
Algorithmica (2011) 60: 207–235
DOI 10.1007/s00453-009-9333-0

Constructing the Simplest Possible Phylogenetic
Network from Triplets

Leo van Iersel · Steven Kelk

Received: 6 August 2008 / Accepted: 16 June 2009 / Published online: 7 July 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract A phylogenetic network is a directed acyclic graph that visualizes an
evolutionary history containing so-called reticulations such as recombinations, hy-
bridizations or lateral gene transfers. Here we consider the construction of a sim-
plest possible phylogenetic network consistent with an input set T , where T con-
tains at least one phylogenetic tree on three leaves (a triplet) for each combi-
nation of three taxa. To quantify the complexity of a network we consider both
the total number of reticulations and the number of reticulations per biconnected
component, called the level of the network. We give polynomial-time algorithms
for constructing a level-1 respectively a level-2 network that contains a minimum
number of reticulations and is consistent with T (if such a network exists). In
addition, we show that if T is precisely equal to the set of triplets consistent
with some network, then we can construct such a network with smallest possi-
ble level in time O(|T |k+1), if k is a fixed upper bound on the level of the net-
work.

Keywords Phylogenetics · Polynomial-time algorithm · Phylogenetic networks ·
Triplets · Minimising reticulations

Part of this research has been funded by the Dutch BSIK/BRICKS project.

L. van Iersel (�)
Department of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch,
New Zealand
e-mail: l.j.j.v.iersel@gmail.com

S. Kelk
Centrum voor Wiskunde en Informatica (CWI), P.O. Box 94079, 1090 GB Amsterdam,
The Netherlands
e-mail: s.m.kelk@cwi.nl

mailto:l.j.j.v.iersel@gmail.com
mailto:s.m.kelk@cwi.nl

208 Algorithmica (2011) 60: 207–235

1 Introduction

One of the ultimate goals in computational biology is to create methods that can
reconstruct evolutionary histories from biological data of currently living organisms.
The immense complexity of biological evolution makes this an extremely challenging
task. This has motivated researchers to focus first on the simplest possible shape of
evolution, the tree-shape [21]. Now that treelike evolution has been well studied, a
logical next step is to also consider slightly more complicated evolutionary scenarios,
gradually extending the complexity that our models can describe. At the same time,
we also wish to take into account the parsimony principle, which tells us that amongst
all equally good explanations of our data, one prefers the simplest one.

For a set of taxa (e.g. species or strains), a phylogenetic tree describes (a hypoth-
esis of) the evolution that these taxa have undergone. The taxa form the leaves of the
tree while the internal vertices represent events of genetic divergence: one incoming
branch splits into two (or more) outgoing branches.

Phylogenetic networks form an extension to this model where it is also possible
that two branches combine into one new branch. We call such an event a reticula-
tion, which can model any kind of non-treelike (also called “reticulate”) evolutionary
process such as recombination, hybridization or lateral gene transfer. In addition,
reticulations can also be used to display different possible (treelike) evolutions in one
figure. In recent years, there has emerged enormous interest in phylogenetic networks
and their application [2, 12, 19, 21, 22].

This model of a phylogenetic network allows for many different degrees of com-
plexity, ranging from networks that are equal, or almost equal, to a tree to complex
webs of frequently diverging and recombining lineages. Therefore we consider two
different measures for the complexity of a network. The first of these measures is
the total number of reticulations in the network. Secondly, we consider the level of
the network, which is an upper bound on the number of reticulations per non-treelike
part (i.e. biconnected component) of the network. In this paper we consider two dif-
ferent approaches for constructing networks that are as simple as possible. The first
approach minimizes the total number of reticulations for a fixed level (of at most two)
and the second approach minimizes both the level and the total number of reticula-
tions, but under more heavy restrictions on the input.

Level-k phylogenetic networks were first introduced by Choy et al. [7] and further
studied by various authors [15, 16, 18]. Gusfield et al. gave a biological justification
for level-1 networks (which they call “galled trees”) [8]. Minimizing reticulations
has been very well studied in the framework where the input consists of (binary)
sequences [9, 23, 24]. For example, Wang et al. considered the problem of finding a
“perfect phylogeny” with a minimum number of reticulations and showed that this
problem is NP-hard [25]. Gusfield et al. showed that this problem can be solved in
polynomial time if restricted to level-1 networks [8]. There are also several results
known already about the version of the problem where the input consists of a set of
trees and the objective is to construct a network that is “consistent” with each of the
input trees. Baroni et al. give bounds on the minimum number or reticulations needed
to combine two trees [3] and Bordewich et al. showed that it is APX-hard to compute
this minimum number exactly [4]. However, there exists an exact algorithm [5] that

Algorithmica (2011) 60: 207–235 209

Fig. 1 One of the three possible
triplets on the leaves x, y and z.
Note that, as with all figures in
this article, all arcs are directed
downwards

runs reasonably fast in many practical situations. If restricted to level-1 networks,
the problem becomes polynomial-time solvable even if there are more than two input
trees [13].

In this paper we also consider input sets consisting of trees, but restrict ourselves to
small trees with three leaves each, called triplets. See Fig. 1 for an example. Triplets
can for example be constructed by existing methods, such as Maximum Parsimony
or Maximum Likelihood, that work accurately and fast for small numbers of taxa.
Triplet-based methods have also been well-studied. Aho et al. [1] gave a polynomial-
time algorithm to construct a tree from triplets if there exists a tree that is consistent
with all input triplets. Jansson et al. [17] showed that the same is possible for level-1
networks if the input triplet set is dense, i.e. if there is a triplet for any set of three taxa.
Van Iersel et al. further extended this result to level-2 networks [15]. From non-dense
triplet sets it is NP-hard to construct level-k networks for any k ≥ 1 [16, 17]. From the
proof of this result also follows directly that it is NP-hard to find a network consistent
with a non-dense triplet set that contains a minimum number of reticulations.1 It is
unknown whether this problem becomes easier if the input triplet set is dense.

In the first part of this paper we consider fixed-level networks and aim to minimize
the total number of reticulations in these networks. In Sect. 3 we give a polynomial-
time algorithm that constructs a level-1 network consistent with a dense triplet set
T (if such a network exists) and minimizes the total number of reticulations over
all such networks. This gives an extension to the algorithm by Jansson et al. [17],
which can also reconstruct level-1 networks, but does not minimize the number of
reticulations. To illustrate this we give in Sect. 2 an example dense triplet set on n

leaves for which the algorithm in [17] (and the ones in [15] and [18]) creates a level-1
network with n−1

2 reticulations. However, a level-1 network with just one reticulation
is also possible and our algorithm MARLON is able to find that network. We have
implemented MARLON, tested it and made it publicly available [20]. The worst case

running time of the algorithm is O(n5) for n leaves (and hence O(|T | 5
3) with |T | the

input size).
In Sect. 4 we further extend this approach by giving an algorithm that even con-

structs a level-2 network consistent with a dense triplet set (if one exists) and again
minimizes the total number of reticulations over all such networks. This means that
if the level is at most two, we can minimize both the level and the total number of
reticulations, giving priority to the criterion that we find most important. The running
time is O(n9) (and thus O(|T |3)). This extends recent results [15] in which an al-
gorithm is described that also constructs level-2 networks, but does not minimize the
number of reticulations in such networks.

1This follows from the proof of Theorem 7 in [17], since only one reticulation is used in their reduction.

210 Algorithmica (2011) 60: 207–235

While previous work [14–18] considered the construction of level-k networks
for k ≤ 2, Sect. 5 of this paper considers the case k > 2. This is an even more chal-
lenging problem, even without minimizing the total number of reticulations. Given
a dense set of triplets, it is a major open problem whether one can construct a min-
imum level phylogenetic network consistent with these triplets in polynomial time.
Moreover, it is not even known whether it is possible to construct a level-3 network
consistent with a dense input triplet set in polynomial time. In Sect. 5 of this paper
we show some significant progress in this direction. As a first step we consider the
restriction to “simple” networks, i.e. networks that contain just one nontrivial bicon-
nected component. We show how to construct, in O(|T |k+1) time, a minimum level
simple network with level at most k from a dense input triplet set (for fixed k).

Subsequently we show that this can be used to also generate general level-k net-
works if we put an extra restriction on the quality of the input triplets. Namely, we
assume that the input set contains exactly all triplets consistent with some network.
If that is the case then our algorithm can find such a network that simultaneously
minimizes level and the total number of reticulations used. The fact that in this case
optimal solutions for both measures coincide, is an interesting consequence of the
restriction on the input triplets. The algorithm runs in polynomial time O(|T |k+1) if
the upper bound k on the level of the network is fixed. (For k = 1,2 we can use exist-
ing, optimized simple level-1 and simple level-2 algorithms as subroutines to obtain

improved running times of O(|T |) and O(|T | 8
3) respectively.) This result constitutes

an important step forward in the analysis of level-k networks, since it provides the
first positive result that can be used for all levels k.

2 Preliminaries

A phylogenetic network (network for short) is defined as a directed acyclic graph
in which exactly one vertex has indegree 0 and outdegree 2 (the root) and all other
vertices have either indegree 1 and outdegree 2 (split vertices), indegree 2 and out-
degree 1 (reticulation vertices, or reticulations for short) or indegree 1 and outdegree
0 (leaves), where the leaves are distinctly labelled. A phylogenetic network without
reticulations is called a phylogenetic tree.
A directed acyclic graph is connected (also called “weakly connected”) if there is an
undirected path between any two vertices and biconnected if it contains no vertex
whose removal disconnects the graph. A biconnected component of a network is a
maximal biconnected subgraph and is called trivial if it is equal to two vertices con-
nected by an arc. To avoid “redundant” networks we only allow networks in which
every nontrivial biconnected component has at least three outgoing arcs. We call an
arc a = (u, v) of a network N a cut-arc if its removal disconnects N and call it trivial
if v is a leaf.

Definition 1 A network is said to be a level-k network if each biconnected compo-
nent contains at most k reticulations.

Algorithmica (2011) 60: 207–235 211

A level-k network that contains no nontrivial cut-arcs and is not a level-(k−1) net-
work is called a simple level-k network.2 Informally, a simple network thus consists
of a nontrivial biconnected component with leaves “hanging” of it.

A triplet xy|z is a phylogenetic tree on the leaves x, y and z such that the lowest
common ancestor of x and y is a proper descendant of the lowest common ancestor of
x and z. The triplet xy|z is displayed in Fig. 1. Denote the set of leaves in a network
N by LN . For any set T of triplets define L(T) = ⋃

t∈T Lt and let n = |L(T)|. A set
T of triplets is called dense if for each {x, y, z} ⊆ L(T) at least one of xy|z, xz|y and
yz|x belongs to T .

For a set of triplets T and a set of leaves L′ ⊆ L(T), we denote by T |L′ the triplets
t ∈ T with Lt ⊆ L′. Furthermore, if C = {S1, . . . , Sq} is a collection of leaf-sets we
use T ∇C to denote the induced set of triplets SiSj |Sk such that there exist x ∈ Si ,
y ∈ Sj , z ∈ Sk with xy|z ∈ T and i, j and k all distinct.

Definition 2 A triplet xy|z is consistent with a network N (interchangeably: N is
consistent with xy|z) if N contains a subdivision of xy|z, i.e. if N contains vertices
u �= v and pairwise internally vertex-disjoint paths u → x, u → y, v → u and v → z.

The above definitions enable us to give a formal description of the problems we
consider.

Problem: Minimum Reticulation Level-k network on dense triplet sets (DMRL-k).
Input: dense set of triplets T .

Output: level-k network N that is consistent with T (if such a network exists) and
has a minimum number of reticulations over all such networks.

A feasible solution to DMRL-1 can be found by the algorithm in [17] or [18] and the
algorithm in [15] finds a feasible solution to DMRL-2. To show that these algorithms
do not always minimize the number of reticulations, consider a triplet set over an odd
number n of leaves, labelled 1, . . . , n, containing all triplets ab|c with a, b > c and
the triplets a(a + 1)|n with a = 1,3, . . . , n − 2. The aforementioned algorithms find
for this input set a level-1 network with n−1

2 reticulations. However, a level-1 network
with just one reticulation is also possible and our algorithm MARLON, introduced
shortly, is able to find that network. See Fig. 2 for an example for n = 9.

Given a network N let T (N) denote the set of all triplets consistent with N . We
say that a network N reflects a triplet set T if T (N) = T . If, for a triplet set T , there
exists a network N that reflects it, we say that T is reflective. The second problem we
consider is thus the following:

Problem: MIN-REFLECT-k.
Input: set of triplets T .

Output: level-k network N that reflects T (if such a network exists) and, rang-
ing over all such networks, minimizes both the level and the number of
reticulations used.

2This definition is equivalent to Definition 4 in [15] by Lemma 2 in [15].

212 Algorithmica (2011) 60: 207–235

Fig. 2 Example of a situation where previous algorithms (by Jansson et al. [17] and Van Iersel et al. [15])
construct a network like the one to the left with n−1

2 reticulations, while MARLON constructs the network
to the right, with just one reticulation

The above problem might at first glance seem strangely formulated because, in gen-
eral, minimizing level and minimizing number of reticulations are two distinct opti-
mization criteria. However, in the case of reflectivity it will turn out that any solution
that minimizes the number of reticulations also minimizes level.

Note that this problem is closely related to the mixed triplets problem (MT) studied
in [10], which asks for a phylogenetic network consistent with an input triplet set T

and not consistent with another input triplet set F . Namely, MIN-REFLECT-k is a
special case of MT restricted to level-k networks where the set F of forbidden triplets
contains all triplets that are not in T .

To describe our algorithms we need to introduce some more definitions. We say
that a cut-arc is a highest cut-arc if it is not reachable from any other cut-arc. We call
a cycle containing the root a highest cycle and a reticulation in such a cycle a highest
reticulation. We say that a leaf x is below an arc (u, v) (and below vertex v) if x is

Algorithmica (2011) 60: 207–235 213

reachable from v. In the next section we will frequently use the set BHR(N), which
denotes the set of leaves in network N that is below a highest reticulation.

A subset S of the leaves is an SN-set (of triplet set T) if there is no triplet xy|z in
T with x, z ∈ S, y /∈ S. An SN-set is called nontrivial if it does not contain all leaves.
Furthermore, we say that an SN-set S is maximal (under restriction X) if there is no
nontrivial SN-set (satisfying restriction X) that is a strict superset of S. An SN-set of
size one is called a singleton SN-set.

Any two SN-sets of a dense triplet set are either disjoint or one is included in the
other [18, Lemma 8], which leads to the following definition. The SN-tree is a directed
tree with vertices with outdegree greater or equal to two, such that the SN-sets of T

correspond exactly to the sets of leaves reachable from a vertex of the SN-tree. It
follows that there are at most 2(n − 1) nontrivial SN-sets of a dense triplet set T .
All these SN-sets can be found by constructing the SN-tree in O(n3) time [17]. If a
network is consistent with a dense triplet set T , then the set of leaves S below any
cut-arc is always an SN-set, since triplets of the form xy|z with x, z ∈ S, y /∈ S, are
not consistent with such a network. Furthermore, each maximal SN-set is equal to the
union of leaves below one or more highest cut-arcs [14, Lemma 5].

3 Constructing a Level-1 Network with a Minimum Number of Reticulations

We propose the following dynamic programming algorithm for solving DMRL-1.
The algorithm considers all SN-sets from small to large and computes an optimal
solution NS for each SN-set S, based on the optimal solutions for included SN-sets.
The algorithm considers both the case where the root of NS is contained in a cycle
and the case where there are two cut-arcs leaving the root. In the latter case there are
two SN-sets S1 and S2 that are maximal under the restriction that they are a subset
of S. If this is the case then the algorithm constructs a candidate for NS by creating a
root connected to the roots of NS1 and NS2 .

The other possibility is that the root of NS is contained in some cycle. For this
case the algorithm tries each SN-set as BHR(NS): the set of leaves below the highest
reticulation. The sets of leaves below other highest cut-arcs can then be found using
the property of optimal level-1 networks outlined in Lemma 1. Subsequently, an in-
duced set of triplets is computed, where each set of leaves below a highest cut-arc
is replaced by a single meta-leaf. A candidate network is constructed by comput-
ing a simple level-1 network and replacing each meta-leaf Si by an optimal network
NSi

for the corresponding subset of the leaves. The optimal network NS is then the
network with a minimum number of reticulations over all candidate networks.

A structured description of the computations is in Algorithm 1. We use f (L′)
to denote the minimum number of reticulations in any level-1 network consistent
with T |L′. In addition, g(L′, S′) denotes the minimum number of reticulations in
any level-1 network consistent with T |L′ with BHR(N) = S′. The algorithm first
computes the optimal number of reticulations. Then a network with this number of
reticulations is constructed using backtracking.

To show that the algorithm indeed computes an optimal solution we need the fol-
lowing crucial property of optimal level-1 networks.

214 Algorithmica (2011) 60: 207–235

Algorithm 1 MARLON (Minimum Amount of Reticulation Level One Network)
1: compute the set SN of SN-sets of T

2: for i = 1 . . . n do
3: for each S in SN of cardinality i do
4: for each S′ ∈ SN with S′ ⊂ S do
5: let C contain S′ and all SN-sets that are maximal under the restriction that

they are a subset of S and do not contain S′
6: if T ∇C is consistent with a simple level-1 network then
7: g(S,S′) := 1 + ∑

X∈C f (X)

8: if there are exactly two SN-sets S1, S2 ∈ SN that are maximal under the
restriction that they are a strict subset of S then

9: g(S,∅) := f (S1) + f (S2) (C := {S1, S2})
10: f (S) := ming(S,S′) over all computed values of g(S, ·)
11: store the optimal C and the corresponding simple level-1 network
12: construct an optimal network by backtracking.

Lemma 1 If there exists a solution to DMRL-1, then there also exists an optimal so-
lution N , where the sets of leaves below highest cut-arcs equal either (i) BHR(N) and
the SN-sets that are maximal under the restriction that they do not contain BHR(N),
or (ii) the maximal SN-sets (if BHR(N) = ∅).

Proof If BHR(N) = ∅ then there are two highest cut-arcs and the sets below them
are the maximal SN-sets. Otherwise, the root of N is part of a cycle. We prove the
following. �

Claim 1 Let S be an SN-set. Either S equals a (sub)set of the leaves below a highest
cut-arc or there exists a directed path P ending in the highest reticulation or in one of
its parents, such that S equals the set of leaves that are below a highest cut-arc with
its tail on P .

Proof Assume that an SN-set S does not equal a (sub)set of the leaves below a highest
cut-arc. It follows that S equals the union of sets of leaves below several highest cut-
arcs. Indeed, if there are leaves x, z ∈ S below distinct highest cut-arcs then for any
leaf y below any of these cut-arcs holds that xy|z ∈ T and hence that y ∈ S. Now
observe that no two leaves in S have the root as their lowest common ancestor, since
this would imply that all leaves are in S. It now follows that there exists a directed
path P on the highest cycle such that all leaves in S are below a highest cut-arc with
its tail on P . Let P be a minimal such path. We now argue that all leaves below
a highest cut-arc with tail on P are in S. If this would not be the case, then there
would be leaves x, z, y below highest cut-arcs with tails respectively p1,p2,p3 that
are on P (in this order) with x, y ∈ S and z /∈ S. However, this would lead to a
contradiction because then the triplet xy|z is not consistent with N , whilst yz|x and
xz|y are not in T since S is an SN-set. It remains to prove that P ends in either the
highest reticulation or in one of its parents. Assume that this is not true, then there
exists a vertex v on the interior of a path from the last vertex of P to the highest

Algorithmica (2011) 60: 207–235 215

reticulation. Consider some leaf z /∈ S below the highest cut-arc with v as tail and
some leaves x, y ∈ S below distinct highest cut-arcs with tails on P . Then this again
leads to a contradiction because xy|z is not consistent with N . �

To prove the lemma, consider a maximal SN-set S that is not equal to the set of
leaves below a single highest cut-arc. By the maximality of S, it cannot equal a strict
subset of the leaves below a highest cut-arc. Thus, from the above claim it follows that
there exists a path P such that S equals the set of leaves that are below a highest cut-
arc with its tail on P . First suppose that P ends in a parent of the highest reticulation.
In this case we can modify the network by putting S below a single cut-arc, without
increasing the number of reticulations. To be precise, if p and p′ are the first and
last vertex of P respectively and r is the highest reticulation, then we subdivide the
arc entering p by a new vertex v, add a new arc (v, r), remove the arc (p′, r) and
suppress p′, since it now has indegree and outdegree both equal to one. It is not too
difficult to see that the resulting network is still consistent with T .

Now suppose that P ends in the highest reticulation. The sets of leaves below
highest cut-arcs are all SN-sets (as is always the case). One of these sets is equal to
BHR(N). Suppose that another such set X is not maximal under the restriction that
it does not contain BHR(N). Then X is a strict subset of a nontrivial SN-set S′ that
is maximal under the restriction that it does not contain BHR(N). We apply Claim 1
to S′. Observe that S′ cannot be equal to a (sub)set of the leaves below a highest
cut-arc, since it is a strict superset of X. Thus, S′ equals the set of leaves that are
below a highest cut-arc with a tail on a path P ′ on the highest cycle. Moreover, since
S′ does not contain BHR(N), P ′ does not end in the highest reticulation, but in one
of its parents. Thus, the procedure from the previous paragraph can be used to put S′
below a highest cut-arc.

The lemma now follows from the following. If there exists a solution to DMRL-1,
then there exists an optimal solution to DMRL-1. After applying the modifications
described above to this optimal solution, for each maximal SN-set S, the sets of leaves
below highest cut-arcs in the resulting network N ′ are indeed equal to BHR(N ′) and
the SN-sets that are maximal under the restriction that they do not contain BHR(N ′).

An example is given in Fig. 3. In the network on the left one maximal SN-set
equals the set of leaves below the grey path. In the middle is the same network, but

Fig. 3 Visualisation of the proof of Lemma 1. From the maximal SN-sets (encircled in the network on
the left) to the sets of leaves below highest cut-arcs (encircled in the network on the right). Remember that
all arcs are directed downwards

216 Algorithmica (2011) 60: 207–235

now we encircled BHR(N) and the SN-sets that are maximal under the restriction
that they do not contain BHR(N). There is still an SN-set (S′) below a path on the
cycle (again in grey). However, in this case the network can be modified by putting
S′ below a single cut-arc, without increasing the number of reticulations. This gives
the network to the right, where the sets of leaves below highest cut-arcs are indeed
equal to BHR(N) and the SN-sets that are maximal under the restriction that they do
not contain BHR(N).

Theorem 1 Given a dense set of triplets T , algorithm MARLON constructs a level-
1 network that is consistent with T (if such a network exists) and has a minimum
number of reticulations in O(n5) time.

Proof The proof is by induction on the size i of S. Suppose that N is an optimal level-
1 network consistent with T |S. If BHR(N) = ∅ then the sets of leaves below highest
cut-arcs are the two maximal SN-sets S1 and S2. In this case f (S) can be computed
by adding up the f (S1) and f (S2). Otherwise, it follows from Lemma 1 and the
observation that BHR(N) has to be an SN-set, that at some iteration the algorithm
will consider the set C equal to the sets of leaves below the highest cut-arcs of N . In
this case the number of reticulations can be computed by adding one to the sum of
the values f (X) over all X ∈ C . This is because the network N consists of a (highest)
cycle, connected to optimal networks for the different X ∈ C . By induction, all values
of f (X) for |X| < i have been computed correctly and correctness of the algorithm
follows. The number of SN-sets is O(n) because any two SN-sets are either disjoint
or one is included in the other [18, Lemma 8]. These SN-sets can be found in O(n3)

time by computing the SN-tree [17]. Simple level-1 networks can be found in O(n3)

time [17] and T ∇C can be computed in O(n3) time. These computations are repeated
O(n2) times: for all S ∈ SN and all S′ ∈ SN with S′ ⊂ S. Therefore, the total running
time is O(n5). �

In Fig. 4 we present an example of a network constructed by MARLON. This net-
work (which has 80 leaves and 13 reticulations) could be constructed by MARLON
in less than six minutes on a Pentium IV 3 GHz PC with 1 GB of RAM.

4 Constructing a Level-2 Network with a Minimum Number of Reticulations

This section extends the approach from Sect. 3 to level-2 networks. We describe how
one can find a level-2 network consistent with a dense input triplet set containing a
minimum number of reticulations, or decide that such a network does not exist.

The general structure of the algorithm is the same as in the level-1 case. We loop
though all SN-sets S from small to large and compute an optimal solution NS for
that SN-set, based on previously computed optimal solutions for included SN-sets.
For each SN-set we still consider, like in the level-1 case, the possibility that there are
two cut-arcs leaving the root of NS and the possibility that this root is in a biconnected
component with one reticulation. However, now we also consider a third possibility,
that the root of NS is in a biconnected component containing two reticulations.

Algorithmica (2011) 60: 207–235 217

Fig. 4 Example of a network constructed by MARLON

In the construction of biconnected components with two reticulations, we use the
notion of “non-cycle-reachable”-arc, or n.c.r.-arc for short, introduced in [16]. We
call an arc a = (u, v) an n.c.r.-arc if v is not reachable from any vertex in a cycle.
These n.c.r.-arcs will be used to combine networks without increasing the network
level. In addition, we use the notion highest biconnected component to denote the
biconnected component containing the root.

218 Algorithmica (2011) 60: 207–235

Fig. 5 The four possible
structures of a biconnected
component containing two
reticulations

Our complete algorithm is described in detail in Algorithm 2. To get an intuition
of why the algorithm works, consider the four possible structures of a biconnected
component containing two reticulations displayed in Fig. 5. In particular, consider
the graph that displays the form of the highest biconnected component of NS . Let X

(respectively Y , Z, Q) be the set of leaves below all cut-arcs leaving the side labelled
X (respectively Y , Z, Q) in the figure. Observe that after removing Z in each case
X, Y and Q become a set of leaves below a single cut-arc and hence an SN-set (w.r.t.
T |(S \ Z)). In cases 2a, 2b and 2c the highest biconnected component becomes a
cycle, Q the set of leaves below the highest reticulation and X and Y sets of leaves
below highest cut-arcs. We will first describe the approach for these cases and show
later how a similar technique is possible for case 2d.

Our algorithm loops through all SN-sets that are a subset of S and will hence at
some iteration consider the SN-set Z. The algorithm removes the set Z and com-
putes the SN-sets of T |(S \ Z). The sets of leaves below highest cut-arcs (in some
optimal solution, if one exists) are now equal to X,Y,Q and the SN-sets that are
maximal under the restriction that they do not contain X, Y or Q (by the same ar-
guments as in the proof of Lemma 1). Therefore, the algorithm tries each possible
SN-set for X, Y and Q and in one of these iterations it will correctly determine the
sets of leaves below highest cut-arcs. Then the algorithm computes the induced set
of triplets, where each set of leaves below a highest cut-arc is replaced by a single
meta-leaf. All simple level-1 networks consistent with this induced set of triplets are
obtained by the algorithm in [17]. Our algorithm loops through all these networks
and does the following for each simple level-1 network N1. Each meta-leaf V , not
equal to X or Y , is replaced by an optimal network NV , which has been computed
in a previous iteration. To include leaves in Z, X and Y , we compute an optimal
network N2 consistent with T |(X ∪ Z) and an optimal network N3 consistent with
T |(Y ∪ Z) where in both networks Z is the set of leaves below an n.c.r.-arc. Then we
combine these three networks into a single network like in Fig. 6. A new reticulation
is created and Z becomes the set of leaves below this reticulation. Finally, we check
for each constructed network whether it is consistent with T |S. The network with the
minimum number of reticulations over all such networks is the optimal solution NS

for this SN-set.
Now consider case 2d. Suppose we remove Z and replace X, Y (= Q) and each

SN-set of T |(S \ Z) that is maximal under the restriction that it does not contain X

or Y by a single leaf. Then the resulting network consists of a path ending in a simple

Algorithmica (2011) 60: 207–235 219

Fig. 6 Example of the construction of network N from N1, N2 and N3

Fig. 7 Example of the construction of network N from N1, N2 and N3 in case 2d

level-1 network, with X a child of the root and Q the child of the reticulation; and
each vertex of the path has a leaf as child. Such a network can easily be constructed
and subsequently one can use the same approach as in cases 2a, 2b and 2c. See Fig. 7
for an example of the construction in case 2d.

220 Algorithmica (2011) 60: 207–235

Theorem 2 Given a dense triplet set T , Algorithm MARLTN constructs a level-2
network consistent with T (if such a network exists) that has a minimum number of
reticulations in O(n9) time.

Proof Consider some SN-set S and assume that there exists an optimal solution NS

consistent with T |S. The proof is by induction on the size of S. If the highest bicon-
nected component of NS contains one reticulation then the algorithm constructs an
optimal solution by the proof of Theorem 1. Hence we assume from now on that the
highest biconnected component of NS contains two reticulations.

Consider the four graphs in Fig. 5. Any biconnected component containing two
reticulations is a subdivision of one of these graphs [14, Lemma 13]. These graphs
are called simple level-2 generators in [15] and X, Y , Z and Q each label, in each
generator, a side of the generator, i.e. either an arc or a vertex with indegree 2 and
outdegree 0. Suppose that the highest biconnected component of a network N is a
subdivision of a generator G. We say that a leaf x is on side S of G if there exists
a cut-arc (u, v) in N such that u is on the subdivision of S (if S is an arc) or u is a
reticulation (if S is a reticulation), and there is a directed path from v to x (possibly
v = x). Furthermore, we identify the side S with the set of leaves that are on side S.

In each generator in Fig. 5, X, Y , Z and Q are sides of the generator. Thus,
if the highest biconnected component of NS is a subdivision of a generator G ∈
{2a,2b,2c,2d} then we identify X (Y , Z, Q respectively) with the set of leaves
in NS on side X (Y , Z, Q respectively) of G.

To find an optimal network consistent with T |(X ∪ Z) (or T |(Y ∪ Z)) such that
Z is below an n.c.r.-arc we can use the following approach. If there are more than
two maximal SN-sets then it is not possible. Otherwise, we create a root and connect
it to two networks for the two maximal SN-sets. If one of these maximal SN-sets
contains Z as a strict subset then we create a network for this set recursively. For
other maximal SN-sets we use the optimal networks computed in earlier iterations.

Given a network N ′ and a set of leaves L′ below a cut-arc (u, v) we denote by
N ′ \ L′ the network obtained by removing v and all vertices reachable from v from
N ′, deleting all vertices with outdegree zero and suppressing all vertices with inde-
gree and outdegree both one.

Claim 2 There exists an optimal solution N ′ such that the sets of leaves below highest
cut-arcs of N ′ \ Z are X, Y , Q and the SN-sets of T |(S \ Z) that are maximal under
the restriction that they do not contain X, Y or Q.

Proof The highest biconnected component of N ′ \ Z contains just one reticulation
and the same arguments can be used as in the proof of Lemma 1. �

Let N ′ be a network with the property described in the claim above and C the
collection of sets of leaves below highest cut-arcs of N ′ \ Z. At some iteration the
algorithm will consider this set C . Let T ′ equal T |(S \ Z). If we replace in N ′ \ Z

each set of leaves below a highest cut-arc by a single leaf, then we obtain a network
consistent with T ′∇C which is either a simple level-1 network or a path ending in a
simple level-1 network, with X a child of the root, Q the child of the reticulation; and

Algorithmica (2011) 60: 207–235 221

Algorithm 2 MARLTN (Minimum Amount of Reticulation Level Two Network)
1: – compute the set SN of SN-sets of T

2: for i = 1 . . . n do
3: for each S in SN of cardinality i do
4: \\ try to construct a network for S with one reticulation in its highest

biconnected component
5: for each S′ ∈ SN with S′ ⊂ S do
6: – let C contain S′ and all SN-sets that are maximal under the restriction

that they are a subset of S and do not contain S ′
7: if T ∇C is consistent with a simple level-1 network N1 then
8: – construct N∗ from N1 by replacing each leaf V by an optimal network

NV constructed in a previous iteration
9: – g(S,S′) is the number of reticulations in N∗

10: if there are exactly two SN-sets S1, S2 ∈ SN that are maximal under the re-
striction that they are a strict subset of S then

11: – N∗ consists of a root connected to the roots of optimal networks NS1 and
NS2 that have been constructed in previous iterations

12: – g(S,∅) is the number of reticulations in N∗
13: \\ try to construct a network for S with two reticulations in its highest

biconnected component
14: for each Z ∈ SN with Z ⊂ S do
15: – T ′ := T |(S \ Z)

16: – compute the set SN ′ of SN-sets of T ′
17: for each X,Y,Q ∈ SN ′ do
18: – C is the collection consisting of X,Y,Q and all SN-sets in SN ′ that

are maximal under the restriction that they do not include X,Y or Q

19: – construct an optimal network N2 consistent with T |(X ∪ Z) such that
Z is the set of leaves below an n.c.r.-arc (u, v)

20: – construct an optimal network N3 consistent with T |(Y ∪ Z) such that
Z is the set of leaves below an n.c.r.-arc (u′, v′)

21: – construct all simple level-1 networks consistent with T ′∇C
22: – construct all networks consistent with T ′∇C that consist of a path end-

ing in a simple level-1 network, with X a child of the root, Q the child
of the reticulation; and with a leaf below each internal vertex of the path

23: for each network N1 from the networks constructed in the above two
lines do

24: – construct N∗ from N1 by doing the following: replace X by N2, Y

by N3 and each other leaf V by an optimal network NV constructed
in a previous iteration, then subdivide (u, v) into (u,w) and (w,v),
delete everything below u′ and add an arc (u′,w)

25: if N∗ is consistent with T |S then
26: – h(S,X,Y,Z,Q) is the number of reticulations in N∗
27: – f (S) is the minimum of all computed values of g(S,S ′) and

h(S,X,Y,Z,Q)

28: – store network NS , which is a network N∗ attaining the minimum number
f (S) of reticulations

222 Algorithmica (2011) 60: 207–235

each vertex of the path has a leaf as child. The algorithm considers all networks
of these types, so in some iteration it will consider the right one. Let N∗ be the
network constructed by the algorithm in this iteration. It remains to prove that N∗ (i)
is consistent with T |S, (ii) contains a minimum number of reticulations and (iii) is a
level-2 network.

To prove that N∗ is consistent with T |S, consider any triplet xy|z ∈ T |S. First
suppose x, y and z are all in Z or all in the same set of C \ {X,Y }. Then x, y and
z are elements of some SN-set S′ with |S′| < |S|. Triplet xy|z is consistent with the
subnetwork NS′ by the induction hypothesis and hence with N∗.

Now suppose that x, y and z are all in X ∪ Z (or all in Y ∪ Z). Consider the
construction of the network consistent with X ∪ Z such that Z is below an n.c.r.-
arc. First suppose that at some level of the recursion there are two maximal SN-
sets, each containing leaves from {x, y, z}. Then it follows that x and y are in one
maximal SN-set and z in the other one, by the definition of SN-set, and hence that
xy|z is consistent with the constructed network. Otherwise, x, y and z are all in some
subnetwork N ′

S with |S′| < |S| and is xy|z consistent with this subnetwork (by the
induction hypothesis) and hence with N∗.

Now consider any other triplet xy|z ∈ T |S, which thus contains leaves that are
below at least two different highest cut-arcs. Observe that the highest biconnected
components of N∗ and N ′ are identical; the only differences between these networks
occur in the subnetworks below highest cut-arcs. Therefore xy|z is consistent with
N∗ since it is consistent with N ′.

To show that N∗ contains a minimum number of reticulations consider any set S′
of leaves below a highest cut-arc a = (u, v) of N∗. The subnetwork NS′ rooted at v

contains a minimum number of reticulations by the induction hypothesis. Hence N∗
contains at most as many reticulations as N ′, which is an optimal solution.

In the networks N2 and N3 is Z the set of leaves below an n.c.r.-arc. This im-
plies that none of the potential reticulations in these networks end up in the highest
biconnected component of N ′. Therefore, this biconnected component contains ex-
actly two reticulations. All other biconnected components of N ′ also contain at most
two reticulations by the induction hypothesis. We thus conclude that N ′ is a level-2
network.

To conclude the proof we analyze the running time of the algorithm. The number
of SN-sets is O(n) and hence there are O(n) choices for each of S,X,Y,Z and Q.
For each combination of S,X,Y,Z and Q there will be O(n) networks N∗ con-
structed and for each of them it takes O(n3) time to check if it is consistent with T |S
(in line 23). Hence the overall time complexity is O(n9). �

5 Constructing Networks Consistent with Precisely the Input Triplet Set

In this section we consider the problem MIN-REFLECT-k. Given a triplet set T , this
problem asks for a level-k network N that is consistent with precisely those triplets in
T (if such a network exists) and amongst all such solutions minimizes both the level
and number of reticulations used. We will show that this problem is polynomial-time
solvable for each fixed k.

Algorithmica (2011) 60: 207–235 223

Recall that we use T (N) to denote the set of all triplets consistent with a net-
work N . Furthermore, we say that a network N reflects a triplet set T if T (N) = T .
Note that, if N reflects T , that N is in general not uniquely defined by T . There
are, for example, several distinct simple level-2 networks that reflect the triplet set
{xy|z, xz|y, zy|x}.
Theorem 3 Given a dense set of triplets T , it is possible to construct all simple
level-k networks consistent with T in time O(|T |k+1).

This will be proven in Sect. 5.1. We note that it is already known how to generate
all simple level-1 networks consistent with T in time O(|T |) [17] and all simple

level-2 networks consistent with T in time O(|T | 8
3) [14].

Lemma 3 Let N be any simple network. Then all the nontrivial SN-sets of T (N) are
singletons.

This lemma, as well as Theorem 4, will be proven in Sect. 5.2. As we will show,
Lemma 3 allows us to solve the problem MIN-REFLECT-k by recursively construct-
ing simple level-k networks, which we can do by Theorem 3. This leads to the al-
gorithm MINPITS (MINimum network consistent with Precisely the Input Triplet
Set).

Theorem 4 Given a set of triplets T , Algorithm MINPITS solves MIN-REFLECT-k
in time O(|T |k+1), for any fixed k.

For k = 1,2 we can actually do slightly better: running time O(|T |) and O(|T | 8
3)

respectively.

5.1 Constructing All Simple Level-k Networks in Polynomial Time

We start by proving the following utility lemma.

Lemma 2 For fixed k, any level-k network on n leaves contains O(n) vertices and
O(n) arcs.

Proof We first show that any simple level-k network N ′ = (V ′,A′) on n leaves has
2n + 2k − 1 vertices and 2n + 3k − 2 arcs. Let s be the number of split vertices. The
sum of the indegrees of all vertices is s + 2k + n, while the sum of their outdegrees
is 2 + 2s + k. It is well known that in any directed graph the sum of all outdegrees
equals the sum of all indegrees. It follows that s = n + k − 2. Using this formula we
obtain that the total number of vertices equals:

|V ′| = s + k + n + 1 = (n + k − 2) + k + n + 1 = 2n + 2k − 1. (1)

Split vertices and reticulation vertices have total degree 3, leaves have total degree 1,
and the root of N ′ has total degree 2. Thus the total number of arcs in N ′ is:

|A′| = 3s + 3k + n + 2

2
= 3(n + k − 2) + 3k + n + 2

2
= 2n + 3k − 2.

224 Algorithmica (2011) 60: 207–235

Now consider a general level-k network N = (V ,A) with q nontrivial biconnected
components. Let B(N) be the result of replacing each nontrivial biconnected compo-
nent C by a single vertex (i.e. contracting all arcs in C). Thus B(N) is a tree, q of the
internal vertices of B(N) represent biconnected components of N and the other in-
ternal vertices represent split-vertices of N . Let B(N) contain b internal vertices with
n1, . . . , nb outgoing arcs respectively. Denote by ki the number of reticulations in the
biconnected component of N represented by the i-th internal vertex of B(N) and let
ki = 0 if this internal vertex represents a split-vertex of N . Then B(N) contains b+n

vertices in total and b + n − 1 arcs.
Assume the i-th internal vertex of B(N) represents a biconnected component Ci

of N . Consider Ci , the cut-arcs leaving Ci and the ni vertices that have a parent on Ci .
This forms a simple level-ki network with ni leaves. By (1) it has 2ni + 2ki − 1
vertices. Replacing Ci by a single vertex thus reduces the number of vertices by
ni + 2ki − 2.

The number of vertices of N is equal to the number of vertices in B(N) plus the
number of vertices that have been deleted while replacing each Ci by a single vertex:

|V | = b + n +
b∑

i=1

(ni + 2ki − 2)

≤ b + n + (b + n − 1) + 2q · k − 2b ≤ 2n − 1 + k(n − 1).

For the first inequality we use that n1 + . . . + nb is equal to the number of arcs
of B(N), which is b + n − 1. For the second inequality we use that each nontrivial
biconnected component of N has at least three outgoing arcs. This implies that b ≤
n − 1 − q and hence that q ≤ n − 1 − q and hence q ≤ (n − 1)/2. Similarly, the
number of arcs of N is at most:

|A| = b + n − 1 +
b∑

i=1

(ni + 3ki − 2)

≤ b + n − 1 + (b + n − 1) + 3q · k − 2b ≤ 2n − 2 + 3

2
k(n − 1). �

Let N be a network with at least one reticulation vertex, and let v be the child of
a reticulation vertex in N . If v has no reticulation vertex as a descendant, then we
call the subnetwork rooted at v a Tree hanging Below a Reticulation vertex (TBR).
We additionally introduce the notion of the empty TBR, which corresponds to the
situation when a reticulation vertex has no outgoing arcs. This cannot happen in a
normal network but as explained shortly it will prove a useful abstraction.

Observation 1 Every network N containing a reticulation vertex contains at least
one TBR.

Proof Suppose this is not true. Let v be the child of a reticulation vertex in N maxi-
mizing the longest path from the root to v. There must exist some vertex v′ �= v which

Algorithmica (2011) 60: 207–235 225

is a child of a reticulation vertex and which is a descendent of v. But then the longest
path from the root to v′ is greater than to v, contradiction. �

Note that, because a TBR is (as a consequence of its definition) below a cut-arc,
there exists an SN-set S of T such that T |S is consistent with (only) the TBR. An
SN-set S such that T |S is consistent with a tree, we call a CandidateTBR SN-Set.
Every TBR of N corresponds to some CandidateTBR SN-Set of T , but the opposite
is not necessarily true. For example, a singleton SN-set is a CandidateTBR SN-Set,
but it might not be the child of a reticulation vertex in N .

We abuse definitions slightly by defining the empty CandidateTBR SN-Set, which
will correspond to the empty TBR. (This is abusive because the empty set is not an
SN-set.) Furthermore we define that every triplet set T has an empty CandidateTBR
SN-Set.

Observation 2 Let T be a dense set of triplets on n leaves. There are at most O(n)

CandidateTBR SN-sets. All such sets, and the tree that each such set represents, can
be found in total time O(n3).

Proof First we construct the SN-tree for T , this takes time O(n3). There is a bijection
between the SN-sets of T and the vertices of the SN-tree. (In the SN-tree, the children
of an SN-set S are the maximal SN-sets of T |S.) Observe that a vertex of the SN-tree
is a CandidateTBR SN-set if and only if it is a singleton SN-set or it has in total two
children, and both are CandidateTBR SN-sets. We can thus use depth first search to
construct all the CandidateTBR SN-sets; note that this is also sufficient to obtain the
trees that the CandidateTBR SN-sets represent, because (for trees) the structure of
the tree is identical to the nesting structure of its SN-sets. Given that there are only
O(n) SN-sets, the running time is dominated by construction of the SN-tree. �

We claim that algorithm SL-k constructs all simple level-k networks consistent
with a dense input triplet set T . The high-level idea is as follows. Consider a simple
level-k network N . From Observation 1, we know that N contains at least one TBR.
(Given that N is simple we know that all TBRs are equal to single leaves. That is why
the outermost loop of the algorithm can restrict itself to considering only single-leaf
TBRs.) By looping through all CandidateTBR SN-sets we will eventually find one
that corresponds to a real TBR. If we remove this TBR and the reticulation vertex
from which it hangs, and then suppress any resulting vertices with both indegree and
outdegree equal to 1, we obtain a new network (not necessarily simple) with one
fewer reticulation vertex than N . Note that this new network might not be a “real”
network in the sense that it might have reticulation vertices with no outgoing arcs.
Repeating this k times in total we eventually reach a tree which we can construct
using the algorithm of Aho et al. (and is unique, as shown in [18]). From this tree
we can reconstruct the network N by reintroducing the TBRs back into the network
(each TBR below a reticulation vertex) in the reverse order to which we found them.
We don’t, however, know exactly where the reticulation vertices were in N , so every
time we reintroduce a TBR back into the network we exhaustively try every pair
of arcs (as the arcs which will be subdivided to hang the reticulation vertex, and

226 Algorithmica (2011) 60: 207–235

thus the TBR, from.) Because we try every possible way of removing TBRs from
the network N , and every possible way of adding them back, we will eventually
reconstruct N .

The role of the dummy leaves in SL-k is linked to the empty TBRs (and their cor-
responding empty CandidateTBR SN-Sets). When a TBR is removed, it can happen
(as mentioned above) that a network is created containing reticulation vertices with
no outgoing arcs. (For example: when one of the parents of a reticulation vertex from
which the TBR hangs, is also a reticulation vertex.) Conceptually we say that there is
a TBR hanging below such a reticulation vertex, but that it is empty. Hence the need
in the algorithm to also consider removing the empty TBR. If this happens, we will
also encounter the phenomenon in the second phase of the algorithm, when we are
re-introducing TBRs into the network. What do we insert into the network when we
reintroduce an empty TBR? We use a dummy leaf as a place-holder, ensuring that
every reticulation vertex always has an outgoing arc. The dummy leaves can be re-
moved once that outgoing arc is subdivided later in the algorithm, or at the end of the
algorithm, whichever happens sooner. The dummy root, finally, is needed for when
there are no leaves on a side connected to the root.

Theorem 3 Given a dense set of triplets T , it is possible to construct all simple
level-k networks consistent with T in time O(|T |k+1).

Proof Correctness follows from the discussion above. We now analyze the running
time. For k ∈ {1,2} we can actually generate all simple level-1 networks in time
O(n3) using the algorithm in [17], and all simple level-2 networks in time O(n8) us-
ing the algorithm in [14]. For k ≥ 3 we use SL-k. From Observation 2 we know that
each execution of FindCandidateTBRs (which computes all TBRs in a dense triplet
set plus the empty TBR) takes O(n3) time and returns at most O(n) TBRs. Oper-
ations such as computing T ′

i , and the construction of the tree N ′
k , all require time

bounded above by O(n3). The for loops when we “guess” the TBRs are nested to a
depth of k. The for loops when we “guess” pairs of arcs from which to hang TBRs,
are also nested to a depth of k. (There will only be O(n) arcs to choose from by
Lemma 2.) Checking whether N ′ is consistent with T , which we do inside the inner-
most loop of the entire algorithm, takes time O(n3) [6, Lemma 2]. So the running
time is O(n(n3 + n(n3 . . . n(n3 + n2k+3)) which is O(n3k+3). �

Corollary 1 For fixed k and a triplet set T it is possible to generate in time O(n3k+3)

all simple level-k networks N that reflect T .

Proof The algorithm SL-k (or, for that matter, the algorithms from [15, 17]) can
easily be adapted for this purpose: we change in line 43 “network consistent with T ”
to “network that reflects T ”. The running time is unchanged because, whether we are
checking consistency or reflection, the implementation of [6, Lemma 2] implicitly
generates T (N ′). �

Algorithmica (2011) 60: 207–235 227

Algorithm 3 SL-k (Construct all Simple Level-k networks)
1: Net := ∅
2: TBR1 := L(T)

3: for each leaf b1 ∈ TBR1 do
4: L′

1 := L(T) \ {b1}
5: T ′

1 := T |L′
1

6: TBR2 := FindCandidateTBRs(T ′
1)

7: for each b2 ∈ TBR2 do
8: . . .

{Continue nesting for loops to a depth of k.}
9: . . .

10: TBRk := FindCandidateTBRs(T ′
k−1)

11: for each bk ∈ TBRk do
12: L′

k := L′
k−1 \ bk

13: T ′
k := T ′

k−1|L′
k

{At this point we have finished “guessing” where the TBRs are,}
{and ({b1}, b2, . . . , bk) is a vector of (possibly empty) subsets of L(T).}
{We now “guess” all possible ways of hanging the TBRs back in.}

14: if L′
k contains 2 or more leaves then

15: build the unique tree N ′
k = (V ,A) consistent with T ′

k if it exists (see
[18])

16: else
17: If L′

k contains 1 leaf {x}, let N ′
k be the network comprising the single

leaf {x}
18: If L′

k contains 0 leaves, let N ′
k be the network comprising a single, new

dummy leaf
19: V := V ∪ {r ′};A := A ∪ {(r ′, r)} {with r the root of N ′

k and r ′ a new
dummy root}

20: Let H(bk) be the unique tree consistent with bk

{Note: H(bk) is a single vertex if |bk| = 1 and empty if |bk| = 0.}
21: for every two arcs a1

k , a2
k in N ′

k (not necessarily distinct) do
22: Let p (respectively q) be a new vertex obtained by subdividing a1

k (re-
spectively a2

k)
23: Connect p and q to a new reticulation vertex retk
24: Hang H(bk) (or a new dummy leaf if H(bk) is empty) from retk
25: if a1

k (or a2
k) was the arc above a dummy leaf d then

26: Remove d and if its former parent has indegree and outdegree 1,
suppress that

27: Let N ′
k−1 be the resulting network

28: Let H(bk−1) be the unique tree consistent with bk−1
29: for every two arcs a1

k−1, a2
k−1 in N ′

k−1 (not necessarily distinct) do
30: . . .

{Continue nesting for loops to a depth of k.}

228 Algorithmica (2011) 60: 207–235

31: . . .
32: Let N ′

1 be the resulting network
33: Let H(b1) be the tree consisting of only the single vertex b1

for every two arcs a1
1 , a2

1 in N ′
1 (not necessarily distinct) do

34: Let p (respectively q) be a new vertex obtained by
subdividing a1

1 (respectively a2
1)

35: Connect p and q to a new reticulation vertex ret1
36: Hang H(b1) from ret1

if a1
1 (or a2

1) was the arc above a dummy leaf d then
37: Remove d and if its former parent has indegree and

outdegree 1, suppress that
{This is the innermost loop of the algorithm.}

38: Let N ′ be the resulting network
39: Remove the dummy root r ′ from N ′
40: Remove (and if needed suppress former parents of) any

remaining dummy leaves in N ′
if N ′ is a simple level-k network consistent with T then

41: Net := Net ∪ {N ′}
42: return Net

5.2 From Simple Networks that Reflect, to General Networks that Reflect

For a triplet xy|z and a network N , we define an embedding of xy|z in N as any set
of four paths (q → x, q → y,p → q,p → z) which, except for their endpoints, are
mutually vertex disjoint, and where p �= q . We say that the vertex p is the summit of
the embedding. Clearly, xy|z is consistent with N if and only if there is at least one
embedding of xy|z in N .

Lemma 3 Let N be any simple network. Then all the nontrivial SN-sets of T (N) are
singletons.

Proof We prove the lemma by contradiction. Assume thus that there is some SN-set
S of T (N) such that 1 < |S| < |L(N)|.

Let r be the root of N . An in-out root embedding is an embedding of any triplet
xz|y with x, z ∈ S and y /∈ S that has r as its summit. We begin by proving that an
in-out root embedding exists in N . Suppose by contradiction this is not true. For all
x, z ∈ S and y /∈ S, the triplet xz|y must be in T (N) because T (N) is dense. Consider
a triplet embedding (q → x, q → z,p → q,p → y) with p �= r , x, z ∈ S, y /∈ S that
minimizes (amongst all such embeddings) the length of the shortest directed path
from r to p. Let P be any shortest directed path from r to p. Now, consider a path
Q beginning somewhere on the path P . First observe that Q cannot intersect with
the path p → y or p → q , because this would contradict the minimality of the length
of P . In addition, Q may not intersect with the path q → x (q → z) because this
would mean y ∈ S. We conclude that such a path Q either terminates at a leaf l, or re-
intersects with the path P . It cannot terminate at a leaf l /∈ S because then we obtain an

Algorithmica (2011) 60: 207–235 229

embedding of xz|l that has a summit closer to the root than p, thus contradicting the
minimality of P . It can also not end at a leaf l ∈ S, because then we have that y ∈ S.
We conclude that all outgoing paths from P must re-intersect with P . However, given
that P includes the root, and that in a network every vertex is reachable by a directed
path from the root, it follows that the last arc on the path P must be a cut-arc. But
this violates the biconnectivity of N , contradiction. We conclude that there exists at
least one in-out root embedding in N .

Let (q → x, q → z, r → q, r → y) be any in-out root embedding. We observe
that the path r → y must contain at least one internal vertex, by biconnectivity. Also,
at least one of q → x and q → y must contain an internal vertex, because it is not
possible for a vertex in a simple network to have two leaf children.

We now argue that there must exist a twist cover of the path r → q . This is defined
as a non-empty set C of undirected paths (undirected in the sense that not all arcs need
to have the same orientation) where (i) all paths in C are arc-disjoint from the in-out
root embedding, (ii) exactly one path starts at an internal vertex s of (without loss
of generality) q → z, (iii) exactly one path ends at an internal vertex t of r → y,
(iv) all other start and endpoints of the paths in C lie on r → q and (v) for every
vertex v of the path r → q (including r and q), there is at least one path in C that
has its startpoint to the left of v, and its endpoint to the right. Property (v) is crucial
because it says (informally) that every vertex on r → q is “covered” by some path
that begins and ends on either side of it and is arc-disjoint from the embedding. The
length of C is defined to be the sum of the number of arcs in each path in C.

Suppose for contradiction that a twist cover does not exist. We define a partial
twist cover as one that satisfies all properties of a twist cover except property (v).
Partial twist covers have thus at least one vertex on r → q that is not covered. (To
see that there always exists at least one partial twist cover note that properties (ii)
and (iii) in particular are satisfied by the fact that neither the removal of q nor r is
allowed to disconnect N .) Let C be a partial twist cover with a minimum number of
uncovered vertices. Let d be the uncovered vertex that is closest to q . If we removed
d we would, by definition, disconnect the union of the paths in C with the in-out root
embedding into a left part G and a right part H . The vertex d does not, however,
disconnect N , so there must be some path P not in C that begins somewhere in G

and ends somewhere in H . If P has its startpoint on a path X ∈ C (where X will be
in G) and/or an endpoint on a path Y ∈ C (where Y will be in H) then these paths can
be “merged” into a new path that strictly increases the number of vertices covered.
The merging occurs as follows. We take the union of the arcs in P with those in
X and/or Y and discard superfluous arcs until we obtain a path that covers a strict
superset of the union of the vertices covered by X and/or Y . (In particular, the fact
that P begins in G and ends in H means that the vertex d becomes covered.) In this
way we obtain a new partial twist-cover with fewer uncovered vertices, contradiction.
If P has both its startpoint and endpoint on vertices of r → q that are not on paths in
C, then P can be added to the set C and this extends the number of covered vertices,
contradiction. If P begins and/or ends elsewhere on the embedding then P can be
added to C which again increases the number of vertices covered, contradiction. (If
P begins on, without loss of generality, q → z then it becomes the new property-
(ii) path and the old property-(ii) path should be discarded. Symmetrically, if P ends

230 Algorithmica (2011) 60: 207–235

Fig. 8 Several examples of
twist covers (the grey,
undirected paths) from the proof
of Lemma 3. Note that these
exhibit the regular, interleaved
structure associated with
minimum-length twist covers

on r → y then it becomes the new property-(iii) path and the old property-(iii) path
should be discarded.) We conclude that for every in-out root embedding there thus
exists a twist cover, and in particular a minimum length twist cover.

We observe that a minimum-length twist cover C has a highly regular, interleaved
structure. This regularity follows because it cannot contain paths that completely con-
tain other paths (simply discard the inner path) and if two paths X,Y ∈ C have start-
points that are both covered by some other path Z ∈ C, and (without loss of general-
ity) X reaches further right than Y , then we can simply discard Y . For similar reasons
minimum-length twist covers are vertex- and arc-disjoint. In Fig. 8 we show several
simple examples of twist covers exhibiting this regular structure (although it should
be noted that minimum-length twist covers can contain arbitrarily many paths.)

Let C be a twist cover of minimum length ranging over all in-out root embeddings
of triplets xz|y with x, z ∈ S and y �∈ S. Note that if C contains exactly one path,
which is a directed path, then (irrespective of the path orientation) y ∈ S, contradic-
tion. The high-level idea is to show that we can always find, by “walking” along the
paths in C, a new in-out root embedding and twist cover that is shorter than C, yield-
ing a contradiction. Let X be the path in C that begins at s, and consider the arc on
this path incident to s. The first subcase is that this arc is directed away from s. Note
that in that case X cannot be a directed path since then there would be a directed cy-
cle. Continuing along the path we will thus eventually encounter an arc with opposite
orientation. Let v be the vertex between these two arcs. There must exist a directed
path Q leaving v which eventually reaches a leaf m. If Q intersects with r → y then
we have that y ∈ S, contradiction. If Q intersects with either q → x or q → z then we
obtain a new in-out root embedding of xz|y and a new twist cover for that embedding
that is shorter than C, contradiction. If Q does not intersect with the embedding at
all, then it must be true that m ∈ S (because the triplet mz|x is consistent with the
network). But then we have an in-out root embedding of the triplet zm|y with twist
cover shorter than C, contradiction.

The second subcase (see Fig. 9) is when the first arc of X is entering s. There
must exist some directed path R from r to s that uses this arc. The fact that r is the
summit of the embedding means that at some point this directed path departs from
the embedding. Let w be the vertex where R departs from the embedding for the last
time. If w is on the path r → y then it follows that y ∈ S, a contradiction. If w is
on one of the paths q → x or q → z then this leads to a new in-out root embedding
with shorter twist cover, a contradiction. The last case is when w lies on the path
r → q . We create a new in-out root embedding by using the part of R reachable
from w, as an alternative route to z. In this way w becomes the “q” vertex of the

Algorithmica (2011) 60: 207–235 231

Fig. 9 The case in the proof of
Lemma 3 where the arc incident
to s is incoming

new embedding (denoted q ′ in the figure). To see that we also obtain a new twist
cover, note principally that paths in C that covered w become legitimate candidates
for property-(ii) paths in the new twist cover; in the figure s′ denotes the beginning
of the property-(ii) path in the new cover. (Such a path can however partly overlap
with R. In this case it is necessary to first remove the part that overlaps with R.)
We can furthermore discard all paths from C that covered w except for the one with
endpoint furthest to the right. Even if this means that no paths from C are discarded
(this happens when w is to the left of all the paths in C that have their beginning
points on r → q) we still get a twist cover at least one arc smaller than C, because (in
particular) the first arc of X is no longer needed in C. In any case, contradiction. �

Corollary 2 Let T be a set of triplets, and suppose there exists a simple network N

that reflects T . Let N ′ be any network that reflects T . Then N ′ is also simple.

Proof If N ′ is not simple then it contains a cut-arc below which at least two leaves
can be found. Consider the set A of leaves below this cut-arc. This is an SN-set since
triplets of the form xy|z with x, z ∈ A and y /∈ A are not consistent with such a
network. This is a contradiction because all the SN-sets of T are singletons. �

Let T be a reflective set of triplets and N a network that reflects T . Observe
that this implies that T is dense. Let a1, . . . , aq be the highest cut-arcs of N , let
S1, . . . , Sq be the sets of leaves below these highest cut-arcs and let CN denote the
collection {S1, . . . , Sq}. Denote by Collapse(N) the result of replacing everything
reachable from ai by a single leaf Si , for i = 1, . . . , q . The following observation
will be critical in the proof of Lemma 4, which shows correctness of our algorithm
MINPITS, displayed in Algorithm 4.

Observation 3 (1) Collapse(N) is a simple network reflecting T ∇CN and
(2) S1, . . . , Sq are the maximal SN-sets of T .

Proof To show that Collapse(N) is consistent with T ∇CN , consider triplets XY |Z ∈
T ∇CN . For each such triplet there exists at least one triplet xy|z ∈ T with x ∈ X,
y ∈ Y and z ∈ Z. Since N is consistent with xy|z it follows that Collapse(N)

is consistent with XY |Z. To show that only triplets in T ∇CN are consistent wit
Collapse(N), consider a triplet XY |Z consistent with Collapse(N). It follows that
all triplets xy|z with x ∈ X, y ∈ Y and z ∈ Z are consistent with N . Since N reflects
T this implies that all such triplets xy|z are in T and hence that XY |Z ∈ T ∇CN . By

232 Algorithmica (2011) 60: 207–235

the construction of Collapse(N) it clearly contains no cut-arcs and is thus a simple
network reflecting T ∇CN . For (2) first observe that each set Si is an SN-set of T since
the set of leaves below any cut-arc is always an SN-set. Assume for contradiction that
Si is not maximal. Then there exists a maximal SN-set S of T that is a strict superset
of Si . Any maximal SN-set can be written as the union of sets of leaves below highest
cut-arcs [14, Lemma 5]. Suppose (without loss of generality) that S = S1 ∪ . . . ∪ Sr

with 1 < r < q and 1 ≤ i ≤ r . It follows that {S1, . . . , Sr} is an SN-set of T ∇CN ,
since the existence of a triplet XY |Z ∈ T ∇CN with X,Z ⊂ S, Y �⊂ S would imply
the existence of a triplet xy|z ∈ T with x, z ∈ S and y /∈ S. However, this is a contra-
diction since by Lemma 3 all SN-sets of T ∇CN are singletons. �

Lemma 4 Let T be a reflective set of triplets and let SN be the set of maximal SN-
sets of T . Let N ′ be a simple network of minimum level that reflects T ∇SN . Then
replacing each leaf V of N ′ by a network that reflects T |V and which (ranging over
all networks that reflect T |V) simultaneously minimizes both level and number of
reticulations, yields a network N that reflects T and which simultaneously minimizes
both level and number of reticulations (ranging over all networks that reflect T).

Proof Let N0 be any network that reflects T . The sets of leaves below highest cut-
arcs of N0 are the maximal SN-sets of T by Observation 3. It follows that N and
N0 have the same sets of leaves below highest cut-arcs, i.e. CN = CN0 = SN . Thus
T ∇SN = T ∇CN0 = T ∇CN . Note also that for any maximal SN-set V the set of
triplets T |V is reflective: the subnetwork of N0 below the highest cut-arc correspond-
ing to V reflects T |V . This ensures that the recursive step does find some network.

To show that N reflects T , consider a triplet xy|z. First assume that x, y and z are
all in the same maximal SN-set V , i.e. below the same highest cut-arc a of N . Then
is xy|z consistent with N if and only if xy|z ∈ T , since the subnetwork of N below
the cut-arc a reflects T |V .

Now consider a triplet xy|z with two leaves in the same maximal SN-set and the
third leaf in a different maximal SN-set. Such a triplet is consistent with N if and
only if x and y are below the same highest cut-arc and z below a different one. By
the definition of SN-set (and using that T is dense), such a triplet is in T if and only
if x and y are in the same maximal SN-set and z in a different one. Consequently,
xy|z is consistent with N if and only if xy|z ∈ T .

Finally, consider triplets xy|z where x, y and z are all in different maximal SN-sets
X, Y and Z respectively. First suppose xy|z ∈ T . Then it follows that XY |Z ∈ T ∇SN

and hence that XY |Z is consistent with N ′. From this it follows that xy|z is consistent
with N , since an embedding of XY |Z in N ′ can easily be extended to an embedding
of xy|z in N . To show the other direction, assume that xy|z is consistent with N .
Then is XY |Z consistent with N ′ and hence XY |Z ∈ T ∇SN = T ∇CN0 . From the
fact that N0 reflects T it follows that Collapse(N0) reflects T ∇CN0 . It follows that
XY |Z is consistent with Collapse(N0). It follows that for any x′ ∈ X, y′ ∈ Y and
z′ ∈ Z the triplet x′y′|z′ is consistent with N0, implying that x′y′|z′ ∈ T . This thus
means that also xy|z ∈ T .

It is left to show that N is optimal, i.e. that it has a minimum number of retic-
ulations and a minimum level over all networks that reflect T . Remember that any

Algorithmica (2011) 60: 207–235 233

Algorithm 4 MINPITS (MINimum network consistent with Precisely the Input
Triplet Set)

1: N := ∅
2: compute the set SN of maximal SN-sets of T

3: if |SN | = 2 then
4: N consists of a root connected to two leaves: the elements of SN

5: else
6: if there exists a simple level-≤ k network that reflects T ∇SN then
7: let N be such a network of minimum level
8: else
9: N := ∅

10: for each leaf V of N do
11: recursively create a level-k network NV of minimal level (and which uses a

minimum number of reticulations) that reflects T |V
12: if N �= ∅ and all NV �= ∅ then
13: replace each leaf V of N by the recursively created NV .
14: return N

15: else
16: return ∅

network reflecting T has the maximal SN-sets of T as its sets of leaves below highest
cut-arcs. Given that the subnetworks of N below its highest cut-arcs are optimal it
follows that N is optimal if and only if N ′ is optimal. Finally, N ′ is optimal since it
has minimum level and simple networks with minimum level also contain a minimum
number of reticulations. �

Theorem 4 Given a set of triplets T , Algorithm MINPITS solves MIN-REFLECT-k
in time O(|T |k+1), for any fixed k.

Proof For k = 0 we can simply use the algorithm of Aho et al., which (with an
advanced implementation [11]) can be implemented to run in time O(n3), which is
O(|T |). For k ≥ 1 we use algorithm MINPITS. Correctness of the algorithm follows
from Lemma 4. It remains to analyze the running time. A simple level-k network (that
reflects the input) can be found (if it exists) in time O(n3k+3) using algorithm SL-k.
(To find the simple network of minimum level we execute in order SL-1, SL-2, . . . ,
SL-k until we find such a network. This adds a multiplicative factor of k to the running
time but this is absorbed by the O(.) notation for fixed k.) Therefore, lines 6 and 7 of
MINPITS take O(|SN |3k+3) time. At every level of the recursion the computation
of the maximal SN-sets of T can be done in time O(n3), and computation of T ∇SN

also takes O(n3). The critical observation is that (by Observation 3) every SN-set in
T appears exactly once as a leaf inside an execution of SL-k. The overall running time
is thus of the form O(

∑
i (n

3 + s3k+3
i)) where

∑
i si is equal to the total number of

SN-sets in T . Noting that
∑

i s
3k+3
i ≤ (

∑
i si)

3k+3, and that there are at most O(n)

SN-sets in T , we obtain for k ≥ 1 an overall running time of O(n3k+3), which is
O(|T |k+1) because T is dense. Note that for k ∈ {1,2} we can actually do slightly

234 Algorithmica (2011) 60: 207–235

better by using the faster simple level-1 and simple level-2 algorithms from [14, 17].

This yields for k = 1,2 overall running times of O(|T |) and O(|T | 8
3) respectively. �

6 Conclusions and Open Questions

In this article we have shown that, for level 1 and 2, constructing a phylogenetic
network consistent with a dense set of triplets that minimizes the number of retic-
ulations, is polynomial-time solvable. We feel that, given the widespread use of the
principle of parsimony within phylogenetics, this is an important development, and
testing on simulated data has yielded promising results. However, the complexity
of finding a feasible solution for level-3 and higher, let alone a minimum solution,
remains unknown, and this obviously requires attention. Perhaps the feasibility and
minimization variants diverge in complexity for higher k. It would be fascinating to
explore this.

We have also shown, for every fixed k, how to generate in polynomial time all sim-
ple level-k networks consistent with a dense set of triplets. This could be an important
step towards determining whether the aforementioned feasibility question is tractable
for every fixed k. We have used this algorithm to show how MIN-REFLECT-k is
polynomial-time solvable for fixed k. Clearly the demand that a set of triplets is ex-
actly equal to the set of triplets in some network is an extremely strong restriction on
the input. However, for small networks and high accuracy triplets such an assumption
might indeed be valid, and thus of practical use. In any case, the concept of reflection
is likely to have a role in future work on “support” for edges in phylogenetic networks
generated via triplets. Also, the complexity of some fundamental questions like “does
any network N reflect T ?” remains unclear.

The complexity of constructing a minimum level network consistent with a dense
triplet set is still an important open problem. The same holds for constructing a net-
work with a minimum number of reticulations, without restrictions on the level. When
restricting to simple networks, these two problems coincide. However, also in this re-
stricted case, their complexity remains open.

Acknowledgements We thank Judith Keijsper, Matthias Mnich and Leen Stougie for many helpful
discussions during the writing of the paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors
with an application to the optimization of relational expressions. SIAM J. Comput. 10(3), 405–421
(1981)

2. Baroni, M., Semple, C., Steel, M.: A framework for representing reticulate evolution. Ann. Comb. 8,
391–408 (2004)

3. Baroni, M., Grünewald, S., Moulton, V., Semple, C.: Bounding the number of hybridisation events
for a consistent evolutionary history. Math. Biol. 51, 171–182 (2005)

Algorithmica (2011) 60: 207–235 235

4. Bordewich, M., Semple, C.: Computing the minimum number of hybridization events for a consistent
evolutionary history. Discrete Appl. Math. 155(8), 914–928 (2007)

5. Bordewich, M., Linz, S., John, K. St., Semple, C.: A reduction algorithm for computing the hybridiza-
tion number of two trees. Evol. Bioinform. 3, 86–98 (2007)

6. Byrka, J., Gawrychowski, P., Kelk, S.M., Huber, K.T.: Worst-case optimal approximation algorithms
for maximizing triplet consistency within phylogenetic networks. arXiv:0710.3258v3 [q-bio.PE]
(2008)

7. Choy, C., Jansson, J., Sadakane, K., Sung, W.-K.: Computing the maximum agreement of phyloge-
netic networks. Theor. Comput. Sci. 335(1), 93–107 (2005)

8. Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstructing of phylogenetic networks with
constrained recombination. J. Bioinform. Comput. Biol. 2(1), 173–213 (2004)

9. Gusfield, D., Hickerson, D., Eddhu, S.: An efficiently computed lower bound on the number of re-
combinations in phylogenetic networks: theory and empirical study. Discrete Appl. Math. 155(6–7),
806–830 (2007)

10. He, Y.-J., Huynh, T.N.D., Jansson, J., Sung, W.-K.: Inferring phylogenetic relationships avoiding for-
bidden rooted triplets. J. Bioinform. Comput. Biol. 4(1), 59–74 (2006)

11. Henzinger, M.R., King, V., Warnow, T.: Constructing a tree from homeomorphic subtrees, with ap-
plications to computational evolutionary biology. Algorithmica 24(1), 113 (1999)

12. Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Mol. Biol.
Evol. 23(2), 254–267 (2006)

13. Huynh, T.N.D., Jansson, J., Nguyen, N.B., Sung, W.-K.: Constructing a smallest refining galled phylo-
genetic network. In: Proceedings of Research in Computational Molecular Biology (RECOMB 2005).
LNCS, vol. 3500, pp. 265–280 (2005)

14. van Iersel, L.J.J., Keijsper, J.C.M., Kelk, S.M., Stougie, L.: Constructing level-2 phylogenetic net-
works from triplets. arXiv:0707.2890v1 [p-bio.PE] (2007)

15. van Iersel, L.J.J., Keijsper, J.C.M., Kelk, S.M., Stougie, L., Hagen, F., Boekhout, T.: Constructing
level-2 phylogenetic networks from triplets. In: Proceedings of Research in Computational Molecular
Biology (RECOMB 2008). LNBI, vol. 4955, pp. 450–462 (2008)

16. van Iersel, L.J.J., Kelk, S.M., Mnich, M.: Uniqueness, intractability and exact algorithms: reflections
on level-k phylogenetic networks. arXiv:0712.2932v3 [q-bio.PE] (2008)

17. Jansson, J., Nguyen, N.B., Sung, W.-K.: Algorithms for combining rooted triplets into a galled phy-
logenetic network. SIAM J. Comput. 35(5), 1098–1121 (2006)

18. Jansson, J., Sung, W.-K.: Inferring a level-1 phylogenetic network from a dense set of rooted triplets.
Theor. Comput. Sci. 363, 60–68 (2006)

19. Makarenkov, V., Kevorkov, D., Legendre, P.: Phylogenetic network reconstruction approaches. In:
Applied Mycology and Biotechnology. Bioinformatics, vol. 6, pp. 61–97. Elsevier, Amsterdam
(2006)

20. MARLON: constructing level one phylogenetic networks with a minimum amount of reticulation.
http://homepages.cwi.nl/~kelk/marlon.html

21. Morrison, D.A.: Networks in phylogenetic analysis: new tools for population biology. Int. J. Parasitol.
35(5), 567–582 (2005)

22. Moret, B.M.E., Nakhleh, L., Warnow, T., Linder, C.R., Tholse, A., Padolina, A., Sun, J., Timme, R.:
Phylogenetic networks: modeling, reconstructibility, and accuracy. IEEE/ACM Trans. Comput. Biol.
Bioinform. 1(1), 13–23 (2004)

23. Song, Y.S., Hein, J.: On the minimum number of recombination events in the evolutionary history of
DNA sequences. J. Math. Biol. 48, 160–186 (2004)

24. Song, Y.S., Wu, Y., Gusfield, D.: Efficient computation of close lower and upper bounds on the min-
imum number of recombinations in biological sequence evolution. Bioinformatics 21(1), i413–i422
(2005)

25. Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. J. Comput. Biol.
8(1), 69–78 (2001)

http://arxiv.org/abs/arXiv:0710.3258v3
http://arxiv.org/abs/arXiv:0707.2890v1
http://arxiv.org/abs/arXiv:0712.2932v3
http://homepages.cwi.nl/~kelk/marlon.html

	Constructing the Simplest Possible Phylogenetic Network from Triplets
	Abstract
	Introduction
	Preliminaries
	Constructing a Level-1 Network with a Minimum Number of Reticulations
	Constructing a Level-2 Network with a Minimum Number of Reticulations
	Constructing Networks Consistent with Precisely the Input Triplet Set
	Constructing All Simple Level-k Networks in Polynomial Time
	From Simple Networks that Reflect, to General Networks that Reflect

	Conclusions and Open Questions
	Acknowledgements
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

