
35/44-approximation for Asymmetric Maximum
TSP with Triangle Inequality [Extended

Abstract]

 Lukasz Kowalik and Marcin Mucha?

Institute of Informatics, Warsaw University, Warsaw, Poland
{kowalik,mucha}@mimuw.edu.pl

Abstract. We describe a new approximation algorithm for the asym-
metric maximum traveling salesman problem (ATSP) with triangle in-
equality. Our algorithm achieves approximation factor 35/44 which im-
proves on the previous 31/40 factor of Bläser, Ram and Sviridenko [2].

1 Introduction

The Traveling Salesman Problem and its variants are among the most intensively
researched problems in computer science and arise in a variety of applications.
In its classical version, given a set of vertices V and a symmetric weight function
w : V 2 → R one has to find a Hamiltonian cycle of minimum weight. This prob-
lem is probably the most widely known example of an inapproximable NP-hard
problem. However, there is a lot of research on approximation of several natural
variants of TSP. These variants are still NP-hard, but allow approximation. One
of the most important problems in this category is the maximization version
(maxTSP for short), where w is assumed to have only nonnegative values (oth-
erwise minTSP would reduce to it). There are several variants of maxTSP, e.g.
the weight function can be symmetric or asymmetric, it can satisfy the triangle
inequality or not, etc. (For some results on maxTSP variants see e.g. [3, 4, 6, 8]).

In this paper, we are concerned with the variant, where the weight function
is asymmetric (in other words, the graph is directed) and satisfies the triangle
inequality. This variant is often called the semimetric maxTSP.

The first approximation algorithm for this problem was proposed by Kos-
tochka and Serdyukov [9] in 1985 and had approximation ratio of 3

4 . Quite re-
cently, Kaplan, Lewenstein, Shafrir and Sviridenko [5] provided a very general
and powerful framework for approximating asymmetric TSP variants and gave
improved approximation ratios for 3 different problems: 4

3 log3 n for semimet-
ric minTSP, 10

13 for semimetric maxTSP and 2
3 for asymmetric maxTSP. Using

a different approach, Bläser et. al obtained a 31
40 -approximation algorithm for

semimetric maxTSP.

? Part of this work was done while both authors were staying at the Max Planck
Institute in Saarbruecken, Germany. This research is partially supported by a grant
from the Polish Ministry of Science and Higher Education, project N206 005 32/0807.

We show that in the case of semimetric maxTSP the ideas of Kaplan et al.
can be combined with a new patching procedure yielding a 35

44 -approximation.

Overview of the paper The semimetric max-TSP approximation algorithm of
Kaplan et al. combines two ideas: Kostochka and Serdyukov’s “patching” algo-
rithm for the same problem and a new framework based on pairs of cycle covers.
In Section 2 we briefly review both ideas and the way they can be combined.
In Section 3 we introduce a new patching procedure based on Kaplan et al.’s
framework. This immediately leads to a relatively simple 11

14 -approximation for
semimetric maxTSP. In Section 4 we describe a more elaborate patching method
which improves the approximation ratio to 35

44 by lowerbounding the weight of
almost every edge used to form a Hamiltonian cycle.

2 Preliminaries

Throughout the remainder of this paper we assume all graphs to be directed and
weighted with a nonnegative weight function w satisfying the triangle inequality.

2.1 Kostochka and Serdyukov’s Algorithm

Many approximation algorithms for TSP problems begin with finding a minimum
(maximum) cycle cover and then patch it to a Hamiltionian cycle. The following
theorem shows how this is done in Kostochka and Serdyukov’s algorithm.

Theorem 1. Let C = {C1, . . . , Ck} be a cycle cover in a directed weighted graph
G with edge weights satisfying the triangle inequality. Let mi be the number of
edges in Ci and let wi = w(Ci) be the weight of Ci. Given the cycle cover C, we

can find in polynomial time a Hamiltonian cycle of weight
∑k

i=2

(

1 − 1
2mi

)

wi.

A slightly weaker version of the above theorem is due to Kostochka and
Serdyukov [7]. The version in this paper is taken from Kaplan et al. [5].

Maximum weight cycle cover (possibly containing 2-cycles) can be found in
polynomial time. Such cover has weight at least as large as the maximum weight
Hamiltonian cycle. From Theorem 1 it follows that

Theorem 2. There exists a 3
4 -approximation algorithm for semimetric maxTSP.

2.2 The Algorithm of Kaplan et al.

The 2-cycles are the obvious bottleneck of the above approach. If we could find,
in polynomial time, a maximum weight cycle cover with no 2-cycles, we would
get a 5/6-approximation algorithm. Unfortunately, finding such a cover is an NP-
hard problem (see e.g. [1]). Kaplan et al. [5] proposed the following alternative
approach.

Theorem 3. Let G = (V, E) be a directed weighted graph. We can find in poly-
nomial time a pair of cycle covers C1, C2 such that (i) C1 and C2 share no 2-cycles,
(ii) total weight w(C1) + w(C2) of the two covers is at least 2OPT, where OPT
is the weight of the maximum weight Hamiltonian cycle in G.

We will call such pairs of cycle covers nice pairs of cycle covers.

Observation 1 (Kaplan et al.) In the above theorem, we can assume that the
graph consisting of all the 2-cycles of C1 and C2 does not contain oppositely
oriented cycles. For if it does contain such cycles, say C and its opposite Ĉ, we
can remove all the 2-cycles forming C and Ĉ from C1 and C2 and instead add C
to C1 and Ĉ to C2.

Theorem 4. There exists a 10
13 -approximation algorithm for semimetric maxTSP.

The proof of the above theorem can be found in [5]. Since our approach
extends that of Kaplan et al., we include it here for completeness. Let us first
introduce a few definitions. A bipath is a pair of oppositely oriented paths, i.e. a
path and its opposite. As a special case, a biedge is a single edge together with
its opposite edge. A bicycle is a pair of oppositely oriented cycles. Finally, a
Hamiltonian bicycle is a pair of oppositely oriented Hamiltonian cycles.

Proof (of Theorem 4). Let C1, C2 be a nice pair of cycle covers. Applying The-
orem 1 to C1 and C2, we get two Hamiltonian cycles H1, H2 with total weight
w(H1) + w(H2) ≥ 3

4W2 + 5
6W3+, where W2 is the total weight of 2-cycles in C1

and C2 and W3+ is the total weight of all the other cycles.
Another way to construct a Hamiltonian cycle using C1 and C2 is to consider

the graph H consisting of all the 2-cycles of C1 and C2. It follows from Observa-
tion 1 that H is a sum of disjoint bipaths. We can patch these bipaths arbitrarily
to get a Hamiltonian bicycle Ĥ of weight w(Ĥ) ≥ W2.

Picking the heaviest cycle out of H1, H2 and the two cycles of Ĥ gives a
Hamiltonian cycle of weight at least 1

2 max
{

3
4W2 + 5

6W3+, W2

}

. Since W2 +
W3+ ≥ 2OPT, easy calculation (or solving a corresponding linear program)
shows that the weight of this heaviest cycle is at least 10

13OPT. ut

3 Spanning Bitrees and 11/14-approximation

Kaplan et al.’s algorithm (see Theorem 4) balances two solutions. The first
one is based on Kostochka and Serdyukov’s algorithm and the second one on
Kaplan et al.’s approach of constructing a nice pair of cycle covers. However, from
these cycle covers they pick only the 2-cycles. The basic idea of our approach is
to partially incorporate longer cycles into this second solution by constructing
additional bipaths and/or extending existing ones.

Remark 1. Cycles of length > 2 do not contain pairs of opposite edges. Hence,
not all the new bipath edges will belong to some cycle.

Let P be a family of disjoint bipaths. We say that set of biedges S is allowed
w.r.t. P , if S is disjoint from P and the edge sum of P and S is a family of
disjoint bipaths (e.g. adding S does not create a bicycle in P). A biedge e is
allowed w.r.t P if {e} is allowed w.r.t. P , otherwise e is forbidden.

The following is the skeleton of the algorithm, that we will develop in the
remainder of the paper:

Algorithm 3.1 Main Algorithm

1: Let C1, C2 be a nice pair of cycle covers
2: Let P be the family of bipaths constructed in Kaplan et al.’s Algorithm
3: Mark all 2-cycles as processed

4: for all unprocessed cycles C in C1 and C2 do

5: use C to construct a heavy set S of biedges, allowed w.r.t. P

6: P := P ∪ S

7: mark C as processed

8: arbitrarily patch P to a Hamiltonian bicycle

Let the degree degP (v) of a vertex v in a family P of bipaths be the number
of biedges in P incident with v (and not the number of edges). In the above
algorithm S will always be chosen in such a way that the following is satisfied:

Invariant 1 For any vertex v, degP (v) is not greater than the number of pro-
cessed cycles containing v.

How do we construct a heavy set of biedges S using a cycle C? In this section,
S will contain only a single biedge e with both ends in C. When choosing S = {e},
we could pick e to be any of the biedges allowed w.r.t. P . However, we want e
to have a large weight.

Let bitree be a connected set of biedges with no bicycles. Let C be a cycle and
let the vertices of C be numbered 1, . . . , k along the cycle. A bitree T is plane
w.r.t. C if T does not contain two biedges u1u2, v1v2 such that u1 < v1 < u2 < v2

(intuitively, this means that if we make a planar drawing of C, we can complete
it to a planar drawing of C ∪ T). We say that T is a plane spanning bitree of C
if T is plane w.r.t. C and connects all vertices of C. Plane spanning bitrees are
interesting because they have large weight.1

Lemma 1. Let T be a plane spanning bitree of a cycle C. Then w(T) ≥ w(C).

Proof. The proof relies on the triangle inequality. The weight of every edge of C
is upperbounded by the weight of a certain path in T . Figure 1 shows how this
is done. The solid paths incident to a region marked with number i upperbound
the weight of the cycle edge i. ut

1 All the plane spanning bitrees we use in this paper are in fact bipaths. We believe,
however, that the more general setting might be beneficial in attempts to improve
the results of this paper.

Fig. 1. The proof idea of Lemma 1

Observation 2 Consider an execution of the Main Algorithm and let C be an
unprocessed cycle. If P satisfies Invariant 1, then the set of biedges that have
both endpoints in C and are forbidden w.r.t P forms a matching.

Lemma 2. Consider an execution of the Main Algorithm, let C be an unpro-
cessed cycle, and let P satisfy Invariant 1. Then, there exists T , a plane spanning
bitree w.r.t. C (in fact, a bipath), whose all biedges are allowed w.r.t P .

Fig. 2. Finding a plane bipath avoiding forbidden edges.

Proof. The path T is constructed as follows. First, for each edge (u, v) of cycle
C put biedge uv in T whenever it is allowed. Note that at this point T already
contains all vertices of C (because forbidden biedges with endvertices on C form
a matching). Let k be the number of forbidden biedges corresponding to edges
in E(C). If k = 0 we remove any biedge from T and we are done. Otherwise
enumerate the endvertices of the k biedges on C from v1 to v2k along the cycle C.
Finally, for every i = 1, . . . , k − 1 add edge viv2k−i to T . (See Fig. 2). All these
edges are allowed since their endvertices are endvertices of distinct forbidden
edges and forbidden edges with ends on C form a matching. Also, T forms a path,
since all its vertices are of degree 2 except for vk and v2k, which are of degree 1.
Finally, path T is plane: the only edges that may cross are chords of C, however,
for any pair of such distinct chords viv2k−i, vjv2k−j either i < j < 2k−j < 2k−i
or j < i < 2k − i < 2k − j. This proves the claim. ut

Theorem 5. Let C1 and C2 be a nice pair of cycle covers of G. Then, there
exists a Hamiltonian bicycle in G with weight at least

∑

∞

i=2
Wk

k−1 , where Wk is
the total weight of k-cycles in C1 and C2.

Proof. We use the Main Algorithm. When processing a cycle C of length k, we
use Lemma 2 to construct T , a plane spanning bitree w.r.t C, whose all biedges
are allowed w.r.t. P . Then we set S = {e}, where e is the heaviest biedge of T .

By Lemma 1 w(e) ≥ w(C)
k−1 , which proves the claim. ut

Theorem 6. There exists a 11
14 -approximation algorithm for semimetric maxTSP.

Proof. As in the proof of Theorem 4 we construct a nice pair of cycle covers C1,
C2 and use Theorem 1 to get Hamiltonian cycles H1, H2 with total weight

w(H1) + w(H2) ≥
∞
∑

i=2

(

1 −
1

2k

)

Wk .

Next, by Theorem 5 to get two more Hamiltonian cycles H3, H4 with total
weight

w(H3) + w(H4) ≥

∞
∑

i=2

1

k − 1
Wk.

Picking the heaviest cycle out of all the Hi gives a Hamiltonian cycle H of weight

w(H) ≥
1

2
max

{

∞
∑

i=2

(

1 −
1

2k

)

Wk,

∞
∑

i=2

1

k − 1
Wk

}

.

From
∑

∞

i=2 Wk ≥ 2OPT, it follows that w(H) ≥ 11
14OPT. This can be proved

by solving a corresponding LP (details omitted in this extended abstract). ut

4 Making Ends Meet and 35/44-approximation

In this section we introduce two improvements. First, we will add more than
one biedge to the family P of bipaths, while processing a single cycle C. This is
possible if C is long enough. Moreover, recall that in the last step of the algorithm
from the previous section we construct a Hamiltonian cycle by patching the
bipaths with arbitrary edges. The endvertices of these edges could belong to
distinct cycles and we do not lowerbound their weight in any way. The second
improvement we are going to present here is to partially incorporate the patching
process into the main algorithm in order to be able to lowerbound this weight.
We use this approach for processing short cycles.

4.1 Long cycles

Lemma 3. Let P be a family of disjoint bipaths satisfying Invariant 1 and let C
be an unprocessed cycle of length at least 5. Then there exists an allowed family of
biedges S, such that (i) after processing C, the family P ∪S satisfies Invariant 1,
(ii) w(S) ≥ 1

4w(C), (iii) if |C| ≤ 7 then w(S) ≥ 1
3w(C), (iv) if |C| = 5 then

w(S) ≥ 1
2w(C).

Proof. In order to keep Invariant 1 satisfied, we make S a set of vertex-disjoint
allowed biedges with endvertices in C. Let Q be the plane bipath spanning C
with no forbidden biedges, which exists by Lemma 2. We color the edges of Q
with two colors: a and b, so that incident biedges get distinct colors. Adding all
biedges of one color, say a, to P may create one or more bicycles (note that such
a bicycle contains at least two biedges from Q). For each such bicycle we pick
one biedge from Q and we recolor it to a new color c. Similarly, we recolor some
biedges from b to d.

It is clear that each of the four color classes is an allowed family of biedges. Let
S be the heaviest of these four sets. Clearly w(S) ≥ 1

4w(Q). Since w(Q) ≥ w(C)
by Lemma 1, we get (ii).

Now, let |C| ≤ 7. Again, we find the bipath Q and we 2-color it. Suppose that
adding all the biedges of color a to P gives a bicycle. Since there are at most 3
biedges colored a and any bicycle contains at least 2 such biedges, we can only
get one such bicycle. Similarly, at most one bicycle is formed by P and biedges
colored b. Suppose that both bicycles exist (the remaining cases are trivial). We
need to recolor one (colored) biedge from each cycle to a new color, so that the
recolored edges are not adjacent.

Let us start at one end of Q and go along Q until we encounter a colored
cycle biedge. Assume w.l.o.g. that its color is a. Then, we can recolor both this
biedge and the furthest cycle biedge colored b to a new color c. Clearly, each of
the three color classes is an allowed family of biedges. Again, we let S be the
heaviest of them, obtaining w(S) ≥ 1

3w(C).

Fig. 3. Coloring a bipath spanning a 5-cycle. Crossed out edges are forbidden.

Finaly, consider the case of |C| = 5. W.l.o.g. we can assume that there
are two forbidden biedges with endvertices on C (if not, we can just “forbid”
additional biedges). Figure 3 shows all three possible configurations of these
biedges together with our choice of the bipath Q in each case. As before, we
2-color Q, and then set S to be the heavier of the two color classes. This gives
w(S) ≥ 1

2w(C). Observe that in each case both color classes contain a biedge
with an endvertex not adjacent to a forbidden biedge. Such a biedge cannot be
a part of a bicycle in P ∪ S, so S is allowed. ut

4.2 Short cycles

To get the approximation ratio better than 11
14 we need to extract more weight

from the 3- and 4-cycles when constructing the bipaths in the Main Algorithm.

Unfortunately, it turns out that it is impossible to take more than one edge from
each such cycle. Note however, that when only a single biedge is put into P
when processing a cycle C, at least one vertex v of C becomes a loose end, i.e.
degP (v) is smaller than the number of processed cycles containing v.

Remark 2. If degP (v) = 0 and both cycles containing v have already been pro-
cessed, we consider v to be two loose ends.

We can link loose ends from distinct cycles without violating Invariant 1.
Surprisingly, it is possible to lowerbound the weight of such links. First let us
see how loose ends are created.

Lemma 4. Let P be a family of disjoint bipaths satisfying Invariant 1 and let
C be an unprocessed k-cycle. Then there exists an allowed family of biedges S
such that (i) w(S) ≥ 1

k−1w(C), (ii) after processing C family P ∪ S satisfies
Invariant 1, and (iii) the number of loose ends increases by k − 2.

Proof. We use the approach described in the previous section, i.e. S = {e} where
e is the heaviest biedge of the plane spanning bipath of C. All the vertices of C
except for the two endvertices of e become loose ends. ut

The following two lemmas show how loose ends can be used to extract more
weight from 3-cycles and 4-cycles.

Lemma 5. Let P be a family of disjoint bipaths satisfying Invariant 1 with at
least 2 loose ends and let C be an unprocessed 3-cycle. Then there exists an
allowed family of biedges S such that (i) w(S) ≥ 3

4w(C), (ii) after processing
C, the family P ∪ S satisfies Invariant 1, and (iii) the number of loose ends
decreases by 1.

Proof. Our plan here is to make S contain one biedge with both endvertices
in C and one biedge linking the remaining vertex of C with one of the loose
ends. This obviously satisfies (ii) and (iii). We only need to guarantee that S is
allowed and that it has weight at least 3

4w(C). We consider one of the following
two cases, depending on whether or not there exists a loose end v that is not
connected to C with a bipath in P (this bipath might have length 0 in which
case one of the vertices of C is a loose end).

Case 1. There exists such v. Let a, b, c be the vertices of C and suppose
Q = abc is a plane spanning bipath of C with no forbidden edges. Consider
two possibilities for S: S1 = {ab, cv} (ab and cv denote biedges here) and S2 =
{bc, av}. Both are allowed. For example, if we add S1 to P , cv lies on a bipath
(not a bicycle) because v is not connected with C in P , and ab by itself cannot
form a bicycle because it is allowed as a biedge of Q. Similar argument works
for S2. We also have

w(S1) + w(S2) = w(ab) + w(bc) + w(cv) + w(va) ≥ w(ab) + w(bc) + w(ca) ≥

≥ 1
2 [(w(ab) + w(bc)) + (w(bc) + w(ca)) + (w(ca) + w(ab))] ≥ 3

2w(C),

where the second inequality follows from the triangle inequality and the last
inequality follows from Lemma 1. Taking S to be the heavier of S1 and S2 we
get the required lower bound of 3

4w(C).

Case 2. Such v does not exists, so we have two loose ends u, v connected to
two different vertices of C, say u connected to a, and v connected to b. Let c
be the remaining vertex of C. Notice that all biedges of C are allowed. For if
any of them, call it xy, were not allowed, then x and y would be connected with
a bipath in P , and that cannot happen, since we know that either the bipath
starting in x or the bipath starting in y ends in a loose end.

Consider the two solutions defined in the previous case: S1 = {ab, cv} and
S2 = {bc, av}. They are both allowed. For example, adding S1 to P forms a
bipath . . . cv . . . ba . . . u ending in a loose end u, so no bicycles are formed. Similar
argument works for S2. The weight argument is the same as in Case 1. ut

Lemma 6. Let P be a family of disjoint bipaths satisfying Invariant 1 with at
least 2 loose ends and let C be an unprocessed 4-cycle. Then there exists an
allowed family of biedges S such that (i) w(S) ≥ 1

2w(C), (ii) after processing C,
the family P ∪ S satisfies Invariant 1, and (iii) the number of loose ends does
not change.

Proof. Our plan is to make S contain two biedges with both endvertices on C
or one biedge with both endvertices on C and one biedge linking a vertex of C
with one of the loose ends. This satisfies (ii) and (iii) and again we only need to
guarantee that S is allowed and that it has weight at least 1

2w(C). We consider
the same two cases as in the previous lemma.

Case 1. There exists a loose end v not connected to C in P .
Let C = abcd and let Q be a plane spanning bipath of C with no forbidden

edges. We consider all solutions of the following form: a biedge of Q and a biedge
connecting one of the remaining vertices of C and v. There a six such solutions
since Q has 3 edges and there are always 2 remaining vertices. All these solutions
are allowed. That is because the bipath edge is allowed by itself, and the linking
edge cannot form a cycle in P since v is not connected with C in P .

Let us now bound the total weight of these six solutions. Consider a pair
of solutions corresponding to a single biedge of Q, say xy. The total weight of
these two solutions is 2w(xy) + w(vz) + w(vw) ≥ 2w(xy) + w(zw) (by triangle
inequality), where z, w are the two remaining vertices. So we get twice the weight
of the bipath biedge and the weight of the complementary biedge. Now, notice
that for any plane spanning bipath Q of a 4-cycle, the complementary biedges
of biedges of Q also form a plane spanning bipath. It follows from Lemma 1 that
the total weight of all six solutions is at least 3w(C). Taking S to be the heaviest
of the six solutions gives the required lower bound of 1

2w(C).

Case 2. Such v does not exists, so we have two loose ends u, v connected to two
different vertices of C. Let C = abcd. We have two cases.

Case 2a. v and u are connected to two successive cycle vertices, say u is con-
nected to a and v is connected to b. Consider two solutions: S1 = {da, bc} and

S2 = {ab, cv} (here cv is a dummy biedge, added only to keep the number of
loose ends constant for simplicity). Both solutions are allowed, because if we add
any of them to P , each of the added biedges lies on a bipath ending in a loose
end. Also w(S1) + w(S2) ≥ w(C) by Lemma 1, because {da, bc, ab} is a plane
spanning bitree of C.

Case 2b. v and u are connected to opposite cycle vertices, say u is connected to a
and v is connected to c. Consider two solutions: S1 = {ab, cd} and S2 = {ad, bc}.
The rest of the argument is the same as in the previous Case 2a. ut

For technical reasons, that will become clear in the proof of Theorem 7, the
very last cycle needs to be processed even more effectively. This is possible,
because when processing the last cycle we can make P a Hamiltonian bicycle.
To deal with this special case we use the following lemmas (we defer their proofs
to the full version of the paper).

Lemma 7. Let P be a family of disjoint bipaths satisfying Invariant 1 with
exactly 1 loose end. Assume that all cycles have been processed except for one
3-cycle C. Then there exists an allowed family of biedges S such that (i) P ∪ S
is a Hamiltonian bicycle, (ii) w(S) ≥ 3

4w(C).

Lemma 8. Let P be a family of disjoint bipaths satisfying Invariant 1 with
exactly 2 loose ends. Assume that all cycles have been processed except for one
4-cycle C. Then there exists an allowed family of biedges S such that (i) P ∪ S
is a Hamiltonian bicycle, (ii) w(S) ≥ 2

3w(C).

Lemma 9. Let P be a family of disjoint bipaths satisfying Invariant 1 with no
loose ends. Assume that all cycles have been processed except for one 4-cycle C.
Then there is an allowed family of biedges S such that (i) P ∪S is a Hamiltonian
bicycle, (ii) w(S) ≥ 1

2w(C).

4.3 Putting It All Together

Theorem 7. Let C1 and C2 be a nice pair of cycle covers of G. Then, there
exists a Hamiltonian bicycle in G with weight at least W2 + 5

8W3 + 1
2W4 + 1

2W5 +
1
3W6 + 1

3W7 + 1
4W8+, where Wk is the total weight of k-cycles in C1 and C2 and

W8+ is the total weight of cycles of length at least 8 in C1 and C2.

Proof. We use the Main Algorithm and process all the long (i.e. of length at least
5) cycles before the 3- and 4-cycles. Long cycles are processed using Lemma 3.
As a result we get a family P of bipaths satisfying Invariant 1 and such that
w(P) ≥ W2 + 1

2W5 + 1
3W6 + 1

3W7 + 1
4W8+. Depending on the number of loose

ends in P , we continue in one of the following ways.

Case 1. There are at least 2 loose ends. Then we first process 4-cycles, in any
order, using Lemma 6 for each cycle. Note that w(P) increases by at least 1

2W4

during this phase. Next we process 3-cycles in order of decreasing weight. The
first 3-cycle A is processed using Lemma 5. As a result the number of loose

ends drops by 1 and W (P) increases by 3
4w(A). Then we process the second

3-cycle B using Lemma 4. We get one loose end and W (P) increases by 1
2w(B).

We process all the 3-cycles in this way, alternating between Lemmas 5 and 4.
Clearly that overall W (P) increases by at least 5

8W3, hence after patching P to
a Hamiltonian bicycle we get its total weight as claimed.

Case 2. There are no loose ends. Note that, when a cycle C is processed, the
number of loose ends increases by |C| − 2|S|. Hence, at any time, the parity of
the number of loose ends equals the parity of the sum of lengths of the processed
cycles. It follows that if there are no loose ends then the sum of lengths of the
processed cycles is even. On the other hand, the sum of lengths of all cycles in
C1 and C2 is 2n, hence also the sum of lengths of the unprocessed cycles is even.
It implies that the number of 3-cycles is even. Now we will consider subcases
regarding the number of 3-cycles and 4-cycles.

Case 2a. There are at least two 4-cycles. Then we start by processing the lightest
4-cycle using Lemma 4. This gives us 2 loose ends. Next, all 3-cycles and all but
one remaining 4-cycles are processed using the algorithm from Case 1. Again,
since the number of 3-cycles is even, we still have 2 loose ends when this phase is
finished. It follows that the remaining 4-cycle can be processed using Lemma 8.
We see that in total w(P) increases by 1

3 of the weight of the lightest 4-cycle, 2
3

of the weight of some other 4-cycle, 1
2 of the weight of all the other 4-cycles and

by 5
8W3, which is at least 5

8W3 + 1
2W4, as required.

Case 2b. There are at least four 3-cycles. Then we start by processing the two
lightest 3-cycles using Lemma 4. This gives us 2 loose ends and w(P) increases
by 1

2 of the weight of these 3-cycles. Next, all 4-cycles and all but two remaining
3-cycles are processed using the algorithm from Case 1. This increases w(P)
by 5

8 of the weight of the triangles processed in this phase and by 1
2W4. Note

that since the number of 3-cycles is even, we still have 2 loose ends after this
phase. The two remaining 3-cycles are processed using Lemma 5 and Lemma 7,
respectively. Then w(P) increases by 3

4 of their weight. During the processing of
all short cycles w(P) increases by at least 5

8W3 + 1
2W4, as required.

Case 2c. There are two 3-cycles and one 4-cycle. Then we consider two methods
of processing these cycles and we choose the more profitable one. Method 1:
process the 3-cycles using Lemma 4 and obtaining 2 loose ends, then process
the 4-cycle using Lemma 8. In this case w(P) increases by 1

2W3 + 2
3W4. Method

2: process the 4-cycle using Lemma 4 and obtaining 2 loose ends, then process
the 3-cycles using Lemma 5 for the first one and Lemma 7 for the second one.
In this case w(P) increases by 3

4W3 + 1
3W4. Clearly the better method gives us

max{ 1
2W3 + 2

3W4,
3
4W3 + 1

3W4} ≥ 5
8W3 + 1

2W4, as required .

Case 2d. There are no 3-cycles and there is one 4-cycle. We use Lemma 9.

Case 2e. There are two 3-cycles and no 4-cycles. We process the lighter 3-cycle
A using Lemma 4 which gives us 1 loose end. Then the second 3-cycle B can be
processed using Lemma 7. This increases w(P) by at least 1

2w(A) + 3
4w(B) ≥

5
8W3 as required.

Case 3. There is exactly one loose end. By the parity argument from Case 2.,
the number of 3-cycles is odd. We can treat the single loose end as an imaginary
3-cycle I of weight 0. This way the number of 3-cycles becomes even and we
again arrive at Case 2. Note that in the algorithms from subcases 2a, 2b and 2e
the imaginary triangle would be processed using Lemma 4. If we just do nothing
while processing I we get the same effect: w(P) grows by 1

2w(I) = 0 and we get
an additional loose end. Case 2d does not apply since we do have 3-cycles. The
only case left is a counterpart of Case 2c: there is one 3-cycle and one 4-cycle.
Similarly to Case 2c we consider 2 methods and we choose the more profitable
one. Method 1 is: process the 3-cycle using Lemma 4 obtaining the second loose
end and then process the 4-cycle using Lemma 8. Method 2 is: process the 4-
cycle using Lemma 4 obtaining two more loose ends and then process the 3-cycle
using Lemma 5. Performing the same calculations as in Case 2c, we see that w(P)
increases by at least 5

8W3 + 1
2W4, as required. ut

Theorem 8. There exists a 35
44 -approximation algorithm for semimetric maxTSP.

Proof. Similarly to the algorithm in Theorem 6, our algorithm chooses the heavi-
est of the four Hamiltonian cycles: two constructed by Kostochka and Serdukov’s
algorithm and the two cycles of the bicycle from Theorem 7. Again, by simple
LP reasoning, one can show that the resulting cycle has weight ≥ 35

44OPT. ut

Acknowledgments The authors would like to thank Kasia Paluch for many
helpful discussions.

References

1. M. Bläser and B. Manthey. Two approximation algorithms for 3-cycle covers. In
APPROX’02, pages 40–50, 2002.

2. M. Bläser, S. Ram, and M. Sviridenko. Improved approximation algorithms for
metric maximum ATSP and maximum 3-cycle cover problems. In WADS’05, pages
350–359, 2005.

3. R. Hassin and S. Rubinstein. Better approximations for max TSP. Inf. Process.

Lett., 75(4):181–186, 2000.
4. R. Hassin and S. Rubinstein. A 7/8-approximation algorithm for metric Max TSP.

Inf. Process. Lett., 81(5):247–251, 2002.
5. H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko. Approximation algo-

rithms for asymmetric TSP by decomposing directed regular multigraphs. J. ACM,
52(4):602–626, 2005.

6. S. R. Kosaraju, J. K. Park, and C. Stein. Long tours and short superstrings (pre-
liminary version). In FOCS’94, pages 166–177, 1994.

7. A. V. Kostochka and A. I. Serdyukov. Polynomial algorithms with the estimates
3/4 and 5/6 for the traveling salesman problem of the maximum (in Russian).
Upravlyaemye Sistemy, 26:55–59, 1985.

8. M. Lewenstein and M. Sviridenko. A 5/8 approximation algorithm for the maximum
asymmetric TSP. SIAM J. Discrete Math., 17(2):237–248, 2003.

9. A. I. Serdyukov. The traveling salesman problem of the maximum (in Russian).
Upravlyaemye Sistemy, 25:80–86, 1984.

