
Efficient Exact Algorithms on Planar Graphs:
Exploiting Sphere Cut Decompositions

Frederic Dorn

Eelko Penninkx

Hans L. Bodlaender

Fedor V. Fomin

Department of Information and Computing Sciences,

Utrecht University

Technical Report UU-CS-2006-006

www.cs.uu.nl

ISSN: 0924-3275

Efficient Exact Algorithms on Planar Graphs:

Exploiting Sphere Cut Decompositions ?

Frederic Dorn1, Eelko Penninkx2, Hans L. Bodlaender2, and Fedor V. Fomin1

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway,
frederic.dorn@ii.uib.no, fedor.fomin@ii.uib.no

2 Department of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands,

penninkx@cs.uu.nl, hansb@cs.uu.nl

Abstract. A divide-and-conquer strategy based on variations of the Lipton-Tarjan planar separa-
tor theorem has been one of the most common approaches for solving planar graph problems for
more than 20 years. We present a new framework for designing fast subexponential exact and pa-
rameterized algorithms on planar graphs. Our approach is based on geometric properties of planar
branch decompositions obtained by Seymour & Thomas, combined with refined techniques of dy-
namic programming on planar graphs based on properties of non-crossing partitions. Compared to
divide-and-conquer algorithms, the main advantages of our method are a) it is a generic method
which allows to attack broad classes of problems; b) the obtained algorithms provide a better worst

case analysis. To exemplify our approach we show how to obtain an O(26.903
√

n) time algorithm
solving weighted Hamiltonian Cycle. We observe how our technique can be used to solve Planar

Graph TSP in time O(29.8594
√

n). Our approach can be used to design parameterized algorithms

as well. For example we introduce the first 2O(
√

k)nO(1) time algorithm for parameterized Planar

k−cycle by showing that for a given k we can decide if a planar graph on n vertices has a cycle of

length at least k in time O(213.6
√

kn + n3).

1 Introduction

The celebrated Lipton-Tarjan planar separator theorem [20] is one of the most common
approaches to obtain algorithms with subexponential running time for many problems on
planar graphs [21]. The usual running time of such algorithms is 2O(

√
n) or 2O(

√
n log n),

however the constants hidden in big-Oh of the exponent are a serious obstacle for practical
implementation. During the last few years a lot of work has been done to improve the
running time of divide-and-conquer type algorithms [3, 4].

One of the possible alternatives to divide-and-conquer algorithms on planar graphs was
suggested by Fomin & Thilikos [13]. The idea of this approach is very simple: compute the
treewidth (or branchwidth) of a planar graph and then use the well developed machinery of
dynamic programming on graphs of bounded treewidth (or branchwidth) [6]. For example,
it can be shown that, when given a branch decomposition of width ` of a graph G on n ver-
tices, the maximum independent set of G can be found in time O(2

3`
2 n). The branchwidth

of a planar graph G is at most 2.122
√

n and it can be found in time O(n3) [24] (see also
[14]). Putting all together, we obtain an O(23.182

√
n) time algorithm solving Independent

Set on planar graphs. Note that planarity comes into play twice in this approach: First

? This work was partially supported by Norges forskningsr̊ad project 160778/V30, and partially by the Netherlands
Organisation for Scientific Research NWO (project Treewidth and Combinatorial Optimisation).

in the upper bound on the branchwidth of a graph and second in the polynomial time al-
gorithm for constructing an optimal branch decomposition. A similar approach combined
with the results from graph minor theory [22] works for many parameterized problems on
planar graphs [9]. Using such an approach to solve, for example, Hamiltonian cycle we
end up with an 2O(

√
n log n) algorithm on planar graphs, as all known algorithms for this

problem on graphs of treewidth ` require 2O(` log `)nO(1) steps [7]. In this paper we show how
to get rid of the logarithmic factor in the exponent for a number of problems. The main
idea to speed-up algorithms obtained by the branch decomposition approach is to exploit
planarity for the third time: for the first time planarity is used in dynamic programming
on graphs of bounded branchwidth.

Our results are based on deep results of Seymour & Thomas [24] on geometric properties
of planar branch decompositions. Loosely speaking, their results imply that for a graph
G embedded on a sphere Σ, some branch decompositions can be seen as decompositions
of Σ into discs (or sphere cuts). We are the first describing such geometric properties of
so-called sphere cut decompositions. Sphere cut decompositions seem to be an appropriate
tool for solving a variety of planar graph problems. We use a refined dynamic programming
technique whose running time can be calculated by the number of combinations of non-
crossing partitions.

To demonstrate the power of this combinatorial method we apply it to the following
problems.

Planar Hamiltonian Cycle. In the Planar Hamiltonian Cycle problem one is
given a weighted planar graph, and is asked to compute a cycle over all vertices with
minimum weight with respect to the edges. Until very recently there was no known 2O(

√
n)-

time algorithm for this problem. Dĕıneko et al. [8] obtained the first result of this form:
a divide-and-conquer type algorithm of running time 2O(

√
n). Their goal was to get rid of

the logarithmic factor in the exponent, accepting a large constant hidden in the big-Oh
notation. But even with careful analysis, it is difficult to obtain small constants in the
exponent of the divide-and-conquer algorithm due to its recursive nature.

In this paper we use sphere cut decompositions to obtain an O(26.903
√

n) time algorithm
for Planar Hamiltonian Cycle.

Traveling Salesman Problem. The Traveling Salesman Problem (TSP) problem
is one of the most attractive problems in Computer Science and Operations Research. For
several decades, almost every new algorithmic paradigm was tried on TSP including ap-
proximation algorithms, linear programming, local search, polyhedral combinatorics, and
probabilistic algorithms [19]. One of the first known exact exponential time algorithms is
the algorithm of Held and Karp [15] solving TSP on n cites in time 2O(n) by making use
of dynamic programming. For some special cases like Euclidean TSP (where the cites
are points in the Euclidean plane and the distances between the cites are Euclidean dis-
tances), several researchers independently obtained subexponential algorithms of running
time 2O(

√
n·logn) by exploiting planar separator structures (see e.g. [16]). Smith & Wormald

3

[25] succeed to generalize these results to d-dimensional space and the running time of their

algorithm is 2dO(d) · 2O(dn1−1/d log n) +2O(d). Another variant is Planar Graph TSP, which
for a given weighted planar graph G is the TSP with distance metric the shortest path
metric of G. Arora et al. [5] use non-crossing partitions to achieve faster approximation
schemes. In this paper we give the first 2O(

√
n) time exact algorithm for solving Planar

Graph TSP.

Parameterized Planar k-cycle. The last ten years showed a rapid development of
a new branch of computational complexity: Parameterized Complexity (see the book of
Downey & Fellows [11]). Roughly speaking, a parameterized problem with parameter k is
fixed parameter tractable if it admits an algorithm with running time f(k)|I|β. Here f is a
function depending only on k, |I| is the length of the non-parameterized part of the input
and β is a constant. Typically, f is an exponential function, e.g. f(k) = 2O(k). During the
last five years much effort was put in the construction of algorithms with running time
2O(

√
k)nO(1) for different problems on planar graphs. The first paper on the subject was

by Alber et al. [1] describing an algorithm with running time O(270
√

kn) for the Planar

Dominating Set problem. Different fixed parameter algorithms for solving problems on
planar and related graphs are discussed in [3, 4, 9]. In the Planar k-Cycle problem a
parameter k is given and the question is if there exists a cycle of length at least k in a
planar graph. There are several ways to obtain algorithms solving different generalizations
of Planar k-Cycle in time 2O(

√
k log k)nO(1), one of the most general results is Eppstein’s

algorithm [12] solving the Planar Subgraph Isomorphism problem with pattern of

size k in time 2O(
√

k log k)n. Using non-crossing partitions, Demaine et al. [10] remove the
logarithmic factor for some connected problems on graphs of outerplanarity k.

By making use of sphere cut decompositions we succeed to find an O(213.6
√

kk n + n3)
time algorithm solving Planar k-Cycle.

This paper is organized as follows: in Section 2 we start with some basic definitions and
introduce sphere cut decompositions. The main part of the presentation of our techniques
is spent on Section 3 where we solve Planar Hamiltonian Cycle. We extend our
techniques in Section 4 to Planar Graph TSP and in Section 5 to several variants of
connected problems. Section 6 is devoted to conclusions and open problems.

2 Geometric Branch Decompositions of Σ-plane Graphs

In this section we introduce our main technical tool, sphere cut decompositions, but first
we give some definitions.

Let Σ be a sphere (x, y, z : x2 + y2 + z2 = 1). By a Σ-plane graph G we mean a planar
graph G with the vertex set V (G) and the edge set E(G) drawn (without crossing) in Σ.
Throughout the paper we denote by n the number of vertices of G. To simplify notations,
we usually do not distinguish between a vertex of the graph and the point of Σ used in the
drawing to represent the vertex or between an edge and the open line segment representing
it. An O-arc is a subset of Σ homeomorphic to a circle. An O-arc in Σ is called a noose

4

of a Σ-plane graph G if it meets G only in vertices and intersects with every face at most
once. The length of a noose O is |O ∩ V (G)|, the number of vertices it meets. Every noose
O bounds two open discs ∆1, ∆2 in Σ, i.e., ∆1 ∩ ∆2 = ∅ and ∆1 ∪ ∆2 ∪ O = Σ.

Branch Decompositions and Carving Decompositions. A branch decomposi-
tion 〈T, µ〉 of a graph G consists of an unrooted ternary tree T (i.e. all internal vertices of
degree three) and a bijection µ : L → E(G) from the set L of leaves of T to the edge set
of G. We define for every edge e of T the middle set mid(e) ⊆ V (G) as follows: Let T1 and
T2 be the two connected components of T \ {e}. Then let Gi be the graph induced by the
edge set {µ(f) : f ∈ L ∩ V (Ti)} for i ∈ {1, 2}. The middle set is the intersection of the
vertex sets of G1 and G2, i.e., mid(e) := V (G1)∩V (G2). The width bw of 〈T, µ〉 is the maxi-
mum order of the middle sets over all edges of T , i.e., bw(〈T, µ〉) := max{|mid(e)| : e ∈ T}.
An optimal branch decomposition of G is defined by the tree T and the bijection µ which
together provide the minimum width, the branchwidth bw(G).

A carving decomposition 〈T, µ〉 is similar to a branch decomposition, only with the
difference that µ is the bijection between the leaves of the tree and the vertex set of the
graph. For an edge e of T , the counterpart of the middle set, called the cut set cut(e),
contains the edges of the graph with end vertices in the leaves of both subtrees. The
counterpart of branchwidth is carvingwidth.

We will need the following result:

Proposition 1 ([13]). For any planar graph G, bw(G) ≤ √
4.5n ≤ 2.122

√
n.

Sphere cut Decompositions. For a Σ-plane graph G, we define a sphere cut decomposi-
tion or sc-decomposition 〈T, µ, π〉 as a branch decomposition such that for every edge e of T
there exists a noose Oe bounding the two open discs ∆1 and ∆2 such that Gi ⊆ ∆i ∪ Oe,
1 ≤ i ≤ 2. Thus Oe meets G only in mid(e) and its length is |mid(e)|. A clockwise traversal
of Oe in the drawing of G defines the cyclic ordering π of mid(e). We always assume that
the vertices of every middle set mid(e) = V (G1) ∩ V (G2) are enumerated according to π.

The following theorem provides us with the main technical tool. It follows almost di-
rectly from the results of Seymour & Thomas [24] and Gu & Tamaki [14]. Since this result
is not explicitly mentioned in [24], we provide some explanations below.

Theorem 1. Let G be a connected Σ-plane graph of branchwidth at most ` without vertices
of degree one. There exists an sc-decomposition of G of width at most ` and such a branch
decomposition can be constructed in time O(n3).

Proof. Let G be a Σ-plane graph of branchwidth at most ` and with minimal vertex degree
at least two. Then, I(G) is the simple bipartite graph with vertices V (G)∪E(G), in which
v ∈ V (G) is adjacent to e ∈ E(G) if and only if v is an endpoint of e in G. The medial
graph MG of G has vertex set E(G), and for every vertex v ∈ V (G) there is a cycle Cv in
MG with the following properties:

• The cycles Cv of MG are mutually edge-disjoint and have as union MG;

5

• For each v ∈ V (G), let the neighbors w1, . . . , wt of v in I(G) be enumerated according
to the cyclic order of the edges {v, w1}, . . . , {v, wt} in the drawing of I(G); then Cv

has vertex set {w1, . . . , wt} and wi−1 is adjacent to wi (1 ≤ i ≤ t), where w0 means wt.

In a bond carving decomposition of a graph, every cut set is a bond of the graph, i.e.,
every cut set is a minimal cut. Seymour and Thomas [24, Theorems (5.1) and (7.2)] show
that a Σ-plane graph G without vertices of degree one is of branchwidth at most ` if and
only if MG has a bond carving decomposition of width at most 2`. They also show [24,
Algorithm (9.1)] how to construct an optimal bond carving decompositions of the medial
graph MG in time O(n4). A refinement of the algorithm in [14] gives running time O(n3).
A bond carving decomposition 〈T, µ〉 of MG is also a branch decomposition of G (vertices
of MG are the edges of G) and it can be shown (see the proof of (7.2) in [24]) that for every
edge e of T if the cut set cut(e) in MG is of size at most 2`, then the middle set mid(e) in
G is of size at most `. It is well known that the edge set of a minimal cut forms a cycle
in the dual graph. The dual graph of a medial graph MG is the radial graph RG. In other
words, RG is a bipartite graph with the bipartition F (G) ∪ V (G). A vertex v ∈ V (G) is
adjacent in RG to a vertex f ∈ F (G) if and only if the vertex v is incident to the face f in
the drawing of G. Therefore, a cycle in RG forms a noose in G.

To summarize, for every edge e of T , cut(e) is a minimal cut in MG, thus cut(e) forms a
cycle in RG (and a noose Oe in G). Every vertex of MG is in one of the open discs ∆1 and ∆2

bounded by Oe. Since Oe meets G only in vertices, we have that Oe∩V (G) = mid(e). Thus
for every edge e of T and the two subgraphs G1 and G2 of G formed by the leaves of the
subtrees of T \ {e}, Oe bounds the two open discs ∆1 and ∆2 such that Gi ⊆ ∆i ∪ Oe,
1 ≤ i ≤ 2.

Finally, with a given bond carving decomposition 〈T, µ〉 of the medial graph MG, it
is straightforward to construct a cycle in RG corresponding to cut(e), e ∈ E(T), and
afterwards to compute the ordering π of mid(e) in time linear in `. ut

Non-Crossing Partitions. Together with sphere cut decompositions, non-crossing parti-
tions give us the key to our later dynamic programming approach. A non-crossing partition
(ncp) is a partition P (n) = {P1, . . . , Pm} of the set S = {1, . . . , n} such that there are
no numbers a < b < c < d where a, c ∈ Pi, and b, d ∈ Pj with i 6= j. A partition can
be visualized by a circle with n equidistant vertices on its border, where every set of the
partition is represented by the convex polygon with its elements as endpoints. A partition
is non-crossing if these polygons do not overlap. Non-crossing partitions were introduced
by Kreweras [18], who showed that the number of non-crossing partitions over n vertices
is equal to the n-th Catalan number:

CN(n) =
1

n + 1

(
2n

n

)
∼ 4n

√
πn

3
2

≈ 4n (1)

Non-Crossing Matchings. A non-crossing matching (ncm) is a special case of a ncp,
where |Pi| = 2 for every element of the partition. A ncm can be visualized by placing n

6

vertices on a cycle, and connecting matching vertices with arcs at one fixed side of the
cycle. A matching is non-crossing if these arcs do not cross. The number of non-crossing
matchings over n vertices is given by:

M(n) = CN(
n

2
) ∼ 2n

√
π(n

2
)

3
2

≈ 2n (2)

3 Planar Hamiltonian Cycle

In this section we show how sc-decompositions in combination with ncm’s can be used to
design subexponential algorithms. In the Planar Hamiltonian Cycle problem we are
given a weighted Σ-plane graph G = (V, E) with weight function w : E(G) → N and we
ask for a cycle of minimum weight through all vertices of V . We can formulate the problem
in a different way: A labeling H : E(G) → {0, 1} is Hamiltonian if the subgraph GH of
G formed by the edges with label ’1’ is a spanning cycle. Find a Hamiltonian labeling H
minimizing

∑
e∈E(G) H(e)·w(e). For an edge labeling H and a vertex v ∈ V (G) we define the

H-degree degH(v) of v as the sum of labels assigned to the edges incident to v. Although the
use of labelings makes the algorithm more complex, it is necessary for the understanding of
the approach for Planar Graph TSP we use later. Let 〈T, µ, π〉 be a sc-decomposition
of G of width `. We root T by arbitrarily choosing an edge e, and subdivide it by inserting
a new node s. Let e′, e′′ be the new edges and set mid(e′) = mid(e′′) = mid(e). Create a
new node root r, connect it to s and set mid({r, s}) = ∅. Each internal node v of T now
has one adjacent edge on the path from v to r, called the parent edge eP , and two adjacent
edges towards the leaves, called the left child eL and the right child eR. For every edge e
of T the subtree towards the leaves is called the lower part and the rest the residual part
with regard to e. We call the subgraph Ge induced by the leaves of the lower part of e the
subgraph rooted at e. Let e be an edge of T and let Oe be the corresponding noose in Σ.
The noose Oe partitions Σ into two discs, one of which, ∆e, contains Ge.

Given a labeling P[e] : E(Ge) → {0, 1} we define for every vertex v in Ge the P[e]-degree
degP[e](v) to be the sum of the labels on the edges incident to v. Let GP[e] be the subgraph
induced by the edges with label ’1’. We call P[e] a partial Hamiltonian labeling if GP[e]

satisfies the following properties:

• For every vertex v ∈ V (Ge) \ Oe, degP[e](v) = 2.
• Every connected component of GP[e] has exactly two vertices in Oe with degP[e](v) = 1,

all other vertices of GP[e] have degP[e](v) = 2.

Observe that GP[e] forms a collection of disjoint paths with endpoints in Oe, and note
that every partial Hamiltonian labeling of G{r,s} forms a Hamiltonian labeling.

Now the geometric properties of sc-decompositions in combination with non-crossing
matchings come into play. For a partial Hamiltonian labeling P[e] let P be a path of GP[e].
As the graph is planar, no paths cross and we can reduce P to an arc in ∆e with endpoints
on the noose Oe. If we do so for all paths, the endpoints of these arcs form a non-crossing
matching.

7

Because Oe bounds the disc ∆e and the graph GP[e] is in ∆e, we are enabled to scan the
vertices of V (P)∩Oe according to the ordering π and mark with ’1[’ the first and with ’1]’
the last vertex of P on Oe. Mark the endpoints of all paths of GP[e] in such a way. Then
the obtained sequence with marks ’1[’ and ’1]’, decodes the complete information on how
the endpoints of V (GP[e]) hit Oe. With the given ordering π the ’1[’ and ’1]’ encode a ncm.
The other vertices of V (GP[e]) ∩ Oe are the ’inner’ vertices and we mark them by ’2’. All
vertices of Oe that are not in GP[e] are marked by ’0’.

For an edge e of T and the corresponding noose Oe, the state of dynamic programming
is specified by an ordered `-tuple te := (v1, . . . , v`). Here, the variables v1, . . . , v` correspond
to the vertices of Oe ∩ V (G) taken according to the cyclic order π with an arbitrary first
vertex. This order is necessary for a well-defined encoding where the variables vi take one
of the four values: 0, 1[, 1], 2. Hence, there are at most O(4`|V (G)|) states. For every state,
we compute a value We(v1, . . . , v`) that is the minimum weight over all partial Hamiltonian
labelings P[e] encoded by v1, . . . , v`. If no such labeling exists we have We(v1, . . . , v`) = +∞.
For an illustration of a partial Hamiltonian labeling see Figure 1.

1[1[1] 0 1]2

Fig. 1. On the left we see a graph G partitioned by the rectangle vertices of Oe ∩ V (G) into Ge in drawn-through
edges and Ge in dashed edges. On the right subgraph GH marks a Hamiltonian cycle. GH is partitioned by the
vertices of Oe ∩ V (G) which are labeled corresponding to two vertex-disjoint paths in Ge induced by the partial
Hamiltonian labeling P [e].

To compute an optimal Hamiltonian labeling we perform dynamic programming over
middle sets mid(e) = O(e) ∩ V (G), starting at the leaves of T and working bottom-up
towards the root edge. The first step in processing the middle sets is to initialize the
leaves with values We(0, 0) = 0, We(1[, 1]) = w(f), where f represents the edge of the
graph corresponding to the leaf. Then, bottom-up, update every pair of states of two child
edges eL and eR to a state of the parent edge eP assigning a finite value WP if the state
corresponds to a feasible partial Hamiltonian labeling.

Let OL, OR, and OP be the nooses corresponding to edges eL, eR and eP , and let
∆L, ∆R and ∆P be the discs bounded by these nooses. Due to the definition of branch

8

decompositions, every vertex must appear in at least two of the three middle sets. We
partition the set (OL ∪ OR ∪ OP) ∩ V (G) into three sets:

• Portal vertices P := OL ∩ OR ∩ OP ∩ V (G),
• Intersection vertices I := OL ∩ OR ∩ V (G) \ P ,
• Symmetric difference vertices D := OP ∩ V (G) \ (P ∪ I).

See Figure 2 for an illustration of these notions. Observe that |P | ≤ 2, as the disc ∆P

contains the union of the discs ∆L and ∆R. This observation will prove to be crucial in the
analysis of the algorithm.

GP GR

GL

S1

S2

S3

s

O L

O R

O P

Fig. 2. On the left we see the same graph G as in the last figure. The grey rhombus and grey edges illustrate the
radial graph RG. G is partitioned by the rectangle vertices of S1, S2, S3 into GL in drawn-through edges, GR in
dashed edges, and GP in pointed edges. On the right the three nooses OL, OR and OP are marked. Note that the
nooses are induced by S1, S2, S3 and the highlighted grey edges on the left hand. All three nooses here intersect in
one portal vertex s.

We compute all valid assignments to the variables tP = (v1, v2, . . . , vp) corresponding
to the vertices mid(eP) from all possible valid assignments to the variables of tL and
tR. For a symbol x ∈ {0, 1[, 1], 2}, we denote by |x| its ’numerical’ part, e.g. |1[| = 1 .
We say that an assignment cP is formed by assignments cL and cR if for every vertex
v ∈ (OL ∪ OR ∪ OP) ∩ V (G):

• v ∈ D: cP (v) = cL(v) if v ∈ OL ∩ V (G), and cP (v) = cR(v) otherwise.
• v ∈ I: |cL(v)| + |cR(v)| = 2.
• v ∈ P : |cP (v)| = |cL(v)| + |cR(v)| ≤ 2.

We compute all `-tuples for mid(eP) that can be formed by tuples corresponding to
mid(eL) and mid(eR) and check if the obtained assignment corresponds to a labeling with-
out cycles. For every encoding of tP , we set WP = min{WP , WL + WR}.

9

For the root edge {r, s} and its children e′ and e′′ note that (Oe′ ∪ Oe′′) ∩ V (G) =
I and O{r,s} = ∅. Hence, for every v ∈ V (GP[{r,s}]) it must hold that degP[{r,s}](v) is
two, and that the labelings form a cycle. The optimal Hamiltonian labeling of G results
from mint{r,s}{Wr}.

Analyzing the algorithm, we obtain the following lemma.

Lemma 1. Planar Hamiltonian Cycle on a graph G with branchwidth ` can be solved
in time O(23.292``n + n3).

Proof. By Theorem 1, an sc-decomposition 〈T, µ, π〉 of width at most ` of G can be found
in O(n3).

For a worst-case scenario, assume we have three adjacent edges eP , eL, and eR of T with
|OL| = |OR| = |OP | = `. Without loss of generality we limit our analysis to even values
for `, and assume there are no portal vertices. This can only occur if |I| = |D ∩ OL| =
|D ∩ OR| = `

2
.

By just checking every combination of `-tuples from OL and OR we obtain a bound of
O(`42`) for our algorithm.

Some further improvement is apparent, as for the vertices u ∈ I we want the sum of
the {0, 1[, 1], 2} assignments from both sides to be 2, i.e., |cL(u)| + |cR(u)| = 2.

We start by giving an expression for Q(`, m): the number of `-tuples over ` vertices
where the {1[, 1]} assignments for m vertices from I is fixed. The only freedom is thus in
the `/2 vertices in D ∩ OL and D ∩ OR, respectively:

Q(`, m) =

`
2∑

i=0

(`
2

i

)
2

`
2
−iM(i + m) (3)

This expression is a summation over the number of 1[’s and 1]’s in D∩OL and D∩OR,

respectively. The term
(`

2
i

)
counts the possible locations for the 1[’s and 1]’s, the 2

`
2
−i counts

the assignment of {0, 2} to the remaining `/2 − i vertices, and the M(i + m) term counts
the ncm’s over the 1[’s and 1]’s. As we are interested in exponential behaviour for large
values of ` we ignore if i + m is odd, and use that M(n) ≈ 2n:

Q(`, m) = O(

`
2∑

i=0

(
`
2

i

)
2

`
2
−i2i+m) = O(2`+m) (4)

We define C(`) as the number of possibilities of forming an `-tuple from OP . We sum over
i: the number of 1[’s and 1]’s in the assignment for I:

C(`) =

`
2∑

i=0

(
`
2

i

)
2

`
2
−iQ(`, i)2 = O(

`
2∑

i=0

(
`
2

i

)
2

`
2
−i22`22i) (5)

The term 2
`
2
−i counts the number of ways how the vertices of I are assigned on one side

with 0 and on the other side with 2. The term 22i counts for I the number of ways vertices

10

are assigned on both side by symbols with numerical value one. Straightforward calculation
yields:

C(`) = O(2
5`
2

`
2∑

i=0

(
`
2

i

)
2i) = O(2

5`
2 3

`
2) = O((4

√
6)`) (6)

Since we can check in time linear in ` if an assignment forms no cycle and the number
of edges in the tree of a branch decomposition is O(n), we obtain an overall running time
of O((4

√
6)``n + n3) = O(23.292``n + n3). ut

By Proposition 1 and Lemma 1 we achieve the running time O(26.987
√

nn3/2 + n3) for
Planar Hamiltonian Cycle.

Forbidding Cycles We can further improve upon the previous bound by only forming
encodings that do not create a partial cycle. As cycles can only be formed at the vertices
in I with numerical part 1 in both OL and OR, we only consider these vertices.

We would like to have an upper bound for the number of combinations from OL and
OR that do not induce a cycle. This bound could then be applied to the previous analysis.

Let I have n vertices and be assigned by an ordered n-tuple of variables (v1, . . . , vn).
Each variable vi is a two-tuple (cL(vi), cR(vi)) of assignments cL, cR ∈ {1[, 1]} of vertex vi

such that |cL(vi)| + |cR(vi)| = 2. For example, suppose I has only two vertices x and y.
A cycle is formed if cL(x) = cR(x) = 1[and cL(y) = cR(y) = 1]. That is, ((1[, 1[), (1], 1]))
encodes a cycle.

Let B(n) denote the set of all n-tuples over the first n vertices of I that
form no cycles: B(0) = ∅, B(1) = {((1[, 1[))}, B(2) = {((1[, 1[), (1[, 1[)),
((1[, 1[), (1], 1[)), ((1[, 1[), (1[, 1]))},etc. Exact counting of B(n) for all vertices of I is com-
plex, so we use a different approach. We have a natural upper bound |B(n)| ≤ zn with
z = 4 when we consider all possible n-tuples.

We divide each B(i) into two classes: C1(i) contains all i-tuples of the form (. . . , (1[, 1[)),
and C2(i) contains all other i-tuples. We add every possible two-tuple to C1(i) and C2(i)
to obtain two new classes C1(i + 1) and C2(i + 1) of B(i + 1). Adding two-tuple (1], 1])
to items from C1(i) is forbidden, as this directly gives us a cycle. Addition of (1[, 1[) to
i-tuples of both, C1(i) and C2(i) gives us i + 1-tuples of class C1(i + 1). Addition of
(1[, 1]) or (1], 1[) to either class leads to i + 1-tuples of class C2(i + 1), or might lead
to infeasible encodings. Given these classes we create a 2 × 2 transition matrix A for
the transposed vectors of the class cardinalities (|C1(i)|, |C2(i)|)T and (|C1(i + 1)|, |C2(i +
1)|)T such that (|C1(i + 1)|, |C2(i + 1)|)T ≤ A (|C1(i)|, |C2(i)|)T . For large n we have that
(|C1(n)|, |C2(n)|)T ≤ An (|C1(1)|, |C2(1)|)T ≈ znx1 where z is largest real eigenvalue of A

and x1 is an eigenvector. Thus, zn is a bound of |B(n)|. It follows that A =

(
1 1
2 3

)
. As the

largest real eigenvalue of A is 2 +
√

3, we have z ≤ 3.73205 and bound |B(n)| ≤ 3.73205n.
Using these two classes eliminates all cycles over two consecutive vertices. By using

three classes we can also prevent larger cycles and obtain tighter bounds for z:

11

• C1(i) contains all i-tuples (. . . , (1[, 1[), x), where x can consist of zero or more elements
(1[, 1]), (1], 1[) or (1], 1[), (1[, 1]) after each other.

• C2(i) contains all i-tuples (. . . , (1[, 1[), x, y) where y represents (1[, 1]) or (1], 1[).
• C3(i) contains all other i-tuples.

Because we use three classes here, we can also prevents some cycles over more than two
consecutive vertices. We obtain a 3 × 3 transition matrix A such that (|C1(i + 1)|, |C2(i +
1)|, |C3(i + 1)|)T ≤ A (|C1(i)|, |C2(i)|, |C3(i)|)T of the form:

A =


1 2 1

2 0 0
0 2 3




By calculating the largest real eigenvalue we obtain z ≤ 3.68133. This bound is def-
initely not tight, it is possible to generalize this technique. We may take more classes
into consideration, but already concerning two classes improves our results only incremen-
tally. Computational research suggests that z is probably larger than 3.5. We replace 22i

in Equation (5) by the last calculated value zi to approximate the number of Planar

Hamiltonian Cycles:

C(`) = O(

`
2∑

i=0

(`
2

i

)
2

`
2
−i4`zi) = O(23.253`) (7)

Thus, we get the following result:

Theorem 2. Planar Hamiltonian Cycle is solvable in O(26.903
√

nn3/2 + n3) =
O(26.903

√
n).

4 Planar Graph TSP

In the Planar Graph TSP we are given a weighted Σ-plane graph G = (V, E) with
weight function w : E(G) → N and we are asked for a shortest closed walk that visits
all vertices of G at least once. Equivalently, this is TSP with distance metric the shortest
path metric of G. We only sketch the algorithm for Planar Graph TSP since it is
very similar to the algorithm for Planar Hamiltonian Cycle. Instead of collections
of disjoint paths we now deal with connected components with even vertex degree for the
vertices outside the nooses of the sc-decomposition.

It is easy to show that a shortest closed walk passes through each edge at most twice.
Thus every shortest closed walk in G corresponds to the minimum Eulerian subgraph in
the graph G′ obtained from G by adding to each edge a parallel edge. Every vertex of an
Eulerian graph is of even degree, which brings us to another equivalent formulation of the
problem. A labeling E : E(G) → {0, 1, 2} is Eulerian if the subgraph GE of G formed by
the edges with positive labels is a connected spanning subgraph and for every vertex v ∈ V
the sum of labels assigned to edges incident to v is even. Thus Planar Graph TSP is

12

equivalent to finding an Eulerian labeling E minimizing
∑

e∈E(G) E(e) ·w(e). For a labeling

E and vertex v ∈ V (G) we define the E-degree degE(v) of v as the sum of labels assigned
to the edges incident to v.

Let G be a Σ-plane graph and let 〈T, µ, π〉 be a rooted sc-decomposition of G of width `.
We use the same definitions for Oe, Ge, and ∆e. We call a labeling P[e] : E(Ge) → {0, 1, 2}
a partial Eulerian labeling if the subgraph GP[e] induced by the edges with positive labels
satisfies the following properties:

• Every connected component of GP[e] has a vertex in Oe.
• For every vertex v ∈ V (Ge) \ Oe, the P[e]-degree degP[e](v) of v is even and positive.

The weight of a partial Eulerian labeling P[e] is
∑

f∈E(Ge) P[e](f) · w(f). Note that every
partial Eulerian labeling of G{r,s} is also a Eulerian labeling.

Again we encode the information on which vertices of the connected components of
GP[e] of all possible partial Eulerian labelings P[e] hit Oe ∩ V (G). Also for every vertex
v ∈ Oe ∩ V (G) the information if degP[e](v) is either 0, or odd, or even and positive.

For a partial Eulerian labeling P[e] let C be a component of GP[e] with at least two
vertices in noose Oe. We scan the vertices of V (C) ∩ Oe according to the ordering π and
mark with index ’[’ the first and with ’]’ the last vertex of C on Oe. We also mark by ’�’
the other ’inner’ vertices of V (C) ∩ Oe. Finally we assign a numerical value.

If C has only one vertex in Oe, we mark this vertex by ’0’. This includes the case
|V (C)| = 1. Note that the connected components of GP[e] form a non-crossing partition ncp.
Thus, we can again decode the complete information on which vertices of each connected
component of V (GP[e]) hit Oe.

Thus every such state must be an algebraic term with the indices ’[’ being the opening
and ’]’ the closing bracket (with ’�’ and ’0’ representing a possible term inside the brackets).

When encoding the parity of the vertex degrees, the following observation is useful: In
every graph the number of vertices with odd degree is even. Consider a component C of
GP[e]. There is an even number of vertices in C ∩ Oe with odd P[e]-degree. Thus, we do
not encode the parity of the degree of a vertex assigned by ’]’. The parity is determined
by the other vertices of the same component. The state of dynamic programming is te :=
(v1, . . . , v`) with variables v1, . . . , v` having one of the six values: 0, 1[, 1�, 2[, 2�,]. Hence,
there are at most O(6`|V (G)|) states. For every state, we compute a value We(v1, . . . , v`)
that is the minimum weight over all partial Eulerian labelings P[e] encoded by (v1, . . . , v`):

• For every connected component C of GP[e] with |C ∩Oe| ≥ 2 the first vertex of C ∩Oe

in π is represented by 1[or 2[and the last vertex is represented by]. All other vertices
of C ∩ Oe are represented by 1� or 2�. For every vertex v marked by by 1[or 1� the
parity of degP[e](v) is even and for every vertex v marked by by 2[or 2�, degP[e](v) is
positive and even.

• For every connected component C of GP[e] with v = C∩Oe, v is represented by 0. (Note
that since for every w ∈ V (Ge) \Oe it holds that degP[e](w) is even so must degP[e](v).)

• Every vertex v ∈ (V (Ge) ∩ Oe) \ GP[e] is marked by 0. (Note that the vertices of the
last two items can be treated in the same way in the dynamic programming.)

13

We put We = +∞ if no such labeling exists. For an illustration of a partial Eulerian labeling
see Figure 4. To compute an optimal Eulerian labeling we perform dynamic programming

Oe

]

01[

2

1[

]

Fig. 4. On the left we see a plane graph G— 3-connected and non-Hamiltonian—partitioned by the rectangle
vertices hit by the marked noose Oe into Ge in drawn-through edges and Ge in dashed edges. To the right a
subgraph GE with Eulerian labeling E is marked. GE is partitioned by the vertices of Oe ∩ V (G) which are labeled
corresponding to partial Eulerian labeling P [e] of Ge. Encoding the vertices touched by Oe from the left to the
right with 1[, 1[, 0,], 2� ,], GP[e] consists of three components C1, C2 and C3 with C1 ∩ Oe = {1[, 2� ,]}, C2 ∩ Oe =
{0}, C3 ∩ Oe = {1[,]}. Here GP[e] has edges only labeled with 1.

over middle sets as in the previous section. The first step of processing the middle sets is
to initialize the leaves corresponding to edges f ∈ E of the graph G with values We(0, 0) =
0, We(1[,]) = w(f), and We(2[,]) = 2w(f). Then, bottom-up, update every pair of states
of two child edges eL and eR to a state of the parent edge eP assigning a finite value WP

if the state corresponds to a feasible partial Eulerian labeling.
We compute all valid assignments to the variables tP = (v1, v2, . . . , vp) from all possible

valid assignments to the variables of tL and tR. We define the numerical value | · | of ’]’ to
be one if the sum of degP[e] over all vertices in the same component is odd, and to be two
if the sum is even.

For every vertex v ∈ (OL ∪ OR ∪ OP) ∩ V (G) we consider the three cases:

• v ∈ D: cP (v) = cL(v) if v ∈ OL ∩ V (G), or cP (v) = cR(v) otherwise.
• v ∈ I: (|cL(v)| + |cR(v)|) mod 2 = 0 and |cL(v)| + |cR(v)| > 0.
• v ∈ P : |cP (v)| = 0 if |cL(v)| + |cR(v)| = 0, |cP (v)| = 1 if (|cL(v)| + |cR(v)|) mod 2 = 1,

else |cP (v)| = 2.

Note that for a vertex v ∈ OP ∩ V (G) it is possible that |cP (v)| = 0 even if |cL(v)| +
|cR(v)| is even and positive since v might be the only intersection of a component with OP .
In order to verify that the encoding formed from two states of eL and eR corresponds to

14

a labeling with each component touching OP , we use an auxiliary graph A with V (A) =
(OL ∪ OR) ∩ V (G) and {v, w} ∈ E(A) if v and w both are in one component of GP[eL]

and GP[eR], respectively. Every component of A must have a vertex in OP ∩ V (G). For
every encoding of tP , we set WP = min{WP , WL + WR}.

For the root edge {r, s} and its children e′ and e′′ note that (Oe′ ∪ Oe′′) ∩ V (G) = I
and O{r,s} = ∅. Hence, for every v ∈ V (GP[{r,s}]) it must hold that degP[{r,s}](v) is positive
and even, and that the auxiliary graph A is connected. The optimal Eulerian labeling of
G results from mint{r,s}{Wr}.

Analyzing the algorithm, we obtain the following lemma.

Lemma 2. Planar Graph TSP on a graph G with branchwidth at most ` can be solved
in time O(24.6496``n + n3).

Proof. Assume three adjacent edges eP , eL, and eR of T with |OL| = |OR| = |OP | = ` and
that there are no portal vertices. Thus we have |I| = |D ∩ OL| = |D ∩ OR| = `

2
.

By just checking every combination of `-tuples from OL and OR we obtain a bound of
O(`62`) for our algorithm.

This bound can be improved by using the fact that for all vertices u ∈ I we want the
sum of the assignments to be even, i.e., (|cL(u)| + |cR(u)|) mod 2 = 0.

We define Q(`, m1, m2) as the number of `-tuples over ` vertices of OL and OR, respec-
tively, where the {0, 1[, 1�, 2[, 2�,]} assignments for vertices from I is fixed and contains
m1 vertices of odd P[e]-degree and m2 vertices of even P[e]-degree. The only freedom is
thus in the `/2 vertices in D ∩ OL and D ∩ OR, respectively:

Q(`, m1, m2) = O(

`
2∑

i=0

`
2
−i∑

j=0

(
`
2

i

)(
`
2
− i

j

)
1

`
2
−i−j(

5

2
)i+m1(

5

2
)j+m2)

= O(6
`
2 (

5

2
)m1(

5

2
)m2) (8)

This expression is a summation over the number of vertices of odd and even P[e]-degree

in D ∩OL and D ∩OR, respectively. The terms
(`

2
i

)
and

(`
2
−i
j

)
count the possible locations

for the vertices of odd and even P[e]-degree, respectively, whereas (5
2
)i+m1 and (5

2
)i+m2

count the number of those assignments. The 1
`
2
−i−j is left in the formula to represent the

assignment of P[e]-degree zero to the remaining `/2 − i − j vertices.
We define C(`) as the number of possibilities of forming an `-tuple from OP . We sum

over i and j: the number of vertices of odd and even P[e]-degree in the assignment for I:

C(`) =

`
2∑

i=0

`
2
−i∑

j=0

(
`
2

i

)(
`
2
− i

j

)
5

`
2
−i−jQ(`, i, j)2 (9)

The term 5
`
2
−i denotes the number of ways the vertices of I can be assigned from one

side with P[e]-degree zero and from the other side with even P[e]-degree. Straightforward

15

calculation yields:

C(`) = O(

`
2∑

i=0

i∑
j=0

(
`
2

i

)(
`
2
− i

j

)
5

`
2
−i−j6`(

5

2
)2i(

5

2
)2j)

= O((6
√

17.5)`) (10)

We obtain an overall running time of O(6`(35
2
)

`
2 `n). ut

Forbidding several components Again we can further improve upon the previous bound
by only forming encodings that do not create several components. In contrast to cycles, the
components can be formed at the vertices in I with numerical part 1 and 2 in both OL and
OR. But we only consider vertices with even sum of the numerical part of the assignment.
Thus, we look separately at the classes of even P[e]-degree and odd P[e]-degree. Without
loss of generality consider odd P[e]-degree: as in the previous section we want to exclude the
case ((1[, 1[), (],])). Again suppose the two classes: C1(i) contains all i-tuples (. . . , (1[, 1[)),
and C2(i) contains all other i-tuples. Adding (],]) to i-tuples from C1(i) is forbidden, as
this will lead to a single component. Addition of (1[, 1[) to i-tuples of both, C1(i) and C2(i)

gives us the i + 1-tuples of class C1(i + 1). We obtain the matrix A =

(
1 1
5 21

4

)
with largest

eigenvalue z =
√

77+9
2

≤ 6.2097. We can insert z for both, the odd and the even valued
vertices separately in Equation (10):

C(`) = O(

`
2∑

i=0

i∑
j=0

(
`
2

i

)(
`
2
− i

j

)
5

`
2
−i−j6`zizj)

= O((6
√

17.4195)`) (11)

We obtain the following result:

Theorem 3. Planar Graph TSP is solvable in time O(29.8594
√

nn3/2 + n3) =
O(29.8594

√
n).

5 Variants

In this section we will discuss results on other non-local problems on planar graphs.

Hamiltonian Path. The problem of finding the minimum weight Planar Hamiltonian

path is closely related to Planar Hamiltonian Cycle. The main difference is that we
now have some more freedom in the allowed partial labelings, as there can be at most two
vertices not on a noose having degree 1. It is clear that this only contributes a constant
factor to the total running time, yielding the following theorem.

Theorem 4. Planar Hamiltonian Path is solvable in time O(26.903
√

n).

16

Longest Cycle and Longest Path. The problem of Planar Longest Cycle (Path)

is, given a weighted planar graph, find the cycle (path) with the largest sum of edge weights.
Let C be a cycle in G. For an edge e of an sc-decomposition tree T , the noose Oe can affect
C in two ways: Either cycle C is partitioned by Oe such that in Ge the remains of C are
disjoint paths, or C is not touched by Oe and thus is completely in Ge or G \ E(Ge).

With the same encoding as for Planar Hamiltonian Cycle, we add a counter for
all states te which is initialized by 0 and counts the maximum number of edges over all
possible vertex-disjoint paths represented by one te. In contrast to Planar Hamiltonian

Cycle, we allow for every vertex v ∈ I that |cL(v)|+ |cR(v)| = 0 in order to represent the
isolated vertices. A cycle as a connected component is allowed if all other components are
isolated vertices. Then all other vertices in V (G)\V (GP) of the residual part of T must be
of value 0. Implementing a counter Z for the actual longest cycle, a state in tP consisting
of only 0’s represents a collection of isolated vertices with Z storing the longest path in GP

without vertices in mid(e). At the root edge, Z gives the size of the longest cycle. Analysis
is similar to that of Planar Hamiltonian Cycle, we get a slightly worse running time
since we have to account for isolated vertices.

By the same argument as for Planar Hamiltonian Path we see that Planar

Longest Path has the same running time as Planar Longest Cycle. Thus we have
the following theorem.

Theorem 5. Planar Longest Cycle and Planar Longest Path are solvable in
time O(27.223

√
n).

Planar k-Cycle The Planar k-Cycle problem asks for a given planar graph G to find
a cycle of length at least a parameter k. The algorithm on Planar Longest Cycle can
be used for obtaining parameterized algorithms by adopting the techniques from [9, 13].

Before we proceed, let us remind the notion of a minor. A graph H obtained by a
sequence of edge-contractions from a graph G is said to be a contraction of G. H is a
minor of G if H is the subgraph of some contraction of G. Let us note that if a graph H
is a minor of G and G contains a cycle of length at least k, then so does G.

We need the following combination of statements (4.3) in [23] and (6.3) in [22].

Theorem 6 ([22]). Let k ≥ 1 be an integer. Every planar graph with no (k × k)-grid as
a minor has branchwidth at most 4k − 3.

It easy to check that every (
√

k ×√
k)-grid, k ≥ 2, contains a cycle of length at least

k − 1. This observation combined with Theorem 6 suggests the following parameterized
algorithm. Given a planar graph G and integer k, first compute the branchwidth of G. If
the branchwidth of G is at least 4

√
k + 1− 3 then by Theorem 6, G contains a (

√
k + 1×√

k + 1)-grid as a minor and thus contains a cycle of length at least k. If the branchwidth

of G is less than 4
√

k + 1−3 we can find the longest cycle in G in time O(213.6
√

k
√

k n+n3).
We conclude with the following theorem.

Theorem 7. Planar k-Cycle is solvable in time O(213.6
√

kn + n3).

17

By standard techniques (see for example [11]) the recognition algorithm for Planar

k-Cycle can easily be turned into a constructive one.

Minimum Number Cycle Cover. Minimum Number (Cost) Cycle Cover asks
for a minimum number (cost) of vertex disjoint cycles that cover the vertex set of the input
graph. The algorithm can be implemented as a variant of Planar Hamiltonian Cycle

algorithm, with the additional freedom of allowing cycles in the merging step. Thus the
result from Equation (6) can be used directly, leading to a running time of O(n

3
2 26.987

√
n).

Problems with tree-like solutions. The problem Connected Dominating Set asks
for a minimum Dominating Set that induces a connected subgraph. See [10] for a subex-
ponential algorithm on graphs of bounded outerplanarity. Connected Dominating Set

can be formulated as Max Leaf Problem where one asks for a spanning tree with the
maximum number of leaves.

For the state of the vertices on the nooses we can use an encoding with symbols
00, 01, 10, 1[, 1�, 1]. The numerical part indicates whether (1) or not (0) a vertex is an
inner node of the solution spanning tree. The indices for the vertices labeled with a 1
encode to which connected component they belong, 10 is an isolated vertex that becomes
an inner node. The indices for the leaves 0 indicate if a vertex is connected (1) or not (0)
to any vertex marked as an inner node. Using our technique, we obtain for Connected

Dominating Set a running time of O(29.822
√

n).

The Steiner Tree of some subset X of the vertices of a planar graph G is a minimum-
weight connected subgraph of G that includes X. It is always a tree; thus, we only encode
connected subgraphs by using four symbols 0, [,], �. Here, [,], � mark the first, the last
and all other vertices of a component and 0 marks isolated vertices and vertices that are
the only intersection of a component and the noose. Note that every vertex of X must
be part of a component, whereas the vertices of V \ X must not. We obtain for Steiner

Tree a running time of O(28.488
√

n).

In Feedback Vertex Set on an undirected planar graph G, one is asked to find a set
Y of vertices of minimum cardinality such that every cycle of G passes through at least one
vertex of Y . Feedback Vertex Set is equivalent to the problem: find an induced forest
F in G with vertex set V (F) of maximum cardinality. It holds that V (G) \ Y = V (F). We
are able to encode induced connected subgraphs with our technique. We mark if a vertex
is in V (F) or not. Every edge of G is an edge in the forest if its incident vertices are in
V (F). We can solve Feedback Vertex Set in time O(29.264

√
n).

In the parameterized version of the problem, k-Feedback Vertex Set, we ask if
Y is of size at most parameter k. We improve the 2O(

√
k log k)nO(1) algorithm in [17] to

2O(
√

k)nO(1) by using the bidimensionality of k-Feedback Vertex Set (see [9] for more
information). If a problem on graphs of bounded treewidth tw is solvable in time 2O(tw)nO(1)

and its parameterized version with parameter k is bidimensional then it is solvable in time
2O(

√
k)nO(1).

18

6 Concluding Remarks

In this paper we introduced a new algorithmic design technique based on geometric proper-
ties of branch decompositions. Our technique can be also applied to construct 2O(

√
n) ·nO(1)-

time algorithms for a variety of cycle, path, or tree subgraph problems in planar graphs
like Hamiltonian Path, Longest Path, and Connected Dominating Set, and
Steiner Tree amongst others. An interesting question here is if the technique can be
extended to more general problems, like Subgraph Isomorphism. For example, Eppstein
[12] showed that Planar Subgraph Isomorphism problem with pattern of size k can

be solved in time 2O(
√

k log k)n. Can we get rid of the logarithmic factor in the exponent
(maybe in exchange to a higher polynomial degree)?

The results of Cook & Seymour [7] on using branch decompositions to obtain high-
quality tours for (general) TSP show that branch decomposition based algorithms run
much faster than their worst case time analysis would indicate.

Together with our preliminary experience on the implementation of a similar algorithm
technique for solving Planar Vertex Cover in [2], we conjecture that sc-decomposition
based algorithms perform much faster in practice.

References

[1] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier, Fixed parameter algorithms
for dominating set and related problems on planar graphs, Algorithmica, 33 (2002), pp. 461–493.

[2] J. Alber, F. Dorn, and R. Niedermeier, Experimental evaluation of a tree decomposition-based algorithm
for vertex cover on planar graphs, Discrete Applied Mathematics, 145 (2005), pp. 219–231.

[3] J. Alber, H. Fernau, and R. Niedermeier, Graph separators: a parameterized view, Journal of Computer
and System Sciences, 67 (2003), pp. 808–832.

[4] , Parameterized complexity: exponential speed-up for planar graph problems, Journal of Algorithms, 52
(2004), pp. 26–56.

[5] S. Arora, M. Grigni, D. Karger, P. N. Klein, and A. Woloszyn, A polynomial-time approxima-
tion scheme for weighted planar graph TSP, in 9th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), New York, 1998, ACM, pp. 33–41.

[6] H. L. Bodlaender, A tourist guide through treewidth, Acta Cybernet., 11 (1993), pp. 1–21.
[7] W. Cook and P. Seymour, Tour merging via branch-decomposition, INFORMS Journal on Computing, 15

(2003), pp. 233–248.
[8] V. G. Dĕıneko, B. Klinz, and G. J. Woeginger, Exact algorithms for the Hamiltonian cycle problem in

planar graphs, Oper. Res. Lett., (2006), p. to appear.
[9] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos, Subexponential parameterized algo-

rithms on graphs of bounded genus and H-minor-free graphs, Journal of the ACM, 52 (2005), pp. 866–893.
[10] E. D. Demaine and M. T. Hajiaghayi, Bidimensionality: new connections between FPT algorithms and

PTASs, in 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), New York, 2005, ACM,
pp. 590–601.

[11] R. G. Downey and M. R. Fellows, Parameterized complexity, Springer-Verlag, New York, 1999.
[12] D. Eppstein, Subgraph isomorphism in planar graphs and related problems, Journal of Graph Algorithms

and Applications, 3 (1999), pp. 1–27.
[13] F. V. Fomin and D. M. Thilikos, New upper bounds on the decomposability of planar graphs, Journal of

Graph Theory, 51 (2006), pp. 53–81.
[14] Q.-P. Gu and H. Tamaki, Optimal branch-decomposition of planar graphs in O(n3), in 32nd International

Colloquium on Automata, Languages and Programming (ICALP), 2005, pp. 373–384.
[15] M. Held and R. M. Karp, A dynamic programming approach to sequencing problems, Journal of SIAM, 10

(1962), pp. 196–210.

19

[16] R. Z. Hwang, R. C. Chang, and R. C. T. Lee, The searching over separators strategy to solve some
NP-hard problems in subexponential time, Algorithmica, 9 (1993), pp. 398–423.

[17] T. Kloks, C. M. Lee, and J. Liu, New algorithms for k-face cover, k-feedback vertex set, and k-disjoint
cycles on plane and planar graphs, in 28th International Workshop on Graph-theoretic Concepts in Computer
Science, WG 2002, vol. 2573 of Lecture Notes in Comput. Sci., Berlin, 2002, Springer, pp. 282–295.

[18] G. Kreweras, Sur les partition non croisées d’un circle, Discrete Mathematics, 1 (1972), pp. 333–350.
[19] E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, eds., The traveling salesman problem, John

Wiley & Sons Ltd., Chichester, 1985.
[20] R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM Journal on Applied Math-

ematics, 36 (1979), pp. 177–189.
[21] , Applications of a planar separator theorem, SIAM Journal on Computing, 9 (1980), pp. 615–627.
[22] N. Robertson, P. Seymour, and R. Thomas, Quickly excluding a planar graph, Journal of Combinatorial

Theory Series B, 62 (1994), pp. 323–348.
[23] N. Robertson and P. D. Seymour, Graph minors. X. Obstructions to tree-decomposition, Journal of

Combinatorial Theory Series B, 52 (1991), pp. 153–190.
[24] P. Seymour and R. Thomas, Call routing and the ratcatcher, Combinatorica, 15 (1994), pp. 217–241.
[25] W. D. Smith and N. C. Wormald, Geometric separator theorems and applications, in The 39th Annual

IEEE Symposium on Foundations of Computer Science (FOCS 1998), IEEE Computer Society, 1998, pp. 232–
243.

20

