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Abstract We study variants of the potato peeling problem on meshed (triangulated)
polygons. Given a polygon with holes, and a triangular mesh that covers its interior
(possibly using additional vertices), we want to find a largest-area connected set of
triangles of the mesh that is convex, or has some other shape-related property. In
particular, we consider (i) convexity, (ii) monotonicity, (iii) bounded backturn, and
(iv) bounded total turning angle. The first three problems are solved in polynomial
time, whereas the fourth problem is shown to be NP-hard.
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1 Introduction

Suppose you live in a mountainous area, and you are interested in playing golf and
drinking wine. Then you would like to find a large subregion of the area that is suit-
able to turn into a golf course or a vineyard. In the first case, this means your region
should be reasonably flat. In the second case, it probably means your region should
‘face south’ (assuming that you live in the Northern Hemisphere). In addition, it is
reasonable to want your region to have a compact shape and, at the same time, to be
as large as possible.

In Geographic Information Science, terrain data is often stored as a triangulated
irregular network (TIN): a planar triangulation with additional height data on the ver-
tices. In this context, it is easy to evaluate properties such as ‘flatness’ and ‘facing
south’ on a triangle-by-triangle basis: each triangle is part of a plane and thus has a
constant angle with respect to the horizontal or to the optimal south-facing orienta-
tion. We can identify for each triangle whether its angle is below a certain prespecified
threshold, and discard it if it is not. After this, we are left with a collection of triangles
in the plane, of which we want to find a largest-area subset that has a good shape—
from here on, the height information can be ignored. Note that we can assume that
the collection of triangles we get as input is connected, since otherwise we can just
search for good regions within each connected component separately.

Now consider a seemingly unrelated problem. In computer graphics, before a
scene is rendered an occlusion culling algorithm is often used, which serves to
quickly remove a large portion of the scene that is hidden behind some object (oc-
cluder). Such occluders are often large and contain many triangles. However, culling
algorithms work much faster with convex occluders, so it is interesting to find a
large convex subset of a given occluder (‘convex’ should be interpreted in the 2-
dimensional sense, as seen from the current point of view).

Both of these problems can be abstracted in the same way. We have a triangulated
polygon (with extra interior vertices) with holes, of which we want to find a large
subregion with a good shape. Finding well-shaped subregions of polygons is a prob-
lem that received quite some attention in computational geometry before, and one
of its representatives is the well-known potato peeling problem [14], which asks for
the largest convex subpolygon of a given polygon (potato). In our case, the problem
is the same, except that we have an additional triangulation or mesh on the potato,
and we require the solution to respect that mesh. Asking for convexity, in the context
of our first example, can be a way to model the vague criterion of good shape for a
region. However, because convexity is a rather restrictive condition in combination
with respecting the triangular mesh, and because many applications may allow some
flexibility on this requirement, we also study some relaxations of convexity that can
be used to model the idea of a well-shaped region.

Problem Description We are given a polygon with holes (or potato) P , and a tri-
angular mesh M that covers the interior of P , and possibly has additional interior
vertices. The total complexity of P and M is denoted by n, and is defined as their
total number of vertices. We want to find the largest-area simply-connected region R

comprised of triangles of M such that:
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(i) it is convex (see Fig. 1(b));
(ii) it is monotone in some direction (see Fig. 1(c));

(iii) it has a maximum backturn of at most γ (see Fig. 1(d)); or
(iv) it has total turning angle of at most β (see Fig. 1(e)).

That is, we treat four different shape restrictions: convexity and three possible
relaxations, explained below. Since the region boundary is required to follow the
edges of M, forcing R to be convex can be quite restrictive, while intuitively this
should not be the case. For example, in Fig. 2 a situation is depicted in which a very
large area is available, but only rather small convex subregions exist. The problem is
that because of the mesh, the boundary needs to make a small turn at every vertex,
and in a convex polygon we are only allowed to turn in one direction. To counteract
this problem, we study three more variants.

A polygon is said to be monotone if it is possible to rotate the polygon such that
any vertical line intersects the polygon boundary at most twice. This allows for flex-
ibility in the shape of R, but it comes at a price: There are monotone shapes that do
not look nice and compact at all. Therefore we introduce two other measures with a
parameter that specifies how ‘close to convex’ a region is.

We define a backturn in a polygon as a turn of the polygon boundary that is made
in the wrong direction. More formally, let R be defined by the edges �e1, �e2, . . . , �em

in counterclockwise order along its boundary, see Fig. 3. We define the turning an-
gle from edge �ei to edge �ej for i �= j as α(�ei, �ej ) = ∑j−1

k=i �(�ek, �ek+1) (indices wrap
around, the sum is taken over at most n − 1 angles), where �(�ek, �ek+1) ∈ (−π,π)

Fig. 1 (a) A meshed potato with a hole. We will refer to the unbounded face and to the holes as the exterior
of the polygon. (b) The largest convex subpotato. (c) The largest monotone subpotato (the direction of
monotonicity is shown with an arrow) (d) The largest backturn-constrained subpotato with a maximum
backturn of ≈π/2. (e) The largest subpotato with a total turning angle of at most 3π

Fig. 2 The largest convex
subregion of a meshed polygon
is restricted by the mesh, and
not by the polygon boundary
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Fig. 3 The maximum backturn
(negative turning angle) of the
polygon is − 2

3 π , and is
achieved between �ei and �ej

is the counterclockwise turn from �ek to �ek+1 (a clockwise turn yields a negative
�(�ek, �ek+1)). When i = j , we set α(�ei, �ei) = 0. The maximum backturn of a sim-
ple polygon R, �R , is defined as mini,j α(�ei, �ej ). It represents the maximum amount
that part of the polygon boundary turns in the wrong direction. Note that �R ≤ 0, and
that a simple polygon R is convex if and only if �R = 0. When the polygon under
consideration is clear, we will write � instead of �R .

Our last relaxation of convexity also deals with the idea of not being too concave.
We define the total turning angle of a polygon as the sum of the absolute values of the
turning angles at the vertices. We will look for a polygon whose total turning angle
does not exceed a predefined constant β ≥ 2π . A convex polygon has a turning angle
of exactly 2π , but we allow the polygon to turn ‘the wrong way’ a little bit, as long
as the total turning angle is less than β .

Results We show that problem (i) can be solved in O(n2) time, problem (ii) in
O(n2) time if the direction is given and in O(n3) time otherwise, problem (iii) in
O(n6) time, and problem (iv) is NP-hard.

Related Work As mentioned earlier, if the largest-area simple polygon we aim to
compute were not constrained to be a union of triangles of M, but just to be contained
in P , problem (i) would turn into the potato peeling problem [14], also known as
the convex skull problem [20]. The problem consists in, given a simple polygon P ,
determining the largest-area convex polygon inside P . If P has n vertices, it can
be solved in time O(n7) for a simple polygon, and in time O(n8) if the polygon
has holes [7]. Approximation algorithms were studied by Hall-Holt et al. [15], who
give an O(1)-approximation algorithm that runs in O(n logn) time. The orthogonal
version of the problem, where both the given polygon and the subpolygon sought
are bounded only by horizontal and vertical line segments, can be solved exactly in
O(n2) time with an algorithm by Wood and Yap [21].

Also similar to the problems in this paper are many containment problems, in
particular finding largest-area subpolygons. There is a large number of articles on
different variants of this problem; we name just a few of them here. Barequet and Ro-
gol [5] find a maximum area axially symmetric polygon contained in a given simple
polygon. Daniels et al. [11] present an algorithm to find the largest-area axis-parallel
rectangle in a general n-vertex polygon (allowing holes), which can be improved to
run faster if the polygon is simple [6]. Another related problem is finding the largest
similar copy of a polygonal pattern inside a 2D environment with obstacles [8]. In
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particular, several algorithms deal with the case when the pattern is a convex poly-
gon [19]. Arkin et al. [4] study the problem of finding the smallest superpolygon of a
given polygon, rather than the largest subpolygon. For convex polygons, this is sim-
ply the convex hull; they show that a smallest monotone or star-shaped superpolygon
can be computed in O(n/ logn) or O(n2) time, respectively.

Our problems (iii) and (iv) employ turning angles to capture a weaker notion of
convexity. Turning angles have been studied before for optimization of geometric
tours [1, 12] and also in contexts more similar to ours, for describing polygonal
shapes. In particular, the closely-related turning functions have been used to com-
pare the shape of polygons [2, 16]. Closer to our application, Reinbacher et al. [18]
consider minimizing the total angular change as a shape criterion to delineate impre-
cise regions with compact shapes.

Occlusion culling is a well known technique in computer graphics, and occluders
that are large and convex give faster results [10]. Cohen-Or et al. [9] use this fact
by covering a simple polygon with a few large convex subpolygons. They present
a heuristic that first subdivides the polygon into convex regions and then selects a
subset of those regions to be combined into a larger subpolygon. Papaioannou et
al. [17] construct large convex occluders by grouping partially overlapping smaller
occluders together into convex shapes.

Outline of the Paper The next section studies the first two problems: finding a
largest-area polygon that is the union of triangles and is convex, and finding one
that is monotone in some direction. Section 3 deals with problem (iii), where the re-
striction is now on the maximum backturn, and gives a polynomial-time algorithm
to solve it. Section 4 studies problem (iv), finding a largest-area simple polygon with
bounded total turning angle, and shows the problem is NP-hard. Finally, in Sect. 5
we make some concluding remarks and mention some problems left open.

Henceforth, we will refer to the holes in the polygon and to its unbounded face as
the exterior of the polygon, or simply as the exterior. We assume that the triangles
are closed, and therefore, that the exterior is open. Slightly abusing the notation, we
will not distinguish between a subset of triangles and their union.

2 The Largest Convex Polygon

In this section we study the problems of computing the largest-area convex polygon
and the largest-area monotone polygon formed as a union of triangles of M. Most of
the section is devoted to the first problem; adaptations needed for the second problem
are discussed in the last subsection. Without loss of generality, we assume that no two
vertices of M have the same x-coordinate. Before presenting the algorithm, we will
introduce some notation and definitions.

Let e ∈ M be an edge of the triangulation. We denote by X(e) the x-span of the
edge, that is, the projection of the edge onto the x-axis. For edges e, e′ ∈ M, we say
that e is above e′ if there is a vertical line that meets e at a point p and e′ at a point
p′ with p above p′. Assume that e is above e′. Define X(e, e′) := X(e) ∩ X(e′). We
now define T (e, e′) as the trapezoid enclosed by e from above, by e′ from below, and
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Fig. 4 (Color online) (a) A promising pair of edges and their trapezoid T (e, e′). (b) An admissible col-
lection C of triangles (gray) for the edge pair (e, e′)

by the vertical lines that bound the interval X(e, e′). If T (e, e′) avoids the exterior
of P , we say that the pair (e, e′) is promising (see Fig. 4(a)).

Let (e, e′) be a promising pair of edges, and let H(e, e′) be the halfplane to the left
of the line x = maxX(e, e′) (the same line that bounds T (e, e′) from the right). Let
C be a collection of triangles of M. We call C admissible for (e, e′) if the following
conditions hold (see Fig. 4(b)):

• The pair (e, e′) is promising.
• C contains the triangle below e, but not the triangle above e.
• C contains the triangle above e′, but not the triangle below e′.
• Every triangle of C intersects H(e, e′).
• The polygon U = U(C) := ⋃

C ∩ H(e, e′) is convex, where
⋃

C is the union of
the triangles in C.

The last condition implies that U cannot contain holes or any other part of the
exterior. Also note that a pair of edges (e, e′) can have more than one collection of
admissible triangles C, thus a pair of edges can have more than one polygon U .

We will now define a value Q(e, e′) for any pair of edges. Set Q(e, e′) := −∞
if (e, e′) has no admissible collection of triangles, otherwise Q(e, e′) is defined to
be the largest area(U(C)) achieved by any admissible collection C. Clearly, any pair
that is not promising has a Q-value of −∞. The converse, however, is not true: a pair
can be promising, but not have any admissible collection of triangles.

We will compute Q(e, e′) by dynamic programming. Notice that if e and e′ share
their right endpoints, Q(e, e′) is precisely the area of the largest convex polygon
consisting of triangles from M and having e and e′ as its rightmost top and bottom
edges, respectively. Hence, examining Q(e, e′) over all pairs of edges with the same
right endpoint, one can find the area of the desired largest-area convex polygon. The
polygon itself can be extracted by standard dynamic programming methods.

We will first describe an algorithm to identify all the promising pairs in O(n2)

time. After this, we show how to compute the value Q for all those pairs, again
in O(n2) time. The two algorithms rely on a plane sweep and can in principle be
combined into a single pass, but we keep them separate for clarity.
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2.1 Computing the Promising Pairs

We sweep M by a vertical sweep-line � moving from left to right and stopping at
every vertex. Using standard sweep techniques, we maintain the sorted order of the
edges of M currently intersected by �. At a given point of the sweep, when we are at
a sweep-line � : x = t , all the promising pairs with X(e, e′) lying to the left of t have
already been discovered. All pairs with X(e, e′) � t for which the part of T (e, e′) to
the left of � does not meet the exterior of P are called potentially promising and are
currently being maintained.

Along the sweep, we maintain the following information. For each edge e meeting
the sweep-line, we keep two sorted lists Ea(e) and Eb(e). Eb(e) contains all the edges
e′ meeting � below e, which have their left endpoint to the left of that of e and such
that the intersection of T (e, e′) with the halfplane x < t lies completely inside P .
Eb(e) is stored sorted in downward direction along �. Ea(e) is analogous but for the
edges lying above e. In addition to these two lists, we also keep an inverted list EI (e)

that contains all the edges e′ such that Ea(e
′) or Eb(e

′) contains e. The need for these
cross-references will become clear later.

We discern three different types of events that all occur when the sweep-line passes
a vertex v. At this vertex, some edges end, which means potentially promising pairs
using those edges are indeed promising and must be output and removed. Secondly,
some new edges begin at v, which means that new potentially promising pairs must
be generated and maintained. Thirdly, we may encounter parts of the exterior of P
at v, which means that any pairs we are currently maintaining that have one edge
above and one edge below v are no longer potentially promising. We process the
events in the order they are described here: we first process the beginning edges, then
the ones ending, and finally the new exterior parts.

A New Beginning When a new edge e begins at v, we want to find all potentially
promising pairs of the form (e, e′) or (e′, e) that cross �. At this point, this just means
that the exterior cannot intersect � between them. To process multiple edges starting
at v correctly, we must treat them in the order in which these edges would cross � if
it were slightly to the right of v. We walk upwards along �, collecting all the edges
crossing � above e, and adding them to Ea(e) (and the corresponding cross-references
to the EI lists). This continues until a part of the boundary of P is reached: after that,
no more promising pairs exist. In the same way, we walk downwards along � to fill
in Eb(e). We spend constant time per added pair.

The End When an edge e ends at v, we want to find all potentially promising pairs
that use e that we have stored, report them, and then remove them from the data
structure. There are two types of such pairs: the ones for which the left endpoint of e

lies to the right of the left endpoint of the other edge are stored in the lists Ea(e) and
Eb(e) of e. The other pairs, which have the left endpoint of e to the left of the left
endpoint of the other edge, are stored in the lists of the other edges. For these, we will
use the cross-pointers in EI (e) to find them. In time proportional to the sizes of the
lists stored with e, we find all such pairs. Since the lists are linked, we can remove
the references in the lists of the other edges in constant time per entry, so we spend
only constant time per removed pair.
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Exterior Parts The last type of event occurs when a part of the exterior begins at the
vertex v. Intuitively we want to remove all pairs (e, e′) for which T (e, e′) contains v.
Each such no-longer-promising pair has a top edge e above v and a bottom edge e′
below v. By the invariant we have been maintaining, we know that no other point
from the exterior appears in T (e, e′) ∩ {x < t}. We walk up �, from v, looking for
candidates e, until we hit a part of the exterior. For each e found, we scan its list
Eb(e), from the tail backwards. If the last element e′ is above v, the entire list is safe.
If it is below v, the pair (e, e′) is not promising, and we drop e′ from Eb(e) and e

from EI (e
′), continuing upwards until the first e′ above v. This is repeated until all

no longer promising pairs have been discarded. Similarly, we walk down � from v

and scan Ea(e).
For each list that does not need to be truncated we spend only O(1) time, for O(n)

lists at each vertex, taking in total O(n2) time. In addition, constant time is spent on
each pair that is discarded, which can occur at most once over the execution of the
algorithm for each pair, so we do at most O(n2) work overall. It follows that all the
promising pairs can be computed in a total of O(n2) time.

2.2 Computing the Q-Values

Having established how to identify all promising pairs (e, e′), we explain how to
compute the values Q(e, e′) for those pairs. Recall that this value corresponds to the
area of a convex polygon bounded from the right by the line x = maxX(e, e′), from
the top by e and from the bottom by e′, and following edges of M for the rest. We
view this polygon as a concatenation of vertical strips, the regions T (·, ·) of promising
pairs, which guarantees that only triangles, and no parts of the exterior, are used. This
allows us to incrementally compute the Q-values by dynamic programming.

Fix a promising pair (e, e′). To compute Q(e, e′), consider the left endpoints of
both segments. If they are the same point, the value is simply the area of the triangle
delimited by e, e′ and the vertical line x = maxX(e, e′). Otherwise, assume that the
x-coordinate of the leftmost endpoint of e lies to the left of that of e′ (the other case
is symmetric), and let v be the left endpoint of e′. Then Q(e, e′) = area(T (e, e′)) +
Q(e, e′′), where e′′ is an edge incident to v = (vx, vy) with its other endpoint to
the left of vx such that �(e′′, e′) ≥ 0 and Q(e, e′′) is maximized over all possible
edges e′′.

However, computing the values in this way we may spend up to O(n3) time, since
for each promising pair there may be up to a linear number of candidate edges e′′.
We can avoid this by making the following observation.

We consider three sets of edges EA,ER and EL, which are defined for a fixed v.
EA contains those edges that intersect � above v (with no intervening exterior points),
ER contains all edges incident to and to the right of v, and EL contains all edges
incident to and to the left of v, see Fig. 5(a). For each combination of an edge e ∈ EA

and an edge e′ ∈ ER that form a promising pair, we must find the edge e′′ ∈ EL that
optimizes Q(e, e′′). We refer to this edge e′′ as best(e, e′).

Given an edge ea ∈ ER , we define the opposite edge of ea , opp(ea), as the edge in
EL with smallest non-negative turning angle �(opp(ea), ea) ≥ 0 (that is, it is convex),
see Fig. 5(b). Note that best(e, e′) is always equal to or is above opp(e′) (that is, it
has a higher left endpoint). We make the following observation.
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Fig. 5 (a) The three sets of edges of interest when processing vertex v. (b) An edge ea ∈ ER and its
opposite edge, opp(ea)

Observation 1 The function best(e, e′), when defined, is monotone in the sense that
if ea, eb ∈ ER are such that if ea is above eb, then best(e, eb) is equal to or above
best(e, ea).

We now describe how to organize the computation to use this observation, and
make the whole algorithm run in quadratic time.

Sweep Algorithm We sweep the points from left to right, stopping at each vertex of
M. Let the current vertex be v = (vx, vy). At this point, we will at once compute the
values of Q(e, e′) for all promising pairs with vx = minX(e, e′), in time proportional
to the degree of v. Recall that for each pair, e lies above e′. First we only consider
pairs for which e intersects � above v, and e′ ∈ ER . We separately handle the pairs
where e is incident to v and e′ intersects � below v, in a symmetric way.

We compute for each e ∈ EA a list L(e) of the edges in EL sorted by angle (we
can assume the edges are stored in sorted order around the vertices). The first entry of
the list corresponds to the topmost edge (smallest slope). We go through this list and
store at each entry the maximum of the largest value of Q(e, e′′) seen so far and the
value for the current edge (storing also appropriate pointers to allow reconstructing
the solution later). Since the values of Q(e, e′′) that are needed have been already
computed, we can fill in L(e), for all e ∈ EA, in O(|EA| · |EL|) time.

The second step consists in using this list to compute Q(e, e′) for all promising
pairs of edges e ∈ EA and e′ ∈ ER . In linear time, we can preprocess the mesh M
to compute and store the opposite edge of each edge. Now, for each promising pair
(e, e′), we look up opp(e′) in the list L(e). The edge e′′ = best(e, e′) we are looking
for is, by Observation 1, the one associated with the Q-value stored with opp(e′).
(Note that best(e, e′) may be different from opp(e′).) Therefore we set Q(e, e′) =
Q(e, e′′) + area(T (e, e′)).

All the Q-values can be computed in quadratic time in total: for a vertex v, of
degree deg(v), O(deg(v) · n) time is spent on filling the list of all edges crossing
� above v, which leads to quadratic time for all vertices. In addition, constant time
is spent to fill in each entry of Q(e, e′). The total running time is hence quadratic.
Together with the algorithm for computing the promising pairs, we conclude with the
following theorem:
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Theorem 1 Given a polygon with holes P , and a triangular mesh M with n vertices
that covers the interior of P , a maximum-area convex subpolygon that is the union of
triangles of M can be computed in O(n2) time.

2.3 Monotone Polygons

Turning to problem (ii), we note that the algorithm given above can easily be adapted
to compute the largest-area polygon that is monotone in a given direction. Assume
without loss of generality that the given direction is horizontal. Then computing
Q(e, e′) remains the same for edges with shared starting or ending endpoints. When
“continuing through” from edge e′ to e′′, however, we need to remove the condition
that the slope of e′′ must be less than that of e′. When the direction of monotonicity
is not given, we can check all O(n) directions perpendicular to the edges of M. To
summarize, we obtain:

Theorem 2 Given a polygon with holes P , and a triangular mesh M with n vertices
that covers the interior of P , a maximum-area monotone subpolygon that is the union
of triangles of M can be computed in O(n2) time if the direction is given, or in O(n3)

time otherwise.

3 Maximum Negative Turning Angle

Next we study the problem of finding the collection of triangles of largest total area
such that their union R is a simple polygon and the maximum backturn � of the
boundary of R is bounded by some constant 0 ≤ γ ≤ π . The backturn is defined as
� = mini,j α(�ei, �ej ); see Section 1 for more details. The goal is to find a largest area
subregion that does not include any part of the exterior and has � ≥ −γ . Note that it
follows from the definition of � that there are O(n2) relevant values for γ .

For a given path from vertex v to vertex u, we define the extreme edges �svu and
�tvu as follows: �svu is the edge of the path with the largest turning angle with respect
to the first edge of the path, whereas �tvu is the edge with the smallest one, see Fig. 6.
Extreme edges will play an important role in the algorithm. We make the following
simple observation, illustrated in Fig. 7.

Observation 2 Let {�e1, . . . , �em} be a path from u to v, and let �svu and �tvu be the
extreme edges of the path. Then α(�svu, �em) ≤ 0 and α(�e1, �tvu) ≤ 0.

We present a dynamic programming algorithm that computes a function Q which
assigns to each subproblem the value of an optimal solution of the subproblem. A sub-

Fig. 6 A path from v to u

showing the turning angle of
each edge, with respect to the
first edge of the path. The
extreme edges are the ones with
the maximum and minimum
turning angle
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Fig. 7 Example illustrating the two possible cases for Observation 2: (a) �svu appearing after �tvu , and
(b) �svu appearing before �tvu. The total turning angle of each of the highlighted subpaths, α(�e1, �tvu) and
α(�svu, �em), is always less than or equal to zero

Fig. 8 (Color online) Schematic view of an instance (v,u, �ev,out, �eu,in, σ, τ ) of the algorithm. Vertices u

and v, together with directions τ and σ , separate the plane into two areas. The feasible region FI , in white,
contains the solution to the instance. The gray arrows indicate the orientation of σ and τ

problem is defined on a pair of vertices, a pair of edges that are incident to those
vertices, and two angle bounds for the extreme edges. Let (v,u, �ev,out, �eu,in, σ, τ ) be
such an instance; Fig. 8 shows a visual representation.

The goal is to find a path from v to u that uses �ev,out as the first edge and �eu,in as the
last edge, and such that the turning angle of the extreme edges �svu and �tvu of the path
are bounded by σ and τ , respectively. More precisely, we require α(�ev,out, �tvu) ≥ −τ

and α(�svu, �eu,in) ≥ −σ (for σ, τ ≥ 0). In other words, we are limiting the turning
angle from the first edge to the edge with smallest angle, and from the edge with
largest angle to the last edge. Since �svu and �tvu are extreme edges, this also limits the
angles of all the other edges on the path from v to u. With some abuse of notation,
we sometimes consider σ and τ as directions, and sometimes as angles. Note that σ

and τ restrict the extreme directions of edges of our solution polygon R, so the only
relevant values they take are the linear number of directions of the edges of M.

Moreover, we require the polygon consisting of this path and completed by �uv to
be simple, to contain no parts of the exterior, and to have optimal area. Note that �uv

is the only edge of this polygon that is not necessarily an edge of the triangulation.

3.1 Description of the Algorithm

The algorithm is based on the fact that the optimal polygon R∗ has a triangulation
(not to be confused with the given mesh M of the input polygon), and we can use it
to recursively define the solution to an instance in terms of the solutions to smaller in-
stances. In particular, the path from v to u in the instance I = (v,u, �ev,out, �eu,in, σ, τ )

is composed of a path from v to some vertex w and a path from w to the vertex u, and
such that �vw and �wu are diagonals of a triangulation of the solution to the instance I
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Fig. 9 Example showing the
decomposition of the problem
into two smaller subproblems

(or, in some cases, edges of the solution itself), see Fig. 9. We can maximize over
all vertices w, the edges incident to w that are used on the paths, and the way the
bounds on the angles of the extreme edges may occur in the subproblems, as long as
the solutions do not contain part of the exterior and the angle bounds are respected.

Consider an optimal solution R∗ and a triangulation of R∗. Let �uv be a diagonal
of this triangulation. We define Q as follows:

Q(v,u, �ev,out, �eu,in, σ, τ )

= max
w,�ew,out,�ew,in,σ

′,τ ′(Q(v,w, �ev,out, �ew,in, σ
′, τ )

+ Q(w,u, �ew,out, �eu,in, σ, τ ′) + area(uvw))

as long as the following conditions hold:

(1) α(�ev,out, �ew,in) ≥ −τ and α(�ew,out, �eu,in) ≥ −σ .
(2) σ ′ + τ ′ − �(�ew,in, �ew,out) ≤ γ .
(3) τ ′ ≤ τ + α(�ev,out, �ew,out) and σ ′ ≤ σ + α(�ew,in, �eu,in).
(4) uvw is contained in P , and w lies to the left of �uv.

The first condition ensures that �ew,in and �ew,out are within the bounds imposed by
τ and σ . The next two conditions guarantee that α(�svu, �tvu) ≥ −γ : if both �svu and �tvu

lie in the same subproblem, then the recursion ensures their turning angle is within the
right bound. Otherwise, if they lie in different subproblems, then the second condition
relates the two angle bounds of the subproblems and the angle at w with γ , whereas
the third condition enforces that the angle bounds of the subproblems do not exceed
the existing ones. Together they guarantee that α(�svu, �tvu) ≥ −γ . Last but not least,
the fourth condition makes sure that the final solution will not contain parts of the
exterior.

If no vertex w exists that satisfies these conditions, then Q(·) is defined to be −∞.
The base case is Q(v,u, �vu, �vu,σ, τ ) and has value zero for all combinations of v,
u, σ and τ (of course, �vu must be an edge of M).

Now we are ready to give a description of the algorithm. In Sect. 3.2 we argue that
the algorithm indeed returns a solution to our problem, and in Sect. 3.3 we analyze
the running time. We maintain a 6-dimensional table with one entry for each instance
I = (v,u, �ev,out, �eu,in, σ, τ ). In each cell of the table, we store the value Q(I), as well
as pointers to the entries of the two subproblems that give this value (unless I is a base
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case). For each entry, we compute the value by trying all possibilities for w, �ew,in,
and �ew,out, looking up their solutions in the table and checking whether conditions
(1) to (4) hold. We start by filling in all base case entries of the table. If we fill the
remaining entries in any order that complies with the partial order induced by the
inclusion of feasible regions, then we are guaranteed that the subproblems we need
to look up have already been solved before (this is proven in the next section).

3.2 Correctness of the Algorithm

In this section, we show that the solution returned by the algorithm is an optimal
solution to our problem, and that the algorithm always terminates. The following
lemma shows that the solutions computed by the dynamic programming algorithm
respect the angle constraint.

Lemma 1 Let I = (v,u, �ev,out, �eu,in, σ, τ ) be an instance of the dynamic program-
ming algorithm above, such that Q(I) > −∞ and σ + τ − α(�eu,in, �ev,out) ≤ γ . Let
R be the polygon defined by �uv and the path from v to u associated with Q(I). Then
�R ≥ −γ .

Proof Let R be the polygon whose boundary is the concatenation of �uv and ρvu,
where ρvu is the path associated with Q(I). Assume I does not fall into the base case
(otherwise the result holds immediately). Since it is the result of applying the dynamic
programming algorithm, there must be a vertex w such that ρvu is the concatenation
of ρvw and ρwu, where ρvw and ρwu are the paths which resulted from evaluating
Q(v,w, �ev,out, �ew,in, σ

′, τ ) and Q(w,u, �ew,out, �eu,in, σ, τ ′), for some combination of
�ew,in, �ew,out, σ ′ and τ ′.

Let �ek, �el be a pair of edges with the maximum backturn in R. We will show that
α(�ek, �el) ≥ −γ . We distinguish between several cases depending on where �ek and �el

lie:

• Both �ek and �el lie in ρvw or both lie in ρwu. Then both edges appear in the same
subproblem, and it follows by induction that α(�ek, �el) ≥ −γ .

• �ek ∈ ρvw and �el ∈ ρwu. Then w lies between �ek and �el (see Fig. 10(a)). This im-
plies that �svw = �ek and �twu = �el . To see why, assume that �twu �= �el . By definition

Fig. 10 Illustrations for proof of Lemma 1. The path associated with α(�ek, �el) is highlighted. (a) Case
�ek ∈ ρvw and �el ∈ ρwu. (b) Case �ek ∈ ρwu and �el ∈ ρuw
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of �twu, �twu achieves the minimum turning angle between �ew,out and any edge in
ρwu. Therefore el �= �twu immediately implies α(�ek, �twu) < α(�ek, �el), leading to a
contradiction. A similar argument shows that �svw = �ek .

The turning angle α(�ek, �el) can be decomposed into α(�ek, �el) = α(�svw, �twu) =
α(�svw, �ew,in) + �(�ew,in, �ew,out) + α(�ew,out, �twu). From the definition of the angle
bounds σ ′ and τ ′ we have α(�svw, �ew,in) ≥ −σ ′ and α(�ew,out, �twu) ≥ −τ ′. In com-
bination with condition (2) they yield α(�svw, �twu) ≥ −γ .

• �ek ∈ ρwu and �el ∈ ρvw . Similar to the previous case, it is easy to verify that swu = �ek

and tvw = �el (see Fig. 10(b)). The path from �svw to �tvw , with total angular change
α(�ek, �el), can be split into three parts: �swu to �eu,in, �eu,in to �ev,out, and �ev,out to �tvw .

From the definition of the angle bounds σ and τ we have that α(�swu, �eu,in) ≥
−σ and α(�ev,out, �tvw) ≥ −τ . Combining these with the lemma hypothesis σ + τ −
α(�eu,in, �ev,out) ≤ γ , we get α(�swu, �tvw) = α(�ek, �el) ≥ −γ .

• �ek = �uv and �el ∈ ρvu (or vice versa). The lemma hypothesis σ + τ −
α(�eu,in, �ev,out) ≤ γ ensures that angles between �uv and �el that respect σ and τ

will result in a total angular change ≥ −γ , therefore α(�ek, �el) ≥ −γ follows.

Therefore in all cases α(�ek, �el) = �R ≥ −γ , and the result follows. �

The previous result implies that the polygon induced by the solution of a subprob-
lem must be simple (that is, without self-intersections).

Corollary 1 The polygon R, as defined in Lemma 1, is simple.

Proof Suppose that the solution to I uses vertex w and the solutions to both subprob-
lems of I are simple. Since �ew,in comes before �ew,out, and since the total backturn is
not more than π , the solutions do not intersect except at w, and therefore the solution
to I is also simple. �

We further observe that the definition of the recursive algorithm, together with
conditions (1) to (4), imply that the final solution does not contain any part of the
exterior (that is, it is valid), and that its area is maximum.

It remains to show that the subproblems needed to solve a given instance I of the
recursive algorithm are in some sense smaller than I , and therefore can be assumed
to have been solved in earlier steps. This can be seen in the following way. For any
subproblem I = (v,u, �ev,out, �eu,in, σ, τ ), we can define a feasible region FI that must
contain any possible solution to that subproblem. Consider the oriented Zorro con-
sisting of the halfline to u in the direction of σ , the line segment �uv, and the halfline
from v in the direction of τ (see Fig. 8). The feasible region FI is the region to the
left of this Zorro.

Lemma 2 In the recursive step for subproblem I = (v,u, �ev,out, �eu,in, σ, τ ), the fea-
sible regions of the subproblems are contained in the feasible region of FI . Further-
more, the number of vertices of the triangulated polygon inside the region strictly
decreases.
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Fig. 11 (a) The feasible regions of the two subproblems are both contained in the feasible region of the
original problem. (b–c) The two situations in which the left subproblem has a feasible region that is not
contained in the original problem. Case (b) violates condition (3) (σ ′ is restricted by σ ). Case (c) has a
turning angle between �svw and �ew,out that is smaller than −π

Proof To prove the first part of the lemma, assume for contradiction that there
is a subproblem J whose feasible region FJ is not contained in FI . Further as-
sume without loss of generality that this happens with subproblem J = (v,w, �ev,out,

�ew,in, σ
′, τ ). Clearly, the halflines from v in the Zorros of FI and FJ are the same,

and w must lie inside the feasible region FI so the middle segment of the Zorro of
FJ , �vw, is always inside FI . If FJ is not contained in FI , this means that the halfline
of FJ from w intersects the Zorro of FI .

There are essentially two ways in which FJ can intersect FI , shown in Fig. 11.
Since the direction σ ′ is restricted by σ (by condition (3)), the halfline from w in di-
rection σ ′ cannot intersect the halfline from u in direction σ without also intersecting
the middle segment of the Zorro of FI , �vu. Thus the case shown in Fig. 11(b) cannot
arise.

To see that other possibility, shown in Fig. 11(c), cannot happen as part of a valid
problem, assume that there is an edge on the path from v to w that achieves a di-
rection of σ ′. If that is not the case, then we can discard this particular subproblem,
since there will be another one with the same solution and smaller σ ′ (that is, more
clockwise). Therefore we can assume that σ ′ is attained by some edge, in particular,
by �svw . Then α(�svw, �ew,out) ≤ α(�svw, �wu) < −π , violating the angle constraint of
� ≥ −γ ≥ −π . It follows that such a solution does not fulfill Conditions (1) to (4)
for I , thus it will never be considered by the algorithm.

To prove the second part of the lemma, we note that from the same ar-
guments it follows that v cannot be in the interior of the feasible region of
(w,u, �ew,out, �eu,in, σ, τ ′), and u cannot be in the feasible region of (v,w, �ev,out,

�ew,in, σ
′, τ ). Therefore the number of vertices in the subproblems decreases. �

Because of Lemma 2, the feasible regions define a partial order on the subproblems
in which we can evaluate them with the guarantee that all information to solve the
current subproblem is available. Since the total number of subproblems is finite (we
only need to check finitely many directions for τ and σ since they must be aligned
with the point set), the algorithm terminates.
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Fig. 12 (Color online) Example
showing the decomposition of
the problem into two smaller
subproblems (darker gray)

3.3 Running Time Analysis

In order to analyze the running time of the algorithm, some more detail on the steps
to be performed is needed. Recall that a subproblem is specified by a pair of ver-
tices, a pair of edges that are incident to those vertices, and two angle bounds. Let
(v,u, �ev,out, �eu,in, σ, τ ) denote the current problem.

Since �uv is a diagonal of a triangulation of R∗, there must be a triangle uvw

to the left of �uv. We will try all the possible candidates for w. Each triangle uvw

subdivides the problem into two new subproblems (see Fig. 12).
Any pair of subproblems that needs to be combined must fulfill conditions (1)

to (4). This can be easily checked in constant time for the first three conditions. In
order to perform the check for the fourth condition in constant time, we need to do
some preprocessing first. We can trivially check and store this for any triple of vertices
in O(n4) time and O(n3) space. If one of the conditions does not hold, we assign the
value −∞ to this instance.

When maximizing over the values of σ ′ and τ ′, we only need to take the com-
binations into account where σ ′ + τ ′ − �(�ew,in, �ew,out) is the largest possible value
that is still smaller or equal to γ . As observed earlier, σ ′ and τ ′ can take on a linear
number of values. So, for each value of σ ′ there is only one value of τ ′ to consider,
so there are only a linear number of combinations possible for choosing σ ′ and τ ′ to-
gether. Note that the two subproblems are independent as long as γ ≤ π . So, together
with the choice of w, each instance is solved by taking the maximum over O(n2)

combinations of smaller instances.
As for the overall running time of the recursive algorithm, the base case can be

resolved in constant time. For the general case we have a table with O(n4) entries:
there are a linear number of possibilities for the pair (v, �ev,out), a linear number for
the pair (u, �eu,in), a linear number for σ , and a linear number for τ . We can fill in an
entry in quadratic time, so we need O(n6) time in total.

Theorem 3 Given a constant 0 ≤ γ ≤ π , a polygon with holes P , and a triangular
mesh M with n vertices that covers the interior of P , a maximum-area polygon that
is the union of triangles of M such that the maximum negative turning angle (or
backturn) � is � ≥ −γ can be computed in O(n6) time.
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4 The Largest-Area Polygon with Bounded Turning Angle

We now consider the problem of finding the largest-area simple polygon formed as a
union of triangles of M, so that the total angular change of the perimeter is at most
some constant β . We show that this problem is NP-hard for a total angular change of,
say, 3π . The reduction is from the NP-hard problem KNAPSACK [13]: Given a set of
n integer pairs (c1,p1), . . . , (cn,pn), where ci is the size of the i th item and pi is its
profit, and a maximum capacity C, select the subset of maximum total profit of which
the total size is at most C. Our reduction is similar to the one used in [3]. Without
loss of generality, we scale the sizes c1, . . . , cn and C so that C = π .

We construct a triangulated polygon as follows, see Fig. 13. Take a pair (ci,pi).
If ci > C = π then we discard it. Otherwise we construct an isosceles triangle Ti

with a horizontal base of width 2/ tan(ci/4), and its top vertex mi at height 1 above
the middle of the base. Scale Ti so that its area is 2pi . The total angular change
of a path that arrives horizontally from the left at the lower left corner of Ti , goes
diagonally up to mi , and then diagonally down to the lower right corner of Ti , and
then continues horizontally to the right, is ci , and the area in Ti and below the path is
pi . This corresponds to choosing the ith item in the knapsack: the profit (area) is pi

and the cost (extra angular change) is ci . Now we combine all these triangles so that
all lower sides lie on a horizontal line �, spaced sufficiently far apart; their order is
irrelevant. Below the line � we make large triangles whose union is a large rectangle
R with the following properties:

• The top side of R is on �.
• The upper left corner of R is strictly to the left of all the triangles Ti .
• The upper right corner of R is strictly to the right of all the triangles Ti .
• Every triangle in the polygon triangulation of R has area greater than

∑n
i=1 pi

(note that R has two vertices of every triangle Ti on its top side).

The first three conditions can be trivially satisfied, whereas the last one can be eas-
ily fulfilled by making R very tall. By construction, a maximum area solution will
contain at least all triangles inside R, because leaving one out cannot be compen-
sated even by using all the Ti ’s. The total angular change of R is exactly 2π , and we
can choose any remaining triangle Ti , at the cost of ci , which gives an extra area pi .
Hence, the subset of items with maximum profit in the knapsack with total size at
most π corresponds precisely to the subset of extra triangles.

Fig. 13 Reduction of knapsack to maximum area subtriangulation with bounded total angular change
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Although we assumed that the weights of the knapsack items can be scaled to
add up to π and we compute coordinates of the form 2/ tan(ci/4), it is not essential
that these are computed exactly. Knapsack is already NP-hard for items with integer
values, so if we use these we can afford to make small errors in the placements of the
points, as long as they do not add up to something more than 1. Instead of scaling the
weights to add up to π , we make them add up to a rational number slightly smaller
than π . Still we cannot place the points exactly, but if we make sure the errors are not
more than O(1/n) we will not influence the solutions of the knapsack problem. This
can increase the description complexity of the points by at most a factor of O(n).

Theorem 4 Given a polygon with holes P , and a triangular mesh M that covers the
interior of P , computing a maximum area subpolygon, comprised of triangles of M,
with total angular change at most 3π is NP-hard.

5 Conclusions

We studied various area optimization problems on triangulated polygons with holes,
where the boundary of the optimal simple polygon is restricted to the triangle bound-
aries. We focused on convexity as a way to form well-shaped areas, and given that
convexity is a strong restriction in combination with forcing the polygon to be com-
posed only of whole triangles, we also studied three different relaxations of convex-
ity. For three versions we gave polynomial algorithms and for one, an NP-hardness
proof. It is worth to note that our meshed version of the potato peeling problem, by
restricting the convex subpolygon to be composed of whole triangles, allows for a
much faster algorithm than the unrestricted version: O(n2) time against the O(n8)

time needed for the original potato peeling problem.
This paper opens up several directions for further research. Regarding the

quadratic-time algorithm of Sect. 2, a natural question is whether a faster algorithm
exists or a lower bound can be proved. Improvements should be possible for the al-
gorithm of Sect. 3. The current algorithm is rather involved and has a high running
time. It would be interesting to know if there is a different way to approach it that
results in a simpler or faster algorithm. The NP-hardness proof of Sect. 4 leads to the
question of approximation algorithms, a topic also worth studying.

Studying other relaxations of convexity or different properties that result in well-
shaped subregions is also a promising direction of further research. Moreover, several
other extensions are possible, such as studying the problem in three dimensions. That
is, given a tetrahedralization of a solid, possibly with holes, find a subset of the tetra-
hedra that forms a convex (or nearly convex) solid. This would have applications,
for example, in finding large occluders for hidden surface removal algorithms [9].
The algorithms presented here clearly serve as building blocks for the 3D version,
although a deeper study of the problem is needed.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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