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Abstract

We consider a one-round two-player network pricing game, the Stackelberg Mini-
mum Spanning Tree game or STACKMST.

The game is played on a graph (representing a network), whose edges are colored
either red or blue, and where the red edges have a given fixed cost (representing the
competitor’s prices). The first player chooses an assignment of prices to the blue edges,
and the second player then buys the cheapest possible minimum spanning tree, using
any combination of red and blue edges. The goal of the first player is to maximize the
total price of purchased blue edges. This game is the minimum spanning tree analog
of the well-studied Stackelberg shortest-path game.

We analyze the complexity and approximability of the first player’s best strategy
in STACKMST. In particular, we prove that the problem is APX-hard even if there are
only two different red costs, and give an approximation algorithm whose approximation
ratio is at most min{k, 14+Inb, 1+In W}, where k is the number of distinct red costs, b is
the number of blue edges, and W is the maximum ratio between red costs. We also give
a natural integer linear programming formulation of the problem, and show that the
integrality gap of the fractional relaxation asymptotically matches the approximation
guarantee of our algorithm.
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1 Introduction

Suppose that you work for a networking company that owns many point-to-point connec-
tions between several locations, and your job is to sell these connections. A customer wants
to construct a network connecting all pairs of locations in the form of a spanning tree. The
customer can buy connections that you are selling, but can also buy connections offered
by your competitors. The customer will always buy the cheapest possible spanning tree.
Your company has researched the price of each connection offered by the competitors. The
problem considered in this paper is how to set the price of each of your connections in
order to maximize your revenue, that is, the sum of the prices of the connections that the
customer buys from you.

This problem can be cast as a Stackelberg game, a type of two-player game introduced
by the German economist Heinrich Freiherr von Stackelberg [18]. In a Stackelberg game,
there are two players: the leader moves first, then the follower moves, and then the game
is over. The follower thus optimizes its own objective function, knowing the leader’s move.
The leader has to optimize its own objective function by anticipating the optimal response
of the follower. In the scenario depicted in the preceding paragraph, you were the leader
and the customer was the follower: you decided how to set the prices for the connections
that you own, and then the customer selected a minimum spanning tree. In this situation,
there is an obvious tradeoff: the leader should not put too high price on the connections—
otherwise the customer will not buy them—but on the other hand the leader needs to put
sufficiently high prices to optimize revenue.

Formally, the problem we consider is defined as follows. We are given an undirected
graph@ G = (V, E) whose edge set is partitioned into a red edge set R and a blue edge set
B. Each red edge e € R has a nonnegative fixed cost c(e) (the best competitor’s price).
The leader owns every blue edge e € B and has to set a price p(e) for each of these edges.
The cost function ¢ and price function p together define a weight function w on the whole
edge set. By “weight of edge ¢” we mean either “cost of edge e” if e is red or “price of edge
e” if e is blue. A spanning tree T is a minimum spanning tree (MST) if its total weight
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The Stackelberg Minimum Spanning Tree problem, STACKMST, asks for a price function p
that maximizes the revenue of an MST. Throughout, we assume that the graph contains a
spanning tree whose edges are all red; otherwise, there is a cut consisting only of blue edges
and the optimum value is unbounded. Moreover, to avoid being distracted by epsilons, we
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assume that among all edges of the same weight, blue edges are always preferred to red
edges; this is a standard assumption. As a consequence, all minimum spanning trees for a
given price function p have the same revenue; see Section [2] for details.

Related work. A similar pricing problem, where one wants to price the edges in B and
the customer wants to construct a shortest path between two vertices instead of a spanning
tree, has been studied in the literature; see van Hoesel [17] for a survey. Complexity and
approximability results have recently been obtained by Roch, Savard and Marcotte [15],
and by Bouhtou, Grigoriev, van Hoesel, van der Kraaij, Spieksma, and Uetz [4]: the prob-
lem is strongly NP-hard and O(log |B|)-approximable. A generalization of the problem to
more than one customer has been tackled using mathematical programming tools, in par-
ticular bilevel programming; see Labbé, Marcotte, and Savard [I3]. This generalization was
motivated by the problem of setting tolls on highway networks. Note that the STACKMST
problem is only interesting in the single-customer case, since otherwise all customers pur-
chase the same tree. Cardinal, Labbé, Langerman, and Palop [8] give a geometric version
of the shortest path problem.

Recently, part of the results of the current paper have been generalized to other prob-
lems by Briest, Hoefer and Krysta [5]. They also exhibit a polynomial-time algorithm for
a special case of a Stackelberg vertex cover problem, in which the follower’s problem is to
find a minimum vertex cover in a bipartite graph.

Other pricing problems have been studied, in which the goal is to find the best prices
for a set of items, after bidders have announced their preferences in the form of subset
valuations. FEnuwy-free pricing, in particular, can be viewed as a simple Stackelberg game.
APX-hardness and approximability of such problems have been established by Hartline and
Koltum [12], and by Guruswami, Hartline, Karlin, Kempe, Kenyon, and McSherry [11].
Balcan and Blum [2] gave improved approximation results. Approximability within a
logarithmic factor has also been recently established for more general cases by Balcan,
Blum and Mansour [3]. The case in which items are edges of a graph has been studied by
Grigoriev, van Loon, Sitters and Uetz [10], and Briest and Krysta [6]. A semi-logarithmic
inapproximability result for a special case of the unlimited supply pricing problem has been
given by Demaine, Feige, Hajiaghayi, and Salavatipour [9].

Our results. We analyze the complexity and approximability of the STACKMST prob-
lem. Specifically, we prove the following:

1. STACKMST is APX-hard, even if there are only two red costs, 1 and 2 (Section [3).
This result is also the first NP-hardness proof for this problem, and, to our knowledge,
the first APX-hardness proof for a Stackelberg pricing game with a single customer.
The reduction is from SETCOVER.

2. STACKMST is O(log n)-approximable, and is O(1)-approximable when the red costs
either fall in a constant-size range or have a constant number of distinct values
(Sectiond]). More precisely, we analyze the following simple approximation algorithm,



called Best-out-of-k: for all i between 1 and k, consider the price function for which
all blue edges have price ¢;, and output the best of these k price functions. Here,
and throughout the paper, ¢; denotes the ith smallest cost of a red edge and k the
number of distinct red costs. We prove that the approximation ratio of this algorithm
is bounded above by min{k,1 +Inb,1 + In(cx/c1)}, where b := | B| is the number of
blue edges.

3. The integrality gap of a natural integer linear programming formulation asymptoti-
cally matches the approximation guarantee of Best-out-of-k (Section (). Thus, effec-
tively, any approximation algorithm based on the linear programming relaxation of
our integer program (or any weaker relaxation) cannot do better than Best-out-of-k.
Of course, this result does not imply that Best-out-of-k is optimal. In fact, a cen-
tral open question about STACKMST is to determine if it admits a constant factor
approximation algorithm.

2 Basic Results

Before we proceed to our main results, we prove a few basic lemmas about STACKMST.

We claimed in the introduction that the revenue of the leader depends on the price
function p only, and not on the particular MST picked by the follower. To see this, let
wy < wy < --- < wy denote the different edge weights. The greedy algorithm (a.k.a.
Kruskal’s algorithm) will work in ¢ phases: in its ith phase, it will consider all blue edges
of price w; (if any) and then all red edges of cost w; (if any). The number of blue edges
selected in the ith phase will not depend on the order in which blue or red edges of weight
w; are considered. This shows the claim. Moreover, if there is no red edge of cost w; then
p is not an optimal price function because the leader can raise the price of every blue edge
of price w; to the next weight w;;1 and thus increase his/her revenue. This implies the
following lemma.

Lemma 1. In every optimal price function, the prices assigned to the blue edges appearing
in some MST belong to the set {c(e) : e € R}.

Notice that for optimal price functions, the prices given to the blue edges that are in
no MST do not really matter, as long as they are high enough. We find it convenient to
see them as equaling co. This has the same effect as deleting those blue edges. A direct
consequence of Lemma [Tl is that the decision version of STACKMST belongs to NP, using
some price function p with p(e) € {c(e) : e € R} U {0} for all e € B as a certificate.
Another possibility for a certificate is an acyclic set of blue edges F', interpreted as the
set of blue edges in any MST. Given F', we can easily compute an optimal price function
such that F' is the set of blue edges in any MST, with the help of Lemma [2] below. In the
lemma, we use the notation C(B’,e) for the set of cycles of G = (V, RU B’) that include
the edge e, where B’ is an acyclic subset of blue edges and e € B’. (Notice that C(B’,e) is
nonempty because (V, R) is connected.)



Lemma 2. Consider a price function p, a corresponding minimum spanning tree T, and
let F=E(T)NB. Then for every e € F', we have

< i .
ple) < min  wmax = cle) (3)

Moreover, whenever F is any acyclic set of blue edges and we set p(e) equal to the right
hand side of @) for e € F and p(e) = 0o for e € B—F, we have E(T')N B = F for any
corresponding MST T'.

Proof. The first part of the lemma is straightforward. Indeed, if (B]) fails for some edge
e € F, then there exists a red edge ¢’ with ¢(e¢’) < p(e) that links the two components of
T — e, and so T cannot be an MST. We now turn to the second part of the lemma. First
note that E(T") N B is clearly contained in F' because no MST can use any edge with an
infinite price. By contradiction, suppose there is some edge e in F' that is not used by T’
and let ¢ be a red edge with maximum cost on the unique cycle of T” + e. Because the
price function p we have chosen satisfies ([B]) (with equality), the weight of edge e is at most
the weight of €/, and thus T is not an MST because of our assumption that blue edges
have priority over the red edges of the same weight. O

It follows from the above lemma that STACKMST is fixed parameter tractable with
respect to the number of blue edges. Indeed, to solve the problem, one could try all acyclic
subsets F' of B, and for each of them put the prices as above (this can easily be done in
polynomial time), and finally take the solution yielding the highest revenue. We conclude
this section by stating a useful property satisfied by all optimal solutions of STACKMST.

Lemma 3. Let p be an optimal price function and T be a corresponding MST. Suppose
that there exists a red edge e in T and a blue edge f not in T such that e belongs to the
unique cycle C in T + f. Then there exists a blue edge f' distinct from f in C such that

cle) <p(f') <p(f).

Proof. The inequality c(e) < p(f) follows from the optimality of T" and from our assumption
on the priority of blue edges versus red edges of the same weight. If all blue edges f’ distinct
from f in C satisfied p(f’) < c(e) or p(f) < p(f’) then by decreasing the price of f by some
amount we would be able to find a new price function p’ such that 7/ =T — €’ + f is an
MST with respect to p’, where ¢’ is some red edge on C. This contradicts the optimality
of p because the revenue of T” is bigger than that of T'. O

3 Complexity and Inapproximability

By Lemma [Il, STACKMST is trivially solved when the cost of every red edge is exactly 1,
i.e., when c(e) = 1 for all e € R. In this section, we show that the problem is APX-hard
even when the costs of the red edges are only 1 and 2, i.e., when c(e) € {1,2} for all e € R.
We start with NP-hardness:



Theorem 1. STACKMST is NP-hard even when c(e) € {1,2} for all e € R.

Proof. We present a reduction from SETCOVER (in its decision version). Let (U,S)

and the integer ¢ be an instance of SETCOVER, where U = {uj,uo,...,u,}, and
S = {51,5,...,S,}. Without loss of generality, we assume that u, € S; for every
i =1,2,...,m (we can always add one element to U and to every S; to make sure this
holds).

We construct a graph G = (V, E) with edge set £ = RU B and a cost function
c¢: R — {1,2} as follows. The vertex set of G is UUS = {uy,ua,...,u,}U{S1,52,...,m}
The edge set of G and cost function ¢ are defined as follows:

e there is a red edge of cost 1 linking u; and wu;41 for every 1 <i < n;

e there is a red edge of cost 2 linking u,, and Si, and linking S; and Sj;1 for every
I1<j<m;

e whenever u; € S; we link u; and S; by a blue edge.

(@ (b)

Figure 1: (a) The graph G constructed for n = 6, m = 3 with S; = {uy, uo, us, ug, ug},
Sy = {us,ug,ug} and S3 = {us,ug}. The red edges of cost 2 are omitted for clarity. The
red edges of cost 1 are dashed, and the blue edges are solid. (b) An optimal price function
p on the blue edges that yields a revenue of 9, an example MST is depicted in bold.

We illustrate such a construction in Fig. [ We claim that (U, S) has a set cover of size ¢
if and only if there exists a price function p : B — {1,2, 00} for the blue edges of G whose
revenue is n +2m —t — 1.

(=) Suppose (U, S) has a set cover of size t. We construct p as follows: for every blue edge
e = u;S;, we set p(e) to be 1 if S; is in the set cover, and 2 otherwise. We show that the
revenue of p equals n 4+ 2m — ¢t — 1 by running Kruskal’s MST algorithm starting with an
empty tree, T. Because the blue edges of weight 1 are the lightest, we start with adding
them one by one to 1" such that we add an edge only if it doesn’t close a cycle in T'. After
going over all blue edges of weight 1, we are guaranteed that T is a tree that spans all
the vertices u; for every ¢ = 1,...,n, and every vertex S; such that S; is in the set cover.
This is because these vertices are connected through u,, with only blue edges of weight 1.



So the current weight of T'is |T| — 1 = n+t — 1. We next try to add the red edges of
weight 1, but every such edge connects two vertices, u; and w;41, already spanned by T'
and therefore closes a cycle, so we add none of them. Next we add the blue edges of weight
2. For every S; not in the set cover, we connect S; to T' with one blue edge of weight 2
(the second one will close a cycle). Therefore, after going over all the blue edges of weight
2, we added a weight of 2(m —t) to T. Furthermore, T" spans the entire graph so there is
no need to add any red edges of weight 2. All the edges in 1" are blue and the revenue of
Tis(n+t—1)4+2(m—t)=n+2m—t—1.

(<) Suppose that there exists a price function p : B — {1,2,00} for the blue edges of G
whose revenue is n+2m —t—1 for some t. By Lemma ], there exists such a function p that
is optimal. Choose then p: B — {1,2,00} as an optimal price function that minimizes the
number of red edges in an MST T.

Assume first that T contains only blue edges. Then every vertex u; is incident to some
blue edge in 7" with price 1. To see this, observe that u; is adjacent to a vertex S; that
is not a leaf, thus S; has a neighbor uy, and the red edges in the cycle S;,uq,...,ug,S;
all have cost 1. Thus the set S’ of those S;’s that are linked to some blue edge in 7" with
price 1 is a set cover of (i, S). On the other hand, notice that any S; € S\ S’ is a leaf
of T', because if there were two blue edges u;S;, u;1¢S; in T then none of them could have
a price of 2 because of the cycle Sju;u;y1...u;40S;. Therefore, the revenue of p equals
(n+|S'|—1)+2(m—|S8']) = n+2m—|S'|—1. As by hypothesis this is at least n+2m—t—1,
we deduce that the set cover S’ has size at most t.

Suppose now that T contains some red edge e and denote by X; and Xs the two
components of T'— e. There exists some blue edge f = u;S; in G that connects X; and
X9 because the graph (V, B) induced by the blue edges is connected (because u,, is linked
with blue edges to every S;). By Lemma [3] there exists a blue edge f' = u; S distinct
from f in the unique cycle C' in T + f such that c(e) < p(f’) < p(f). In particular, we
have c(e) = 1 and p(f’) = 2. By an argument given in the preceding paragraph, S; is a
leaf of T', hence we have j' = j. Also, every blue edge distinct from f and f’ in C has price
1. But then the price function p’ obtained from p by setting the price of both f and f’ to
1 is also optimal and has a corresponding MST that uses less red edges than 7', namely
T — e+ f, a contradiction. This completes the proof. O

The reduction used in Theorem [Il implies a stronger hardness result.
Theorem 2. STACKMST is APX-hard even when c(e) € {1,2} for all e € R.

Proof. We will show that, for any ¢ > 0, a (1 —¢)-approximation for STACKMST implies a
(1 + 8e)-approximation for VERTEXCOVER in graphs of maximum degree at most 3. The
claim will then follows from the APX-hardness of the latter problem [I] [14].

Let H denote any given graph with maximum degree at most 3. We can assume that H
is connected because otherwise we process each connected component separately. Moreover,
we can assume that H has at least as many edges as vertices because VERTEXCOVER can
be solved exactly in polynomial time if H is a tree.



Clearly, the VERTEXCOVER instance we consider is equivalent to a SETCOVER instance
with |V (H)| sets and |E(H)| elements in the ground set. Let (U,S) be the SETCOVER
instance obtained from the latter one by adding a new dummy element d in the ground
set, and adding d to every subset of the instance. Hence, we have n = [U| = |[E(H)| + 1
and m = |S| = |V(H)|. Any vertex cover of H yields a set cover of (U,S) with the
same size, and vice-versa. Thus the reduction used in the proof of Theorem [ provides a
way to convert in polynomial time a vertex cover of size s into a feasible solution of the
STACKMST instance corresponding to (U, S) with revenue n+ 2m — s — 1, and vice-versa.
In particular, we have OPT = n + 2m — OPTvyc — 1, where OPT and OPTyc denote the
value of the optimum for the STACKMST and VERTEXCOVER instances, respectively.

Now consider the vertex cover found by running the (1—¢)-approximation algorithm on
the STACKMST instance and then converting the result into a vertex cover of H. Denoting
by s its size and letting r = n + 2m — s — 1, we obtain:

s=n+2m—-r—1 < n+2m—-(1—-¢)OPT -1
n+2m—(1—-¢)(n+2m—-OPTyc—1)—1
e(m—142m)+ (1 —-¢)OPTyc

£ (30PTyc + 6 OPTyc) + (1 — &) OPTyc

—  (1+8)OPTyc.

IN

Above we have used the fact that n — 1 = |E(H)| > |[V(H)| = m and that OPTyc >
|E(H)|/3 = (n—1)/3 because H has maximum degree at most 3. O

4 The Best-Out-Of-£ Algorithm

As before, let k denote the number of distinct red costs, and let ¢; < ¢g < - < ¢, denote
those costs. Without loss of generality, we assume that all red costs are positive (otherwise
we contract all red edges of cost 0). Recall that the Best-out-of-k algorithm is as follows.
For each i between 1 and k, set p(e) = ¢; for all blue edges e € B and compute an MST T;.
Then pick ¢ such that the revenue of T; is maximum and output the corresponding feasible
solution. In this section, we analyze the approximation ratio ensured by this algorithm.

Theorem 3. Best-out-of-k is a min{k, 1+1Inb, 1 +1n W }-approzimation algorithm, where b
denotes the number of blue edges, and W = ¢ /c1 is the mazimum ratio between red costs.

Proof. We let p* be an optimal price function, 7% be an MST of G with respect to p*, and
n; be the number of blue edges of price ¢; in T*. We also define N; as the number of blue
edges of price at least ¢; in T, that is, V; = Z_I;:z n;.

We first prove the following claim: for all ¢ = 1,...,k, the ith MST T; computed by
Best-out-of-k contains at least N; blue edges. For S C E| let r(S) denote the maximum
cardinality of an acyclic subset of S (that is, the rank function of the graphic matroid of
G). We also let R; be the set of red edges with cost at most ¢;, and B be the set of blue
edges e such that p*(e) < ¢;.



Now consider an execution of Kruskal’s algorithm on G with respect to p*, up to the
point where all edges of weight at most ¢;_; have been processed. The total number of
edges included up to that point in the MST T* equals r(R;—; U B} ;). Next, resume
the execution of Kruskal’s algorithm, process all blue edges of price ¢; and stop before
processing any red edge of cost ¢;. In order to maximize the number of blue edges N; of
price at least ¢; included in T%, we could lower to ¢; the price of all blue edges whose current
price is at least ¢;. Then, the total number of edges included up to now in 7™ would be
exactly r(R;—1 U B). This implies

N; <r(Ri-1UB)—1r(Ri-1UB;_;) <r(Ri—1 UB) —r(Rij—1).

Because the latter expression gives the number of blue edges in T;, this proves the claim.
Using this claim, we can bound the revenue ¢ of the solution returned by Best-out-of-k:

g > max Nj-g¢.

i=1,....k

We also know that OPT = Zle ni - ¢;.
Since n; < N;, we have

k k
OPT:Zni-ci§ZNi-Ci§/€'q7

i=1 i=1

proving the first approximation factor.
Also, we have (letting Ni41 = 0):
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which proves the second approximation factor.
Finally, we also have the following (letting ¢y = 0):

k
i=1

= > ni> (¢—cj-1)
=1 j=1
k

= ZNJ"(CJ cj-1)
=1

I

(=)
QQ
24
L

7j=1
and
Z B g I N 74
- Cj
7=1
establishing the third approximation factor. O

The three approximation factors are tight for the following examples. Consider a graph
with k 4+ 1 vertices vi,va,...,Vk+1, in which the red edges are of the form v;v;41, and
there is a blue edge parallel to every red edge. The cost of the red edge v;v;41 is 1/i. The
optimal solution involves setting a price of 1/i for every blue edge v;v;+1, yielding a revenue
of Zle 1/i. On the other hand, the Best-out-of-k algorithm sets the price of every blue
edge to 1/i for some i, always yielding a revenue of 1. This proves that the ratios 1+ Inb
and 1 4 In W are asymptotically tight.

The factor k can be proven tight as well by considering a similar example. The graph
is composed of 1 4 Zle a'~! vertices for some large integer a. The red edges form a path
connecting these vertices using a*~* edges of cost ¢; = a’~! for every i between 1 and k.
Every red edge is doubled by a blue edge. The optimal solution again involves setting the
prices of the blue edges equal to that of the parallel red edge, yielding a revenue of k-a*~1.
The Best-out-of-k algorithm setting the prices to ¢; yields an MST containing Z_I;:z ak=i
blue edges, with a revenue of

The ratio between the two revenues tend to k as a tends to infinity.

A natural generalization of STACKMST to matroids is as follows. Given a matroid
(S,Z) with Z partitioned into two sets R and B, and nonnegative costs on the elements of

10



R, assign prices on the elements of B in such a way that the revenue given by a minimum
weight basis of (S,Z) is maximized. We mention that the analysis of Best-out-of-k given
in the proof of Theorem [B] extends swiftly to the case of matroids, yielding the same
approximation for this more general case.

5 Linear Programming Relaxation

In this section, we give an integer programming formulation for the problem and study
its linear programming relaxation. All red costs ¢; are assumed to be positive throughout
the section. For each j = 1,...,k, and each blue edge e € B we define a variable x;.
The interpretation of these variables is as follows: think of a feasible solution p : B —
{c1,¢2,..., ¢} and an MST T with respect to p. Then z;. = 1 means that the blue edge
e appears in T, with a price p(e) of at least c;.

We let ¢g = 0 and, as in the previous section, denote by R; the set of red edges of
cost at most ¢;. For ¢ pairwise disjoint sets of vertices C1,...,C;, we denote by dg(Ch :
Cy : -+ : Cy) the set of blue edges that are in the cut defined by these sets. The integer
programming formulation then reads:

(IP) max Z (Cj —Cj_l):Ej,e

ecB
1<j<k

s.t. > mje<t—1 Vie{1,2,...,k}, (4)

e€0p(Cr:CarCh) VCl1, ...,Cy components of (V, Rj_1);

> @it <|PNB Vf=abe B,Yje{2,3,...,k}, (5)
eebnb VP ab-path in (BUR;j_1) — f;
Tie > Toe> > Tpe >0 Ve € B; (6)
zj. €40,1} Vjie{l,2,...,k},Ve € B. (7)

Let us first give some intuition on this integer program. Consider a minimum spanning
tree T with respect to a feasible solution p, let F' be the set of blue edges appearing in
T, and let F; = {e € F : p(e) > ¢j}. Then F' (= Fy) must obviously be a forest. Also,
F; (j €{2,...,k}) must be a forest in the graph where every component of (V, R;_1) has
been contracted, since otherwise we could swap in 7" some edge of F; with an edge in R;_;.
This is encoded by constraints (). Similarly, if a cycle C' of the graph is such that every
red edge in C has cost at most ¢;_; and some blue edge f of C appears in T" with a price
at least c;, then there must be another blue edge of C that is not included in 7. This is
ensured by constraints (Bl).

Proposition 1. The integer program above is a formulation of STACKMST.

11



Proof. Consider a feasible solution x of the integer program (IP) and let F' = {e € B :
z1e = 1}. Inequality () ensures that F is a forest. For e € F, let p(e) = ¢; if j is the
last index for which z;. = 1 and, for e € B — F, let p(e) = co. Now consider a minimum
spanning tree T" with respect to p. We claim E(T') N B = F' and that the revenue of T is
exactly the objective value for x.

It suffices to prove that all edges of F' belong to T. All edges e € F' of price ¢; are
necessarily in 7. Assume that all edges e € I’ of price less than ¢; are in 7', for some j > 2.
We show that this holds too for edges of price ¢;. Consider some edge f with p(f) = ¢;.
Suppose that f is not in 7. This means that there exists a cycle in G consisting of blue
edges of price at most ¢; and of red edges of price at most ¢;_;. But then (&) is violated,
a contradiction. So the claim holds.

Conversely, consider any optimal solution to the STACKMST problem with price func-
tion p(-) and a corresponding MST T'. Let F' = E(T) N B. We define a vector x as follows:
fore € B, z;. = 1if e € F and p(e) > ¢;, otherwise z; . = 0. It is easily checked that the
revenue given by p equals the objective function of the IP for x. Moreover, constraints (),
(©) and (7)) are clearly satisfied by x. Finally, note that if = violates (Bl for some e € F,
then e also violates the min-max formula given in Lemma[2l This completes the proof. [

The rest of this section is devoted to the LP relaxation of the above IP, obtained by
dropping constraint (). We show that the LP is tractable and that its integrality gap
matches essentially the guarantee given by the Best-out-of-k algorithm. (Let us recall that
the integrality gap of the LP on a specified set of instances Z is defined as the supremum
of the ratio (LP)/(IP) over all instances in Z.)

Proposition 2. The LP can be separated in polynomial time.

Proof. For fixed j, ) can be separated in polynomial time using standard techniques for
the forest polytope, as described e.g. in Schrijver [16, pp. 880-881]. Inequality (B]) can be

rewritten as
Y (=) >
ee PNB

Thus, for each fixed j and f = ab, (@) can be separated by finding a shortest ab-path in
the graph (V,(BURj_1) — f) where every red edge has weight 0 and every blue edge e has
weight 1 — 21 .. Finally, (@) can obviously be separated in polynomial time. O

We first bound the integrality gap from above:

Proposition 3. We have (LP) < min{k,1 4+ Inb,1 +InW} - (IP), where b denotes the
number of blue edges, and W = ¢ /¢y is the mazimum ratio between red costs.

Proof. Let x be any feasible vector for the LP. The value of the objective function for z is

thus
D (e = cic1) wie.

ecB
1<i<k

12



Leti € {1,...,k}, let C1,...,C* be components of the graph (V, R;_1 UB), and denote
by CY,... ,C’Zj the components of the subgraph of (V, R;_1) induced by C7. For every
je{l,..., ¢}, we have

§ Tije = § Tie-

eeB[C{umuCZj] eeéB(C{:Cgi"'icfj)

(Here, for S C V, the notation B[S] means the set of blue edges with both endpoints in
S.) Indeed, this holds trivially if ¢« = 1, since then each C’g is a vertex of C7. For i > 2, for
any blue edge f = ab that is internal to a component CJ of C7 (that is, f € B[C}]), there
exists an ab-path consisting of edges of R;_1, and so (Bl enforces that z; < 0.

Also, constraints (@) imply

Z .Z'i7e§€j—1

6653(0{:052---:ng)
for every j € {1,...,¢}. We thus obtain
4 l
Szie=> Y 2e<> (1) =r(Rii UB) — r(Riy).
cEB j=1 6653(0{:0%:~~:ng) j=1

The number of blue edges in the ith MST computed by Best-out-of-k being exactly r(R;—1U
B) —r(R;i—1) =: A;, it then follows

Z (ci —cim1) xie <

eEB
1<i<k

(Ci — Ci—l) A

s.
I Mw
I

Letting ¢ = max;—,_; 4; - ¢; denote the revenue given by the Best-out-of-k algorithm, we
deduce

k k k
B CGi—Ci—1 , ' Ci — Ci—1
Z(Ci —cii1)A; = Z TAZ ¢ < q Z Y
i=1 =1 i=1
and, letting Ap,1 =0,
k k k k
Ai — A +1 Ai — A i+l
S (e = 3 i) = Y Ao A < 3 A e
i=1 i=1 i=1 =1

As in the proof of Theorem B, we have

k
SO < minfk, 1+ In W)
C

i=1 v
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and
A — A

Z T <1+4Inb.
=1
Therefore,
Z (¢i —cim1) Tie <min{k,1+1Inb,1+InW}-gq
eeB
1<i<k
< min{k,14+Inb, 1 +In W} (IP),
as claimed. O

Proposition 4. The integrality gap of the LP is
e k on instances with k distinct costs;
e O(InW) on instances with mazimum ratio between red costs W, and
e O(Inbd) on instances with b blue edges.

Proof. We already know from Proposition [3] that the integrality gap of the LP is at most
min{k, 14+Inb, 1+In W}. We first by prove that the integrality gap is at least k on instances
with k distinct costs. To this aim, we define an instance of STACKMST as follows: Choose
an integer a > 2 and let the vertex set of the graph be V = {0,1,2,...,a*'}. The
graph has a*~1 blue edges, linking vertex 0 to every other vertex. The ith red cost is
¢; = a1 Fori € {1,2,..., k — 1}, the subgraph spanned by the red edges with cost c¢;
is a disjoint union of a*~*~! cliques, each of cardinality a’; the vertex sets of these cliques
are {1,...,a'},{a’ +1,...,2da'},...,{a* ' —a’ +1,...,a""'}. Finally, there is a unique
red edge with cost ¢, linking vertex 0 to vertex 1.

Consider an optimal solution of the STACKMST problem for the instance defined above,
and let T be a corresponding MST. Consider any blue edge e in T', of price ¢;, and let C,
be the unique component of (V — {0}, R;_1) that contains an endpoint of e. No other blue
edge of T has an endpoint in C,, because otherwise one could replace the edge e in T with
an appropriate red edge of R;_1 and obtain a new spanning tree with weight strictly less
than that of T, a contradiction. Thus, if e and f are two distinct blue edges of T', then
C. N Cy = 0. Noticing that the price given to e is ¢; = a=! = |Ce|, we deduce that the
revenue given by T is

> G <df

e€ BNE(T)

Moreover, a revenue of a*~1 is easily achieved, set for instance all blue edges of the graph
to the same price ¢; for some i € {1,...,k}. Hence, (IP) = a*~1.

14



We now define a feasible solution z* for the LP. The point z* will have the property
that 7, = o, for 1 <4 < k and all e, f € B. We thus let y; = a7, for e € B. The
constraints on the y;’s imposed by the LP are then:

ai_lyigl for 1 <i<k;
n+y <1 for 2 <1 < k;
Y1 2>Y2 > - >y, > 0.

Set y; = (a —1)/a and y; = 1/a’~! for 2 < i < k, which satisfies the above constraints.
The value of the objective function of the LP for the point x* is

LP(z*) = Z (ci —cim1)zie

ecB
1<i<k

1 fa-1 i oy 1 _ _
:ak 1 + § :(CLZ l_az 2) ' :kak l_kak 2.
a at—1
2<i<k

Therefore, the ratio LP(x*)/(IP) tends to k as a — oo.

Now, the same construction can be used to show that the integrality gap is Q(In W)
and Q(Inbd) on instances with ¢;/c; = W and b blue edges, respectively. We explain it in
the case where the number of blue edges is fixed to some value b, the case where the ratio
¢ /c1 is fixed is done similarly.

Take an instance as above, with a = 2 and k being the greatest integer such that
2k=1 <. Choose an arbitrary blue edge and add b— 2*~! parallel blue edges to it (so that
the number of blue edges is exactly b). These extra blue edges have clearly no influence on
the value of (IP) and LP(x*) (where z* is defined as before). Using b < 2¥, we deduce

(Ip) 2k—1 ) 2’

LP(z*) k2F1 k22 & _ logyb

and thus that the integrality gap is Q(Inb), as claimed. O

To conclude this section, let us mention that we know of additional families of valid
inequalities that cut the fractional point used in the above proof. We leave the study of
those for future research.
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