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Abstract

In this paper, we present a simple distributed algorithm for resource allocation which simul-
taneously approximates the optimum value for a large class of objective functions. In particular,
we consider the class of canonical utility functions U that are symmetric, non-decreasing, con-
cave, and satisfy U(0) = 0. Our distributed algorithm is based on primal-dual updates. We
prove that this algorithm is an O(log ρ)-approximation for all canonical utility functions simul-
taneously, i.e. without any knowledge of U . The algorithm needs at most O(log2 ρ) iterations.
Here n is the number of flows, m is the number of edges, R is the ratio between the maximum
capacity and the minimum capacity of the edges in the network, and ρ is max {n, m,R}.

We extend this result to multi-path routing, and also to a natural pricing mechanism that
results in a simple and practical protocol for bandwidth allocation in a network. When the
protocol reaches equilibrium, the allocated bandwidths are the same as when the distributed
algorithm converges; hence the protocol is also an O(log ρ) approximation for all canonical utility
functions.

1 Introduction

In this paper, we study the classic problem of distributed allocation of bandwidths to flows (i.e.
source-destination pairs) in a network (see [17, 2, 4, 20, 1, 5, 3, 11, 7] for some of the recent
research on the problem). Apart from being important in its own right, this problem also models a
wide variety of other resource allocation problems. Specifically, we will be interested in obtaining
distributed algorithms that are approximately optimum for a large class of objective functions,
simultaneously. Our main result is a distributed algorithm for the case when each flow must use
a single pre-specified route; our algorithm requires only polylogarithmic number of iterations and
guarantees that the vector of allocated bandwidths is a logarithmic approximation, simultaneously,
for all non-decreasing, symmetric, concave objective functions. The algorithm naturally extends
to the multi-path routing case where each flow can use multiple routes which are not specified in
advance, with weaker guarantees on running time.

∗Department of Computer Science, University of Southern California. Email: sungwooc@cs.usc.edu . Research
supported by NSF Award CCR-0133968.

†Departments of Management Science and Engineering and (by courtesy) Computer Science, Stanford University.
Email: ashishg@stanford.edu. Research supported by NSF CAREER Award 0133968 and an Alfred P. Sloan Faculty
Fellowship.

1



Our algorithm is surprisingly simple and natural; in fact, it is simple enough to be converted
into a TCP-like protocol. The class of objective functions we consider encompasses all “reasonable”
social objective functions (i.e. fairness functions) that we know of. Our results are useful whenever
the objective function is poorly understood (eg. customer satisfaction, fairness) or when there are
multiple objectives (eg. when a social planner wants to simultaneously satisfy both socialists and
capitalists). Before describing our results in greater detail, we will first describe and then motivate
the problem we study.

1.1 Problem description

The bandwidth allocation problem with fixed routes consists of a (directed or undirected) graph
G = (V,E). Edge e has capacity ce. There are n source-destination (si, ti) pairs, and for each pair
we are given a unique route pi from si to ti. Each such pair is called a flow. The goal is to allocate
bandwidths to flows such that the capacity constraints are not violated. We assume that R is the
ratio of the maximum capacity of any edge to the minimum capacity of any edge. Let m be the
number of edges, and define ρ = max{n, m,R}. Let xi be the bandwidth allocated to flow i. Then
the constraints are x ≥ 0 and ∀e,

∑
i:e∈pi

xi ≤ ce. We will refer to the set of all feasible allocations
as S.

In this paper, we are interested in optimizing a large class of objective functions simultaneously.
Let U be an n-variate real-valued function. We will say that U is a canonical utility function if
U is symmetric in its arguments, concave, non-decreasing, and U(0) = 0. This captures a large
class of social objective functions; more details about the importance of this class are presented
in section 1.2. Let U∗ denote the maximum value of U(y) subject to y ∈ S. We will define the
simultaneous-approximation-ratio r(x) of a feasible solution x as follows:

r(x) = max
U :Uis canonical

U∗

U(x)
.

Thus r(x) can be thought of the worst possible approximation ratio that x provides for “reason-
able” social objective functions. There always exists a feasible solution x with r(x) = O(log ρ) [19,
12], and this is essentially the best achievable bound [19]. Our goal is to obtain a simple and efficient
distributed algorithm which guarantees r(x) = O(log ρ). We define a distributed algorithm for this
problem to be one where there is an agent corresponding to each flow and an agent corresponding
to each edge. Along the lines of Bartal, Byers, and Raz [4] and Kelly, Maulloo, and Tan [17], the
flow agents control the allocated bandwidth xi and the edge agents maintain dual costs (or shadow
prices) le. In one iteration, first each flow agent is told the sum of the dual costs of all the edges in
its route. Then, each flow agent decides how to update xi based only on this aggregate dual cost.
And finally, each edge agent updates its dual cost based only on the change in the total allocated
bandwidth on the edge in this iteration. This has a natural interpretation as a simple protocol
where the total edge costs are conveyed to the flow agent by piggybacking as a header-field in the
data packets transmitted between si and ti.

While the notion of a network and flows is convenient to describe this problem and related
work, this problem also models fairly general resource allocation problems. Our algorithm (as well
as many earlier algorithms for the bandwidth allocation problem) does not crucially use the graph
structure. Hence we can think of edges as resources, flows as tasks, and route pi as the set of
resources required for task i. All our algorithms and analyses continue to work in this general
setting.
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We also study two generalizations of the above problem. The first generalization is to relax
the requirement that only a single route can be used for a given flow, and that this route must be
specified upfront. Thus, along with the total bandwidth xi, each flow agent must also determine
a set of routes and a distribution of this bandwidth among different routes. Here, a distributed
algorithm is one where each flow agent is allowed to use (as a primitive) the computation of a
shortest path (under the dual costs) from si to ti in each iteration. This is in line with the single
objective versions of the multiple-route bandwidth allocation problem [23, 10]. Our algorithm
naturally generalizes to this model, at the expense of an increased number of iterations. As before,
there is a natural interpretation of this problem as a resource allocation problem with an appropriate
shortest cost oracle instead of the shortest path computation.

The second generalization is to allow utility functions U which satisfy concavity, symmetry,
and the non-decreasing property, but do not necessarily satisfy U(0) = 0. This includes functions
such as

∑
i log xi. For this (even larger) class, we show that our distributed algorithm achieves the

optimum for all functions U in this class, given O(log ρ) times more capacity (i.e. the approximation
ratio for canonical utility functions translates into the amount of resource augmentation needed
when U(0) 6= 0).

1.2 Motivation and related work

The Transport Control Protocol (TCP) is by far the most widely used solution to the bandwidth
allocation problem in practice. In more abstract settings, Kelly, Maulloo, and Tan [17] proposed
a distributed algorithm for this problem for the case where U(x) =

∑
i Ui(xi), and each Ui is a

concave function. Their algorithm uses a primal-dual framework where the dual prices (which they
call shadow prices) are maintained by edge agents and primal flows are maintained by the flow
agents. All communication is local, i.e., takes place between a flow agent and an edge agent on the
path of the flow. The resulting solution is proportional with respect to the dual prices, and hence,
their framework is widely referred to as the “proportional-fairness” framework1. Subsequent work
by Low, Peterson, and Wang [20] and others has shown that several variants of TCP essentially
perform the above computation for different choices of utility functions. Since the behavior of
different variants of TCP is quite different (different variants work better in different settings),
the above work raises the following natural question: Is it possible to obtain solutions which are
simultaneously good for a wide range of utility functions?.

Bartal, Byers, and Raz [4] presented a distributed algorithm for the above problem when U(x) =∑
i xi. Unlike the work of Kelly et al., this work presents a running time analysis. They prove that

a simple local computation along with local communication can lead to almost optimum solutions
in polylogarithmic number of iterations. Their work builds on the positive linear programming
framework of Luby and Nisan [21]; for their problem, the positive linear programming framework
is essentially identical to the fractional packing framework developed by Plotkin, Shmoys, and
Tardos [23], and later simplified by Garg and Konemann [10]. Each edge-agent maintains dual costs,
and each flow-agent uses these dual costs to update its own flow. Recently, Garg and Young [11]
have shown how a simple MIMD (multiplicative increase multiplicative decrease) protocol can
approximate the above objective. These results lead to the following natural question: Can we

1The symmetry requirement in our work implies that our class does not contain all utility functions to which
the proportional-fairness framework applies. However, since our class does not require the utility function to be
a sum of uni-variate functions, it contains important functions such as min which can not be addressed using the
proportional-fairness framework. Hence the two classes of utility functions are incomparable.
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obtain distributed algorithms with similar rigorous running time analyses for more involved utility
functions?.

Building on a series of papers about multi-objective fairness [18, 14], Kleinberg and Kumar [19]
studied the problem of bandwidth allocation in a centralized setting with multiple fairness objec-
tives. Goel and Meyerson [12] and Bhargava, Goel, and Meyerson [6] later expanded this work
to a large class of linear programs and related it to simultaneous optimization [13]. In particular,
the above sequence of papers resulted in a centralized bandwidth allocation algorithm for comput-
ing a single allocation which is simultaneously an O(log ρ) approximation for all canonical utility
functions. Goel and Meyerson [12] build on the notion of majorization due to Hardy, Littlewood,
and Polya [15, 16, 22]. This leaves open the following question: Can there be efficient distributed
algorithms which achieve the same results? Cho and Goel [7] made some partial progress towards
this problem by giving a centralized algorithm which maintains only one set of dual costs. However
their single-dual algorithm was still inherently centralized and their techniques do not offer much
insight towards obtaining the results in this paper.

All three questions raised above are very similar, even though they arise in different contexts.
They point towards a need for distributed bandwidth allocation algorithms which are good across
multiple objectives and have provably good running times. We address precisely this problem.

The class of utility functions we consider is not arbitrarily chosen. This is a large class, and
contains the important subclass

∑
i f(xi) where f is a uni-variate concave function (f must also be

non-decreasing and f(0) must be 0). Concavity is a natural restriction, since it corresponds to the
“law of diminishing returns” from economics. Symmetry corresponds to saying that all users are
equally important2. The requirement for U being non-decreasing is natural for a resource allocation
problem. The requirement that U(0) = 0 is also natural in many (but not all) settings. The class of
canonical utility functions includes important special functions such as min,

∑
i xi,

∑
i log(1 + xi),

and Pj(x) = the sum of the j smallest xi’s. The class of canonical utility functions also contains a
series of functions which together capture max-min fairness. Most interestingly, there is a concrete
connection between this class and our intuitive notion of fairness. Suppose there exists some
function which measures the fairness of an allocation. It seems natural that the allocation (x1, x2)
should be deemed as fair as (x2, x1) and less fair than (x1+x2

2 , x1+x2
2 ). This assumption implies that

for any natural definition of fairness, maximizing fairness should be equivalent to maximizing some
symmetric concave function; certainly, all the definitions of fairness that we found in literature are
of this form.

Some important utility functions satisfy symmetry, concavity, and the non-decreasing property
but are not 0 at 0. One example is the function

∑
i log xi, which is particularly important for two

reasons: it is the objective maximized by TCP Vegas [20] which is an important version of TCP,
and this also corresponds to the objective function required to solve Leontief economies [8].

In order to implement these ideas in the setting of a centralized social planner, it would also be
important to derive a natural pricing mechanism which implements simultaneous optimization.

1.3 Overview of results and techniques

We use one of the simplest possible distributed algorithms: we start with the variables xi and dual
costs le both being very small. During each iteration, the i-th flow agent increments xi by a small

2Notice that the constraints are not required to be symmetric, and hence, the optimum solution need not be
symmetric even though the objective function is symmetric.
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amount if the total dual cost along route pi is less than 1. And each edge agent updates its dual
cost multiplicatively depending on the amount of new bandwidth utilized on this edge. Since edge
costs increase monotonically, the algorithm would terminate when every flow agent sees a total dual
cost of 1 or more on its route. We think of the bandwidth allocations xi as the primal variables,
and accordingly, will refer to flow agents as primal agents where that notation is more appropriate.

Our main result is that with appropriate parameters, the above algorithm terminates in O(log2 ρ)
iterations with a feasible allocation x for the bandwidth allocation problem with fixed routes,
and r(x) = O(log ρ) i.e. for all canonical utility functions U and all feasible allocations y,
U(x) = U(y)/O(log ρ).

We extend this result to the multi-path routing case. The simultaneous-approximation-ratio
r(x) remains the same but the number of iterations becomes polynomial in ρ. This is in line with
what we observe for the single-objective case; the fixed-route case corresponds to positive linear
programming [21] and requires only polylogarithmic iterations [2, 4] whereas the multi-path route
case requires polynomially many iterations [23, 10, 9].

For both results, if we drop the requirement that U(0) = 0, the same algorithm leads to a
resource-augmented approximation. The final solution x violates the capacity constraints by a
factor of O(log ρ) but for all feasible (with respect to the original capacities) solutions y and all
symmetric, concave, non-decreasing functions U , U(x) ≥ U(y).

We also interpret our algorithm as a natural pricing mechanism (hence the title of our paper).
We further build on this connection to give a TCP-like protocol that has the same equilibrium
point as our algorithm; detailed control theoretic and convergence analysis of this protocol is a
promising direction.

The standard analysis technique for the kind of primal-dual update algorithm we use is to look
at the final dual costs and prove that they provide a certificate of optimality (or approximation
ratio) for the primal variables. Such an approach is not going to work for us. We provide a quick
explanation for the reader who is conversant with the standard single-objective primal-dual analysis
for this problem, since that provides a very good insight into the hardness of this problem. Consider
a line network with 2n edges. There are n “long” flows L1, L2, . . . Ln each of which uses each of
the first n edges, and there are n more “short” flows S1, S2, ..Sn, each of which uses a distinct edge
from the remaining n edges. The optimum value for the canonical utility function min for this
problem is clearly 1/n. Very early in the execution of the algorithm, the dual cost of each of the
first n edges will become 1/n, and the primal variables for the long flows will stop updating. Much
later, the cost of each of the last n edges will become 1 as well, and the primal variables for the
short flows will stop updating. Thus, the final dual prices are 1/n for the first n edges, and 1 for
the last n edges, for a total dual cost of n + 1. The dual cost for each flow is 1, and hence the
dual cost of an (infeasible) allocation y which satisfies mini yi = 1 is 2n. If we were to try to use
the final dual prices to obtain a bound on the maximum value of mini xi, we would get a bound
of (n + 1)/(2n) > 1/2. This bound is not very useful, since the optimum value is 1/n. Thus, we
have to analyze the algorithm at many different intermediate points to obtain an approximation
guarantee for all canonical utility functions. This is a novel feature of our analysis.

In section 2 we provide the background needed for our analysis; in particular, we describe
the connection between majorization and simultaneous optimization. In section 3 we present our
algorithm for the fixed route case, and prove a weaker result with polynomial number of iterations
and r(x) = O(log ρ). This is done for ease of exposition – this weaker algorithm conveys all
the intuition behind our algorithm and also provides a convenient starting point for two different
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extensions. In section 4.1 we describe the (slight) changes we need to make to the basic algorithm
to reduce the number of iterations to O(log2 ρ). In section 4.2 we describe the (slight) changes we
need to make to the basic algorithm to handle the multiple-routes case. In section 4.3 we describe
how our algorithm corresponds to a natural pricing mechanism and how our algorithm can be
thought of as a TCP-like protocol.

2 Background – Approximate Majorization

In this section we describe the framework for simultaneous optimization of linear programs de-
veloped by Goel and Meyerson [12]. This framework works in a centralized setting. Define the
k-th prefix, Pk(x) to be the sum of the k smallest components of x (not x1 + x2 + . . . + xk but
xσ(1) +xσ(2) + . . . xσ(k) where σ is the permutation that sorts x in increasing order). Let P ∗

k denote
the maximum possible value of Pk(x) subject to the given constraints

Definition 2.1 Approximate Majorization: A feasible solution x is said to be α-majorized if
Pk(x) ≥ Pk(y)/α for all 1 ≤ k ≤ n and all feasible solutions y.

Informally, the k poorest users in an α-majorized solution get at least 1/α times as much
resource as the k poorest individuals in any other feasible allocation. Intuitively, this seems to have
some ties to fairness. The following theorem [12] makes this intuition concrete:

Theorem 2.1 A feasible solution x is α-majorized if and only if U(x) ≥ U(y)/α for all feasible
solutions y and all canonical utility functions U .

The following theorem is also immediate from [12]:

Theorem 2.2 A feasible solution x is α-majorized if and only if U(x) ≥ U(y/α) for all feasible
solutions y and all symmetric, non-decreasing, concave functions U .

In fact, the above theorems hold not just for resource allocation, but for an arbitrary set of con-
straints (integer, convex etc.) as long as the constraints imply x ≥ 0. Thus the notion of α-
majorization captures simultaneous optimization; theorem 2.1 corresponds to simultaneous approx-
imation of canonical utility functions, whereas theorem 2.2 guarantees a weaker resource-augmented
approximation but for a larger class of functions (i.e. U(0) need not be 0).

We have reduced the problem of approximating uncountably many canonical utility functions
to the problem of approximating n simple prefix-sum functions. However, for this framework to
be useful, we need to demonstrate that α-majorized solutions exist with small values of α; the
following theorem does exactly that [12].

Theorem 2.3 If the set of feasible solutions is convex and non-negative, then there exists an
O(log P ∗

n
nP ∗

1
)-majorized solution.

For many problems of interest, the above theorem translates into α = O(log n). For example, for
the bandwidth allocation problem with unit capacities, P ∗

n ≤ n whereas P ∗
1 ≥ 1/n, implying the

existence of an O(log n)-majorized solution. For non-uniform capacities, the guarantee becomes
O(log n + log R) where R is the ratio of the maximum to the minimum capacity. However, even
if there exists an α-majorized solution, it is not clear a priori that finding such a solution is
computationally tractable. The next theorem [12] resolves this issue assuming linear constraints.
Here, α∗ is the smallest possible value of α for which an α-majorized solution exists.
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Theorem 2.4 Given the constraints {Ax ≤ c, x ≥ 0}, both α∗ and an α∗-majorized solution can
be found in time polynomial in n and the number of constraints.

Similar techniques were developed by Tamir [24] to compute majorized elements. Let us focus
on a proof of theorem 2.4 that highlights the difficulties involved in making the above framework
carry over in a distributed setting. We will restrict ourself to the bandwidth allocation problem for
simplicity, where A and b are both required to be non-negative. In order to compute α∗, we first
need to compute P ∗

k . Computing P ∗
k is equivalent to solving the following linear program:

Minimize λk subject to:
Ax ≤ λkc∑

i∈S xi ≥ 1 for all S ⊆ {1, · · · , n} with |S| = k

P ∗
k would be 1/λ∗k where λ∗k is the solution to the above linear program. The linear program

described above is a fractional packing problem, and can be solved efficiently [23] if we are given a
dual optimization subroutine to solve the following program:

αk(l) = Minimize w · x subject to: Pk(x) = 1; x ≥ 0 (1)

where le ≥ 0 is the “dual cost” of edge e and wi ≥ 0 represents the dual cost for flow i. The
dual cost wi for flow i is computed by simply adding the dual costs le of each edge e used by the
flow. It is important to note that the dual costs are artifacts of the solution methodology and do
not correspond to any real entity in the original problem. The dual optimization subroutine can
be implemented with time complexity O(n log n) in the centralized setting. In order to find P ∗

k

for all k, 1 ≤ k ≤ n, we need to solve n fractional packing problems. The quantity α∗ and the
corresponding α∗-majorized solution can then be computed using similar techniques. To make this
algorithm distributed, it appears that we need to address two issues:

1. Efficient distributed implementation of the dual subroutine, and

2. Efficient solution to the n different problems corresponding to different prefixes Pj .

This was the approach taken in an earlier paper by Cho and Goel [7], but unfortunately, this
approach did not lead to a distributed algorithm. In this paper, we present an algorithm that does
not implement the dual subroutine at all; in fact the algorithm that we present in the next section
is much simpler than using the above approach for even one prefix.

3 The Basic Algorithm and Analysis

In this section we present a distributed algorithm for simultaneous optimization in the fixed-route
case, and the proof of its feasibility and approximation guarantee. The algorithm in this section
requires polynomially many iterations; we will reduce the number of iterations to polylogarithmic
in section 4.1 and point out the extension to the multiple routes case in section 4.2.

Recall that ce is the capacity and le is the dual cost of an edge e. Also recall that xi is the amount
of bandwidth and the wi is the dual cost for a flow i. The dual cost wi is given by

∑
e∈pi

le for flow
i where pi is the route of flow i. We define Λe as the load of an edge e i.e. Λe = (

∑
i:e∈pi

xi)/ce. We
will use parameter t for denoting these values at time t (i.e. during the t-th iteration). For example,
le(t) implies the dual cost of an edge e at time t. For brevity, we define ∆xi(t) = xi(t + 1)− xi(t)
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and ∆Λe(t) = Λe(t+1)−Λe(t). Let m be the number of edges, and define ρ as max {n, m,R}. We
now state the algorithm:

Initialize()
1 δ ← 12 ln ρ + 2
2 for each edge e
3 do le(0)← δ

2ρ3

4 for each flow i
5 do xi(0)← mine ce

2n
6 t← 0

Distributed-Majorization()
1 while there is any flow i s.t. wi(t) < 1
2 do t← t + 1
3 /* bandwidth allocation */
4 for each flow i
5 do if wi(t− 1) < 1
6 then xi(t)← xi(t− 1) + mine ce

nδ
7 else xi(t)← xi(t− 1)
8 /* edge-length update */
9 for each edge e

10 do le(t)← le(t− 1)(1 + δ∆Λe(t− 1))

Informally, the algorithm does the following. Initially, all the dual costs are very small, and
all flow agents can increment their primal variables. At some time t, one or more flow agents
find that their routes are now too expensive, and they become inactive (i.e. stop incrementing
their primal variables). At this point, the prefix P1 gets frozen but the dual costs and the other
prefix functions may keep increasing. Hence we need to use intermediate dual costs at different
times as certificates of approximate optimality for different Pj ’s. We combine this idea with several
combinatorial properties of the solution to the dual subroutine (1) to analyze our algorithm.

Feasibility: The proof of feasibility is straightforward. At time 0, Λe(0) =
∑

i:e∈pi
xi(0)

ce
≤

nmine ce
2n
ce

≤ 1
2 . Let t be the smallest time such that Λe(t) ≥ 1. Then,

1 > le(t− 1) = le(t− 2)(1 + δ∆Λe(t− 2)) = le(0)
t−2∏
τ=0

(1 + δ∆Λe(τ)).

Since δ∆Λe(τ) ≤ δ
mine ce

nδ
·n

ce
≤ 1, we can use the relation e

a
2 < 1 + a for 0 ≤ a ≤ 1 to obtain

1 > le(0)
t−2∏
τ=0

e
δ∆Λe(τ)

2 = le(0)

(
e

∑t−2

τ=0
δ∆Λe(τ)

2

)
> le(0)

(
e

δ{Λe(t−1)−Λe(0)}
2

)
.

Taking the logarithm on both sides,

Λe(t) ≤ Λe(0) + ∆Λe(t− 1) +
2 ln 1

le(0)

δ
≤ 1

2
+

1 + 6 ln ρ− 2 ln δ
2

δ
≤ 1

The above equation implies that the load of an edge e is less than 1 at time t and any time before
t. After time t, the load of the edge e does not increase, because every flow through e has reached
the maximum weight possible3.

3Note that we did not directly use the fact that updates to xi are small in each iteration; we just used the fact
that δ∆Λe(t) < 1. We are going to exploit this in section 4.1.
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Approximation guarantee: Using basic LP duality, the problem of maximizing Pk has an
optimal primal solution x and a corresponding (i.e. equal in value) dual solution (

∑
e le · ce)/αk(l)

where

αk(l) = min
y

∑
i

((∑
e∈pi

le
)
· yi

)
Pk(y)

= min
y

∑
i (wi · yi)
Pk(y)

.

Suppose that we are given a feasible primal solution x, dual costs le for the edges and dual costs wi

for the flows (derived from l). We will refer to the wi’s as weights. Since flow agents with wi > 1
do not increment their flows, it is useful to define the following two functions which essentially
truncate wi at 1:

vi(w) =

{
1 if wi ≥ 1
wi otherwise

, and βi(w) = min
x

∑
j vj(w) · xj

Pi(x)
.

The vi are analogous to wi and the βi are analogous to αi. Without loss of generality, it is assumed
that w is sorted in decreasing order. We now prove two important combinatorial properties of the
solution to the dual subroutine (1):

Lemma 3.1 βi(w) has the following properties.

1. βi(w) =
∑

j≥γ
vj(w)

i−γ+1 for some γ such that 1 ≤ γ ≤ i.

2. Define a symbol ‘≤’ on vectors a and b as follows.

a ≤ b⇔ [aj′ < bj′ ∃ j′] and [aj ≤ bj ∀ j] for all aj , bj ≥ 0

Then, a ≤ b implies that βi(a) ≤ βi(b).

Proof:

1. Goel and Meyerson [12] showed that the solution y of αk(l) satisfies the following conditions:

(1) wj′ ≤ wj ⇒ yj′ ≥ yj

(2) The solution x is two valued. In particular, there exists a value λ such that for all j,
yj = 0 or λ.

Since βi(w) is a special form of αk(l), βi(w) also has the above properties. Thus, there should
be an index γ, a value λ and an optimal solution y for βi(w) such that yj = 0 if j < γ and
yj = λ otherwise. Hence,

βi(w) =
∑

j vj(w) · yj

Pi(y)
=
∑

j≥γ vj(w) · yj

Pi(y)
=
∑

j≥γ vj(w) · λ
(i− γ + 1) · λ

=
∑

j≥γ vj(w)
(i− γ + 1)

.

2. Inequality a ≤ b implies that vj(a) ≤ vj(b). This implies that for any x,
∑

j
vj(a)·xj

Pi(x) ≤∑
j

vj(b)·xj

Pi(x) . This equation holds even if we take a function minx for both sides.
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Lemma 3.2 Given a weight vector w, let µ denote the cardinality of the set {wj : wj ≥ 1}. If
βi(w) < 1 for some i, then

∑
j:wj<1 wj < i− µ.

Proof: Suppose that βi(w) = (
∑

j≥γ vj(w))/(i− γ + 1), as guaranteed by lemma 3.1. Then,∑
j:wj<1

wj =
∑
j≥1

vj(w)− µ

=
∑

1≤j<γ

vj(w) +
∑
j≥γ

vj(w)− µ

≤ γ − 1 +
∑
j≥γ

vj(w)− µ

= γ − 1 + (i− γ + 1)βi(w)− µ

< γ − 1 + (i− γ + 1)− µ = i− µ

Since βi(w) < 1 implies that i > µ, we must have i − µ > 0. We now prove our main result. The
basic idea is to look at the first time βi(w) becomes greater than 1 and use the dual costs at that
time to obtain a certificate of approximate optimality for Pi, using lemma 3.2 to relate the increase
in dual costs till that time to the increase in the primal variables.

Theorem 3.3 The algorithm Distributed-Majorization gives us an O(log ρ)-majorized solution.

Proof: For simplicity,
∑

e le(t)ce and βi

(
w(t)

)
are denoted by D(t) and βi(t) respectively. Suppose

that βi(Ti − 1) < 1 and βi(Ti) ≥ 1.

D(Ti) =
∑
e

(
le(Ti − 1)

(
1 + δ∆Λe(Ti − 1)

)
ce

)
= D(Ti − 1) + δ

∑
e

(
le(Ti − 1)∆Λe(Ti − 1)ce

)

= D(Ti − 1) + δ
∑
e

le(Ti − 1)
∑

j:e∈pj

∆xj(Ti − 1)


= D(Ti − 1) + δ

∑
j

∑
e∈pj

le(Ti − 1)∆xj(Ti − 1)


= D(Ti − 1) + δ

∑
j

(
wj(Ti − 1)∆xj(Ti − 1)

)
For one iteration, we increase xj only when wj < 1. Thus,

D(Ti) = D(Ti − 1) + δ
∑

j:wj(Ti−1)<1

wj(Ti − 1)∆xj(Ti − 1).

By lemma 3.2,

D(Ti) < D(Ti − 1) + δ
(
i− µ(Ti − 1)

)mine ce

nδ
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where µ(t) =
∣∣∣∣{wj(t) : wj(t) ≥ 1

}∣∣∣∣. Note that
(
i− µ(Ti − 1)

)
mine ce

nδ = Pi

(
∆x(Ti − 1)

)
. Since the

above argument also holds at all times t ≤ Ti−1, we have

D(Ti) < D(0) + δ ·
∑

0≤t≤Ti−1

Pi

(
∆x(t)

)
≤ δ

2ρ3
·max

e
ce ·m + δ ·

∑
0≤t≤Ti−1

Pi

(
∆x(t)

)
= δ

1
2ρ
· maxe ce

ρ
· m

ρ
+ δ ·

∑
0≤t≤Ti−1

Pi

(
∆x(t)

)
≤ δ · 1

2n
·min

e
ce + δ ·

∑
0≤t≤Ti−1

Pi

(
∆x(t)

)

= δ

P1

(
x(0)

)
+

∑
0≤t≤Ti−1

Pi

(
∆x(t)

)
≤ δPi

(
x(Ti)

)
.

Since 1 ≤ βi(Ti) ≤ αi

(
le(Ti)

)
for all Ti by the lemma 3.1 part 2,

D(Ti)

αi

(
le(Ti)

)
Pi

(
x(Ti)

) < δ for all i.

Using duality,

Pi

(
x(Tn)

)
≥ Pi

(
x(Ti)

)
≥ P ∗

i

δ
=

P ∗
i

O(log ρ)
for all i.

Running time: Let I be the number of iterations of our distributed algorithm, and let f be an
edge which sees increase in flow during the last iteration. This edge must have also seen an increase
in its flow during each of the previous iterations. Since the final solution is feasible,

cf ≥
∑

i:f∈pi

xi(0) + I · mine ce

nδ
≥ mine ce

2n
+

I ·mine ce

nδ
=

mine ce

n

(
1
2

+
I

δ

)
.

Hence, I = O
(
nδ · maxe ce

mine ce

)
= O(nR log ρ).

4 Extensions and Improvements

4.1 Polylogarithmic number of iterations for the fixed route case

Replace line 5 in algorithm Distributed-Majorization with xi(t) = xi(t−1)(1+1/δ). Since the
routes are fixed, and any flow which is active at time t must have also been active at time t−1, the
new load introduced on any edge in the t-th iteration can be at most a (1/δ)-fraction of the load
already introduced on the edge in the first t− 1 iterations. If the loads after time t− 1 are feasible,
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then the new load introduced at time t is at most a (1/δ)-fraction of the edge’s capacity; by the
footnote in section 3, this is sufficient to guarantee feasibility of the final solution. The proof of
approximation ratio does not depend on the size of the update. The running time analysis is now
simple. The initial bandwidth for any flow is mine ce/(2n). Hence, the number of iterations is at
most

log1+1/δ

(
maxe ce

mine ce/(2n)

)
= O(δ log ρ) = O(log2 ρ).

4.2 Multi-path routing

We modify the behavior of the flow agents in the basic algorithm as follows. Initially, each flow
agent chooses an arbitrary path and uses this path to allocate to itself a bandwidth of mine ce/(2n).
In each iteration, each flow agent computes the shortest path from si to ti using the dual costs. Let
pi be this path, and let wi be the cost. If wi < 1, the flow agent allocates additional mine ce/(2n)
bandwidth to itself along pi. The edge agents perform exactly the same initializations and updates
as in the basic algorithm described in section 3, and the same analysis as in section 3 applies. Hence,
we get a simultaneous optimization of O(log ρ) in polynomial number of iterations. Unfortunately,
the techniques in section 4.1 can not be applied here; we can either reduce the number of iterations
to polylogarithmic, or handle multi-path routing, but not both. The number of iterations increases
by another factor of m; we omit the details and make no attempt to optimize the polynomial in
this abstract.

4.3 Pricing for fairness for fixed routes

The algorithm, as described, must start from the precise initial conditions we defined. In order
to convert this distributed algorithm into a TCP-like protocol, we must allow it to start with
arbitrary primal flows, i.e. we need an algorithm which settles into an equilibrium. Also, if a social
planner decides to implement our scheme for resource allocation, it would be desirable to have the
scheme supported by a pricing mechanism that has a natural interpretation and settles into an
equilibrium. We solve both problems using the same idea – the dual cost of an edge is computed
differently for different flow agents. Intuitively, if one flow agent introduces 0.2 units of flow and
the other introduces 0.3 units of flow on the same edge, then it is unfair to penalize the first agent
for the extra 0.1 units of flow allocated to the second agent. Hence, the dual cost le(i) of edge e for
flow agent i should be computed by first reducing every flow xj to min{xi, xj}. Let the total load
on edge e after this reduction be Λe(i). Then define le(i) as θee

δΛe(i), where θe is chosen such that
the cost functions used by this protocol match with the initial dual costs of the basic distributed
algorithm in section 3. i.e. θe = l̃e/eδΛ̃e , where l̃e and Λ̃e are the costs and allocations on edge e
at the beginning of the basic algorithm. Each edge agent can compute this quantity locally. The
dual cost of flow agent i is wi =

∑
e∈pi

le(i).

Theorem 4.1 If each flow agent updates its flow according to the differential equation

dxi/dt = − log wi

where wi is as computed above, then there is a unique equilibrium for the resulting dynamic system,
and at this equilibrium, r(x) = O(log ρ).
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We omit the proof of the above theorem; the basic idea is to show that any equilibrium must
correspond to the limiting behavior of the basic algorithm in section 3 as the amount of incremental
bandwidth allocated in each iteration goes to 0. It is quite intriguing that such a simple and natural
protocol achieves a very strong simultaneous approximation for all canonical utility functions. The
convergence properties of this protocol deserve further study, specially for delayed feedback.
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