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Abstract Refereed conferences require every submission to be reviewed by mem-
bers of a program committee (PC) in charge of selecting the conference program.
There are many software packages available to manage the review process. Typi-
cally, in a bidding phase PC members express their personal preferences by ranking
the submissions. This information is used by the system to compute an assignment of
the papers to referees (PC members).

We study the problem of assigning papers to referees. We propose to optimize
a number of criteria that aim at achieving fairness among referees/papers. Some of
these variants can be solved optimally in polynomial time, while others are NP-hard,
in which case we design approximation algorithms. Experimental results strongly
suggest that the assignments computed by our algorithms are considerably better than
those computed by popular conference management software.

Keywords Fair assignment · Rank-maximal matchings · Leximin principle

1 Introduction

In Computer Science, the preferred way of disseminating scientific articles is through
refereed conferences. A program committee (PC) selects the papers to be presented
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at the conference and published in the conference proceedings from among the sub-
missions to the conference. The most prestigious conferences have acceptance rates
as low as 20% [4].

The main responsibility of the PC chair is to organize the review process, in partic-
ular, to decide which papers are assigned to which member of the PC. The PC chair
typically bases her decision on input from the PC, her knowledge of submissions and
PC members, or scores that are computed automatically from keywords provided by
authors and PC members. From now on, we call PC members referees.

There are many software systems available that support the PC chair in her task;
for example, Easychair [29], HotCRP [18], Softconf [2], Linklings [1], CMT [8], and
Websubrev [12]. Used in more than 1300 conferences in 2008 alone [30], EasyChair
is currently the most popular conference management software. The system asks the
referees to declare conflicts of interests and to rank the papers (for which the referee
has no conflict of interest) into three classes: high interest, medium interest, and low
interest. This process is called bidding. Based on this information, the system au-
tomatically computes an assignment that the PC chair can later review and modify
accordingly. Creating an assignment from scratch by hand is normally not feasible
since many conferences get in excess of 500 submissions [4].

We abstract from the scenario described above and assume that the input for the
paper assignment problem is an edge-labeled bipartite graph G = (V ,E,v) where
V = R ∪ P , R is the set of referees and P is the set of papers, and (r,p) ∈ E if r

has no conflict of interest w.r.t. paper p, and v : E �→ {1, . . . ,�}. We call v(r,p) the
value or rank of paper p to referee r (or the value of referee r to paper p) or the
valuation of p by referee r . We use the convention that rank � is the most preferred
option.

Let M ⊆ E be an assignment of papers to referees. We use δ(x) to denote the
edges incident on a node x of G, and δM(x) to denote the edges in M incident on x.

What are the desired properties for a good assignment?

Coverage Every paper should be reviewed a sufficient number of times. We require
that each paper is assigned to k referees, where k is a number defined by the PC chair.
We note, however, that our algorithms can be adapted to the setting where each paper
p has a range and the number of reviews for p must fall within this range.

Load Balance No referee should be overburdened with papers. We assume that the
load is equally shared among the referees, i.e., no referee has to review more than
h := �k |P |/ |R|� papers and no less than h − 1. (Again, we note that this could be
changed to any arbitrary range.) In order to ease the discussion, we add a fictitious
paper d that requires |R|h − |P | k reviews and is connected to all referees with an
edge of rank �1. Thus, in the modified instance every referee is assigned exactly h

papers.

1This choice will be justified later in Sect. 5. We note here, though, that this rank can be set to any other
value in {1, . . . ,�} without invalidating any of our results.
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Quality How does a referee choose between two assignments? For any referee r

an assignment M gives rise to a signature vector σr(M) = (σr,�(M), . . . , σr,1(M)),
where σr,i(M) = |{e ∈ δM(r) | v(e) = i}| is the number of rank i edges incident to r

in M . We call σr(M) the signature of M w.r.t. r or r’s signature under M . Referees
will prefer certain assignments over others based on their signatures. Only one gen-
eral principle can be stated concerning this preference relation: if two assignments
M and T are such that σr(M) 	= σr(T ) and

∑�
j=i σr,j (M) ≥ ∑�

j=i σr,j (T ) for all
� ≥ i ≥ 1 then r will clearly prefer M over T . Unfortunately, this is only a partial
order over signatures. We will restrict ourselves to two kinds of preference relations:

Lexicographic: A referee r prefers M over T if σr(M) follows σr(T ) in lexico-
graphic order, i.e., there is an i such that σr,j (M) = σr,j (T ) for j > i and
σr,i(M) > σr,i(T ).

Weighted: There is an increasing weight function w that maps ranks to reals. The
weight of the signature of referee r is then w(σr(M)) = ∑

1≤i≤� w(i)σr,i(M).
Hence, referee r prefers M over T if w(σr(M)) > w(σr(T )).

The weighted preference relation turns the signature vector into a single number by
assigning a weight to each rank. The lexicographic preference relation is the limit
case of the weighted relation for w(i + 1) � w(i) for all i. Both relations define
strict weak orders on signatures.

Fairness No referee should benefit at the expense of others. The preference relations
over signatures capture the quality of an assignment for a single referee. What is the
overall quality of an assignment? An assignment should be fair, i.e., treat the different
referees (papers) in a fair manner. In order to understand fairness better, let us see an
assignment that is unfair.

Define the weight of an assignment M as

w(M) =
∑

r

w(σr(M)) =
∑

(r,p)∈M

w(v(r,p)).

An optimum assignment would then be an assignment of maximum weight. In fact,
Easychair’s automatic assignment feature computes a maximum weight assignment
w.r.t. the weight function w(i) = i [28]. A simple example shows that this need not
be fair.

We have four papers and two referees and each paper is to be reviewed once. The
valuations of the referees are identical; both referees prefer papers 1 and 2 over papers
3 and 4. More precisely, papers 1 and 2 are ranked 2 and papers 3 and 4 are ranked 1.

p1 p2 p3 p4

r1 2 2 1 1
r2 2 2 1 1

Consider the following two assignments. Under the first assignment the first referee
reviews papers 1 and 2, and the second referee reviews papers 3 and 4; under the
second assignment the first referee reviews papers 1 and 3, and the second referee
reviews papers 2 and 4. Under the maximum weight objective, the assignments are
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the same. However, the second assignment is clearly fairer than the first. Under the
second assignment, both referees review one paper for which they expressed high
interest and one paper for which they expressed low interest. Under the first assign-
ment, the first referee reviews two papers for which he expressed high interest and the
second referee has to review two papers for which he expressed low interest. The sec-
ond assignment treats the referees evenly, the first assignment treats them unevenly
and, as the second assignment shows, does so without need.

Our toy example is relevant for practical assignment problems. We should expect a
certain correlation between the valuations of different referees. If referees completely
agree in their valuations, all assignments have the same weight.

How can we model fairness? A PC is a group effort. Fairness means that none of
the members profits at the expense of other members. Thus, particular attention must
be paid to the referee that has the worst signature. A fair assignment should maximize
the worst signature of any referee:

max
M

min
r

σr(M).

Here the maximization is over all assignments that guarantee coverage and load bal-
ance and for each fixed assignment M , minimization is over the referees. Signatures
are compared using either the lexicographic or weighted preference order.

Let us now restrict attention to assignments that maximize the minimum signature
of any referee. The referees that cannot be treated any better should be satisfied by any
assignment in this set, because there is no way to treat them better. The other referees
should be satisfied by restricting attention to this subset of assignments, because they
maximize the fate of their worst-off colleague. Which assignment should we choose
among this restricted set of assignments? We should try to maximize the minimum
fate of those referees that are not bound to the minimum. Continuing in this way, we
arrive at the leximin objective from Social Choice Theory [22, 27]. More precisely, for
any assignment M , consider the sorted vector sort(σr1(M), . . . , σr|R|(M)) of referee
signatures; sort(·) re-arranges the entries of the argument vector into non-decreasing
order. A leximin optimal assignment maximizes the sorted vector of signatures, i.e.,
it achieves

max
M

sort(σr1(M), . . . , σr|R|(M)),

where the maximum compares vectors using the usual lexicographic order perform-
ing left-to-right pointwise comparisons using lexicographic or weighted preference
order for individual signatures, and M ranges over the set of all valid assignments.

We study the problem of maximizing the leximin objective under lexicographic
and weighted preferences. We show that both problems are NP-hard even when
� = 3. On the positive side, for � = 2 we show that both problems can be solved
in polynomial time by establishing a connection to a variant of rank-maximal match-
ings [14, 20]. For larger values of � in the case of the weighted preference order we
give approximation algorithms building upon ideas of Bezáková and Dani [5], and
Shmoys and Tardos [25].

The rest of the paper is organized as follows. In Sect. 2, we deal with the case
where � = 2. In Sect. 3 we show NP-hardness for both variants when � ≥ 3. In
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Sect. 4 we design approximation algorithms for the weighted preference order and
� ≥ 3. Finally, in Sect. 5 we report preliminary computational experiments. We ran
our algorithms on a real-life instance from the 16th European Symposium on Algo-
rithms (ESA) 2008. The experiments suggest that the assignments computed by our
algorithms are considerably better than the maximum weight assignment currently
used by the EasyChair system.

1.1 Related Work

Different aspects of the paper assignment problem have been studied by researchers
in different fields. In Artificial Intelligence, data mining techniques have been applied
to the task of inferring goodness of match between a referee and a paper based on
keyword analysis. In Theoretical Computer Science and Operations Research, com-
binatorial optimization tools have been used to produce “good” assignments. (See
the survey of Wang et al. [31] for references on these two aspects.) In Economics, the
topic of incentive-compatible mechanisms for allocating indivisible goods to a set of
agents with ranked preferences has been studied extensively [3, 6, 7, 17, 26, 32].

These three aspects are largely orthogonal to each other. Clearly, the data mining
aspect is unrelated to incentives and optimization issues; indeed, its output can be
used as input for the optimization problem. Also the incentive-compatible aspect is
largely independent from optimization considerations: The only mechanisms that are
strategy-proof (referees cannot benefit from falsifying their preferences) and satisfy
other reasonable assumptions are the so-called serial dictatorships [26] where agents
choose objects on a first-come first-served basis.

This paper deals with the optimization aspect of the paper assignment problem.
Previous work considered mostly optimizing global properties of the assignment,
and the proposed algorithms are based on min-cost matching/flow [11, 13, 23], inte-
ger programming [15], or heuristics without provable guarantees [9, 21]. Fairness of
the assignment was not considered as an objective. We take a different approach by
arguing that fairness is captured by the leximin criterion. For the variants of the prob-
lem that are NP-hard, instead of heuristics, we resort to approximation algorithms
with worst-case guarantees.

Throughout the paper we focus mainly on one side of the assignment, the referees.
We note, however, that we could also look at the assignment from the point of view
of the papers. Presumably, referees that value a certain paper highly will do a better
job reviewing the paper. Under this assumption, it could make sense to optimize the
assignment from the point of view of the papers. Our algorithms can be made to work
in this setting simply by interchanging the roles of referees and papers. Finally, we
note that one could also try to optimize the assignment simultaneously from both
sides. In Sect. 4.2, we explore this option for weighted preferences and the max-min
objective.

2 An Exact Algorithm for � = 2

In this section we deal with the problem of finding a leximin optimal assignment un-
der lexicographic preferences for the interesting case of � = 2. We note that this also
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Fig. 1 Visualizing an
assignment when � = 2.
A staircase pattern divides the
dark and light areas
corresponding to papers with
rank 2 and 1 respectively

constitutes an optimal algorithm for the weighted preferences: Since w is increasing,
the signature order is the same for both types of preferences when � = 2.

Let Q̂ be the set of assignments that obey coverage and load balance requirements;
that is, every paper (except the dummy) is assigned to k referees and every referee is
assigned h papers. Given an assignment S ∈ Q̂, we define its round decomposition
A1, . . . ,Ah as follows. Each referee r ∈ R sorts the edges in δS(r) in non-decreasing
value. Then Ai is constructed by taking the ith edge, in sorted order, from each ref-
eree.

A rank-maximal assignment is one that maximizes σ(A1) and subject to this, max-
imizes σ(A2), and so on. Here σ(X) is the signature of the set X ⊆ E. Equivalently,
we can ask that the concatenation of the signatures σ(A1), σ(A2), . . . , σ(Ah) is lex-
icographically maximum. This objective is closely related the rank-maximal match-
ings of Irving et al. [14] and Mehlhorn and Michail [20], thus its name.

First we establish a connection between leximin optimal and rank-maximal as-
signments, and then we show how to compute the latter.

Lemma 1 Let S ∈ Q̂ be a rank-maximal assignment. If � = 2 then S is leximin
optimal under lexicographic preferences.

Proof Visualize S as a {1,2}|R|×h matrix. Each row corresponds to a referee and each
column corresponds to a round Ai in the round decomposition of S; rows are sorted
in lexicographic order of their signature. The result is a staircase pattern with rank 2
entries on top of rank 1 entries as shown in Fig. 1. This pattern is the same for all
rank-maximal assignments.

Let S′ ∈ Q̂ a leximin optimal assignment and consider a similar matrix visualiza-
tion for S′. If the staircase patterns of S and S′ are the same then both assignments
are rank-maximal and leximin optimal. Assume, for the sake of contradiction, that
they are different. Let i be the first round in which they differ. If S has more 2’s than
S′ in the ith round then S′ is not leximin optimal. Likewise, if S′ has more 2’s than
S in the ith round then S is not rank-maximal. A contradiction, thus the patterns are
the same and the lemma follows. �

A rank-maximal assignment can be found using an appropriate objective function
over the round decomposition A1, . . . ,Ah. This is done by first translating ranks into
costs: Rank j ∈ {1, . . . ,�} translates into cost Nj , where N = |R| + 1. This choice
guarantees that the gain of improving one edge, say from rank j to rank j + 1 offsets
the loss of all other edges of rank j or less: The gain is Nj+1 − Nj = |R|Nj and
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the loss is at most (|R| − 1)Nj , so the gain exceeds the loss and the choice of costs
guarantees rank-maximality of a single round. With this cost function, the maximum
cost of a single round is less than C = N�+1.

Let A1,A2, . . . ,Ah be a sequence of assignments. We assign cost

∑

1≤i≤h

c(Ai)C
h−i

to it, where c(Ai) = ∑
(r,p)∈Ai

Nv(r,p). In other words, assigning a paper of rank j

in round i contributes NjCh−i to the objective value. This choice of costs guaran-
tees that an increase in c(Ai) offsets any decrease in subsequent assignments. Thus
maximizing the cost of the round decomposition of some assignment S ∈ Q̂ guaran-
tees that S is rank-maximal. The next theorem translates this insight into an actual
algorithm.

Theorem 1 A rank-maximal assignment can be computed in O(�h
√

n′m′ logn′)
time2, where n′ = O(|E|) and m′ = O(|E|(k + h)).

Proof We now show how to reduce this problem to finding a maximum cost per-
fect matching in a bipartite graph H . For every paper p ∈ P − d we create k nodes
p1, . . . , pk in H and as many copies as necessary for the dummy paper d ; for every
referee r ∈ R we create h nodes r1, . . . , rh in H ; finally, for every edge e ∈ E we cre-
ate two nodes ep and er . This completes the vertex set of H . For every e = (p, r) ∈ E,
we include edges in H connecting every pi to ep for all i ∈ {1, . . . , k}, every rj to er

for all j ∈ {1, . . . , h}, and ep with er . The cost of the edge (rj , er ) is Nv(r,p)Ch−j and
all other costs are zero. Figure 2 depicts the edge gadget just described. We note that
this construction is very similar to the standard gadget [24] used to reduce subgraph
degree constrained problems to regular matching.

There is a clear correspondence between perfect matchings of H and round de-
compositions A1, . . . ,Ah of an assignment in Q̂: If (pi, ep) and (rj , er ) belong to
the matching then e belongs to Aj . Furthermore, the cost of M equals the cost of

Fig. 2 Edge construction for
e = (p, r) used in the reduction
from rank-maximal assignment
to maximum cost matching. In
this case k = 3 and h = 4

2In practice, G is almost complete and h > k, so the running time simplifies to O(�h2|E|1.5 log |E|).
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A1, . . . ,Ah discussed above. Thus, finding a rank-maximal assignment reduces to
finding a maximum cost perfect matching in H .

Let us conclude by discussing the implementation of the algorithm. To deal with
the large costs used in H we use the scaling algorithm of Mehlhorn and Michail
[20] for maximum cost bipartite matching with huge costs. The algorithm runs in
O(

√
n′m′ log(n′Ch+1)) time, where n′ = |V [H ]| and m′ = |E[H ]|. Recall that C ≤

n′�+1, n′ = O(|E[G]|), and m′ = O(|E[G]| (h + k)), which yields the desired time
bound. �

Putting Lemma 1 and Theorem 1 together we get an algorithm for finding an
optimal leximin assignment under either preference order.

Corollary 1 If � = 2 then an optimal leximin assignment under each of the weighted
and lexicographic preference orders can be found in polynomial time.

We finish this section noting that similar techniques to those used in Theorem 1
can be used to obtain an assignment where the reverse signature for each round is
minimized. Namely, we can compute an assignment minimizing the number of rank
1 edges in A1, and subject to this, minimize the number of rank 2 edges in A1, until
reaching rank �; subject to this, we minimize the number of rank 1 edges in A2, and
so on. Notice that even though the assignment under this objective is rank-maximal
for � = 2, this is not the case for larger values of �.

3 Hardness

In this section we show that maximizing the signature of the worst-off referee is NP-
hard for � ≥ 3 under both lexicographic and weighted preferences. Our proof uses a
reduction from 3-dimensional matching (3DM) very similar to that used by Lenstra
et al. [19] to show NP-hardness of scheduling jobs on unrelated machines.

An instance of 3DM is defined by three disjoint sets A, B , and C of n elements
each and a set of triplets T ⊆ A × B × C. The problem is to decide whether there is
a subset M of T with cardinality n such that ∪(a,b,c)∈M {a, b, c} = A ∪ B ∪ C. 3DM
is one of Karp’s famous 21 NP-complete problems [16].

Given an instance (A,B,C,T ) of 3DM, we construct an instance (G,v) of the
paper assignment problem where each paper must be assigned once (k = 1) and each
referee is assigned two papers (h = 2). For each triplet t ∈ T we create a referee rt .
For each a ∈ A, let �a be the number of triplets in T containing a, i.e., the degree
of a in T . For each a ∈ A we create papers l1

a, . . . , l
�a−1
a with rank 3, and papers

s1
a , . . . , s

�a−1
a with rank 1. For each b ∈ B and c ∈ C we create papers mb and mc

with rank 2. For each triplet t = (a, b, c) ∈ T we have edges (lia, rt ) and (si
a, rt ) for

each i ∈ {1, . . . , �a − 1}, and edges (mb, rt ) and (mc, rt ). Note that 2 |R| = |P |, so it
is not necessary to introduce a dummy paper to achieve load balance.

Lemma 2 Let (A,B,C,T ) be an instance of 3DM and (G,v) be the instance
of the paper assignment problem induced by the reduction described above. Then
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(A,B,C,T ) has a perfect matching if and only (G,v) admits an assignment where
every referee gets either one rank 3 and one rank 1 paper, or two rank 2 papers.

Proof ([19]) Suppose that the 3DM instance has a perfect matching N ⊆ T . We
show how to construct an assignment as described in the lemma statement. For each
t = (a, b, c) ∈ N , we assign mb and mc to rt so that the referee gets two rank 2 papers.
For a ∈ A there are �a −1 triplets t ∈ T \N containing a; each of their corresponding
referees can be assigned one of the �a − 1 rank 3 papers and one of the �a − 1 rank 1
papers.

Conversely, suppose that there is an assignment as described in the lemma state-
ment. Let N be the set of triplets t such that rt is not assigned a paper lia . Note that for
each a ∈ A there is at least one such triplet. For each t ∈ N the referee rt is assigned
papers mb and mc . This can only happen if N is a perfect matching. �

This reduction can be used to prove hardness for both types of preferences.

Theorem 2 Maximizing the signature of the worst-off referee is NP-hard for both
lexicographic and weighted preferences for � ≥ 3.

Proof By Lemma 2 the instance of 3DM has a matching if and only if signature of
the worst-off referee is at least (0,2,0) under lexicographic preferences and at least
4 under weighted preferences when using w(i) = i. �

4 An Approximation Algorithm for Weighted Preferences

In this section we shift our attention to weighted preferences. Recall that we are given
a weight function w : {1, . . . ,�} → R+ to map ranks to real numbers. For any edge
e in the instance, we use the shorthand notation w(e) to denote w(v(e)).

We will make frequent use of the polytope defined by the set of fractional assign-
ments that obey coverage and load balance requirements:

Q =
{

x ∈ [0,1]|E|
∣
∣
∣
∣

x(δ(p)) = k ∀p ∈ P − d

x(δ(r)) = h ∀r ∈ R

}

Here δ(u) denotes the set of edges incident on vertex u, and x(S) is a short hand
for

∑
e∈S x(e). The variable x(e) indicates whether e is chosen in the assignment:

x(e) = 1 if e is chosen, and x(e) = 0 otherwise. The constraints enforce that every
real paper is reviewed k times and that each referee is assigned h papers.

The constraint matrix defining Q is totally unimodular. Therefore, the polytope
is integral. We denote with Q̂ the set of extreme points of Q. Sometimes we abuse
notation slightly and write S ∈ Q̂ for S ⊆ E meaning that the characteristic vector
xS ∈ {0,1}|E| associated with S belongs to Q̂.

Suppose we are given values Ir for each referee r ∈ R and Ip for each paper
p ∈ P . Our goal is to find an assignment where the total weight of papers assigned
to each referee r is at least Ir and the weight of referees assigned to a paper p is
at least Ip . The first objective aims at making the referees happy, while the second
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aims at improving the review process since, presumably, a referee that values a paper
highly will do a better job than one who is not interested in the paper. The linear
program for Q can be extended imposing additional constraints on the total weight
each referee and paper sees:

T =
{

x ∈ Q
∣
∣
∣
∣

∑
e∈δ(p) w(e) x(e)≥ Ip ∀p ∈ P − d

∑
e∈δ(r) w(e) x(e)≥ Ir ∀r ∈ R

}

We now present an algorithm that, given a fractional solution x ∈ T , produces an
integral assignment in Q̂ with a small additive loss in the weights seen by each referee
and each paper. Later we use this rounding procedure to approximate two different
objectives.

4.1 Rounding a Fractional Assignment

Consider a particular referee r and let er
1, e

r
2, . . . be the edges incident on r sorted

by decreasing weight. We break these edges into groups according to their fractional
value in x. Some edges belong to two groups. An edge er

j belongs to the ith group of
r if x({er

1, . . . , e
r
j−1}) < i and i − 1 ≤ x({er

1, . . . , e
r
j−1}). We use A(r, i) to denote the

edges in groups 1 through i of r . A grouping with respect to each paper is defined
analogously. Based on these sets, we create a new assignment problem

U =
{

y ∈ Q
∣
∣
∣
∣
∣

y(A(p, i))≥ i ∀1 ≤ i ≤ k and p ∈ P − d

y(A(r, i))≥ i ∀1 ≤ i ≤ h and r ∈ R

}

The constraints associated with the referees in U and Q form a laminar family: If
we consider any two of these constraints and compare the set of variables they use,
these sets are either disjoint or one is a subset of the other. Similarly, the constraints
associated with the papers also form a laminar family. It is well known that a 0-1 ma-
trix whose rows can be decomposed into two laminar families is totally unimodular.
(For completeness we include a proof of this fact in Appendix A.) It follows that U
is integral.

By definition, we have that x ∈ U . Hence, U is not empty and, because it is integral,
there must exist ŷ ∈ U ∩ {0,1}|E|. In fact, we can show that the problem of finding
such a solution reduces to computing a max flow in a suitable graph.

Lemma 3 An integral solution of U can be computed using one max-flow computa-
tion.

Proof The edge gadget shown in Fig. 3 is the basis of our max flow network. For each
reviewer r we have nodes r1, r2, . . . , rh and for each real paper p, we have nodes
p1,p2, . . . , pk (similarly, the dummy paper induces as many copies as necessary.)
Each ri has a supply of one unit of flow and each pj has a demand of one unit of
flow. Also we have edges of unbounded capacity from ri to ri−1 for all i and from pj

to pj+1 for each j .
For each edge (r,p), we have two auxiliary nodes arp and brp . There is an edge

of capacity 1 from arp to brp . If (r,p) belongs to the ith group of r , we have an edge
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Fig. 3 Edge (r,p) belongs to
the second and third group with
respect to r and the first and the
second group with respect to p.
The edge (arp, brp) has
capacity one. All other edges
have unbounded capacity

from ri to arp . If (r,p) belongs to the j th group of p, we have an edge from brp

to pj . So arp has indegree one or two and brp has outdegree one or two. Figure 3
illustrates the construction.

For this network we construct a fractional feasible flow as follows: If (r,p) = er
j

and (r,p) belongs to the ith group of r , we send
∣
∣
∣
∣
∣
∣
[i − 1, i] ∩

⎡

⎣
∑

�<j

x(er
�),

∑

�≤j

x(er
�)

⎤

⎦

∣
∣
∣
∣
∣
∣

units of flow from ri to arp . Similarly, if (r,p) = er
j ′ and (r,p) belongs to the i′th

group of p, we send
∣
∣
∣
∣
∣
∣
[i′ − 1, i′] ∩

⎡

⎣
∑

�<j ′
x(er

�),
∑

�≤j ′
x(er

�)

⎤

⎦

∣
∣
∣
∣
∣
∣

units of flow from brp to p′
j . The flow from arp to brp thus equals xrp .

Since the network is feasible, the Ford Fulkerson algorithm finds an integral flow.
Note that an integral flow readily induces an integral assignment. Observe that in this
integral flow, for all i, the flow out of {r1, . . . , ri} is at least i, which means that the
integral assignment selects at least i edges from A(r, i); similarly, for all i, the flow
into

{
p1, . . . , pj

}
is at least j , which means the integral assignment selects at least

j edges from A(p, j). In other words, the integral assignment is a feasible solution
of U . �

Now that we have established how to find an integral solution of U , we shall prove
that this is in fact a good approximation of x.

Lemma 4 Let x be a fractional assignment in T and ŷ be an integral assignment
in U , the polytope induced by x as defined above. Then for any node u ∈ R ∪ P − d

we have

(i)
∑

e∈δ(u) w(e) ŷ(e) ≥ Iu if w(eu
1) = w(eu

su
), and

(ii)
∑

e∈δ(u) w(e) ŷ(e) > Iu − (w(eu
1) − w(eu

su
)) otherwise.
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Proof For the sake of simplicity, we prove the lemma for some referee r , but the same
argument works for papers. Referee r is assigned h edges under ŷ. Let f1, . . . , fh be
these edges, sorted in non-increasing order of weight. Let B(r, i) be the set of edges in
the ith group of r . Notice that v(fi) ≥ mine∈A(r,i) v(e) = mine∈B(r,i) v(e). It follows
that

∑

e∈δ(r)

w(e)ŷ(e) =
h∑

i=1

w(fi)

≥
h∑

i=1

min
e∈B(r,i)

w(e)

≥
h∑

i=1

⎡

⎣
∑

e∈B(r,i)

w(e)x(e) − (1 − ε)

(

max
e∈B(r,i)

w(e) − min
e∈B(r,i)

w(e)

)
⎤

⎦ ,

for some ε > 0, and therefore

∑

e∈δ(r)

w(e) ŷ(e) ≥ Ir − (1 − ε)

h∑

i=1

(

max
e∈B(r,i)

w(e) − min
e∈B(r,i)

w(e)

)

≥ Ir − (1 − ε)
(
w(er

1) − w(er
sr

)
)
. �

With Lemma 4 in hand, we show how to approximate two different objectives:
Maximizing the minimum weight the papers and referees get in an assignment, and
maximizing the leximin objective.

4.2 Max Min Assignments

We say a pair (λP ,λR) ∈ Z+
0 × Z+

0 is feasible if T ∩ {0,1}|E| 	= ∅ when setting
Ip = λP for all p ∈ P and Ir = λR for all r ∈ R; in addition, the pair is said to be
Pareto optimal if it is not dominated by another feasible pair. The Pareto set � of a
given instance is simply the set of all Pareto optimal pairs. Note that maximizing the
minimum weight is equivalent to finding the pair (0, λR) ∈ � maximizing λR . Thus,
by Theorem 2, it is NP-hard to compute �. We show how to approximate the Pareto
set �.

Theorem 3 If k ∈ O(1) and � ∈ O(1), an approximation �̃ of � can be computed
in polynomial time such that for all (λP ,λR) ∈ � there exists (λ′

P ,λ′
R) ∈ �̃ such that

λ′
P > λP − (w(�) − w(1)) and λ′

R > λR − (w(�) − w(1)).

Proof For a fixed value λP , we write an LP based on T so that Ip = λP and Ir = t ;
the objective is to maximize t . Clearly, if there exists (λP ,λR) ∈ � then we are
guaranteed t ≥ λR . We can round a solution from T using Lemma 4, which yields a
solution where each paper gets total weight strictly larger than λP − (w(�) − w(1))

and each referee gets total weight strictly larger than t − (w(�) − w(1)).



Algorithmica (2010) 58: 119–136 131

If k ∈ O(1) and � ∈ O(1), we can try all possible values of λP . Letting �̃ be the
Pareto set of the assignments found in this manner finishes the proof. �

4.3 Leximin Assignments

We consider the problem of finding a leximin optimal assignment under weighted
preferences. Here we are only interested in optimizing the weight of one side of
the assignment; for simplicity we focus on the referees, but the same applies to the
papers. Our main result in this subsection is an algorithm for computing a leximin
optimal fractional assignment.

Let x ∈ Q be a fractional assignment. We define sort(x) to be the value
vector (t1, t2, . . . , t|R|) sorted in non-decreasing order of its value, where tr =∑

e∈δ(r) w(e)x(e) for each r ∈ R. We now show how to find a fractional solution
x∗ ∈ Q maximizing this quantity. This solution can be rounded using Lemma 4. If
the weight vector defined by x∗ is (t∗1 , . . . , t∗|R|) then we get a solution ŷ ∈ Q̂ with
value at least (t∗1 − (w(�) − w(1)), . . . , t∗|R| − (w(�) − w(1))).

The optimal vector x∗ can be computed through a sequence of LP computations.
We maintain a set of floating referees F and call the remaining R \ F grounded
referees. Initially F = R. Each grounded referee r has associated a minimum value
level Ir and we maintain the invariant that Ir = t∗r for all grounded referees. First, we
solve the linear program

maximize q (LP1)

subject to
∑

e∈δ(r)

w(e)x(e) ≥ Ir , ∀r ∈ R \ F,

∑

e∈δ(r)

w(e)x(e) ≥ q, ∀r ∈ F,

x ∈ Q,

t ≥ 0.

Let q∗ be the optimal value. For each floating referee r ′ ∈ F , we solve another
linear program

maximize
∑

e∈δ(r ′)
w(e)x(e) (LP2)

subject to
∑

e∈δ(r)

v(e)w(e) = Ir , ∀r ∈ R \ F,

∑

e∈δ(r)

v(e)w(e) ≥ q∗, ∀r ∈ F − r ′,

x ∈ Q.

If the value of (LP2) is still q∗ then we ground r ′ and set Ir ′ = q∗. Clearly, the new
set of grounded papers maintains the invariant. Also, note at least one paper must be
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grounded on each iteration. Otherwise, taking the average of all the solutions found
for (LP2) gives us a solution for (LP1) whose value is strictly larger than q∗, thus
contradicting the optimality of q∗. Eventually the set of grounded papers equals R

and by the invariant the value vector (I1, . . . , I|R|) is leximin optimal.

Theorem 4 A leximin optimal fractional assignment can be computed in polynomial
time.

Once this fractional solution is computed, it can be rounded using the procedure
from Sect. 4.1 to get an “approximate” leximin assignment.

5 Experimental Evaluation

In this section we investigate the performance of four algorithms: rank-maximal
(Sect. 2), max-min (Sect. 4.2), leximin3 (Sect. 4.3), and max-weight (a maximum
weight assignment obeying coverage and load-balance constraints).

EasyChair was used for the 16th European Symposium on Algorithms 2008. We
ran the four algorithms on this instance and compared them to the maximum weight
assignment currently used by the EasyChair system. For this instance |P | = 202,
|R| = 14, k = 4, h = 58, and � = 3. Therefore, 808 reviews are required, which
means 10 referees will be assigned 58 papers and 4 referees will be assigned 57 pa-
pers. We use the weight function normally used by EasyChair: w(i) = i. Our results
are shown in Figs. 4 and 5. The referees are ordered by the total weight of their bid.

As one would expect, the max-weight assignment is not very fair.4 Referee 14 ex-
pressed high interest for 55 papers, out of which more than 50 are assigned to him.
On the other hand, referee 2 expressed a high interest for 10 papers and a medium
interest for another 7 and has only 8 high interest and 5 medium interest papers as-
signed to him. The max-min assignment has low overall weight. This is because some
referees rank very few papers and create a bottleneck beyond which the LP does not
care to optimize. We do not consider it further.

The leximin assignment and the rank-maximal assignment are both fair and have
good overall weight. This is not surprising for the leximin objective, as it is designed
to guarantee fairness. The rank-maximal assignment guarantees fairness only for � =
2; no guarantee is given for larger �. The instance uses � = 3.

It is interesting to compare the assignments from a referee perspective. The lex-
imin and the rank-maximal assignment completely satisfy the bids of referees 1 and 2.
The bids of referees 3 and 4 are completely satisfied by the leximin assignment and
by none of the other assignments. Referees 5 and 6 are also best treated by the leximin
assignment. Referee 7 is treated best by the rank-maximal assignment with the lex-
imin assignment coming close. Referee 8 would prefer the leximin assignment with

3This is not a leximin optimal assignment, but the output of the rounding algorithm applied to the optimal
leximin fractional assignment. For brevity’s sake though we use the term leximin assignment. The same
holds for the max-min assignment.
4Fair in the sense discussed in the introduction: No referee should benefit at the expense of others.
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Fig. 4 A comparison of four algorithms applied to the ESA 2008 instance (|P | = 202, |R| = 14, k = 4,
h = 58, and � = 3). Each subfigure shows a bar plot of the round decomposition of the assignment and
a table with the signature of each referee under this assignment (and her valuation in parenthesis). Rows
correspond to referees. Each row has one tall horizontal bar encoding the referee’s assignment and one
short (height-wise) bar encoding the referee’s valuation for rank 3 and 2 papers (the remaining papers had
rank 1 and are not shown in the graphs because of their large number.) Colors encode preferences levels:
The darker the color, the higher the rank

the rank-maximal assignment coming close. Referee 9 would either prefer the max-
weight or the rank-maximal assignment, it is not clear which. Referees 10 through 14
would opt for the max-weight assignment. In summary, referees who assigned ranks
2 and 3 to few papers prefer either the leximin or the rank-maximal assignment and
referees who assigned these ranks to many papers prefer the max-weight assignment.

All assignments, except for the max-min assignment, use the same total number
of rank 2 and rank 3 edges. However, ensuring fairness requires the use of fewer rank
3 edges. The leximin assignment uses the weight functions w(i) = i; making the
weight difference more pronounced would shift the emphasis towards rank 3 edges.

The rank-maximal assignment is able to satisfy bids in the first 23 rounds. Starting
in round 24, the coverage and load-balance constraints make it impossible to satisfy
the bids.
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Fig. 5 A comparison of the rank-maximal and the leximin assignments for the ESA 2008 instance
(|P | = 202, |R| = 14, k = 4, h = 58, and � = 3. Each subfigure shows a bar plot of the round decom-
position of the assignment and a table with the signature of each referee under this assignment (and her
valuation in parenthesis). Rows correspond to referees. Each row has one tall horizontal bar encoding the
referee’s assignment and one short (height-wise) bar encoding the referee’s valuation for rank 3 and 2
papers (the remaining papers had rank 1 and are not shown in the graphs because of their large number.)
Colors encode preferences levels: The darker the color, the higher the rank

Finally, we note that in our instance the load is not perfectly balanced: There are
4 referees that get one less paper than the rest. In the leximin assignment these 4
referees are the ones with the worst assignment. In an earlier implementation of our
algorithms we gave the dummy paper a rank of 1, which had the opposite effect: The
leximin assignment gave one less paper to the 4 referees with the best assignment. We
feel that setting the rank of the dummy paper to � results in a more fair assignment.

6 Concluding Remarks

In this paper we have studied the problem of assigning papers to referees. We iden-
tified several desirable objectives for these assignments and designed efficient algo-
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rithms for them. Some variants can be solved optimally in polynomial time. In other
cases, the problem is NP-hard and so we gave approximation algorithms.

Our next goal is to perform a thorough experimental evaluation of our algorithms
and eventually incorporate them into conference management software such as Easy-
Chair.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix A: Proof of the Integrability of U

Let A be the constraint matrix defining U . A classical theorem of Ghouilla-Houri
[10] states that A is totally unimodular if and only if every submatrix A′ of A has an
equitable coloring. An equitable coloring of a 0-1 matrix A′ is a partition of its rows
into red and blue rows such that in every column of A′, the number of blue 1’s and
red 1’s differs by at most one. Recall that A′ can be written as a block matrix

A′ =
[
B

C

]

,

where the rows of B and C form two laminar families; that is, the set of 1’s in any two
rows is either disjoint or one is included in the other. The Hasse diagram of the “is
included in” relation for the rows of B is a forest of rooted trees. We color the rows
of B by alternating colors between adjacent levels of these trees starting with red for
the roots. Using the Hasse diagram of C we color its rows in a similar way starting
with blue for the root. Every column of A′ gets the same number of red and blue 1’s
from rows in B , or one extra red. Likewise, every column gets the same number of
red and blue 1’s from rows in C, or one extra blue. In either case, the total number of
red 1’s and blue 1’s differs by one. Thus, A′ has an equitable coloring and A is totally
unimodular.
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