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Abstract

We present an exact algorithm that decides, for every fixed r ≥ 2 in time O(m) + 2O(k2)

whether a given multiset of m clauses of size r admits a truth assignment that satisfies
at least ((2r − 1)m + k)/2r clauses. Thus Max-r-Sat is fixed-parameter tractable when
parameterized by the number of satisfied clauses above the tight lower bound (1 − 2−r)m.
This solves an open problem of Mahajan, Raman and Sikdar (J. Comput. System Sci., 75,
2009).

Our algorithm is based on a polynomial-time data reduction procedure that reduces a
problem instance to an equivalent algebraically represented problem with O(9rk2) variables.
This is done by representing the instance as an appropriate polynomial, and by applying a
probabilistic argument combined with some simple tools from Harmonic analysis to show that
if the polynomial cannot be reduced to one of size O(9rk2), then there is a truth assignment
satisfying the required number of clauses.

We introduce a new notion of bikernelization from a parameterized problem to another
one and apply it to prove that the above-mentioned parameterized Max-r-Sat admits a
polynomial-size kernel.

Combining another probabilistic argument with tools from graph matching theory and
signed graphs, we show that if an instance of Max-2-Sat with m clauses has at least 3k
variables after application of a certain polynomial time reduction rule to it, then there is a
truth assignment that satisfies at least (3m+ k)/4 clauses.

We also outline how the fixed-parameter tractability and polynomial-size kernel results
on Max-r-Sat can be extended to more general families of Boolean Constraint Satisfaction
Problems.

∗Publication Information: This is the author’s self-archived copy of a paper that has been published in Algo-

rithmica 61:638655, DOI 10.1007/s00453-010-9428-7. The final publication is available at www.springerlink.com.
A preliminary version of this paper has appeared in the proceedings of ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2010). We extend the preliminary version by introducing the notion of a bikernelization and using
it to prove the existence of a polynomial kernel for the Max-r-CSPtlb problem introduced in Section 6. We also
obtain a quadratic kernel for Max-r-Sattlb.
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1 Introduction

The Maximum r-Satisfiability Problem (Max-r-Sat) is a classic optimization problem with a
wide range of real-world applications. The task is to find a truth assignment to a multiset of
clauses, each with exactly r literals, that satisfies as many clauses as possible, or in the decision
version of the problem, to satisfy at least t clauses where t is given with the input. Even Max-

2-Sat is NP-hard [14] and APX-hard [20], in strong contrast with 2-Sat which is solvable in
linear time [3].

It is always possible to satisfy a 1 − 2−r fraction of a given multiset of clauses with exactly
r literals each; a truth assignment that meets this lower bound can be found in polynomial
time by Johnson’s algorithm [23]. This lower bound is tight in the sense that it is optimal for
an infinite sequence of instances. In this paper we show that for every fixed r we can decide
in time O(m) + 2O(k2) whether a given multiset of m clauses admits a truth assignment that
satisfies at least ((2r − 1)m+k)/2r clauses. Thus, Max-r-Sat is fixed-parameter tractable when
parameterized by the number of satisfied clauses above the tight lower bound; this answers a
question posed by Mahajan, Raman and Sikdar [25].

Our algorithm described in Section 4 is based on a polynomial-time data reduction procedure
that reduces a problem instance to an equivalent algebraically represented problem with O(k2)
variables. This is done by representing the instance as an appropriate polynomial, and by applying
a probabilistic argument combined with some simple tools from Harmonic analysis to show that if
the polynomial cannot be reduced to one of size O(k2), then there is a truth assignment satisfying
the required number of clauses. The basic approach is based on the ideas of [1], and a similar
one which, however, does not apply any algebraic reductions, was used in [16, 17] to show the
existence of kernels of size O(k2) for other problems parameterized above tight lower bounds.

We also show that the above-mentioned parameterized Max-r-Sat admits a polynomial-size
kernel. This can be deduced from our fixed-parameter result and a general lemma proved in
Section 3, and can also be proved by a more efficient, direct argument. The lemma, which is
interesting in its own right, links a new concept that we call bikernelization with the well-known
concept of kernelization. We believe that bikernelization, in general, and the lemma, in particular,
will have further applications.

In Section 5, combining another probabilistic argument with tools from graph matching theory
and signed graphs, we show that if an instance I of Max-2-Sat on m clauses has at least 3k
variables after application of a certain polynomial time reduction rule to it, then there is a truth
assignment for I that satisfies at least (3m+ k)/4 clauses. Thus, Max-2-Sat admits a problem
kernel with at most 3k − 1 variables.

In Section 6, we outline how the fixed-parameter tractability and polynomial-size kernel results
on Max-r-Sat can be extended to more general families of Boolean Constraint Satisfaction
Problems.

In Section 7, we have a short discussion of the practicality of our results and mention a very
recent improvement of our kernel result for Max-r-Sat parameterized above the tight lower
bound.

Related Work Parameterizations above a guaranteed value were first considered by Mahajan
and Raman [24] for the problems Max-Sat and Max-Cut. They devised an algorithm for Max-

Sat with running time O∗(1.618k+
∑m

i=1 |Ci|) that finds, for a multiset {C1, . . . , Cm} ofm clauses,
a truth assignment satisfying at least ⌈m/2⌉+k clauses, or decides that no such truth assignment
exists (|Ci| denotes the number of literals in Ci). In a recent paper [25], Mahajan, Raman and
Sikdar argue, in detail, that a practical (and challenging) parameter for a maximization problem
is the number of clauses satisfied above a tight lower bound, which is (1 − 2−r)m for Max-Sat

if each clause contains exactly r different variables. Only a few non-trivial complexity results are
known for problems parameterized above a tight lower bound [17, 18, 19, 31, 24].

2



Mahajan et al. [25] state several problems parameterized above a tight lower bound whose
parameterized complexity is open. One of the problems is the (exact) Max-r-Sat problem (an
instance consists of m clauses, each containing exactly r different literals) parameterized by the
number of satisfied clauses above the tight lower bound (1− 2−r)m, i.e., Max-r-Sattlb.

2 Preliminaries

We assume an infinite supply of propositional variables. A literal is a variable x or its negation
x. A clause is a finite set of literals not containing a complementary pair x and x. A clause is of
size r if it contains exactly r literals. For simplicity of presentation, we will denote a clause by a
sequence of its literals. For example, the clause {x, y} will be denoted xy or equivalently yx. A
CNF formula F is a finite multiset of clauses (a clause may appear in the multiset several times).
A variable x occurs in a clause if the clause contains x or x, and x occurs in a CNF formula F
if it occurs in some clause of F . Let var(C) and var(F ) denote the sets of variables occurring in
C and F , respectively. A CNF formula is an r-CNF formula if |C| = r for all C ∈ F . Thus we
require that each clause of a r-CNF formula contains exactly r different literals (some authors
use for that the term exact r-CNF). A truth assignment is a mapping τ : V → {−1, 1} defined
on some set V of variables. In order to obtain a ’normalized’ algebraic representation, we use
{−1, 1} instead of the usual {0, 1} binary symbols. We write 2V to denote the set of all truth
assignments on V . A truth assignment τ satisfies a clause C if there is some variable x ∈ C with
τ(x) = 1 or a negated variable x ∈ C with τ(x) = −1. We write sat(τ, F ) for the number of
clauses of F that are satisfied by τ , and we write

sat(F ) = max
τ∈2var(F )

sat(τ, F ).

A parameterized problem is a subset L ⊆ Σ∗×N over a finite alphabet Σ. L is fixed-parameter
tractable if the membership of an instance (x, k) in Σ∗ × N can be decided in time |x|O(1) · f(k)
where f is a computable function of the parameter [12, 13, 26].

If the nonparameterized version of L is NP-hard, then f(k) is superpolynomial provided
P 6=NP. Often f(k) is ‘moderately’ exponential, which makes the problem practically solvable
for small values of k. Thus, it is important to parameterize a problem in such a way that the
instances with small values of k are of interest.

Given a parameterized problem L, a kernelization of L is a polynomial-time algorithm that
maps an instance (x, k) to an instance (x′, k′) (the kernel) such that (i) (x, k) ∈ L if and only
if (x′, k′) ∈ L, (ii) k′ ≤ f(k), and (iii) |x′| ≤ g(k) for some functions f and g. The function
g(k) is called the size of the kernel. The notion of a kernelization was introduced by Downey and
Fellows [11]. They showed that a decidable parameterized problem is fixed-parameter tractable
if and only if it admits a kernelization. Recently, Bodlaender et al. [6] obtained a framework to
give evidence that fixed-parameter tractable problems do not have a kernel of polynomial size.
For excellent overviews of much recent work on kernelization, see [5, 15].

We shall consider the following parameterized version of Max-r-Sat.

Max-r-Sat above Tight Lower Bound (orMax-r-Sattlb for short)

Instance: A pair (F, k) where F is a multiset of m clauses of size r and
k is a nonnegative integer.

Parameter: The integer k.

Question: Is sat(F ) ≥ ((2r − 1)m+ k)/2r?

We note that Mahajan et al. [25] use a slightly different formulation of the problem, asking for
an assignment that satisfies at least (1− 2−r)m+ k clauses; since r is fixed, this change does not
affect the complexity of the problem.
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We will also refer to the following special case of another problem introduced by Mahajan et
al. [25].

Max-r-Lin2 above Tight Lower Bound (or Max-r-Lin2tlb for
short)

Instance: A system of m linear equations e1, . . . , em in n variables over
F2, where no equation has more than r variables, and each equation ej
has a positive integral weight wj , and a nonnegative integer k.

Parameter: The integer k.

Question: Is there an assignment of values to the n variables such that
the total weight of the satisfied equations is at least (W + k)/2, where
W = w1 + · · ·+ wm ?

Note that trivially W/2 is indeed a tight lower bound for the above problem, as the expected
number of satisfied equations in a random assignment is W/2, and if the equations come in
identical pairs with contradicting right-hand sides, no assignment satisfies more equations. It
was proved in [17] that Max-r-Lin2tlb admits a kernel with O(k2) equations and variables.

We conclude the section by outlining the very basic principles of the probabilistic method
which will be implicitly used in this paper. Given random variables X1, . . . , Xn, the fundamental
property known as linearity of expectation states that E(X1 + . . .+Xn) = E(X1) + . . .+ E(Xn).
The averaging argument utilizes the fact that there is a point for which X ≥ E(X) and a point
for which X ≤ E(X) in the probability space. Lastly, a positive probability P(A) > 0 for some
event A means that there is at least one point in the probability space which belongs to A. For
example, P(X ≥ k) > 0 tells us that there exists a point for which X ≥ k. For further reading
on the probabilistic method, we refer the reader to the textbook [2] by Alon and Spencer.

3 Bikernelization

In this section we introduce a new notion called bikernelization and study its basic properties. A
bikernelization from L to L′ is of interest especially when L′ is a well-studied problem.

Given a pair L,L′ of parameterized problems, a bikernelization from L to L′ is a polynomial-
time algorithm that maps an instance (x, k) to an instance (x′, k′) (the bikernel) such that
(i) (x, k) ∈ L if and only if (x′, k′) ∈ L′, (ii) k′ ≤ f(k), and (iii) |x′| ≤ g(k) for some functions
f and g. The function g(k) is called the size of the bikernel. Observe that a kernelization of
a parameterized problem L is simply a bikernelization from L to itself, i.e., a bikerenelization
generalizes a kernelization.

Recall that a decidable parameterized problem is fixed-parameter tractable if and only if
it admits a kernelization. This result can be extended as follows: A decidable parameterized
problem L is fixed-parameter tractable if and only if it admits a bikernelization from itself to a
decidable parameterized problem L′. Indeed, if L is fixed-parameter tractable, then L is decidable
and admits a bikernelization to itself. If L is decidable and admits a bikernelization from itself to a
parameterized problem L′, then (x, k) can be decided by first mapping it to (x′, k′) in polynomial
time and then deciding (x′, k′) in time depending only on k′, and thus only on k.

We are especially interested in cases when kernels are of polynomial size. The next lemma is
similar to Theorem 3 in [7].

Lemma 1. Let L,L′ be a pair of decidable parameterized problems such that L′ is in NP, and
L is NP-complete. If there is a bikernelization from L to L′ producing a bikernel of polynomial
size, then L has a polynomial-size kernel.

Proof. Consider a bikernelization from L to L′ that maps an instance (x, k) ∈ L to an instance
(x′, k′) ∈ L′ with k′ ≤ f(k). Since L′ is in NP and L is NP-complete, there exists a polynomial
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time reduction from L′ to L. Thus, we can find in polynomial time an instance (x′′, k′′) of L which
is decision-equivalent with (x′, k′), and in turn with (x, k). Observe that |x′′| ≤ |x′|O(1) ≤ kO(1)

and k′′ ≤ (k′)O(1) + (|x′|)O(1) ≤ f(k)O(1) + kO(1). Thus, (x′′, k′′) is a kernel of L of polynomial
size.

4 MAX-r-SAT

In this section we describe a polynomial-time data reduction that reduces an instance ofMax-r-Sattlb

into an equivalent algebraically represented problem. The equivalent algebraically represented
problems is ‘normalized’ in a sense, which enables us to obtain a bound on the size of a given
instance. Some results from probability theory and Harmonic analysis in boolean functions play a
central role in proving such a bound. As a result, we prove that Max-r-Sattlb is fixed-parameter
tractable and in particular we present a quadratic kernel using the notion of bikernelization in-
troduced in the previous section.

4.1 An Algebraic Representation

Let F be an r-CNF formula with clauses C1, . . . , Cm in the variables x1, x2, . . . , xn.
For F , consider

X =
∑

C∈F

[1−
∏

xi∈var(C)

(1 + εixi)],

where εi ∈ {−1, 1} and εi = −1 if and only if xi is in C.

Lemma 2. For a truth assignment τ , we have X = 2r(sat(τ, F )− (1 − 2−r)m).

Proof. Observe that
∏

xi∈var(C)(1 + εixi) equals 2r if C is falsified and 0, otherwise. Thus,

X = m− 2r(m− sat(τ, F )) implying the claimed formula.

After algebraic simplification X = X(x1, x2, . . . , xn) can be written as X =
∑

I∈S XI , where
XI = cI

∏

i∈I xi, each cI is a nonzero integer and S is a family of nonempty subsets of {1, . . . , n}
each with at most r elements.

The question we address is that of deciding whether or not there are values xi ∈ {−1, 1} so
that X = X(x1, x2, . . . , xn) ≥ k. The idea is to use a probabilistic argument and show that if
the above polynomial has many nonzero coefficients, that is, if |S| is large, this is necessarily the
case, whereas if it is small, the question can be solved by checking all possibilities of the relevant
variables.

4.2 The Properties of X

In what follows, we assume that each variable xi takes its values uniformly at random and
independently in {−1, 1} and thus X is a random variable. Our approach is similar to the one
in [1]. For completeness, we reproduce part of the argument (modifying it a bit and slightly
improving the constant for the case considered here). We need the following simple lemma.

Lemma 3 (see, e.g., [1], Lemma 3.1). For every real random variable X with finite and positive
fourth moment,

E(|X |) ≥ E(X2)3/2

E(X4)1/2
.

The above lemma implies the following (see [1], Lemma 3.2, part (ii) for a similar result).
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Corollary 1. Let X be a real random variable and suppose that its first, second and fourth
moments satisfy E(X) = 0, E(X2) = σ2 > 0 and E(X4) ≤ bσ4, where b is a positive constant.
Then

P(X ≥ σ

2
√
b
) > 0.

Proof. By Lemma 3, E(|X |) ≥ σ√
b
. Since E(X) = 0 it follows that

P(X > 0) · E(X |X > 0) ≥ σ

2
√
b
. (1)

Therefore, X must be at least σ/(2
√
b) with positive probability.

We also use the hypercontractive inequality, see [27]. The following lemma states a special case
of it first proved by Bonami [8].

Lemma 4 (Hypercontractive Inequality). Let f = f(x1, . . . , xn) be a multilinear polynomial of
degree (at most) r in n variables x1, . . . , xn with domain {−1, 1}. Define a random variable X
by choosing a vector (ε1, . . . , εn) ∈ {−1, 1}n uniformly at random and setting X = f(ε1, . . . , εn).
Then, E(X4) ≤ 9r(E(X2))2.

Returning to the random variable X=X(x1, x2, . . . , xn) defined in the previous subsection, we
prove the following.

Lemma 5. Let X =
∑

I∈S XI , where XI = cI
∏

i∈I xi is as in the previous subsection, and
assume it is not identically zero. Then E(X) = 0, E(X2) =

∑

I∈S c2I ≥ |S| > 0 and E(X4) ≤
9rE(X2)2.

Proof. Since the xi’s are mutually independent, E(X) = 0. Note that for I, J ∈ S, I 6= J , we
have E(XIXJ) = cIcJE(

∏

i∈I∆J xi) = 0, where I ∆ J is the symmetric difference of I and J .
Thus, E(X2) =

∑

I∈S c2I . By Lemma 4, E(X4) ≤ 9rE(X2)2.

4.3 The Main Result for General r

Theorem 1. The problem Max-r-Sattlb is fixed-parameter tractable and can be solved in time
O(m)+2O(k2). Moreover, there exist (i) a polynomial-size bikernel from Max-r-Sattlb to Max-

r-Lin2tlb, and (ii) a polynomial-size kernel of Max-r-Sattlb. In fact, there are such a bikernel
and a kernel of size O(k2).

Proof. By Lemma 2 our problem is equivalent to that of deciding whether or not there is a truth
assignment to the variables x1, x2, . . . , xn, so that

X(x1, . . . , xn) ≥ k. (2)

Note that in particular this implies that if X is the zero polynomial, then any truth assignment
satisfies exactly a (1 − 2−r) fraction of the original clauses. By Corollary 1 and Lemma 5,

P(X ≥
√

E(X2)

2
√
b

) > 0, where b = 9r and E(X2) =
∑

I∈S c2I ≥ |S|; the last inequality follows from

the fact that each |cI | is a positive integer. Therefore P(X ≥
√

|S|
2·3r ) > 0. Now, if k ≤

√
|S|

2·3r
then there are xi ∈ {−1, 1} such that (2) holds, and there is an assignment for which the answer
to Max-r-Sattlb is Yes. Otherwise, |S| = O(k2), and in fact even

∑

I∈S |cI | ≤
∑

I∈S c2I =
O(k2), that is, the total number of terms of the simplified polynomial, even when counted with
multiplicities, is at most O(k2).

For any fixed r, the representation of a problem instance ofm clauses as a polynomial, and the
simplification of this polynomial, can be performed in time O(m). If the number of nonzero terms
of this polynomial is larger than 4 ·32rk2, then the answer to the problem is Yes. Otherwise, the
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polynomial has at most O(k2) terms and depends on at most O(k2) variables, and its maximum

can be found in time 2O(k2).
This completes the proof of the first part of the theorem. We next establish the second

part. Given the simplified polynomial X as above, define a problem in Max-r-Lin2tlb with the
variables z1, z2, . . . , zn as follows. For each nonzero term cI

∏

i∈I xi consider the linear equation
∑

i∈I zi = b, where b = 0 if cI is positive, and b = 1 if cI is negative, and either associate this
equation with the weight wI = |cI |, or duplicate it |cI | times. It is easy to check that this system
of equations has an assignment zi satisfying at least [

∑

I∈S wI +k]/2 of the equations if and only
if there are xi ∈ {−1, 1} so that X(x1, x2, . . . , xn) ≥ k. This is shown by the transformation
xi = (−1)zi . See also [21] and [17] for a similar discussion. Since, as explained above, we may
assume that

∑

I∈S |cI | = O(k2) (as otherwise we know that the answer to our problem is Yes),
this provides the required bikernel of size O(k2) to Max-r-Lin2tlb.

It remains to prove the existence of a polynomial size kernel for the original problem. One
way to do that is to apply Lemma 1. Indeed, Max-r-Lin2tlb is in NP, and Max-r-Sattlb is
NP-complete, implying the desired result.

It is also possible to give a direct proof, which shows that the problem admits a kernel of
size at most O(k2). To do so, we replace each linear equation of at most r variables by a set of
2r−1 clauses, so that if the variables zi satisfy the equation, the corresponding Boolean variables
xi = (−1)zi satisfy all these clauses, and if the variables zi do not satisfy the equation, then the
variables xi above satisfy only 2r−1 − 1 of the clauses. This is done as follows.

Consider, first, a linear equation with exactly r variables. After renumbering the variables,
if needed, a typical equation is of the form z1 + z2 + · · ·+ zr = b, where the sum is over F2 and
b ∈ {0, 1}. There are exactly 2r−1 Boolean assignments δ = (δ1, δ2, . . . , δr) for the variables zi
that do not satisfy the equation. For each such assignment δ let Cδ be the clause consisting
of r literals, where the literal number i is xi if δi = 1 and is xi if δi = 0. Note that if the
variables z1, z2, . . . , zr satisfy the above equation, then (z1, z2, . . . , zr) is not one of the vectors
δ considered, and hence each of the clauses Cδ constructed contains at least one satisfied literal
when xi = (−1)zi . Therefore, in this case all clauses are satisfied. A similar argument shows
that if the variables zi do not satisfy the equation, there will be exactly one non-satisfied clause,
namely the one corresponding to the vector δ = (z1, z2, . . . , zr).

The construction can be extended to equations with less than r variables. Indeed, the only
property used in the transformation above is that there are exactly 2r−1 Boolean assignments for
the variables z1, z2, . . . , zr that do not satisfy the equation. If the equation has only (1 ≤) s < r
variables, add to these variables an arbitrary set of r− s of the other variables, and consider the
set of all Boolean assignments to this augmented set of variables that do not satisfy the equation.
Here, too, there are exactly 2r−1 such assignments and we can thus repeat the construction above
in this case as well.

The above procedure transforms a set of W linear equations over F2 into a multiset of 2r−1W
clauses. Moreover, if some truth assignment does not satisfy exactly ℓ equations, then the same
assignment does not satisfy the same number, ℓ, of clauses. In particular, there is an assignment
satisfying all equations but (W − k)/2 of them if and only if there is an assignment satisfying all
clauses but (W − k)/2 of them. This means that among the m = 2r−1W clauses, the number of
satisfied ones is m− (W − k)/2 = [(2r − 1)m+ 2r−1k]/2r. This reduces an instance of Max-r-
Lin2tlb with W equations and parameter k to an instance of Max-r-Sattlb with 2r−1W clauses
and parameter 2r−1k. Since r is a constant, this provides the required kernel of size O(k2),
completing the proof.

Our algorithm for the problem Max-r-Sattlb can be easily modified to provide, efficiently,
for any given instance of m clauses to which there is a truth assignment satisfying at least k/2r

clauses above the average, an assignment for the variables with this property. Indeed, the proof
of Theorem 1 only requires that the variables xi are 4r-wise independent, and there are known
constructions of polynomial size sample spaces supporting such random variables (see, e.g., [2],
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Chapter 16). Thus, if in the polynomial X ,
√

|S|/(2 · 3r) ≥ k, then one can find an assignment
satisfying at least as many clauses as needed by going over all points in such a sample space, and
if
√

|S|/(2 · 3r) < k, one can solve the problem by an exhaustive search.

5 MAX-2-SAT

In this section we describe an alternative, more combinatorial, approach to the problemMax-r-Sattlb

for r = 2. Although this approach is somewhat more complicated than the one discussed in the
previous section, it provides an additional insight to this special case of the problem, and allows
us to obtain a kernel with a linear number of variables for Max-2-Sattlb.

We start with a simple reduction rule that applies to any value of r.

5.1 The Semicomplete Data Reduction

Several data reduction rules, or preprocessing methods in a broader sense, have been suggested
and applied to Max-Sat in the literature (cf. [30] and references therein). We are especially
interested in reduction rules which simplify 2-CNF formulas. Most preprocessing methods for 2-
CNF formulas are not applicable to our type of parameterization. For example, a data reduction
rule known as Resolution Rule, replaces two clauses xy, xz by yz if the literals x or x does not
appear in any other clauses. Resolution Rule is sound under the parameterization of Max-2-Sat,
where we ask if all except for at most k clauses can be satisfied. However, this reduction rule
is not applicable to our type of parameterization. On the other hand, there is a data reduction
rule introduced in [30], where it was called Complementary Unit Rule, which is applicable to our
parameterization of Max-2-Sat. Below we use this reduction rule.

We say that a pair of distinct clauses Y and Z has a conflict if there is a literal p ∈ Y such
that p ∈ Z. We say that an r-CNF formula F is semicomplete if the number of clauses is m = 2r

and every pair of distinct clauses of F has a conflict. A semicomplete r-CNF formula is complete
if each clause is over the same set of variables. There are r-CNF formulas that are semicomplete
but not complete; consider for example {xy, xy, xz, xz}. We have the following:

Lemma 6. Every truth assignment to a semicomplete r-CNF formula satisfies exactly 2r − 1
clauses.

Proof. Let S be a semicomplete r-CNF formula. To prove that no truth assignment satisfies all
clauses of S we use the following simple counting argument from [22]. Observe that every clause
is not satisfied by exactly 2n−r truth assignments. However, each of these assignments satisfies
each other clause (due to the conflicts). So, we have exactly 2r · 2n−r truth assignments not
satisfying S. But 2r · 2n−r = 2n, the total number of truth assignments.

Now let τ be a truth assignment of S. By the above, τ does not satisfy a clause C of S.
However, τ satisfies any other clause of S as any other clause has a conflict with C.

Consider the following data reduction procedure.
Given an r-CNF formula F that contains a semicomplete subset F ′ ⊆ F , delete F ′ from F

and consider F \F ′ instead. Let FS denote the formula obtained from F by applying this deletion
process as long as possible. We say that FS is obtained from F by semicomplete reduction.

We state the following two simple observations as a lemma.

Lemma 7. Let F be an r-CNF formula.

1. FS can be obtained from F in polynomial time.

2. sat(F )− sat(FS) = (1 − 2−r)(|F | − |FS |).

8



5.2 Kernelization

Let F be a 2-CNF formula. A variable x ∈ var(F ) is insignificant if for each literal y the
numbers of occurrences of the two clauses xy and xy in F are the same. A variable x ∈ var(F ) is
significant if it is not insignificant. A literal is significant or insignificant if its underlying variable
is significant or insignificant, respectively.

Theorem 2. Let F be a 2-CNF formula with F = FS (i.e., F contains no semicomplete subsets)
and let k ≥ 0 be an integer. If F has more than 3k − 2 significant variables, then sat(F ) ≥
(3|F |+ k)/4.

The remainder of this section is devoted to the proof of Theorem 2 and its corollary. Let F
be a 2-CNF formula with m clauses and n variables and let k be an integer. We assume that F
contains no semicomplete subsets, i.e., F = FS .

For a literal x let c(x) denote the number of clauses in F containing x. Given a pair of literals
x and y, x 6= y, let c(xy) be the number of occurrences of clause xy in F .

Given a clause C ∈ F and a variable x ∈ var(F ), let δC(x) be an indicator variable whose
value is set as δC(x) = 1 if x ∈ C, δC(x) = −1 if x ∈ C, and δC(x) = 0 otherwise.

Lemma 8. For each subset R = {x1, . . . , xq} ⊆ var(F ) we have sat(F ) ≥ (3m+ kR)/4 for

kR =
∑

1≤i≤q

(c(xi)− c(xi)) +
∑

1≤i<j≤q

(

c(xixj) + c(xixj)− c(xixj)− c(xixj)
)

.

Proof. Take a random truth assignment τ ∈ 2var(F ) such that τ(xi) = 1 for all i ∈ {1, . . . , q} and
P(τ(x) = 1) = 0.5 for all x ∈ var(F ) \R. A simple case analysis yields that the probability that
a clause C ∈ F is satisfied by τ is given by

P(τ satisfies C) = 1− 1

4

∏

1≤i≤q

(1 − δC(xi)).

Observe that for any clause C and any three distinct variables x, y, z we have
δC(x)δC(y)δC(z) = 0 as var(C) contains exactly two variables. Hence we can determine the
expected number of clauses satisfied by τ as follows.

E(sat(τ, F )) =
∑

C∈F

P[ τ satisfies C ]

=
∑

C∈F

{

1− 1

4

∏

1≤i≤q

(1− δC(xi))
}

=
3

4
m+

1

4

∑

C∈F

{

∑

1≤i≤q

δC(xi)−
∑

1≤i<j≤q

δC(xi)δC(xj)
}

=
3

4
m+

1

4

{

∑

1≤i≤q

∑

C∈F

δC(xi)−
∑

1≤i<j≤q

∑

C∈F

δC(xi)δC(xj)
}

=
3

4
m+

1

4
kR.

It is noteworthy that P(τ satisfies C) = 1 − 1
4

∏

1≤i≤q(1 − δC(xi)) in the proof of Lemma 8 is
similar to a term ofX defined in Section 4.1. The term 1−∏

xi∈var(C)(1+εixi) ofX returns a fixed

value on C for a given (fully determined) truth assignment, depending on whether C is satisfied
or not. Similarly, the term 1− 1

4

∏

1≤i≤q(1− δC(xi)) returns a probability of C being satisfied for
a given (partially determined) random truth assignment. The benefit of having a probabilistic
form of X is that we now have a way to ignore a large number of variables, e.g., V \R in Lemma
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8, instead of searching for a fully determined truth assignment so as to compute X . For the
case r = 2, this probabilistic form of X can be immediately interpreted in a graph-theoretical
language as will be shown below.

Due to Lemma 8, the task is now reduced into finding a subset R of variables with kR ≥ k.
These are variables which form the deterministic part of a partially random truth assignment.
Using a notion of switch defined later, we replace F by an equivalent formula in which every
variable of R is set to 1. To find R we use a graph-theoretical approach introducing an auxiliary
weighted graph in which we seek an induced subgraph of weight at least k. In particular, we note
that an ‘independent’ structure of an induced subgraph ensures its weight to be above a certain
bound growing with the size of the induced subgraph. This means that if (F, k) is a No-instance,
we do not have a large ‘independent’ structure. Using this fact and the Tutte-Berge formula for
the size of a maximum matching in a graph (stated after Lemma 13), we will prove an upper
bound on the number of vertices in the auxiliary weighted graph.

We construct an auxiliary graph G = (V,E) from F by letting V = var(F ) and xy ∈ E if and only
if there exists a clause C ∈ F with var(C) = {x, y} (equivalently, c(xy)+c(xy)+c(xy)+c(xy) ≥ 1).

We assign a weight to each vertex x and edge xy of G = (V,E):

w(x) :=
∑

C∈F

δC(x) = c(x) − c(x),

w(xy) := −
∑

C∈F

δC(x)δC(y) = c(xy) + c(xy)− c(xy)− c(xy).

For subsets U ⊆ V and H ⊆ E, let w(U) =
∑

x∈U w(x) and w(H) =
∑

xy∈H w(xy). The weight

w(Q) of a subgraph Q = (U,H) is w(U) + w(H). Let G0 be the graph obtained from G by
removing all edges of weight zero.

Lemma 9. A variable x ∈ var(F ) is insignificant if and only if x is an isolated vertex in G0 and
w(x) = 0.

Proof. Suppose x ∈ var(F ) is insignificant. Choose an edge xy ∈ E (this is possible since by
construction G has no isolated vertices). Since x is insignificant, c(xy) = c(xy) and c(xy) = c(xy)
and thus w(xy) = 0. Therefore the edge xy does not appear in G0 and x is isolated in G0. Observe
that we have c(x) = c(x), which implies w(x) = 0.

Suppose x ∈ var(F ) is an isolated vertex of G0 and w(x) = 0. Since G has no isolated
vertices, we have w(xy) = 0 for all xy ∈ E. In order to derive a contradiction, let us suppose
x is a significant variable of F . Consequently there is (i) either a clause xy ∈ F such that
c(xy) > c(xy), or (ii) there is a clause xy ∈ F such that c(xy) > c(xy). We consider case (i) only,
case (ii) can be treated analogously. With w(xy) = 0, we have c(xy) > c(xy), and thus xy ∈ F .

Now the condition w(x) = c(x)− c(x) = 0 implies the existence of an edge xz ∈ E with z 6= y
such that for some z′ ∈ {z, z} we have xz′ ∈ F and c(xz′) > c(xz′). Without loss of generality,
assume that z′ = z. Since w(xz) = 0, we have xz ∈ F . However, the four clauses xy, xy, xz,
xz in F form a semicomplete 2-CNF formula, which contradicts our assumption that F = FS .
Hence x is indeed an insignificant variable.

For a set X ⊆ var(F ) we let FX denote the 2-CNF formula obtained from F by replacing x
with x and x with x for each x ∈ X . We say that FX is obtained from F by switching X .

The following lemma follows immediately from the definitions of switch and weights.

Lemma 10. The auxiliary graph GX corresponding to FX can be obtained from G = (V,E)
by reversing the signs of the weights of all vertices in X and all edges between X and V \ X.
Moreover, sat(F ) = sat(FX).

To distinguish between weights in G and GX , we use wX(.) for weights of GX . Similarly, we
use cX(.) for FX .
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It is sometimes convenient to stress that the set X we are switching induces a subgraph. We
can switch an induced graph Q by switching all the vertices of Q. Observe that by switching an
induced graph Q, we reverse the signs of weights on all vertices of Q and all edges incident with
exactly one vertex of Q, but the sign of each edge within Q remains unchanged. This property
will play a major role to show that a certain structure meets the condition of the following lemma.

Lemma 11. If there exist a set X ⊂ V (G0) and an induced subgraph Q = (U,H) of G0 with
wX(Q) ≥ k, then sat(F ) ≥ (3m+ k)/4.

Proof. We consider U = {x1, . . . , xq} as a subset of var(FX). By Lemmas 8 and 10, sat(F ) =
sat(FX) ≥ (3m+ kU )/4, where

kU =

q
∑

i=1

(cX(xi)− cX(xi)) +
∑

1≤i<j≤q

(cX(xixj) + cX(xixj)− cX(xixj)− cX(xixj))

=

q
∑

i=1

wX(xi) +
∑

1≤i<j≤q

wX(xixj) = wX(Q) ≥ k.

To apply Lemma 11 in the proof of Theorem 2, we will focus on a special case of induced
subgraphs of G0. For a set U ⊆ V (G0), let G0[U ] denote the subgraph of G0 induced by U . We
call G0[U ] an induced star with center x if x is a vertex of G0, I is an independent set in the
subgraph of G0 induced by the neighbors of x and U = {x}∪ I. We are interested in the induced
star due to the following property.

Lemma 12. Let x be the center of an induced star Q = G0[U ] and let I = U \ {x}. Then there
is a set X ⊆ U such that wX(Q) ≥ |I|.

Proof. Let H be the set of edges of Q. We may assume that w(xy) ≥ 0 for each y ∈ I since
otherwise we can switch y, and w(xy) is integral. By a random switch of Q, we mean a switch of
every vertex of Q with probability 0.5. Take a random switch R of Q. Then we have E(wR(z)) = 0
for all z ∈ U . Note that the sign of each edge in H remains positive. Hence we have E(wR(Q)) =
w(H) ≥ |I| and thus there exists a set X ⊆ U for which wX(Q) ≥ |I|.

If we are given more than one induced star, a sequence of random switches gives us a similar
result.

Lemma 13. Let Q1 = (U1, H1), . . . , Qm = (Um, Hm) be a collection of vertex-disjoint induced
stars of G0 with centers x1, . . . , xm, let U =

⋃m
i=1 Ui, and let Q = G0[U ]. Then there is a set

X ⊆ U such that wX(Q) ≥ ∑m
i=1 |Ii|, where Ii = Ui \ {xi}, i = 1, . . . ,m.

Proof. As in the proof of Lemma 12, we may assume that all the edges of Hi have positive
weights. Let H be the set of edges of Q. By a random switch of Q, we mean a sequence of
switches of Q1, . . . , Qm each with probability 0.5. Take a random switch R of Q. Then we have
E(wR(x)) = 0 for all x ∈ U . Moreover, for the subgraph Q of G0

R, it holds that E(wR(xy)) = 0
for all xy ∈ H \

⋃m
i=1 Hi since each choice of wR(xy) ≥ 0 and wR(xy) ≤ 0 is equally likely. By

linearity of expectation and Lemma 12, we have E(wR(Q)) = w(
⋃m

i=1 Hi) ≥
∑m

i=1 |Ii| and thus
there exists a set X ⊆ U for which wX(Q) ≥ ∑m

i=1 |Ii|.

Note that we can derandomize the procedures suggested in the proofs of Lemma 12 and 13
using the standard technique of conditional expectation [2].

We are now in the position to complete the proof of Theorem 2.
Suppose that (F, k) is a no-instance, i.e., sat(F ) < (3m + k)/4. Notice that a matching can

be viewed as a collection of induced stars of G0 for which |Ii| = 1. It follows by Lemmas 11 and
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13 that G0 has no matching of size k. The Tutte-Berge formula [4, 9] states that the size of a
maximum matching in G0 equals

min
S⊆V (G0)

1

2
{|V (G0)|+ |S| − oc(G0 − S)}

where oc(G0 −S) is the number of odd components (connected components with an odd number
of vertices) in G0−S. Hence there is a set S ⊆ V (G0) such that |V (G0)|+ |S|−oc(G0−S) < 2k.
It follows that

|V (G0)| ≤ oc(G0 − S)− |S|+ 2k − 1. (3)

We will now classify odd components in G0 − S. One obvious type of odd components is an
isolated vertex in G0 of weight zero, which corresponds to an insignificant variable by Lemma 9.
All the other odd components can be categorized into one of the following two types:

1. Let Q1, . . . , QL be the odd components of G0 − S such that for all 1 ≤ i ≤ L we have
|Qi| = 1 and Qi is a significant variable.

2. Let Q′
1, . . . , Q

′
L′ be the odd components of G0 − S such that for all 1 ≤ i ≤ L′ we have

|Q′
i| > 1.

We construct a collection of induced stars as follows. From each of Q′
1, . . . , Q

′
L′ we choose

an edge, which is an induced star with |I| = 1. Let us consider Q1, . . . , QL. Each vertex Qi is
adjacent to at least one vertex of S. Thus, we can partition Q1, . . . , QL into |S| sets, some of
them possibly empty, such that each partite set forms an independent set in which every vertex
is adjacent to the corresponding vertex xi of S. Each partite set, together with xi, forms an
induced star. Now observe that we have a collection of induced stars and the total number of
edges equals L + L′. If L + L′ ≥ k, Lemma 13 implies that for some set X of vertices from the
odd components wX(Q) ≥ k, which is impossible by Lemma 11. Hence L+ L′ ≤ k − 1.

Therefore, oc(G0−S)−n′ = L+L′ ≤ k− 1, where n′ is the number of insignificant variables.
By (3), we have |V (G0)|−n′ ≤ k−1−|S|+2k−1 ≤ 3k−2. It remains to observe that |V (G0)|−n′

equals the number of significant variables of F . This completes the proof of Theorem 2.

Corollary 2. The problem Max-2-Sattlb admits a (polynomial time) reduction to a problem
kernel with at most 3k − 1 variables.

Proof. Consider an instance (F, k) of the problem. First we apply the semicomplete reduction
and obtain (in polynomial time) an instance (F ′, k) with F ′ = FS . We determine (again in
polynomial time) the set S′ of significant variables of F ′. If |S′| > 3k − 2 then (F ′, k) is a yes-
instance by Theorem 2, and consequently (F, k) is a yes-instance by Lemma 7. Assume now that
|S′| ≤ 3k − 2.

Let z be a new variable not occurring in F . Since F ′ = FS , no clause contains two insignificant
variables and, thus, each insignificant variable can be replaced by z without changing the solution
to (F ′, k). Let us denote the modified F ′ by F ′′; F ′′ has at most 3k − 1 variables.

Let p be the number of clauses in F ′′. Observe that we can find a truth assignment satisfying
the maximum number of clauses of F ′′ in time O(p8k). Thus, if p > 8k, we can find the optimal
truth assignment in the polynomial time O(p2) = O(m2). Thus, we may assume that F ′′ has at
most 8k clauses. Therefore, F ′′ is a kernel of the Max-2-Sattlb problem.

6 Extension to Boolean Constraint Satisfaction Problems

The fixed-parameter tractability result on Max-r-Sattlb can be easily extended to any family
of Boolean r-Constraint Satisfaction Problems. Here is an outline of the argument.
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Let r be a fixed positive integer, let Φ be a set of Boolean functions, each involving at most r
variables, and let F = {f1, f2, . . . , fm} be a collection of Boolean functions, each being a member
of Φ, and each acting on some subset of the n Boolean variables x1, x2, . . . , xn. The Boolean
Max-r-Constraint Satisfaction Problem (corresponding to Φ), which we denote by the Max-r-
CSP problem, for short, when Φ is clear from the context, is the problem of finding a truth
assignment to the variables so as to maximize the total number of functions satisfied. Note that
this includes, as a special case, the Max-r-Sat problem considered in the previous section, as well
as many related problems. As most interesting problems of this type are NP-hard, we consider
their parameterized version, where the parameter is, as before, the number of functions satisfied
minus the expected value of this number. Note, in passing, that the above expected value is a
tight lower bound for the problem, whenever the family Φ is closed under replacing each variable
by its complement, since if we apply any Boolean function to all 2r choices of literals whose
underlying variables are any fixed set of r variables, then any truth assignment to the variables
satisfies exactly the same number of these 2r functions.

For each Boolean function f of r(f) Boolean variables

xi1 , xi2 , . . . , xir(f)
,

define a random variable Xf as follows. As in the discussion of the Max-r-Sat problem, suppose
each variable xij attains values in {−1, 1}. Let V ⊆ {−1, 1}r(f) denote the set of all satisfying
assignments of f . Then

Xf (x1, x2, . . . , xn) =
∑

v=(v1,...,vr(f))∈V

2r−r(f)[

r(f)
∏

j=1

(1 + xijvj)− 1].

This is a random variable defined over the space {−1, 1}n and its value at x = (x1, x2, . . . , xn)
is 2r − |V | · 2r−r(f) if x satisfies f , and is −|V | · 2r−r(f) otherwise. Thus, the expectation of Xf

is zero. Define now X =
∑

f∈F Xf . Then the value of X at x = (x1, x2, . . . , xn) is precisely
2r(s−a), where s is the number of the functions satisfied by the truth assignment x, and a is the
average value of the number of satisfied functions. Our objective is to decide if X attains a value
of at least k. As this is a polynomial of degree at most r with integer coefficients and expectation
zero, we can repeat the arguments of Section 4 and prove that, for every fixed r, the problem
is fixed-parameter tractable. Moreover, our previous arguments show that the problem admits a
polynomial-size bikernel reducing it to an instance of Max-r-Lin2tlb of size O(k2), and if the
specific r-CSP problem considered is NP-complete, then there is a polynomial size kernel. This
is the case for most interesting choices of the family Φ.

7 Discussions

Our results are mainly of theoretical interest. However, our kenelization for Max-2-Sattlb might
be of some practical interest for families of istances of Max-2-Sat where the maximum number
of satisfied clauses is close to 3m/4.

Recently Crowston et al. [10] proved thatMax-2-Sattlb has a kernel with O(k log k) variables
for every fixed r ≥ 2. The new result uses several ideas given in this paper, but employes linear
algebraic rather than probabilistic tools.
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