not face correct, (a) with and (b) without A visible;
a bounded, face correct drawing (c) with and (d) without A visible

the drawing is correct if there is an order in which all disks in S that contain the face
can be drawn on top of each other such that the face appears. We call drawings that
satisfy both of these conditions face correct.

Figure 3(d) shows that even a face correct drawing can still have an “Escher-
like” quality which we would like to avoid on a proportional symbol map. Hence we
need to enforce even stronger requirements on what constitutes a proper drawing. We
consider two types of drawings.

Physically realizable drawings. A face correct drawing is physically realizable if
and only if for every face f of the arrangement A there exists a total order on the
disks in Sf (the disks in S that contain f ) such that the topmost disk is visible and
the orders associated with any two faces of A do not conflict. That is, the order in
which the disks in S are stacked upon each other is uniquely determined at every face
of A and no two of such orders conflict. In particular, any two or more disks that have
a common intersection have a unique ordering. The orders of the disks for all faces
of A immediately imply which arcs of A are part of the drawing.

We observe that this definition is in fact equivalent to the following. We associate
a pr-disk D′

i with every disk Di in S. D′
i is a surface patch that is the image of

a continuous function of the points in the input disk, that is, (x, y) ∈ Di maps to
(x, y, fi(x, y)) where fi(·, ·) is continuous. The boundary of D′

i is a closed curve that
lies in a cylinder erected vertically on the boundary of Di . A drawing D is physically
realizable if functions f1, . . . , fn exist so that the pr-disks D′

1, . . . ,D
′
n are disjoint

and the view vertically down from infinity is D. That is, if we imagine that we are
working with actual physical disks then we are allowed to warp them in a “Dali-like”
fashion, but we cannot cut them.

Stacking drawings. A stacking drawing is a natural restriction of a physically real-
izable drawing and also the one most frequently found on proportional symbol maps.
A physically realizable drawing D is a stacking drawing if there exists a total order
on the disks in S such that D is the result of stacking the disks in this order. We call
such a total order a stacking order (see Fig. 4).
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Quality of a drawing. Intuitively, a good drawing should enable the viewer to see
at least some part of all symbols and to judge their sizes as correctly as possible. The
accuracy with which the size of a disk can be judged is proportional to the portion of
its boundary that is visible. This leads us to the following two optimization problems.
Assume that we are given a set S of n opaque symbols S1, . . . , Sn.

Max-Min Find a physically realizable or a stacking drawing that maximizes the
minimum visible boundary length of each symbol, that is, max min1≤i≤n

{visible length of the boundary of Si}.
Max-Total Find a physically realizable or a stacking drawing that maximizes the

total visible boundary length over all symbols.

Figure 5 illustrates why we consider only visible boundary length and not visible
area of symbols. The boundary of the center disk is completely covered but a signif-
icant part of its area is still visible. It is, however, impossible to judge its size or to
determine the location of its center. Figure 6 shows that a stacking drawing can be
arbitrarily much worse than a physically realizable drawing with respect to the Max-

Fig. 4 A stacking drawing (left), a physically realizable drawing that is not a stacking drawing (middle),
a drawing that may seem physically realizable, but is not—any order for face a will conflict with one of
b1, b2, or b3 (right)

Fig. 5 Visible perimeter is
more important than visible area

Fig. 6 An optimal physically
realizable drawing (left), an
optimal stacking drawing for the
same disks (right)
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Min problem. At least half of the boundary of every disk in Fig. 6 (left) is visible,
whereas the lowest disk in any stacking drawing is covered by its two neighbors and
hence has only a very short visible boundary.

Formal problem statement. Assume that we are given a set S of n opaque homo-
thetic disks, squares or other convex symbols that may overlap. Construct a physically
realizable drawing or a stacking drawing for the elements of S that either maximizes
the minimum visible boundary of each symbol (Max-Min) or maximizes the total
visible boundary of all symbols (Max-Total).

Results. We show in Sect. 2 that for physically realizable drawings both the Max-
Min and the Max-Total problems are NP-hard. For stacking drawings the Max-Min
problem can be solved in O(n2 logn) time. If no point in the plane is covered by
more than O(1) symbols, then it can be solved in O(n logn) time. If the symbols are
unit-size squares it can be solved in O(n logn) time, regardless of how many squares
overlap in a point. These algorithmic results are presented in Sect. 3. The status of
the Max-Total problem for stacking drawings is open. We performed experiments to
compare the results of four different methods that compute a stacking drawing. One
of these is our solution to the Max-Min problem, and this one performs best on the
data sets considered. These results are presented with various tables and figures in
Sect. 4.

2 NP-hardness

We show that the Max-Min and the Max-Total problems are NP-hard for physically
realizable drawings of disks. For the NP-hardness proofs, we have to restrict our-
selves to the RAM model of computation, and, therefore, we have to be careful that
our reductions only use disks with integer radii and centers located at integer coor-
dinates. Note that the visible perimeter of a drawing is a sum of the lengths of some
circular arcs, and, therefore, it is unclear if the problems we are considering belong
to the class NP. This is not surprising, since many basic geometric problems are not
known to be in NP [4, 6]. Both the reduction for Max-Min and the reduction for Max-
Total are from planar 3-SAT, which was proved NP-hard by Lichtenstein [14]. Since
the ideas are standard and often used (see for example [1, 2, 7, 13]), our discussion
concentrates on the gadgets.

2.1 Max-Min Is NP-hard

For any given instance I of planar 3-SAT we define a set S of disks of perimeter 1
with the following property: The disks have a physical realization with a free perime-
ter of at least 3/4 per disk if and only if the planar 3-SAT formula is satisfiable. The
construction we give is geometrically intuitive, but uses non-integer values for co-
ordinates and radius. We explain later how an equivalent construction can be made
in polynomial time and with integer values, hence providing a valid NP-hardness
reduction.
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Fig. 7 Representation of a Boolean variable and its TRUE and FALSE states

The set S consists of a set of disks, a gadget, for every variable, every clause, and
every literal in a clause of I . Gadgets for literals are called channels and connect
variable and clause gadgets.

Variable gadgets. We say that two disks overlap for a fraction f if a fraction f of
the boundary of one disk is covered by the other disk. Since we use disks of perimeter
one, a fraction f of its boundary has length f .

A Boolean variable xi is represented by an even cycle S(xi) of disks, as shown in
Fig. 7. Any two adjacent disks overlap for 1/8 or 1/4, such that any disk overlaps
for 1/8 with one neighbor and for 1/4 with the other neighbor. Hence, to achieve
that each disk has 3/4 of its perimeter visible, the cycle must be either clockwise
overlapping (signifying that xi is TRUE) or counterclockwise overlapping (signifying
that xi is FALSE).

In the TRUE state, every second disk has 1/4 of its boundary covered by the pre-
vious disk in the cycle—if 3/4 of the boundary of each of these disks is to remain
visible, no more disks (other than those in the cycle) must cover them. For the other
half of the disks in the cycle, only 1/8 of their boundaries are covered and disks
outside the cycle may cover another fraction 1/8 of them. In the FALSE state, it is
precisely the other set of disks that can be covered for another 1/8.

Clause gadgets. A clause is represented by a single disk.

Channels. Channels represent literals used in clauses. Each channel is a series of
disks such that each disk overlaps the next disk for 1/4.

The first disk of the channel overlaps for 1/8 with a disk in a cycle representing a
variable: if the channel represents the literal xi , it overlaps for 1/8 with a disk of S(xi)

that can take another 1/8 overlap in the TRUE state of S(xi); if the channel represents
xi , it overlaps for 1/8 with a disk of S(xi) that can take another 1/8 overlap in the
FALSE state of S(xi). If the variable has enough disks in its cycle, then any number
of channels can be connected and in any order for xi and xi .

A channel represents TRUE if the disks in the channel are stacked from bottom
to top when traversing the channel from the variable to the clause, leaving only 3/4
of the boundary of the disk at the variable end visible. Hence a channel for xi can
represent TRUE only if the state of S(xi) is TRUE, and a channel for xi can represent
TRUE only if the state of S(xi) is FALSE.

At a clause like (xi ∨ xj ∨ xk), the channels for xi , xj , and xk come close and the
last disks of the channel each overlap for 1/8 with the disk that represents the clause,
see Fig. 8. For the clause disk to be uncovered for at least 3/4, at least one of the
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Fig. 8 Representation of a clause

three channels must represent TRUE so that the last disk of that channel can go under
the clause disk.

Theorem 1 It is NP-hard to decide if a given collection of congruent disks has a
physically realizable drawing where at least some given length of the perimeter of
each disk is visible.

Proof Consider an instance I of 3-SAT and a corresponding set of disks S as de-
scribed above. We show that S has a physically realizable drawing where at least 3/4
of every disk’s boundary is visible if and only if I is satisfiable.

If I is satisfiable, fix a Boolean assignment that makes I true. For each TRUE

variable xi in the assignment, we set the variable gadget S(xi) and the channels for
xi in their TRUE states, and we draw the channels for xi in the opposite way, that is,
with the disks stacked from bottom to top when traversing the channel from clause
to variable, with the last disk at the variable end tucked under S(xi). For each FALSE

variable xi , we set S(xi) in its FALSE state, the channels for xi in their TRUE state,
and we draw the channels for xi in the opposite way. We draw each clause disk on
top of the TRUE channels arriving at the disk, and under any other channels arriving
at the disk. Each clause in I has at least one literal that is true in the given Boolean
assignment, hence at least one of the channels arriving at the clause disk is in its TRUE

state and does not cover the disk. One can easily verify that each disk in the complete
drawing has 3/4 of its boundary visible.

If S has a physically realizable drawing where at least 3/4 of every disk’s boundary
is visible, then each variable gadget must be drawn in its TRUE or FALSE state, thus
defining a Boolean assignment. Furthermore, each clause gadget must cover the end
of at least one channel: for each disk in this channel to be visible for at least 3/4,
the channel must be drawn in its TRUE state, and hence, the literal represented by the
channel must be made true by the Boolean assignment. It follows that any drawing
with at least 3/4 of every disk’s boundary visible corresponds directly to a Boolean
assignment of variables that fulfills all clauses of I .

Note that only a polynomial number of disks are used in the reduction. Moreover,
if it is not possible to achieve a free perimeter of at least 3/4 in all disks, then some
disk has a free perimeter of exactly 5/8.
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For a reduction that uses integer values, we scale the previous construction by
200π (then all disks have radius 100) and displace each disk so that its center is at
the closest point of the integer grid. This construction can be carried out in polyno-
mial time in the RAM model, since for each coordinate of the disks we only need to
compute a polynomial number of the bits involved in the previous construction. Dis-
placing the disks changes the length of the arc in the overlap of two disks by at most 4.
It is easy to see that the original construction can be done such that the distance be-
tween any two disks that do not overlap is at least

√
2/200π , so that they are still

disjoint after scaling and displacement. It follows that in the new construction each
disk overlaps at most three other disks, and therefore the displacement changes the
length of the visible boundary of a disk by at most 3 · 4 = 12. If originally, in a physi-
cal realization a disk had visible perimeter 3/4, the visible length of its perimeter after
scaling and displacement is at least 200π · (3/4) − 12 > 459. If a disk had a visible
perimeter of length 5/8, its visible perimeter is now at most 200π · (5/8)+12 < 405.
Therefore, this new (scaled and rounded) set of disks has a physical realization with
free perimeter at least 459 per disk if and only if the 3-SAT formula is satisfiable. �

Note that in the proof, no point in the plane is contained in more than two disks.
Furthermore, the proof shows that the decision problem of finding a physically real-
izable drawing with free perimeter at least 405 = 15 · 27 is as difficult as the decision
problem asking for perimeter at least 459 = 17 · 27. This shows that we cannot ex-
pect to find a (17/15)-approximation to the optimal solution in polynomial time. The
factor 17/15 is by no means best possible, and it can be raised with some changes in
the construction.

2.2 Max-Total Is NP-hard

For the Max-Total problem, we follow the same approach as in the previous proof. We
first give a geometric construction, and then discuss how to adapt it to integer values.
In the reduction, we use disks of two types: perimeter 1 (unit size) and perimeter 3.

We denote a pair of unit disks (disks of perimeter 3) that almost coincide by
1-bone (3-bone). In each bone, there are two choices regarding which one of the
two disks goes on top, and this changes on which side of the bone a double boundary
becomes visible. Bones are the main instrument in the construction.

Variable gadgets. We first describe the gadget to represent a Boolean variable; see
Fig. 9. The gadget consists of a spine made of a chain of 3-bones ending with an extra
unit disk at each extreme, and a collection of (variable-)readers. The disks that make
up the spine have their centers on a single horizontal line. The readers come in pairs:
each 3-bone of the spine has a reader on the left and a reader on the right side, and
each reader partially overlaps this 3-bone (and no others). In the drawing, we say that
a reader has pressure towards the variable when the side of the reader where a double
boundary is visible mostly overlaps with the spine; otherwise it has pressure towards
the clause. Note that we can choose how many spine-bones the variable has, so that
we can have many readers.

We next discuss the possible drawings of the variable gadget that maximize the
visible boundary. For each individual spine-bone, it does not matter if it is drawn
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Fig. 9 Representation of a Boolean variable. Each spine bone has two readers: one on the left (the positive
reader) and one on the right (the negative reader)

with the double boundary on the left or with the double boundary on the right, since
the readers overlapping it make the decision symmetric. However, the two unit disks
at the ends of the spine assure that in an optimal drawing, all 3-bones of the spine
must have their double boundaries on the same side, as shown in Fig. 9. When the
double boundaries are on the left we say that the variable gadget is in the FALSE state,
and when the double boundaries are on the right it is in the TRUE state.

Assume that a choice of TRUE or FALSE state is made in the variable gadget. To
maximize the visible boundary, a reader at a double boundary of a spine bone must
be put under the spine bone and have pressure towards the clause. A reader at a
single boundary of a spine bone must be put on top of the spine bone and can have
pressure in either direction. In an optimal drawing of the variable in a TRUE state, the
left-side readers can have pressure in any direction while the right-side readers must
have pressure towards the clause. In an optimal drawing of the variable in a FALSE

state, the left-side readers must have pressure towards the clause while the right-side
readers can have pressure in any direction. This implies that if any left-side reader has
pressure towards the variable the variable must be true, and if any right-side reader
has pressure towards the variable the variable must be false. Therefore we call the
left-side readers positive readers and the right-side readers negative readers.
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Fig. 10 The three large disks in a clause gadget (left), the dots mark their centers. A possible optimal
drawing of the clause (right)

Clause gadgets. We now describe the gadget that represents a clause. It consists
of three disks of perimeter 3 symmetrically placed and with their centers very close
together; see Fig. 10 (left). Along each of the 6 dotted directions marked in the figure,
we place a 1-bone, called (clause-)reader, with both of its disks centered on a line
through the center of the clause; see Fig. 10 (right). The 1-bones are placed carefully,
as follows. For a 1-bone, consider its inner disk D (the disk closest to the center of the
clause). From the three large disks, let a, b and c be the parts of their boundaries that
overlap with D. Let d be the part of the boundary of D that overlaps with the union
of the three large disks; see the zoomed part of Fig. 10 (right). Let |a|, |b|, |c| and
|d| be the lengths of these arcs. We place the 1-bone such that max(|a| + |b|, |a| +
|c|, |b| + |c|) < |d| < |a| + |b| + |c|. (As depicted in Fig. 10, this can be achieved
by placing the centers of the three large disks very close together, because then the
arcs a, b and c have almost identical lengths.) For a clause-reader, we say that it has
pressure towards the variable if most of its double boundary does not overlap with
the three center disks of the clause; otherwise, we say that it has pressure towards the
clause.

We discuss the possible drawings of the clause gadget that maximize the visible
boundary. There are six possible orderings for the three large disks, and all of them
are symmetric. Fix one of the orderings, for example the one depicted in Fig. 10.
The readers do not overlap, and therefore we can maximize the visible boundary of
each 1-bone independently. For the reader corresponding to direction 1, the optimal
solution is to place the 1-bone with pressure towards the variable under the 3 large
disks. For the remaining readers, the optimal solution is to place the 1-bone on top
of the 3 large disks, and it does not matter towards where they have pressure. These
drawings of the 1-bones are optimal because of their careful placement, as discussed
before. We conclude that in an optimal drawing of the clause gadget there must be
at least one reader with pressure towards the variable—the other readers can have
arbitrary pressure.

Channels. We next describe the channel gadgets that connect clause and variable
gadgets and represent the literals used in the clauses; see Fig. 11. The gadget con-
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Fig. 11 Channel gadgets for connecting the variables and the clauses

sists of a series of bones in the style of the spine of the variable gadget, but made
with 1-bones. Note that we can make turns, as shown on the right side of the figure.
A channel always uses its extreme bones to connect to a variable-reader and to a
clause-reader. The key property is: In an optimal drawing of a channel gadget, it can-
not happen that the clause-reader has pressure towards the variable and the variable-
reader has pressure towards the clause. For all other combinations of pressures there
are optimal drawings, as shown in the figure.

To decide which connections to make between variables and clauses, we look at
the instance of planar 3-SAT at hand: We connect a clause-reader representing literal
x with a channel to a positive variable-reader in variable x, and we connect a clause-
reader representing x with a channel to a negative variable-reader in variable x. For
the argument below to be correct, it is crucial that in an optimal drawing at least one
reader that is connected to a variable has pressure towards that variable. Therefore
we need to connect each of the six clause-readers to a variable (otherwise we could
easily draw the clause optimally by putting an unused reader under the clause and
the other five on top, so that all readers that are connected to variables could have
pressure in any direction). Therefore we simply duplicate all literals of the clause.
See Fig. 12 for a combination of all the gadgets.

Theorem 2 It is NP-hard to decide if a given collection of disks has a physically
realizable drawing whose total visible perimeter is at least a given value.

Proof Consider an instance I of planar 3-SAT and the corresponding set of disks S.
For each variable, each clause, and each channel gadget, there is a certain length
of its boundary that is visible in an optimal drawing. Let G be the sum of those
lengths, over all gadgets in S. Furthermore, at every connection between a channel
and a reader, the last disk of the channel overlaps for a certain fraction f with the
outermost disk of the reader, and at least a boundary part of length f will be covered.
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Fig. 12 An example showing all the gadgets at work

Let C be the number of channels in S, and let T be G−2f C: Clearly T is the largest
total visible boundary length one could hope to achieve. We next show that S indeed
has a physically realizable drawing with visible perimeter at least T if and only if I
is satisfiable.

We first show that if I is satisfiable, then S has a physically realizable drawing
with visible perimeter at least T . Consider a satisfiable instance I , and fix a Boolean
assignment that makes I true. For each TRUE variable in the assignment, we set the
variable gadget in its TRUE state, the positive variable-readers with pressure towards
the variable, and the negative variable-readers with pressure towards the clause. For
each FALSE variable in the assignment, we take the symmetric drawing. In this draw-
ing, each variable gadget gets its optimal boundary visible, and a literal is true if and
only if the corresponding reader has pressure towards the variable. In each channel
we consider an optimal realization that preserves the pressure, that is, both endings
of the channel have pressure towards the same gadget. Since we are considering an
assignment that satisfies the formula, each clause has a literal that is true, and there-
fore at each clause gadget a channel with pressure towards the variable arrives. This
means that we can also make an optimal drawing at each clause gadget.

We now show that if S has a physically realizable drawing with visible perimeter
at least T , then I is satisfiable. Consider a drawing of S with boundary length at
least T . This means that each gadget is drawn optimally. In particular, each variable
gadget must be in its TRUE or FALSE state. Now consider a clause gadget. Since it is
drawn optimally, it has some clause-reader r with pressure towards the variable. Let
� be the clause represented by that clause-reader and let x be the variable used in �

for which r is a reader. Since the channel between x and r is drawn optimally, it must
have pressure towards the variable at both ends. Since x is drawn optimally as well,
it must therefore be in its TRUE state if r is a positive reader, or in its FALSE state if r

is a negative reader. This means that clause � is made true by the Boolean assignment
of variables that correspond to the TRUE or FALSE states in which they are drawn.
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It follows that any drawing with boundary length at least T correspond directly to a
Boolean assignment of variables that fulfills all clauses in I .

For a reduction that uses integer values, and therefore a valid reduction in the RAM
model, we use the same technique as in Theorem 1. Note that we can find a constant
α ∈ (0,1) with the following property: Any suboptimal drawing of a gadget (variable,
clause, or channel) has a visible perimeter at least α smaller than an optimal drawing.
Therefore, in the construction, it is equally hard to decide if there is a drawing of
length at least T or of length strictly larger than T − α.

Let pr,r ′(d) be the length of the boundary of a disk D with radius r inside a disk D′
with radius r ′, when the distance between the centers of D and D′ is d . For any two
intersecting disks D and D′ in the construction, with radii r and r ′, respectively, and
centers at distance d from each other, there are values ranger,r ′(d) and sloper,r ′(d)

with the following property: If we change the distance between the centers of D

and D′ by δ ≤ ranger,r ′(d), then pr,r ′(d) changes by at most δ · sloper,r ′(d). Conse-
quently, after we have scaled our construction by a factor of at least

√
2/ranger,r ′(d),

rounding the coordinates of the centers of the disks to the nearest integer values
changes the visible boundary length of D by at most

√
2 · sloper,r ′(d). Consider the

set T of triplets (r, r ′, d) such that in our original construction S there are disks of
radius r, r ′ that intersect and have their centers at distance d from each other. Let
r∗ be the maximum value of 	√2/ranger,r ′(d)
 and let s∗ be the maximum value
of 	√2 · sloper,r ′(d)
 over all triplets in T . By construction T consists of a constant
number of triplets, and hence r∗ and s∗ are constants, independent of n.

Let |S| be the number of disks in S. (The value of |S| is bounded by a polynomial
in n, the size of the planar 3-SAT instance of size n.) Consider scaling the construc-
tion by 	1/α
π |S|s∗ max(14, r∗) and displacing each disk so that its center is moved
to the closest point of the integer grid. In the construction, no disk intersects more
than 20 disks, and therefore, the displacement changes the visible boundary of each
disk by at most 20 · s∗. Since there are |S| disks, the displacement changes the total
visible boundary over all disks by at most 20|S|s∗.

If the planar 3-SAT instance is satisfiable, then there is a drawing with perime-
ter T . After scaling and displacement, the visible boundary is at least Tyes :=
T · 	1/α
π |S|s∗ max(14, r∗) − 20|S|s∗. If the planar 3-SAT instance is not satisfi-
able, any drawing has perimeter at most T − α. After scaling and displacement, the
visible boundary is at most Tno := (T − α) · 	1/α
π |S|s∗ max(14, r∗) + 20|S|s∗.
Since α · 	1/α
π |S|s∗ max(14, r∗) > 40|S|s∗, we have Tyes > Tno. Therefore, the
scaled and displaced set of disks has a drawing with visible perimeter of length at
least T · 	1/α
π |S|s∗ max(14, r∗) − 20|S|s∗ if and only if the planar 3-SAT instance
is satisfiable. All the coordinates and radii are integers bounded by polynomials in the
size of the planar 3-SAT instance, and hence this reduction can be done in polynomial
time in the RAM. �

Note that the current construction might result in a physically realizable drawing
that is not a stacking drawing. The reason is that a channel may impose a partial
stacking order between a portion of the variable gadget and the clause gadget, and
partial stacking orders arising from different channels may contradict each other. It is
unclear whether the construction can be adapted so that it can be restricted to stacking
drawings.
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3 Algorithms

We can compute the stacking order that maximizes the minimum of the visible bound-
ary of any symbol in polynomial time. We present the algorithms in this section. We
first give a general algorithm for disks, which generalizes naturally to other convex
symbols. Then we deal with special cases and squares.

Stacking general pseudo-disks in near-quadratic time. The general idea to compute
a stacking order of n disks is simple: For each disk, we determine how much boundary
would be seen if it were the bottommost disk. We choose the disk with the maximum
value, make it the bottommost disk, and then recurse on the n − 1 remaining disks.
The optimality of the solution produced by this greedy method follows directly from
an easy exchange argument.

To implement this approach efficiently, we maintain for each disk Di a data struc-
ture that represents all of its covered and uncovered boundary intervals. For technical
reasons, we consider a disk boundary ci to be an interval from its topmost point
clockwise around. Any other disk Dj intersects ci in zero, one or two intervals (two
if Dj contains the topmost point of ci ). The intersection points on ci define a set of
elementary intervals. In Fig. 13, the elementary intervals induced by D1,D2,D3,D4
are α1, . . . , α9. The data structure Ti that stores ci is a variation of a segment tree that
stores the elementary intervals in its leaves; each leaf ν stores this interval in int(ν).
An internal node ν also corresponds to an interval int(ν), which is the union of ele-
mentary intervals below it in Ti . (See De Berg et al. [3] for a detailed description of
segment trees.)

Every node (internal and leaf) stores the boundary length of int(ν) and a counter
that stores the number of other disks that contain int(ν), but not int(parent(ν)). It also
stores a value vis-int(ν) that is the visible boundary length of int(ν) that would remain
if only the disk intervals of other disks that occur in the subtree rooted at ν would hide
parts of int(ν) from view. Disk intervals at ancestors of ν may still prevent any part
of int(ν) from actually being visible. The root of Ti stores the total visible perimeter
length of Di—if it were placed bottommost—in vis-int(root(Ti)). The counter at the
root of Ti stores the number of disks completely covering Di .

To initialize, we construct a segment tree Ti for each disk Di , storing the disk
intervals for all disks Dj with j �= i. By inspecting vis-int(root) and the counter for

Fig. 13 A disk Di with four disks intersecting it, and the corresponding segment tree Ti
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all trees T1, . . . , Tn, we determine the one with the largest boundary length if it were
bottommost, and select it. When a disk Dj is chosen, we delete the disk interval of
Dj from all structures Ti of disks Di that intersect Dj and were not yet chosen.
To this end, we find the canonical nodes of the disk interval of Dj in Ti . For each
canonical node ν, we lower the counter. When the counter becomes 0, we also update
vis-int(ν) by setting to the sum of the vis-int(..) values of the two children of ν. By
the standard analysis of segment trees and tree augmentation, inserting a disk interval
in Ti (at initialization) or deleting a disk interval from Ti (when the disk is chosen)
takes O(logn) time. Therefore, inserting a disk’s intervals in all segment trees at
initialization takes O(n logn) time per disk, and the process of choosing a disk to
be placed bottommost and updating all trees takes O(n logn) time per disk as well.
Hence we get:

Theorem 3 Given n disks in the plane, a stacking order maximizing the boundary
length of the disk that is least visible can be computed in O(n2 logn) time.

Theorem 3 also applies to pseudo-disks (sets of symbols such that the boundaries
of any two symbols intersect in at most two points) of constant algebraic complex-
ity. This includes the case when all the symbols are homothetic to a single convex
polygon and are in general position.

Stacking pseudo-disks with bounded overlap in near-linear time. If no point in the
plane is contained in more than C disks, where C is some constant, and the ratio in
size of the largest and smallest disk is also a constant, then we can get a better bound
than O(n2 logn) as follows.

A standard packing argument shows that in this scenario any disk intersects only a
constant number of other disks. The whole arrangement of disk boundaries has com-
plexity O(n). For preprocessing, we construct the arrangement in O(n logn) time by
a simple plane sweep, and for each disk, we determine the number of disks that fully
contain it and store this value in a counter. For all disks not contained in any other
disk we determine the visible boundary length if it were placed bottommost by walk-
ing in the arrangement along its boundary. This takes only O(1) time for each disk,
and O(n) time overall. We store these visible boundary lengths in a priority queue.

The body of the algorithm is a loop where the next bottommost disk Di is ex-
tracted from the priority queue, the intersecting disks are found by traversing the
arrangement, their visible boundary lengths are recomputed, and their position in the
priority queue is updated in O(logn) time. In O(1) time we find the disks fully con-
tained in Di by traversing the arrangement inside Di . For these disks we lower the
counters. The ones whose counter is set to zero are put in the priority queue, after
determining their visible boundary length. In this way, every selection step of a disk
takes O(logn) time, so the whole algorithm takes O(n logn) time overall.

In fact we can achieve the same running time even if we assume only that no
point in the plane is contained in more than a constant number of disks, and drop
the assumption that the ratio in size of the smallest and largest disks is at most a
constant. A disk may now intersect many more than O(1) disks, but the arrangement
still has O(n) complexity [18], and hence all traversals to find the disks that intersect a
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selected disk take only O(n) time in total. This implies that throughout the algorithm,
only O(n) visible boundary lengths are recomputed. We need to take care that this
can be done efficiently for disks that intersect many other disks. To this end, we
use the segment tree given above for the general algorithm, and we again obtain an
O(n logn) time algorithm (note that all segment trees together have O(n) leaves in
this case). We get the following theorem:

Theorem 4 Given a set of n disks in the plane such that no point is contained in more
than O(1) disks, a stacking order that maximizes the boundary length of the disk that
is least visible can be computed in O(n logn) time.

Like Theorem 3, Theorem 4 also applies to pseudo-disks.

Stacking unit squares in near-linear time. For unit squares we can also give an
O(n logn) time algorithm without assumptions on their overlap. This is interesting
because the arrangement of squares may have quadratic complexity.

Our algorithm for unit squares first computes the union of the squares, which has
linear complexity [12] and can be computed in O(n logn) time using a plane sweep
algorithm [3]. We next determine for each square the visible boundary length that
it contributes to the boundary of the union. We store the squares in a priority queue
ordered by this value. Note that any square has at most one visible interval on each
side.

The body of the algorithm is a loop where we extract the next bottommost square
S from the priority queue and update the union of squares explicitly. Up to four
segments disappear, but possibly many more appear, see Fig. 14. We find these by
repeated ray shooting. Up to eight squares have a visible interval enlarged because
they ended on a side of S. All other squares that have a change in their visible interval
have a vertex exposed on the contour, or have an interval on a side exposed for the
first time in the whole process. These cases can arise at most four times for each
square, so the total change in intervals is O(n) throughout the algorithm.

We preprocess all vertical sides of squares in a semi-dynamic data structure for
horizontal ray shooting (only deletion of vertical sides needs to be supported). Simi-
larly, we preprocess all horizontal sides of squares in a semi-dynamic data structure
for vertical ray shooting. The semi-dynamic data structure of Imai and Asano [11]
uses O(logn) amortized time per operation (see [8, 15] for generalizations), and
therefore we can implement our algorithm to run in O(n logn) time overall.

Fig. 14 Deletion of a square
from the union of squares
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Theorem 5 Given a set of n unit squares in the plane, a stacking order that max-
imizes the visible boundary of the square that is least visible can be computed in
O(n logn) time.

Remark Although the algorithms presented above use the absolute visible length of
the boundary, they can also work with relative visible boundary length. Then we
would maximize the percentage of the visible boundary length of the disk or square
that is least visible. The adaptations needed are trivial.

4 Experiments

We have examined stacking orders based on different methods experimentally. We
first describe our data sets and then the stacking methods, followed by an evaluation
of their quality.

Data sets. In principle there are three different types of data sets. Either all disks
have the same size, or disk sizes are taken from a small number of classes, or the disk
sizes are all different and in area proportional to the relevant value. Equal size disks
are uncommon because they do not show a value with locations, only an occurrence.
We therefore omit such data sets from our experiments.

We used several different data sets; see Table 1. First, we took two data sets with
the cities of the USA, namely the 156 and the 538 largest cities by population. The
area of each disk is proportional to the population of the city. Two other data sets
consist of 602 disks corresponding to earthquakes in the world. Disks are centered at
the epicenters and the areas of the disks are proportional to the magnitude (scale of
Richter) and to the death count [16]. Second, we used versions of the 156 cities and
the earthquake magnitudes where disk sizes were classified into five different classes.

Stacking methods. Proportional symbol maps that are published in books or on the
internet do not seem to follow any method consistently. Some appear to be stacked
from the left to the right, others appear to be random. For maps with differently sized
disks, often the stacking order is from large to small (small on top). Here we compare
four different stacking methods for the four data sets with disks of arbitrary sizes and
five different stacking methods for the two classed data sets. In particular, for disks
of arbitrary sizes we compare the following stacking methods.

Table 1 Data sets used in the
experiments Data sets Number of disks Largest/smallest

radius

City 156 156 8.4

City 538 538 21.5

Earthquake magnitude 602 1.2

Earthquake death count 602 813.0

City 156, classed 156 3.2

Earthquake mag., classed 602 2.2
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Left-to-right by center: The disk with leftmost center is put at the bottom of the
stacking order, and the remaining disks are stacked recursively on top.

Left-to-right by leftmost: The disk with leftmost left extreme is put at the bottom,
and the remaining disks are stacked recursively on top.

Large-to-small: The disks are stacked from bottom to top in order of non-increasing
radius. If radii are distinct, then the stacking is unique.

Max-Min: The disks are stacked to maximize the visible boundary length of the disk
with least visible boundary length, using the algorithm presented in Sect. 3.

For the classed data sets we can stack the classes from bottom to top in order of
decreasing size and use one of the above methods to determine the stacking order
within a class. Note that within a class all disks have equal size, so that both left-to-
right methods yield the same result, while the large-to-small method would leave the
order undefined. Two methods to order the disks within a class remain: left-to-right
and max-min. Alternatively we could use one of the above four methods on the full
set of disks—with the exception of the large-to-small method which would simply
stack class by class and leave the order within a class undefined. Hence the following
five stacking methods remain to be tested:

Left-to-right by center: The disk with leftmost center is put at the bottom of the
stacking order, and the remaining disks are stacked recursively on top.

Left-to-right within class, classes large-to-small: Within each class the disk with
leftmost center is put at the bottom of the stacking order, and the remaining disks
are stacked recursively on top. The classes are then stacked bottom-to-top in order
of decreasing radius.

Left-to-right by leftmost: The disk with leftmost left extreme is put at the bottom,
and the remaining disks are stacked recursively on top.

Max-Min: The disks are stacked to maximize the visible boundary length of the disk
with least visible boundary length, using the algorithm presented in Sect. 3.

Max-Min within class, classes large-to-small: Within each class we maximize the
visible boundary length of the disk with least visible boundary length, using the
algorithm presented in Sect. 3. The classes are then stacked bottom-to-top in order
of decreasing radius.

All the left-to-right methods could of course also be executed from right-to-left with
different results.

Evaluation. To evaluate the stacking drawings we measured the visible boundary
length of the top-10 of the least visible disks and we measured the total boundary
length that is visible. Disks that do not intersect any other disk were excluded from
the top-10, otherwise the top-10 lists would be occupied by very small disks that
are free, that is, disjoint from the rest and are therefore fully visible regardless of
the stacking method. Observe that for sets of disks with different sizes, it may make
a difference if 1 cm of the boundary of a small disk or 1 cm of the boundary of
a larger disk is visible. This implies a difference in absolute visibility of a disk (in
length units) and relative visibility (in percentages). Our tables include the average
relative visibility of the top-10, and the average relative visibility of the whole set
of disks. Note that the top-10 is selected based on absolute visibility. The average
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Table 2 Results for the data sets with disks of arbitrary sizes

Data sets Top-10 average Total boundary

Absolute (Relative) Absolute (Relative)

City 156 Left-to-right by center 0.00 (0.00%) 1405 (57.76%)

Left-to-right by leftmost 2.14 (21.48%) 1711 (74.84%)

Large-to-small 2.72 (25.48%) 1730 (78.21%)

Max-Min 4.42 (43.03%) 1759 (79.33%)

City 538 Left-to-right by center 0.00 (0.00%) 1533 (57.12%)

Left-to-right by leftmost 0.44 (14.38%) 1815 (72.56%)

Large-to-small 0.00 (0.00%) 1809 (73.82%)

Max-Min 0.88 (25.91%) 1868 (76.18%)

Earthquake Left-to-right by center 0.00 (0.00%) 14446 (44.11%)

magnitude Left-to-right by leftmost 4.96 (9.16%) 15061 (46.11%)

Large-to-small 0.00 (0.00%) 12126 (37.69%)

Max-Min 12.45 (23.04%) 16608 (50.90%)

Earthquake Left-to-right by center 0.00 (0.00%) 4697 (43.74%)

death counts Left-to-right by leftmost 0.66 (69.93%) 8568 (87.75%)

Large-to-small 0.78 (100.00%) 9049 (91.61%)

Max-Min 0.78 (100.00%) 9016 (91.76%)

Table 3 Results for the classed data sets

Data sets Top-10 average Total boundary

Absolute (Relative) Absolute (Relative)

City 156 Left-to-right by center 0.00 (0.00%) 1556 (56.93%)

Left-to-right within class, classes large-to-small 2.99 (21.13%) 1805 (72.85%)

Left-to-right by leftmost 3.02 (25.06%) 1800 (69.55%)

Max-Min 5.30 (43.02%) 1844 (74.02%)

Max-Min within class, classes large-to-small 4.80 (36.16%) 1829 (73.89%)

Earthquake Left-to-right by center 0.00 (0.00%) 12123 (45.06%)

magnitude Left-to-right within class, classes large-to-small 1.38 (3.03%) 13286 (55.81%)

Left-to-right by leftmost 3.38 (10.19%) 13717 (54.72%)

Max-Min 10.78 (37.26%) 14429 (59.31%)

Max-Min within class, classes large-to-small 6.41 (14.31%) 13915 (58.09%)

relative visibility of the top-10 shows the average percentage of the boundary that is
visible, where the average is taken over the ten non-free disks with smallest absolute
visibility.

Table 2 summarizes the results for the four stacking methods for the four unclassed
data sets. It is clear that the max-min method performs best on the top-10 of least
visible disks. The left-to-right by center method performs worst, except for the case
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Fig. 15 USA, 156 biggest cities, showing only the right half of the map

where disks have roughly the same size (earthquake magnitudes), where the large-
to-small method performs poorly. The same observations hold for data sets that are
not shown in this paper (1260 cities, 39 tsunami death counts, 33 tsunami heights).
Table 3 shows the results of the five stacking methods for the two classed data sets.
Again the max-min method performs best and left-to-right by center worst. The large-
to-small version of the max-min method is not as good as the standard max-min
method.

Besides visible boundary length, another important aspect is the visual quality
of the resulting map. Since this cannot be measured, user experiments are needed to
evaluate it. In this paper, we show only a few figures for comparison. Figure 15 shows
(the eastern part of) the 156 largest cities of the USA with disk areas proportional to
the population stacked by the four different methods (the differences can be seen
most clearly in the upper right corners of the maps). The figures correspond to the
top four rows of Table 2. It is noticeable that the left-to-right methods produce maps
that seem “unbalanced” or “asymmetric”. A left-to-right structure is visible that has
no cartographic meaning. This artifact can be perceived even more clearly on maps
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Fig. 16 Earthquake magnitudes (Richter scale) stacked by the Max-Min method

Fig. 17 Earthquake death counts stacked by the Max-Min method

where the disk sizes are less different (not shown here). Finally, Figs. 16 and 17 show
earthquakes worldwide by magnitude and by death count, stacked by the max-min
method.

The min-max method has a higher computational cost (O(n2 logn) time) than
the simple left-to-right or large-to-small methods, which require only sorting. The
implementation effort is also significantly higher for the max-min method. However,
it scores better than the other methods according to Tables 2 and 3, especially for the
least visible disks. Furthermore, the max-min method does not have visual artifacts
like the left-to-right methods, which is an advantage especially for sets of disks with
little difference in size (including classed disk sizes), and on such sets of disks it
clearly outperforms the large-to-small method on visible perimeter.

5 Conclusions and Open Problems

We described an algorithm that solves the Max-Min problem for stacking drawings in
O(n2 logn) time. In our experiments, comparing this algorithm with three heuristics,
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we found that our method performed best on the test data considered. However, we
did not experiment with methods that compute physically realizable drawings, and
it is unclear how they would perform in comparison with our methods for stacking
drawings. Solving the Max-Min problem (or the Max-Total problem) for physically
realizable drawings is NP-hard, and developing good heuristics for such drawings is
not trivial.

Among the open problems that remain are the computation of optimal Max-Min
stacking drawings in o(n2 logn) time, the computation of optimal Max-Total stacking
drawings (or approximations thereof) in polynomial time, and the development of
approximation algorithms for physically realizable drawings.
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