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Abstract We investigate the algorithmic performance of Vickrey-Clarke-Groves
mechanisms in the single item case. We provide a formal definition of a Vickrey
algorithm for this framework, and give a number of examples of Vickrey algorithms.
We consider three performance criteria, one corresponding to a Pareto criterion, one
to worst-case analysis, and one related to first-order stochastic dominance. We show
that Pareto best Vickrey algorithms do not exist and that worst-case analysis is of no
use in discriminating between Vickrey algorithms. For the case of two bidders, we
show that the bisection auction stochastically dominates all Vickrey algorithms. We
extend our analysis to the study of weak Vickrey algorithms and winner determina-
tion algorithms. For the case of two bidders, we show that the One-Search algorithm
stochastically dominates all column monotonic weak Vickrey algorithms and that
a suitably adjusted version of the bisection algorithm, the WD bisection algorithm,
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stochastically dominates all winner determination algorithms. The WD bisection al-
gorithm Pareto dominates all column monotonic winner determination algorithms in
the n bidder case.

Keywords Single item auctions · Vickrey-Clarke-Groves implementation ·
Algorithms · Performance analysis

1 Introduction

Recently there has been quite some interest in designing sealed-bid auctions with
limited communication [2, 3] and iterative auctions with few rounds [5, 9]. However,
designs with severely limited communication or large bid levels necessarily lead to
inefficient allocations for some instances, meaning that the items are not necessarily
allocated to those who value them most.

In [12], we have proposed an iterative auction, called the bisection auction, for
selling a single, indivisible item to a set of bidders who have integer valuations for this
item. We have shown that in the proposed auction truth-telling is a weakly-dominant
strategy and the equilibrium where all bidders follow this strategy always results in
an efficient allocation. The bisection auction shares this property with the Vickrey
auction and the English auction. However, in contrast to these auctions the bisec-
tion auction is more economical in the amount of information that bidders have to
communicate about their willingness to pay. Moreover, in comparison to the English
auction, it needs fewer rounds to determine the winner and the price he has to pay.
In [11] we provide upper bounds on the average information revealed in the course
of the auction and compare these to lower bounds for the Vickrey auction and the
English auction.

Results of Green and Laffont [10] and Holmström [15] imply that under certain
minor restrictions on bidders’ utility functions, the Vickrey-Clarke-Groves (VCG)
mechanisms are the only ones that are incentive compatible in dominant strategies
and allocate efficiently. For the case of a single indivisible item any mechanism that
belongs to this class is a mechanism that finds the outcome corresponding to the
Vickrey auction. This outcome requires that the winner is a bidder having the highest
valuation and the price he pays for the item is equal to the second-highest valuation.
We can therefore interpret such an auction as an algorithm that finds the identity
of all bidders with the highest valuation and the exact value of the second-highest
valuation. We formally introduce Vickrey algorithms as algorithms that retrieve this
information. We introduce a number of examples of Vickrey algorithms, including
the direct revelation and modified direct revelation algorithm, as well as the bisection
and modified bisection algorithm. Well-performing Vickrey algorithms are attractive
as they lead to auctions that result in a fast allocation of the object. They also have
the attractive feature that bidders only have to reveal part of their valuations.

In this paper we model a bidder’s valuation by a binary code of length R. An algo-
rithm is viewed as a series of queries that are performed on the resulting R ×n matrix
of zeroes and ones. A Vickrey algorithm is deemed to be fast when it needs to query
only a limited number of entries (cells) in the matrix in order to find the Vickrey out-
come. We study three performance criteria for Vickrey algorithms to specify what we
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mean by “fast”. The first one is a Pareto criterion where one Vickrey algorithm is su-
perior to another if it needs less steps to identify the bidders with the highest valuation
and the exact value of the second-highest valuation, irrespective of the realization of
the bidders’ valuations. Surprisingly, although the bisection algorithm Pareto domi-
nates many other algorithms, including the direct revelation algorithm, we show that
Pareto best algorithms do not exist.

It is widely accepted in theoretical computer science to compare the performance
of two algorithms by considering the performance of the algorithms in the worst-
case (see e.g. [16]). For the problem at hand, worst-case analysis makes little sense
since for any algorithm there exists a realization of valuations requiring Rn queries
to provide a Vickrey outcome, where n is the number of bidders and R is the length
of the binary encoding of the valuations.

Therefore, we need a third, more sophisticated tool for algorithm comparison.
Given an algorithm we count the number of realizations of valuations for which the
number of queries is at most k, for some 0 ≤ k ≤ Rn. We say that algorithm A1

stochastically dominates algorithm A2 if for every k the number of valuations on
which algorithm A1 finds the Vickrey outcome by performing at most k queries is
not less than the number for algorithm A2. For the case of two bidders we show that
the bisection algorithm stochastically dominates any other Vickrey algorithm. We
discuss the complications that arise in extending this result to more than two bidders.
Our counting of queries utilizes a representation of algorithms as binary trees. The
trees are similar to those which are used to derive lower bounds on the worst-case
number of comparisons of sorting algorithms (see, e.g., Chap. 9 of [4]).

In a Vickrey algorithm, the identity of all bidders with the highest valuation and
the exact value of the second-highest valuation is determined. An alternative problem
is the one where the identity of at least one bidder with the highest valuation and the
exact value of the second-highest valuation is determined. An algorithm for this al-
ternative problem is called a weak Vickrey algorithm. We introduce the One-Search
algorithm and show the partial result that for the case of two bidders the One-Search
algorithm is stochastically dominant within the class of so-called column monotonic
weak Vickrey algorithms. It also follows that the One-Search algorithm strictly sto-
chastically dominates the bisection algorithm for the weak Vickrey case.

Yet another interesting problem is the winner determination problem. It concerns
the determination of the identity of all bidders with the highest valuation. We ad-
just the bisection algorithm to make it a suitable algorithm for solving this problem
and call it the WD bisection algorithm. For the case of two bidders we show that
the WD bisection algorithm stochastically dominates all winner determination algo-
rithms. Moreover, for the case with n bidders, the WD bisection algorithm Pareto
dominates all column monotonic winner determination algorithms. Nevertheless, it
is not obvious to show that it dominates all winner determination algorithms in the
weaker stochastic dominance sense.

Counting the number of bits that have to be communicated in a decentralized func-
tion computation has been studied extensively in computer science under the term
communication complexity, see [17]. However, to the best of our knowledge, this lit-
erature has only studied worst-case or average-case communication. Our results show
that there is a potential for a measure that allows to differentiate between algorithms
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that are equivalent in terms of worst-case communication, and that provides a finer
differentiation as average-case analysis. Also related to our problem is literature on
bit probing and cell probing, see for example [20]. This literature deals with a trade-
off between an enlarged binary encoding of the problem, and performance savings
in solving a decision problem. Again, this literature limits algorithm comparison to
worst-case and average-case analysis.

The paper is organized as follows. In Sect. 2 we give a formal definition of a Vick-
rey algorithm and we give a number of examples of such algorithms. In Sect. 3 we
introduce two frequently used performance criteria and study how particular Vickrey
algorithms perform. We show that Pareto best algorithms do not exist and argue that
worst-case analysis is not very helpful. Section 4 introduces the performance crite-
rion of stochastic dominance and shows that for the case of two bidders the bisec-
tion algorithm stochastically dominates all Vickrey algorithms. Section 5 introduces
the One-Search algorithm and shows that this algorithm stochastically dominates all
column monotonic weak Vickrey algorithms for the case of two bidders. Section 6
derives results for the winner determination problem and discusses the complications
that arise when n ≥ 3. Section 7 concludes.

2 Auctions as Algorithms

Suppose there is an auctioneer who wants to sell a single indivisible item to an indi-
vidual in a set N = {1, . . . , n} of bidders, where n ≥ 2. Each bidder i has a valuation
for the item that is given in a binary encoding of length R ≥ 2.1 Thus, the valuation
of bidder i is a vector vi = (vri), r = 1, . . . ,R, representing a value

∑R
r=1 vri2R−r ,

where each element vri is a binary digit, so is equal to 0 or 1. The set Vi = {0,1}R
denotes the set of all possible realizations of bidder i’s valuation. A realization of
the valuations of all bidders is therefore a matrix v = (vi)i∈N , where column i cor-
responds to the valuation vi of bidder i. The set V = ∏

i∈N {0,1}R is the set of all
possible realizations of bidders’ valuations. The valuation of a bidder is private infor-
mation, so is only known to the bidder himself.

If the auctioneer wants to allocate the object in an incentive compatible and effi-
cient way, he should use a Vickrey-Clarke-Groves mechanism. If in addition we also
require the mechanism to be individual rational, the auctioneer needs to find a bidder
with the highest valuation, and charge this bidder a price equal to the second-highest
valuation.2 The major advantage of this mechanism is that it gives the bidders the
appropriate incentives to reveal their valuation truthfully.

In terms of the matrix v, the task of the auctioneer is to identify a column whose
value exceeds the values of all other columns, and to determine the value of the

1The cases n = 1 and R = 1 are trivial and not of much interest.
2This follows from theorems by Green and Laffont [10] and Holmström [15], though these theorems
require that the set of valuations is convex. Using a graph theoretic approach as in [13], one can easily
see that one has slightly more flexibility in the case of integer valuations in order to make the efficient
mechanism incentive compatible and individual rational: the set of payments that may be charged to the
winner is given by the closed interval [k − 1, k], where k is the second highest valuation.
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second-highest column.3 We are interested in the fastest algorithm to do so. An algo-
rithm is represented as a sequence of queries by the auctioneer about the value of a
particular coordinate of the matrix v. The well-known 2nd price, sealed bid auction
would ask for the values of all coordinates of v.4 We will show that there are faster
algorithms.

To define precisely what we mean by an algorithm, we need some more notation.
For k ∈ N, a history h of length k is a sequence of k binary digits, so h = (b1, . . . , bk),
where bj ∈ {0,1}, j = 1, . . . , k. The length of a history h is denoted by �(h). The
initial history is given by h0 = ∅ and has length zero. The history g is a subhistory
of h, denoted g ≤ h, if the first �(g) digits of h yield the history g. The history
g is a proper subhistory of h, denoted g < h, if g �= h and g ≤ h. The set C =
{1, . . . ,R} × N denotes the set of matrix coordinates, in this paper also referred to as
entries or cells.

Definition 2.1 Consider a triplet A = (H,σ,ϕ), where H is a collection of histories,
and σ :H → {0,1} is the stopping function. The set of non-terminal histories is H 0 =
{h ∈ H | σ(h) = 0}. The function ϕ:H 0 → C is the query function. The triplet A =
(H,ϕ,σ ) is an algorithm if:

1. ∅ ∈ H .
2. If h ∈ H and σ(h) = 0, then (h,0) ∈ H and (h,1) ∈ H .
3. If h ∈ H and σ(h) = 1, then (h,0) /∈ H and (h,1) /∈ H .
4. If h ∈ H and g ≤ h, then g ∈ H .

The interpretation of an algorithm is as follows. First, nature selects an instance
v in V . The algorithm A starts without any information, represented by the history
h0 = ∅. If σ(∅) = 1, the algorithm has solved the problem and stops. Otherwise,
σ(∅) = 0 and the algorithm performs a query, meaning that it opens cell ϕ(h0) of
v, which generates the history h1 = (vϕ(h0)), where vϕ(h0) is the value found in cell
ϕ(h0). If σ(h1) = 1, the algorithm stops. Otherwise, the algorithm performs another
query and opens cell ϕ(h1), which generates the history h2 = (h1, vϕ(h1)). In general,
after k steps history hk is generated. If σ(hk) = 1, the algorithm stops. Otherwise,
the algorithm opens cell ϕ(hk), which generates the history hk+1 = (hk, vϕ(hk)), and
so forth.5

3A column is said to be the second highest one if there is at least one other column whose value is at least
as high as the value of the column in question, and at most one other column whose value is strictly higher
than the value of the column in question.
4This auction is usually called the Vickrey auction. We deliberately do not use this name though to avoid
confusion with other notions in this paper that bear the prefix “Vickrey”.
5Our terminology such as “the algorithm opens a cell”, suggests direct access to bits. However, we do
not think of an algorithm as an auctioneer who has direct access to the bits that encode the bidders’
valuations. Rather, we think of an algorithm as being an, admittedly rigorous, restriction of the query
language of the auctioneer. The goal of this rigor is to create a setting in which the encoding of the valuation
is unambiguous, giving exact meaning to the data in the valuation matrix. This is of course a restriction
on the bidding language of the auctioneer, but it does not require the auctioneer to have direct access to
the encoding of the valuations, and there are several ways to relax this initial assumption. Furthermore,
such severe restrictions on the bidding language are common practice in electronic auction design, where
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The notation of a history only includes the announced binary digits, but not the
cell that contained them. This is without loss of generality, since the algorithm itself
can be used to determine the queried cell. Thus, to include data regarding the queries
itself—not just the answers—into histories will needlessly complicate our notation.
It suffices just to remember which answers were given in which order.

Definition 2.2 An algorithm A = (H,σ,ϕ) is a Vickrey algorithm if the stopping
criterion σ is defined in such a way that the algorithm does not stop before the identity
of all bidders with the highest valuation and the exact value of the second-highest
valuation are found.6

The identity of all bidders with the highest valuation has been found if for each
bidder it either can be decided that he has the highest valuation or it can be decided
that he does not have the highest valuation. Consider an algorithm A = (H,σ,ϕ)

that has generated a history h. We associate to such a history the minimal valua-
tion of bidder i ∈ N , vi(h), by assigning a 0 to all unopened cells of bidder i, and
the maximal valuation of bidder i, v̄i (h), by assigning a 1 to all unopened cells
of bidder i. At h it can be decided that a bidder i′ has the highest valuation if
vi′(h) ≥ maxi∈N\{i′} v̄i (h), and it can be decided that i′ does not have the highest
valuation if v̄i′(h) < maxi∈N\{i′} vi(h).

The exact value of the second-highest valuation has been found if the entire valu-
ation of a bidder that is known to have the second-highest valuation is known. More
precisely, consider an algorithm A = (H,σ,ϕ) that has generated a history h. At h

the second highest valuation is known if there is a bidder i′ ∈ N with:

1. vi′(h) = v̄i′(h);
2. there is at least one bidder i �= i′ such that vi(h) ≥ v̄i′(h);
3. there is at most one bidder i �= i′ such that v̄i (h) > v̄i′(h).

Notice that the requirement vi′(h) = v̄i′(h) is equivalent to the statement that all cells
of bidder i have been opened. We present two examples of Vickrey algorithms.

Definition 2.3 The direct revelation algorithm As = (Hs, σ s, ϕs) is the algorithm
corresponding to the 2nd price sealed bid auction, where first bidder one is queried
for his valuation by asking for increasing values of r the value of cell (r,1), next the
second bidder is queried, and so on, and so forth, would be defined as follows. The set
Hs of histories consists of all sequences with less than or equal to Rn binary digits.
For h ∈ H , σ s(h) = 0 if �(h) ≤ Rn − 1 and σ s(h) = 1 if �(h) = Rn. For h ∈ H 0,
ϕs(h) = (r, i), where i is the largest integer less than or equal to (�(h)/R) + 1, and
r = �(h) + 1 − (i − 1)R.

the binary nature of the medium dictates precisely such restrictions on the auctioneer’s queries. The only
real implicit assumption we make here is simply that bidders report truthfully, truthful bidding being a
dominant strategy under any Vickrey algorithm, and therefore plausible bidder behavior.
6We require a Vickrey algorithm to find the identity of all bidders with the highest valuation to give them
equal chance to get the object in case of ties. In Sect. 5 we show that the results depend on this exact
formulation. Only requiring that at least one bidder with highest valuation needs to be identified will be
shown to yield different optimal algorithms.
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The direct revelation algorithm continues to make queries even after all the in-
formation needed has been retrieved. A superior alternative therefore is the modified
direct revelation algorithm defined as follows.

Definition 2.4 The modified direct revelation algorithm Ams = (Hms, σms,ϕms) is
the algorithm that stops as soon as the identity of all bidders with the highest valuation
and the exact value of the second highest valuation are found.

Vickrey algorithms that stop as soon as the identity of all bidders with the high-
est valuation and the exact value of the second highest valuation are found, are called
proper. The direct revelation algorithm is not proper, whereas, by definition, the mod-
ified direct revelation algorithm is.

Acyclic algorithms never perform the same query, i.e. never ask a bidder to report
a specific digit of his valuation more than once. More precisely, an algorithm A =
(H,σ,ϕ) is cyclic if there are histories g,h ∈ H with g < h such that ϕ(g) = ϕ(h).
Otherwise it is acyclic.

Obviously an acyclic algorithm always ends within Rn performed queries. Both
the direct revelation algorithm and the modified direct revelation algorithm are
acyclic.

Another Vickrey algorithm is the algorithm corresponding to the bisection auction
proposed in [12]. The bisection auction has R rounds, with the auctioneer announcing
a price in each round. The first price equals 2R−1, the middle of the initial interval
[0,2R). Bidders report their demand at the current price by sealed bids. A yes-bid
stands for the announcement to be willing to buy at the current price, a no-bid for the
contrary. As a function of these bids, the auctioneer announces the price of the next
round.

In case there are at least two bidders submitting a yes-bid, the price goes up to
the middle of the upper half interval, i.e. the interval [2R−1,2R). The bidders that are
allowed to participate actively in the next round are the ones that said yes and they
are competing for the object in the price range [2R−1,2R). The other bidders drop
out of the auction.

In case there is at most one bidder saying yes, attention shifts to the lower half
interval, i.e. the interval [0,2R−1) and the price goes down to the middle of this inter-
val. Two different things can happen now. First, if no one has submitted a yes-bid then
all active bidders remain active in the next round. In the other case there is a single
bidder that submitted a yes-bid. This bidder now becomes the winner and he gets the
object. Nevertheless the auction doesn’t end, but enters a price-determination phase.
The active bidders in the next round are the ones that were active in the previous
round minus the winner. The remaining active bidders are competing on the lower
half interval [0,2R−1). The winner is no longer active, and the auctioneer by default
considers him to say yes to all prices that are proposed beyond the moment he became
the winner. Apart from this, the way it is decided whether the price should go up or
down is not any different from the way this is decided in the winner-determination
phase. In each round depending on submitted bids we subsequently restrict attention
to either the lower or the upper half of the current interval.

Iterating this procedure will eventually yield a winner and a price. When in no
round precisely one bidder said yes, at least two bidders will still be active after R
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rounds, and the object is assigned by a lottery to one of them. The price is uniquely
determined because in each round the length of the current interval goes down by a
factor of two, so after R rounds the resulting interval is of length 1, and since it is a
half-open interval, it contains exactly one integer. This integer is declared to be the
price the winner of the auction has to pay for the object.

The bisection auction implicitly defines the bisection algorithm, denoted by B , and
opens cells of the matrix v in R steps. In step r the algorithm B opens cells in the r th
row of v. Inside a step the cells can be opened in an arbitrary order, but to be specific
we require this order to correspond to the ranking {1, . . . , n} of the bidders. To define
cells to be opened in a step we introduce sets Ar , Wr , and Yr , with as interpretation
the set of active bidders, the set of winning bidders, and the set of bidders saying yes.
Initially, A1 = N and W1 = ∅. The set Y1 will be determined by the algorithm.

In step r the bisection Algorithm B:
1. Opens cell (r, i) for all i ∈ Ar , with (r, i1) before (r, i2) when i1 < i2;
2. Defines Yr = {i ∈ Ar | vri = 1};
3. Defines Ar+1 and Wr+1 as follows:

• if |Yr | = 0, then Wr+1 = Wr and Ar+1 = Ar ;
• if |Yr | = 1 and Wr = ∅, then Wr+1 = Yr and Ar+1 = Ar \ Yr ;
• if |Yr | = 1 and Wr �= ∅ or if |Yr | > 1, then Wr+1 = Wr and Ar+1 = Yr .

After R steps the bisection algorithm opens all cells of all valuations from the set
AR+1. The valuation of a bidder in this set equals the second highest valuation. If
WR+1 is non-empty, it contains the bidder with the highest valuation. Otherwise, the
set AR+1 contains at least two bidders, all of them having the highest valuation [12].

Definition 2.5 The bisection algorithm B = (HB,σB,ϕB) is the algorithm defined
in previous paragraphs.

Example 2.6 Consider the case where n = 2, R = 3, and

v =
⎡

⎣
0 0
1 0
1 0

⎤

⎦ .

The bisection algorithm will open the cells (1,1), (1,2), (2,1), (2,2), and (3,2) and
generates the terminal history h = (0,0,1,0,0). For this instance v, it needs one
step less than both the direct revelation algorithm and the modified direct revelation
algorithm.

It can easily be checked that the bisection algorithm B is acyclic. Also, for n = 2,
it is proper. The following example however shows that the bisection algorithm is not
proper for n ≥ 3.

Example 2.7 Consider the case where n = 3, R = 2, and

v =
[

1 0 0
0 1 0

]

.
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The bisection algorithm will open the cells (1,1), (1,2), (1,3), (2,2), and (2,3) and
generates the terminal history h = (1,0,0,1,0). For this instance v, the bisection
auction needs five steps. However, it could have terminated after four steps, since at
that point the identity of all bidders with the highest valuation and the exact value of
the second-highest valuation were known.

Definition 2.8 The modified bisection algorithm Bm = (HmB,σmB,ϕmB) is the al-
gorithm that follows the same procedure as the bisection algorithm, but stops as soon
as the identity of all bidders with the highest valuation and the exact value of the
second-highest valuation are found.

The modified bisection algorithm is acyclic and, by definition, proper. For n = 2,
the bisection algorithm and the modified bisection algorithm coincide.

3 Performance Criteria for Algorithms

In this section we discuss two widely accepted criteria for the comparison of algo-
rithms, namely the Pareto criterion, and the worst-case criterion. We argue that in our
setting both criteria are not very useful. The Pareto criterion does exclude clearly in-
ferior algorithms such as cyclic and non-proper algorithms, but does not discriminate
much beyond these obvious inferiorities, and it turns out that a Pareto-best Vickrey al-
gorithm does not exist. The worst-case criterion is also not useful because all acyclic
algorithms turn out to be worst-case equivalent.

Given an algorithm A, �A:V → N∪{∞} denotes the function that assigns to each
instance v in V the length of the history after which the algorithm stops, or equiva-
lently the number of queries that A performs on v. Among all Vickrey algorithms we
want to find the one with the most favorable �A.

One approach consists of preferring an algorithm A1 to an algorithm A2 if for all
v ∈ V , �A1(v) ≤ �A2(v). We refer to this concept as Pareto preferred.

Definition 3.1 An algorithm A1 is Pareto preferred to an algorithm A2 if for all
v ∈ V , �A1(v) ≤ �A2(v). The algorithm A1 is strictly Pareto preferred to A2 if A1 is
Pareto preferred to A2, and A2 is not Pareto preferred to A1. A Vickrey algorithm is
Pareto best if it is Pareto preferred to any other Vickrey algorithm.

Not all Vickrey algorithms are candidates for being Pareto best. As the next propo-
sition states, neither non-proper Vickrey algorithms nor cyclic Vickrey algorithms are
Pareto best. The proof is easy, and therefore omitted.

Proposition 3.2 For any Vickrey algorithm A that is not proper there is a Vickrey
algorithm A′ that is strictly Pareto preferred to A. For any cyclic Vickrey algorithm A

there is a Vickrey algorithm A′ that is strictly Pareto preferred to A.

Thus both cyclic and non-proper Vickrey algorithms are not Pareto best. However,
the Pareto criterion has only limited further use beyond these straightforward obser-
vations. There do exist rather silly algorithms that accidentally perform very well for
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particular instances. An example is the reversed modified direct revelation algorithm,
that starts by opening cell (R,n), next cell (R − 1, n), and continues in this way
until all cells of bidder n are opened. The algorithm then continues with the same
operations for bidders n − 1, n − 2, and so on, until the identities of all bidders with
the highest valuation, and the exact value of the second highest valuation have been
found.

Now consider the case considered in Example 2.6 with n = 2, R = 3, and

v =
⎡

⎣
0 0
1 0
1 0

⎤

⎦ .

For this instance, the length of the direct revelation algorithm and the modified direct
revelation algorithm is six, the length of the bisection algorithm and the modified
bisection algorithm is five, and the length of the reversed modified direct revelation
algorithm is four. Indeed, this algorithm opens cell (3,1) after history (0,0,0), con-
cludes that bidder 1 is the unique bidder with the highest valuation, and knows the
second highest valuation to be equal to zero.

This already indicates that the criterion of being Pareto best is not appropriate for
the comparison of algorithms in our setting. The following result shows that Pareto
best Vickrey algorithms do indeed not exist.

Theorem 3.3 Pareto best Vickrey algorithms do not exist.

Proof We present the proof for the case n = 2. For n ≥ 3 the proof runs along similar
lines. Based on Proposition 3.2, we can restrict our attention to proper acyclic algo-
rithms when searching for a Pareto best Vickrey algorithm. Consider the instances

v1 =

⎡

⎢
⎢
⎣

0 0
...

...

0 0
1 0

⎤

⎥
⎥
⎦ and v2 =

⎡

⎢
⎢
⎣

0 0
...

...

0 0
0 1

⎤

⎥
⎥
⎦ .

Any Pareto best algorithm will only open all cells of the second column together
with cell (R,1) for v1 and the all cells of the first column together with cell (R,2)

for v2. Therefore, any Pareto best algorithm has to start with opening a cell in row R.
However, applying the same line of reasoning to the instances

v3 =

⎡

⎢
⎢
⎣

0 1
0 0
...

...

0 0

⎤

⎥
⎥
⎦ and v3 =

⎡

⎢
⎢
⎣

1 0
0 0
...

...

0 0

⎤

⎥
⎥
⎦

shows that any Pareto best algorithm starts by opening a cell in the first row. It follows
that Pareto best Vickrey algorithms do not exist. �

Another approach that is often taken when assessing the performance of an al-
gorithm is to perform a worst-case analysis. A Vickrey algorithm A1 is worst-case
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preferred to a Vickrey algorithm A2 if maxv∈V �A1(v) ≤ maxv∈V �A2(v). A Vick-
rey algorithm A is worst-case best if A is worst-case preferred to any other Vickrey
algorithm.

In a worst-case analysis of the algorithms under consideration, an upper bound is
given for the number of queries the algorithm performs for a fixed number of bidders
and length of valuations. Clearly, for any two Vickrey algorithms A1 and A2, A1 is
worst-case preferred to A2 whenever A1 is Pareto preferred to A2. However, worst-
case analysis does not provide any insights when applied to Vickrey algorithms, as
all acyclic Vickrey algorithms are equivalent to each other according to this criterion.

Theorem 3.4 Let A1 and A2 be two acyclic Vickrey algorithms. Then A1 is worst-
case equivalent to A2.

The proof is simple. Any acyclic Vickrey algorithm terminates in less than or equal
to Rn steps, and the upper bound is attained for all instances v with vi = vj for all
i, j ∈ N , as the only way to decide whether a bidder has the highest valuation is to
open all his cells.

4 Stochastic Dominance of the Bisection Algorithm

The Pareto criterion and worst-case analysis are of no use for comparison of Vick-
rey algorithms. The criterion we advocate relies on the concept of the characteristic
function of an algorithm.

Definition 4.1 The characteristic function of an algorithm A is the function FA:
N → {0}∪N, where FA(k) equals the number of instances in V for which �A(v) ≤ k.

Consider an acyclic Vickrey algorithm A. Since the number of elements in V

equals 2Rn, and opening all cells definitely yields the required information, it holds
that FA(k) = 2Rn for all k ≥ Rn. When all bidders have identical valuations, any
Vickrey algorithm will open all cells. Therefore FA(Rn) − FA(Rn − 1) ≥ 2R . Also,
the characteristic function of an algorithm enables us to identify the number of in-
stances for which the algorithm terminates in exactly k steps, since this number equals
FA(k) − FA(k − 1).

Definition 4.2 An algorithm A1 stochastically dominates an algorithm A2 if
FA1(k) ≥ FA2(k) for all k ∈ N. An algorithm A1 strictly stochastically dominates A2

when A1 stochastically dominates A2, but A2 does not stochastically dominate A1.

Notice that an algorithm A1 stochastically dominates an algorithm A2 precisely
when the graph of FA1 is never below the graph of FA2 .

We use this criterion to compare Vickrey algorithms. The most favorable instance
is one where in the first row one cell contains a 1 and the other entries are 0, since
the bidder with the highest valuation is then known. If entry v1,i = 0, but vr,i = 1
for all r ≥ 2, then opening the cells in column i determines the exact value of the
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second-highest valuation. Any Vickrey algorithm has to open all the cells of the bid-
der with the second-highest valuation. We therefore obtain that for all Vickrey algo-
rithms FA(k) = 0 for all k ≤ R +n− 2, and there are Vickrey algorithms A such that
FA(R + n − 1) > 0.

Definition 4.3 A Vickrey algorithm A is stochastically dominant when A stochasti-
cally dominates any other Vickrey algorithm.

Definition 4.2 is equivalent to the definition of first-order stochastic dominance, as
it is defined in e.g. [7] and [18], when we assume a uniform distribution of instances.
Indeed, for the case at hand, it would state that an algorithm A1 first-order stochas-
tically dominates an algorithm A2 if for every number of queries k, the probability
of stopping after at most k queries is not smaller for A2 than it is for A1. Rescal-
ing the characteristic function along the y-axis by dividing by the total number of
instances 2Rn, we get the function that for every number of queries shows the proba-
bility that the algorithm performs at most as many queries if instances were randomly
chosen. A direct consequence is that, when we assume instances to be uniformly dis-
tributed, an algorithm A1 that (strictly) stochastically dominates an algorithm A2 has
a (strictly) shorter average running time than the algorithm A2.

Although not used in this paper, another interesting notion directly related to sto-
chastic dominance is the Lorenz criterion, well known in utility theory and welfare
economics. The Lorenz criterion was developed in 1905 by the American economist
Max Lorenz to measure inequality of income over a population. An allocation a1 of
goods over consumers Lorenz dominates another allocation a2 of goods over con-
sumers when, for each k, under a1 the sum of the utilities of the k poorest consumers
is at least as high as the sum of the utilities of the k poorest consumers under a2.7

The connection to stochastic dominance is evident.
Applications of stochastic dominance can be found in operations research, see for

example [14, 19], and in game theory, see for example [8, 21]. Applications of the
Lorenz criterion can for example be found in [1, 6].

The next result claims that stochastic dominance is weaker than the notion of
Pareto best, but stronger than the notion of worst-case best. The proofs are obvious
and therefore omitted.

Theorem 4.4 Let A1 and A2 be two algorithms. If A1 is Pareto preferred to A2,
then A1 stochastically dominates A2. If A1 stochastically dominates A2, then A1 is
worst-case preferred to A2.

We prove that in the case of 2 bidders, i.e. N = {1,2}, the bisection algorithm is
stochastically dominant. Recall that the bisection algorithm coincides with the mod-
ified bisection algorithm when n = 2, so that the bisection algorithm is proper in this

7“Poorest” here means “having the lowest level of utility”.
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case. We use the notation

v =
⎡

⎢
⎣

a1 b1
...

...

aR bR

⎤

⎥
⎦ .

Definition 4.5 Let v be an instance in V . Row r of v is a double if ar = br and is a
single otherwise.

Let rA:V → N be the function that assigns to each instance v in V the number of
rows r of v for which algorithm A opens both cells (r,1) and (r,2) before it stops. Let
GA: N → N be the function that assigns to each k the number GA(k) of instances in
v ∈ V for which rA(v) ≤ k. Since a Vickrey algorithm A should find the exact value
of the second-highest valuation and thus should open all the cells of a bidder with the
second-highest valuation, the number of queries that an acyclic Vickrey algorithm A

performs on an instance v is equal to the number of rows that A opens in V before it
stops plus R:8

�A(v) = rA(v) + R.

For any two acyclic Vickrey algorithms A1 and A2 it therefore holds that GA1(k) ≥
GA2(k) for all k is equivalent to FA1(k) ≥ FA2(k) for all k ∈ N. To prove that an
acyclic Vickrey algorithm A1 stochastically dominates an acyclic Vickrey algorithm
A2, it suffices to show that GA1(k) ≥ GA2(k) for all k ∈ N.

Lemma 4.6 Assume n = 2. Let A be an acyclic Vickrey algorithm. If v ∈ V contains
R doubles, then rA(v) = R. For any other v, A opens at least one single before
terminating.

Proof The first statement of the theorem is obvious. Consider the case where v has
at least one single. If a Vickrey algorithm does not open any single, it cannot decide
for both bidders whether they have the highest valuation or not. This contradicts the
definition of a Vickrey algorithm. �

If we do not require an algorithm to find the identity of all bidders with the highest
valuation, then the statement of Lemma 4.6 does not hold. Consider the following
example. Suppose an algorithm has performed five queries, resulting in

⎡

⎣
0 0
1 1
0 ∗

⎤

⎦ .

The information revealed is enough to find the second highest valuation, which is
equal to the valuation of bidder 1, as well as the identity of a bidder with the highest
valuation, bidder 2. If we are satisfied with finding only a bidder with the highest valu-
ation we can stop without opening the remaining cell. This implies that the algorithm,

8We say that a row is open when all cells in that row are opened.
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before it stops, neither opens all R rows nor a single. Section 5 treats algorithms that
only identify some bidder with highest valuation.

Lemma 4.7 Assume n = 2. Let A be an acyclic Vickrey algorithm. Then, for k < R,

GA(k) ≤
k∑

j=1

22R−j .

Proof Consider the algorithm A′ that is identical to A as long as no single is opened,
and stops as soon as the first single is opened. Notice that A′ is not a Vickrey al-
gorithm, since it may terminate before the required information has been retrieved.
Since GA(k) ≤ GA′(k) holds for all k, it suffices to show that

GA′(k) =
k∑

j=1

22R−j

for k < R. We construct a set Md of instances for which the first row opened by
A′ has distinct values, and a set Me of instances for which the first row opened by
A′ has equal values. Start with a set of instances M equal to V and let Me and Md

be empty sets. Go through the following procedure. Take an instance v from M .
Consider the step in algorithm A′ where for the first time a row is opened. Without
loss of generality in this step cell br is opened. Define the instance v′ as follows:

a′
j = aj , for all j ,

b′
j = bj , for all j �= r ,

b′
r �= br .

Obviously, the instance v′ belongs to M .
Clearly, either ar = br or a′

r = b′
r . If ar = br, then define

Me := Me ∪ {v},
Md := Md ∪ {v′},

and otherwise

Me := Me ∪ {v′},
Md := Md ∪ {v}.

In both cases M := M \ {v, v′}.
Repeat the procedure from the beginning until the set M is empty. It is clear from

the construction that when the procedure ends we have |Me| = |Md | = 22R−1. For any
instance from Md , algorithm A′ stops after opening one row. For k < R, let V (k) be
the set of instances for which algorithm A′ stops after opening k rows. By Lemma 4.6,
it holds that V (1) = Md and |V (1)| = 22R−1, so GA′(1) = |V (1)| = 22R−1.

If R ≥ 3, then apply the same procedure to the set M := Me and consider the step
in algorithm A′ where the second row is opened. Note that for any instance from
Me the first row opened is a double. At the end of the procedure we have sets Md
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and Me . By Lemma 4.6, V (2) = Md , the set of instances for which algorithm A′
stops after the second row is opened. The cardinality of this set is 22R−2. It follows
that GA(2) = 22R−1 + 22R−2.

Iterating this procedure we can show that for any k < R it holds that |V (k)| =
22R−k . We thereby obtain the desired result that, for k < R,

GA′(k) =
∣
∣
∣
∣
∣

k⋃

j=1

V (j)

∣
∣
∣
∣
∣
=

k∑

j=1

22R−j . �

The bisection algorithm opens rows in a top-down fashion as long as no single
is opened. As soon as the first single is opened the algorithm is able to determine
the identity of the highest valuation and at the same time the identity of the second
highest. Then the algorithm opens the remaining cells of the second highest valua-
tion.

Theorem 4.8 Assume n = 2. The bisection algorithm B is a stochastically dominant
Vickrey algorithm.

Proof First of all, observe that after algorithm B finds the first single no new row
is opened. It holds that Vk(B) = Vk(B

′), where B ′ is identical to B as long as no
single is opened, and stops as soon as the first single is opened. From the proof of
Lemma 4.7 it follows that for k < R, |Vk(B)| = 22R−k and

GB(k) =
k∑

j=1

22R−j .

Using the result of Lemma 4.7, for any Vickrey algorithm A and any k we have

GA(k) ≤ GB(k)

and consequently

FA(k) ≤ FB(k). �

5 Weak Vickrey Algorithms

In this section we show that the results from the previous section are sensitive with
respect to small changes in the algorithmic problem. We change our auction problem
as follows. We no longer require that all bidders with the highest valuation are iden-
tified, but only the identity of at least one bidder with the highest valuation has to
be determined. We have seen in the discussion following Lemma 4.6 that for n = 2
an algorithm for this problem might not have to open any single, even when the
instance contains singles. We call algorithms for this new problem weak Vickrey al-
gorithms.
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Definition 5.1 An algorithm is a weak Vickrey algorithm if the stopping criterion σ

is defined in such a way that the algorithm does not stop before the identity of at
least one bidder with the highest valuation and the exact value of the second-highest
valuation are found.

If a weak Vickrey algorithm stops at history h, it holds that there is at least one
bidder i′ for which vi′(h) ≥ maxi∈N\{i′} v̄i (h), i.e. the identity of at least one bidder
with the highest valuation is known. Moreover, there should be a bidder i′′ �= i′ such
that vi′′(h) = v̄i′′(h), and there is at most one bidder i �= i′′ such that v̄i (h) > v̄i′′(h),
i.e. the exact value of the second-highest valuation is known. For the criteria of Pareto
best and worst-case best, the results for weak Vickrey algorithms are identical to those
for Vickrey algorithms as the next two theorems show.

Theorem 5.2 Pareto best weak Vickrey algorithms do not exist.

Proof Assume first that n = 2 and consider the instance

v1 =

⎡

⎢
⎢
⎣

1 0
0 0
...

...

0 0

⎤

⎥
⎥
⎦ .

Let A be a weak Vickrey algorithm that opens one of the cells (r,1) for 1 ≤ r ≤ R in
the first step. Since a weak Vickrey algorithm has to open all cells in column 2, we
find �A(v1) ≥ R + 1. However, the algorithm that starts by opening all cells in the
second column terminates after R steps. A Pareto best weak Vickrey algorithm should
therefore start by opening a cell in column 2. A completely symmetric argument
leads to the conclusion that it should start by opening a cell in column 1, and we
have obtained a contradiction. The argument can easily be extended to the case of n

bidders. �

Theorem 5.3 Let A1 and A2 be two acyclic weak Vickrey algorithms. Then A1 is
worst-case equivalent to A2.

Proof Any acyclic weak Vickrey algorithm terminates in less than or equal to Rn

steps. Any acyclic weak Vickrey algorithm attains the upper bound for an instance v

with vri = 1 for all i and r . �

Let us now turn to the case of 2 bidders. It is easy to see that for this case a weak
Vickrey algorithm is equivalent to an algorithm finding the exact value of the lowest
valuation. When the exact value of the lowest valuation is found, then there is at
least one bidder for which all cells are opened. The other bidder must then be
a bidder having the highest valuation. We define the One-Search algorithm, B∗, as
follows.
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One-Search
Let l1, l2 be the last cell opened of bidder 1 and 2 respectively.
Set l1 = l2 = 0.
While the second highest valuation is not found do the following

Start from l1 + 1 to open cells for bidder 1 until the next 1 is found
if no 1 found in rows l1 + 1 to R

bidder 2 is winner and bidder 1 has second highest valuation
else

Set l1 to the row in which a 1 is found for bidder 1
Start from l2 + 1 to open cells for bidder 2 until a 1 is found or cell l1
of bidder 2 is opened
if a 1 is found in rows l2 + 1 to l1 − 1

bidder 2 is winner and bidder 1 has second highest valuation
if no 1 is found in rows l2 to l1

bidder 1 is winner and bidder 2 has second highest valuation
if a 1 is found in row l1

set l2 equal to l1 and continue
open all cells of bidder with second highest valuation.

As an example, for

v =
⎡

⎣
0 0
1 0
1 0

⎤

⎦ ,

the algorithm proceeds as follows. It will find the first 1 in row 2 of bidder 1. At that
point it holds that l1 = 2. It will then search for a 1 in cells of bidder 2 in rows 1 to 2.
As no 1 is found, it will conclude that bidder 1 is the winner and leave the while loop.
It will finally open row 3 of bidder 2.

There is a number of minor modifications that would not change the performance
of the One-Search algorithm. For example, for the current definition of the algorithm
there are always at least as many cells opened for bidder 1 as for bidder 2 (as long
as the winner is not found). The reason for this is that, whenever there are as many
cells opened for bidder 1 as for bidder 2, the algorithm either stops, or it proceeds
with opening cells for bidder 1. The algorithm would not be essentially affected if it
would continue with opening a cell of bidder 2 instead.

So far we did not find a proof that the One-Search algorithm stochastically domi-
nates all other weak Vickrey algorithms, nor did we find a counterexample. We show
the partial result that the One-Search algorithm is stochastically dominant in the class
of all column monotonic weak Vickrey algorithms.

Definition 5.4 An algorithm A = (H,σ,ϕ) is column monotonic if it is acyclic and
for every history h ∈ H with ϕ(h) = (r, i) either r = 1 or there is a history g < h

such that ϕ(g) = (r − 1, i).

Theorem 5.5 Assume n = 2. The One-Search algorithm B∗ stochastically dominates
all column monotonic weak Vickrey algorithms.
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The proof requires a similar preparation as the proof of Theorem 4.8. Let rA :
V → {0} ∪ N be the function that assigns to each instance v in V the number of
rows r of v for which algorithm A opens both cells (r,1) and (r,2), containing ar

and br respectively, before it stops. Let GA : {0} ∪ N → {0} ∪ N be the function
where GA(k) equals the number of instances in V for which rA(v) ≤ k. Since a weak
Vickrey algorithm A should find the exact value of the second-highest valuation, we
have again �A(v) = rA(v)+ R. For any two acyclic weak Vickrey algorithms A1 and
A2 it therefore holds that GA1(k) ≥ GA2(k) for all k is equivalent to FA1(k) ≥ FA2(k)

for all k ∈ N.
The first step in the proof of Theorem 5.5 is to derive an explicit formula for

function G in case of the One-Search algorithm.

Lemma 5.6 Assume n = 2. Let B∗ be the One-Search algorithm. For 0 ≤ k ≤ R,

GB∗(k) = 2R +
k∑

j=1

22R−j .

Proof Algorithm B∗ does not open any row before terminating if and only if ar = 0
for all r . Such is the case for 2R instances.

Next, take k with 1 ≤ k ≤ R − 1. There are three cases in which B∗ opens exactly
k rows:

A. When ar = br for 1 ≤ r ≤ k − 1, ak = 0, bk = 1, and ar = 1 for some row
r > k. We denote the number of instances satisfying these conditions by g1(k).
A straightforward calculation shows that g1(k) = 2k−1 · 2R−k · (2R−k − 1) =
22R−k−1 − 2R−1.

B. When ar = br for 1 ≤ r ≤ k − 1, ak = bk = 1, and ar = 0 for all r > k. We denote
the number of instances satisfying these conditions by g2(k). A straightforward
calculation reveals that g2(k) = 2k−1 · 2R−k = 2R−1.

C. When ar = br for 1 ≤ r ≤ k − 1, ak = 1, and bk = 0. We denote the number of
instances satisfying these conditions by g3(k) and find that g3(k) = 2k−1 · 2R−k ·
2R−k = 22R−k−1. The result follows by observing that g1(k) + g2(k) + g3(k) =
22R−k .

Finally, algorithm B∗ opens R rows precisely when ar = br for 1 ≤ r ≤ k − 1
and ak = 1. These are exactly 2R cases. For the sake of completeness, we add up all
instances considered so far, and get

2R +
R−1∑

k=1

22R−k + 2R = 22R,

which confirms that we have exhausted all possibilities. �

We show next that the expression derived in Lemma 5.6 is an upper bound for GA

for any column monotonic weak Vickrey algorithm A, thereby proving Theorem 5.5.



584 Algorithmica (2010) 58: 566–590

Lemma 5.7 Assume n = 2. For any column monotonic algorithm A, for 0 ≤ k ≤ R,

it holds that

GA(k) ≤ 2R +
k∑

j=1

22R−j .

Proof Our proof is subdivided in two claims.

Claim 1 Let A1 be a column monotonic weak Vickrey algorithm. Then A1 is sto-
chastically dominated by a column monotonic weak Vickrey algorithm A2 with the
property that for every instance v the cell (r,2) may be queried at a history h in
which cell (r,1) is not opened only if it is known that bidder 2 has the lowest valua-
tion (i.e., v̄2(h) ≤ v1(h)).

Proof of Claim 1 Observe that the algorithm A that is obtained from A1 by con-
secutively opening all the cells of a bidder i with the lowest valuation as soon as
v̄i (h) ≤ v−i (h) is Pareto preferred to A1. Consider an arbitrary instance v and apply
algorithm A. Suppose there is a history h in which A queries a cell (r,2) before cell
(r,1) while v̄2(h) > v1(h) Consider a minimal h where such is the case. Because A is
column monotonic, all cells (k,1) and (k,2) are opened for k < r and no other cells
are opened at h. Since v̄2(h) > v1(h), either vk1 = vk2 for all k < r, or v̄1(h) ≤ v2(h).
The latter case can be excluded since then A would open all the remaining cells of
player 1 by construction of A. To deal with the former case, we construct an algorithm
A′ that is identical to A except for instances w for which wk1 = wk2 = vk1 = vk2,
1 ≤ k ≤ r − 1. In this case the algorithm A′ reverses the roles of bidders 1 and 2
when compared to A. By a symmetry argument it is equivalent to A. Repeating this
argument leads in a finite number of iterations to the desired algorithm A2. �

Claim 2 Let A be a column monotonic weak Vickrey algorithm with the extra prop-
erty that at history h the cell (r,2) may only be queried before the cell (r,1) if
v̄2(h) ≤ v1(h). Then

GA(k) ≤ GB∗(k), k ∈ {0} ∪ N.

Proof of Claim 2 Without loss of generality, we further assume that A opens all cells
of player i consecutively as soon as v̄i (h) ≤ v−i (h). Let r̃A : V → {0} ∪ N be the
function that assigns to each instance v ∈ V the number of rows that algorithm A

opens in v until it opens a row r such that vr1 �= vr2. If such a row is never opened,
r̃A(v) equals the number of rows that algorithm A opens before it terminates. Let G̃A :
{0} ∪ N → {0} ∪ N be the function such that G̃A(k) equals the number of instances
in V for which r̃A(v) ≤ k. Since obviously r̃A(k) ≤ rA(k), it holds that G̃A(k) ≥
GA(k). �

Consider the case k = 0. It is evident that A can only terminate without opening
any row if v1 = 0, which is the case for 2R instances v, so G̃A(0) ≤ 2R .

Now note that, for 1 ≤ k ≤ R, G̃A(k) − G̃A(k − 1) is the number of instances for
which algorithm A terminates after opening exactly k rows. We partition the set of
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such instances for which A terminates after opening exactly k rows into the sets of
instances NA(k) and SA(k), where for the instances in NA(k) additionally it has not
been decided whether there is a unique highest valuation when A terminates, and for
the instances in SA(k) it is known there is a unique winner when A terminates. The
number of elements of NA(k) is denoted by nA(k), and sA(k) denotes the number of
elements of SA(k). Note that nA(0) = G̃A(0) ≤ 2R and sA(0) = 0.

Since A is a column monotonic weak Vickrey algorithm, and always continues
with the first column when no winner is known yet, an instance in NA(k) necessarily
satisfies vr1 = vr2 for 1 ≤ r ≤ k and vr1 = 0 for r > k. Moreover, an instance in
NA(k) does not belong to NA(j) for 1 ≤ j ≤ k − 1. This gives us an upper bound
on nA(k) as follows. Note that there are 2R instances with vr1 = vr2 for 1 ≤ r ≤ k

and vr1 = 0 for r > k. Furthermore, out of the instances that satisfy vr1 = vr2 for
1 ≤ r ≤ k and vr1 = 0 for r > k, 2j−knA(j) instances are also an element of NA(j).9

Hence,

nA(k) ≤ 2R −
k−1∑

j=0

2j−knA(j). (5.1)

Next, note that an instance v belongs to SA(k) if and only if v does not belong to⋃k−1
j=0(NA(j) ∪ SA(j)), and moreover vk1 �= vk2. Such is the case for exactly half of

the instances in V \ ⋃k−1
j=0(NA(j) ∪ SA(j)). We find that

sA(k) = 2−1(22R − G̃A(k − 1)).

We now show by induction that the following formula holds.

G̃A(k) =
k∑

j=0

2j−knA(j) +
k∑

j=1

22R−j .

It has already been observed that G̃A(0) = nA(0). Suppose the formula holds for all
k ≤ k′. We show it to be true for k = k′ + 1. We have

G̃A(k′ + 1) = G̃A(k′) + nA(k′ + 1) + sA(k′ + 1)

= G̃A(k′) + nA(k′ + 1) + 2−1(22R − G̃A(k′))

= 2−1G̃A(k′) + nA(k′ + 1) + 22R−1

= 2−1
k′

∑

j=0

2j−k′
nA(j) + nA(k′ + 1) + 2−1

k′
∑

j=1

22R−j + 22R−1

=
k′+1∑

j=0

2j−k′−1nA(j) +
k′+1∑

j=1

22R−j ,

9For each instance in NA(j), one can construct 2k−j different instances in NA(j) by changing the values
of vj+1,2, . . . , vk2. Only one of these instances satisfies vr1 = vr2 for 1 ≤ r ≤ k, namely when we choose
vj+1,2 = · · · = vk2 = 0.
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where the fourth equality uses the induction hypothesis. Further, using (5.1) we see
that

k∑

j=0

2j−knA(j) ≤ 2R −
k−1∑

j=0

2j−knA(j) +
k−1∑

j=0

2j−knA(j) = 2R.

It follows that

GA(k) ≤ G̃A(k) ≤ 2R +
k∑

j=1

22R−j = GB∗(k)

for 0 ≤ k ≤ R − 1, thereby completing the proof. �

6 More Bidders and Winner Determination

The conjecture that a suitably defined variation of the bisection algorithm is a sto-
chastically dominant Vickrey algorithm is deceptively simple and plausible. So far
we have only been able to show this entirely reasonable conjecture for the case of
two bidders. For three or more bidders the problem quickly becomes more compli-
cated than one might initially think. In this section we try to give a few examples that
highlight the reasons why.

Example 6.1 Our first example concerns the definition of a plausible candidate for
a stochastically optimal Vickrey algorithm in the case n ≥ 3. Since the bisection
algorithm is not proper when the number of bidders exceeds two, it is not a candidate
for a stochastically optimal Vickrey algorithm for n ≥ 3. Unfortunately it is also not
difficult to show that the modified bisection algorithm, which is a proper algorithm
for any number of bidders, is not stochastically optimal. Consider the instance

v =
[1 0 0

0 1 1
0 1 1

]

.

The bisection auction would open seven cells, namely (1,1), (1,2), (1,3), (2,2),
(2,3), (3,2), and (3,3). Of these, the modified bisection algorithm would not open
cell (3,3), since after opening cell (3,2) the second-highest valuation is known. Still
better would be an adjustment of the bisection algorithm, where once a unique win-
ning bidder is found, a systematic search is made among the remaining active bidders
whether one of them has only ones in the remaining cells. Applied to the example
in this paragraph, this would require opening first the cells (1,1), (1,2), and (1,3),
and next continuing with opening cells (2,2) and (3,2) of bidder 2. This adjusted
bisection algorithm would terminate after five steps only. An appropriately defined
adjusted bisection algorithm, in particular detailing the systematic search for ones af-
ter a unique winner has been found, is a candidate for a stochastically optimal Vickrey
algorithm.

Another indication for the complexity of the case with n bidders follows from the
consideration of the winner determination problem. The problem is to determine the
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set of bidders with the highest valuation for an instance v ∈ V. This problem is related
to sorting in computer science. An algorithm that solves this problem is called a WD
algorithm. A plausible candidate for a stochastically dominant WD algorithm is the
following algorithm.

Step (0). Set W0 = N . Set k = 1. Go to Step (k).
Step (k). If k = R + 1, STOP. If k ≤ R and |Wk−1| = 1, STOP. Otherwise, open all

cells (k, i) in row k with i ∈ Wk−1. Let Wk be the set of bidders in Wk−1

with a 1 on the kth row if there is at least one such bidder, otherwise set
Wk = Wk−1. Set k = k + 1. Go to Step (k).

We call this algorithm the WD bisection algorithm, and denote it by BWD. Again
we can show that, for n = 2, BWD is a stochastically dominant WD algorithm. We can
even show the following stronger statement for n = 2. Consider the problem where,
given an instance v ∈ V , one has to find a row of v that is a single, or show that the
instance v does not have a single. An algorithm that solves this problem is called an
S algorithm. Notice that every WD algorithm is automatically an S algorithm.

Theorem 6.2 Assume n = 2. Then the algorithm BWD is a stochastically dominant
S algorithm. Consequently, it is also a stochastically dominant WD algorithm.

Proof Observe that the proofs of Lemma 4.7 and Theorem 4.8 also apply in this
case. �

However, for the case n = 3, we cannot use the same proof since the definitions
of a single and a double are specific to the case n = 2. Even for n = 3 and R = 2, we
can only prove a somewhat weaker claim.

Example 6.3 Assume n = 3 and R = 2. Then there is no WD algorithm A that strictly
stochastically dominates the algorithm BWD. This can be seen as follows. Let A be a
WD algorithm that strictly stochastically dominates BWD. There are in total 26 = 32
instances. Of these, BWD solves 24 instances in 3 steps. These are the instances where
the first row is (1,0,0), (0,1,0), or (0,0,1). In order to match this performance, A

has to open the first row, unless this row starts with (1,1,∗), in which case it opens
at least the first two cells (1,1) and (1,2). In case A opens the first row, from then on
it matches exactly the performance of A. So, the only possible gain can be obtained
by opening cell (2,3) before opening cell (1,3) in case cells (1,1) and (1,2) were
opened and contained a one.

So, we concentrate on those instances whose first row is of the form (1,1,∗).
Clearly cells (2,1) and (2,2) have to be opened anyway, no matter what happens.
This implies that A does not need to open cell (1,3) in at most 8 cases. However,
for the instances that start with (1,1,∗), BWD does not open cell (2,3) in exactly 8
cases, namely the ones whose first row is (1,1,0). Hence, algorithm A cannot strictly
stochastically dominate algorithm BWD.

The relatively weak claim stated below has the status of a conjecture.
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Conjecture 6.4 Assume n ≥ 3. There does not exist a WD algorithm that strictly
stochastically dominates the WD algorithm BWD.

Notice that stochastic dominance is not a total ordering. Therefore, even when
we can prove Conjecture 6.4, that does not imply that BWD does itself stochastically
dominate all other algorithms. Thus, a full proof of the stochastic dominance of BWD

for n ≥ 3 remains elusive.
Example 6.3 identifies an important source of complexity. The algorithms for

which the proof becomes involved are those that open cell (2,3) before cell (1,3).
Even though such non-monotonic behavior does not seem to be advantageous, so far
we did not find an argument that it cannot be stochastically dominant.

Thus, the main problem seems to be the relative complexity of the comparison of
different instances when at least one of the algorithms is not column monotonic.
To emphasize the added complexity arising from algorithms that are not column
monotonic, we finally present the following theorem, whose proof is straightforward.

Theorem 6.5 Let n ≥ 3. The WD algorithm BWD is a Pareto best column monotonic
WD algorithm.

Proof Let A be a column monotonic WD algorithm. Let v ∈ V be an instance, and
assume that BWD opens cell (r, i) for this instance.

By definition of BWD, there is a bidder j �= i such that vkj = vki for all k ∈
{1, . . . , r −1}. Moreover, we have

∑r−1
k=1 vki2R−k ≥ ∑r−1

k=1 vkj 2R−k for all j ∈ N \{i}.
Now suppose that algorithm A does not open cell (r, i) for this instance. Then, be-
cause A is column monotonic, A does also not open any of the cells (r ′, i) for r ′ > r .
Then however, A is not able to solve the winner determination problem between bid-
der i and any bidder j for which

∑r−1
k=1 vki2R−k = ∑r−1

k=1 vkj 2R−k. So either A never
terminates or A opens cell (r, i). In both cases, �BWD(v) ≤ �A(v), which completes
the proof. �

7 Conclusion

In this paper we evaluated the performance of auctions from an algorithmic point
of view. In particular, we consider single item auctions with private information and
analyze the algorithmic performance of Vickrey-Clarke-Groves mechanisms. These
algorithms have superior strategic properties, and in particular give bidders incentives
to reveal their true valuation. We introduce a number of such mechanisms, called
Vickrey algorithms, including the direct revelation and modified direct revelation al-
gorithms, as well as the bisection and modified bisection algorithms. Vickrey algo-
rithms that perform well are attractive, as they lead to a fast allocation of the object
and allow for a limited revelation of the valuations of the bidders.

We consider three possible performance criteria for Vickrey algorithms. The most
demanding criterion is the one of being Pareto best, and requires that an algorithm
terminates in at most as many steps as any other algorithm, irrespective of the partic-
ular instance of the problem under consideration. We show that Pareto best Vickrey
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algorithms do not exist. Next we turn to worst-case analysis. Since all acyclic Vickrey
algorithms have identical worst-case performance, this criterion is not very helpful to
distinguish between algorithms.

We therefore advocate an optimality concept that is equivalent to first-order sto-
chastic dominance. Using this concept, an algorithm stochastically dominates another
one if, for any k, the number of instances it can solve in at most k steps is greater than
or equal to the number of instances the other algorithm can solve in at most k steps.
We show the bisection algorithm to be stochastically dominant for the case with two
bidders.

We also study the class of weak Vickrey algorithms, where instead of identifying
the identity of all bidders with the highest valuation, it suffices to identify at least
one such bidder. To solve this task we introduce the One-Search algorithm and show
that it is a stochastically dominant column monotonic weak Vickrey algorithm for
the case with two bidders. For the weak Vickrey problem, the One-Search algorithm
strictly stochastically dominates the bisection algorithm.

Another related problem is the winner determination problem. The adaptation of
the bisection algorithm that is suitable to solve this problem is the WD bisection algo-
rithm. For the case with two bidders, the WD bisection algorithm is a stochastically
dominant winner determination algorithm. For the case with n bidders it is a Pareto
best column monotonic winner determination algorithm.
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