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Euclidean Prize-collecting Steiner Forest∗

MohammadHossein Bateni† MohammadTaghi Hajiaghayi‡

Abstract

In this paper, we consider Steiner forest and its generalizations, prize-collecting Steiner forest
and k-Steiner forest, when the vertices of the input graph are points in the Euclidean plane and
the lengths are Euclidean distances. First, we present a simpler analysis of the polynomial-time
approximation scheme (PTAS) of Borradaile et al. [12] for the Euclidean Steiner forest problem.
This is done by proving a new structural property and modifying the dynamic programming
by adding a new piece of information to each dynamic programming state. Next we develop a
PTAS for a well-motivated case, i.e., the multiplicative case, of prize-collecting and budgeted
Steiner forest. The ideas used in the algorithm may have applications in design of a broad class
of bicriteria PTASs. At the end, we demonstrate why PTASs for these problems can be hard in
the general Euclidean case (and thus for PTASs we cannot go beyond the multiplicative case).

1 Introduction

Prize-collecting Steiner problems are well-known network design problems with several applica-
tions in expanding telecommunications networks (see e.g. [25, 32]), cost sharing, and Lagrangian
relaxation techniques (see e.g. [24, 15]). The most general version of these problems is called
the prize-collecting Steiner forest (PCSF) problem1, in which, given a graph G = (V,E), a set
of (commodity) pairs D = {(s1, t1), (s2, t2), . . . }, a non-negative cost function c : E → Q≥0, and
finally a non-negative penalty function π : D → Q≥0, our goal is a minimum-cost way of buying
a set of edges and paying the penalty for those pairs which are not connected via bought edges.
When all penalties are ∞, the problem is the classic APX-hard Steiner forest problem for which
the best approximation factor is 2 − 2

n (n is the number of vertices of the graph) due to Goe-
mans and Williamson [19]. When all sinks are identical in the PCSF problem, it is the classic
prize-collecting Steiner tree problem. Bienstock, Goemans, Simchi-Levi, and Williamson [8] first
considered this problem (based on a problem earlier proposed by Balas [3]) for which they gave a
3-approximation algorithm. The current best approximation algorithm for this problem is a recent
1.992-approximation algorithm of Archer, Bateni, Hajiaghayi, and Karloff [1] improving upon a
primal-dual

(

2 − 1
n−1

)

-approximation algorithm of Goemans and Williamson [19]. When in ad-
dition all penalties are ∞, the problem is the classic Steiner tree problem, which is known to be
APX-hard [7] and for which the best known approximation factor is 1.55 [31].
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There are several 3-approximation algorithms for the prize-collecting Steiner forest problem us-
ing LP rounding, primal-dual, or iterative rounding methods which are first initiated by Hajiaghayi
and Jain [22] (see [8, 23]). Currently the best approximation factor for this problem is a randomized
2.54-approximation algorithm [22]. The approach of Hajiaghayi and Jain has been generalized by
Sharma, Swamy, and Williamson [33] for network design problems where violating arbitrary 0-1
connectivity constraints are allowed in exchange for a very general penalty function.

Lots of attention has been paid to budgeted versions of Steiner problems as well. In the k-Steiner
forest (or just k-forest for abbreviation), given a graph G = (V,E) and a set of (commodity) pairs
D, the goal is to find a minimum-cost forest that connects at least k pairs of D. The best current
approximation factor for this problem is in O(min{

√
k,
√

n}) [21]. On the other hand, Hajiaghayi
and Jain [22] could transform notorious dense k-subgraph to this problem, for which the current
best approximation factor is O(n1/3−ǫ) [16]. The special case in which we have a root r and D
consists of all pairs (r, v) for v ∈ V (G) − {r} is the well-known NP-hard k-MST problem. The
first non-trivial approximation algorithm for the k-MST problem was given by Ravi et al. [30],
who achieved an approximation ratio of O(

√
k). Later this approximation ratio is improved to a

constant by Blum et al. [9]. Currently the best approximation factor for this problem is 2 due to
Garg [17].

In this paper, we consider Euclidean prize-collecting Steiner forest and Euclidean k-forest in
which the vertices of the input graph are points in the Euclidean plane (or low-dimensional Eu-
clidean space) and the lengths are Euclidean distances. For the Euclidean Steiner tree problem,
Arora [2] and Mitchell [29] gave polynomial-time approximation schemes (PTASs). Recently Bor-
radaile, Klein and Kenyon-Mathieu [12] claim a PTAS for the more general problem of Euclidean
Steiner forest .

1.1 Problem definition

Motivated by the settings in which the demand of each pair is the product of the weight of the origin
vertex and the weight of the destination vertex in the pair and thus in a sense contributions of each
vertex to all adjacent pairs are the same (e.g., see product multi-commodity flow in Leighton and
Rao [27] or [10, 26], and its applications in wireless networks [28] or routing [13, 14]), we consider
the following multiplicative version of prize-collecting Steiner forest for the Euclidean case.

In the Multiplicative prize-collecting Steiner forest (MPCSF) problem, given an undirected
graph G(V,E) with non-negative edge lengths ce for each edge e ∈ E, and also given weights
φ(v) for each vertex v ∈ V , our goal is to find a forest F which minimizes the cost

∑

e∈F

ce +
∑

u,v∈V : u and v are not connected via F

φ(u)φ(v).

Indeed, this is an instance of PCSF in which each ordered vertex pair (u, v) forms a request with
penalty φ(u)φ(v).2 We may be asked to collect a certain prize S, in which case the goal is to find
the forest F of minimum cost for which

∑

u,v∈V : u and v are connected via F

φ(u)φ(v) ≥ S.

2We can change the definition to unordered pairs whose treatment requires only a slight modifications of the
algorithms. Currently, each unordered pair (u, v) has a prize of 2φ(u)φ(v) if u 6= v.
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Let us call this problem S-MPCSF. We show that this is a generalization of the k-MST problem
(see Appendix A.2) and thus currently there is no approximation better than 2 for this problem
either. When working on the Euclidean case, the input does not include any Steiner vertices, as all
the points of the plane are potential Steiner points.

A bicriteria (α, β)-approximate solution for the the S-MPCSF problem is one whose cost is at
most αOPT, yet collects a prize of at least βS. Our main contribution in this paper is a bicriteria
(1 + ǫ, 1 − ǫ′)-approximation algorithm that runs in time exponential in 1/ǫ but polynomial in n
and 1/ǫ′. We then use this algorithm to obtain a PTAS for MPCSF.

1.2 Our contribution

First of all, we present a simpler analysis for the algorithm of Borradaile et al. [12] for the Euclidean
Steiner forest problem and reprove the following theorem.

Theorem 1. For any constant ǫ > 0, there is an algorithm that runs in polynomial time and approxi-
mates the Euclidean Steiner forest problem within 1 + ǫ of the optimal solution.

This is done by modifying the dynamic programming (DP) algorithm so that instead of storing
paths enclosing the zones in the algorithm by Borradaile et al., we use a bitmap to identify a
zone. The modification results in simplification of the structural property required for the proof
of correctness (See Section 3). We prove this structural property in Theorem 6. The proof has
some ideas similar to [12], but we present a simpler charging scheme that has a universal treatment
throughout. Next we give an overview of the dynamic programming algorithm in Section 4. We
have recently come to know that similar simplifications have been independently discovered by the
authors of [12], too.

Next we extend the algorithm for Euclidean S-MPCSF and MPCSF problems in Section 5.

Theorem 2. For any ǫ, ǫ′ > 0, there is a bicriteria (1 + ǫ, 1 − ǫ′)-approximation algorithm for the
Euclidean S-MPCSF problem, that runs in time polynomial in n, 1/ǫ′ and exponential in 1/ǫ.

Notice that ǫ′ need not be a constant. In particular, if all weights are polynomially bounded
integers, we can find in polynomial time a (1 + ǫ)-approximate solution that collects a prize of at
least S; this can be done by picking ǫ′ to be sufficiently small (ǫ′−1 is still polynomial). Next we
present a PTAS for Euclidean MPCSF.

Theorem 3. For any constant ǫ, there is a (1 + ǫ)-approximation algorithm for the Euclidean MPCSF

problem, that runs in polynomial time.

We also study the case of asymmetric prizes for vertices in which each vertex v has two types
of weights (type one and type two) and the prize for an ordered pair (u, v) is the product of the
first type weight of u, i.e., φs(u), and the second type weight of v, i.e., φt(v). This case is especially
interesting because it generalizes the multiplicative prize-collecting problem when we have two
disjoint sets S1 and S2 and we pay the multiplicative penalty only when two vertices, one in S1 and
the other one in S2, are not connected (by letting for each vertex in S1 the first type weight be its
actual weight and the second type weight be zero and for each vertex in S2 the first type weight be
zero and the second type weight be its actual weight.) After hinting on the arising complications,
we show how we can extend our algorithms for this case as well.

3



Theorem 4. For any ǫ, ǫ′ > 0, there is a bicriteria (1 + ǫ, 1 − ǫ′)-approximation algorithm for the
Euclidean Asymmetric S-MPCSF problem, that runs in time polynomial in n, 1/ǫ′ and exponential
in 1/ǫ. In addition, for any constant ǫ, there is a (1 + ǫ)-approximation algorithm for the Euclidean

Asymmetric MPCSF problem, that runs in polynomial time.

Indeed, the algorithms in Theorem 4 can be extended to the case in which there are a constant
number of different types of weights for each vertex generalizing the case in which we have a
constant number of disjoint sets and we pay the multiplicative penalty when two vertices from
two different sets are not connected. Notice that the case of two disjoint sets already generalizes
the prize-collecting Steiner tree problem (by considering S1 = {r} and S2 = V − {r}) whose best
approximation guarantee is currently 1.992.

At the end, we present in Section 6 why PCSF and k-forest problems can be APX-hard in the
general case (and thus for PTASs we cannot go beyond the multiplicative case). We conclude with
some open problems in Section 7. All the omitted proofs appear in the appendix.

1.3 Our techniques for the prize-collecting version

Here, we summarize our techniques for the multiplicative prize collecting Steiner forest algorithms;
see Section 5. In all those algorithms, we store in each DP state extra parameters, including the
sum of the weights, as well as the multiplicative prize already collected in each component. These
parameters enable us to carry out the DP update procedure. Interestingly, the sum and collected
prize parameters have their own precision units.

In the asymmetric version, a major issue is that no fixed unit is good for all sum parameters.
Some may be small, yet have significant effect when multiplied by others. To remedy this, we use
variable units, reminiscent of the floating-point storage formats (mantissa and exponent). To the
best of our knowledge, Bateni and Hajiaghayi [4] were the first to take advantage of this idea in the
context of (polynomial time) approximation schemes. The basic idea is that a certain parameter
in the description of DP states has a large (not polynomial) range, however, as the value grows, we
can afford to sacrifice more on the precision. Thus, we store two (polynomial) integer numbers, say
(i, x), where i denotes a variable unit, and x is the coefficient: the actual number is then recovered
by x · ui. The conversion between these representations is not lossless, but the aggregate error can
be bounded satisfactorily.

In Section 5.3 we consider the problem where the objective is a linear function of penalties paid
and the cost of the forest built. The challenging case is when the cost of the optimal forest is very
small compared to the penalties paid. In this case, we identify a set of vertices with large penalties
and argue they have to be connected in the optimal solution. Then, with a novel trick we show
how to ignore them in the beginning, and take them into account only after the DP is carried out.

2 Preliminaries

Let n = |V | be the total number of terminals and let OPT be the total length of the optimal solution.
A bitmap is a matrix with 0-1 entries. Two bitmaps of the same dimensions are called disjoint if and
only if they do not have value one at the same entry. Consider two partitions P = {P1, P2, . . . , P|P|}
and P ′ = {P ′

1, P
′
2, . . . , P

′
|P ′|} over the same ground set. Then, P is said to be a refinement of P ′ if

and only if any set of P is a subset of a set in P ′, namely ∀P ∈ P,∃P ′ ∈ P ′ : P ⊆ P ′.

4



(a) (b)

Figure 1: (a) An example of a dissection square with depth 3, and depiction of portals for a sample
dissection square with m = 8; (b) the γ × γ grid of cells inside a sample dissection square with
γ = 4.

By standard perturbation and scaling techniques, we can assume the following conditions hold
incurring a cost increase of O(ǫOPT); see [2, 12] for example.

(I) The diameter of the set V is at most d′ = n2ǫ−1OPT.

(II) All the vertices of V and the Steiner points have coordinates (2i + 1, 2j + 1) where i and j
are integers.

For simplicity of exposition, we ignore the above increase in cost. As we are going to obtain
a PTAS, this increase will be absorbed in the future cost increases. We have a grid consisting of
vertical and horizontal lines with equations x = 2i and y = 2j where i and j are integers. Let L
denote the set of lines in the grid. We let L be the smallest power of two greater than or equal to
2d′ and perform a dissection on the randomly shifted bounding box of size L × L; see Figure 1(a).

For each dissection square R and each side S of R, designate m + 1 equally spaced points along
S (including the corners) as portals of R where m is the smallest power of 2 greater than 4ǫ−1 log L.
So the square R has 4m portals.

There is a notion of level associated with each dissection square, line, or side of a square. The
bounding box has level zero, and level of each other dissection square is one more than the level of
its parent dissection square. The level of a line ℓ is the minimum level of a square R a side of which
falls on the line ℓ. Thus, the first two lines dividing the bounding box have level one. If a side S of
a square R falls on a line ℓ, we define level(S) = level(ℓ). So level(S) ≤ level(R). The thickness of
the lines in Figure 1 denotes their level: the thicker the line, the lower is its level.

For a (possibly infinite) set of geometric points X, let comp(X) denote the number of connected
components of X; we will use the shorthand “component” in this paper. With slight abuse of
notation, ℓ ∈ L is used to refer to the set of points3 on ℓ. In addition, we use L to denote the
union of points on the lines in L. Similarly, we use R to denote the set of all points on or inside
the square R. The set of points on (the boundary of) the square R is referred to by ∂R. The total
length of all line segments in F is denoted by length(F ).

The following theorem is mentioned in [12] in a stronger form. We only need its first half whose
proof follows from [2].

3not necessarily terminals
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Theorem 5. [12] There is a solution F having expected length at most (1 + 1
4ǫ)OPT such that each

dissection square R satisfies the following two properties: for each side S of R, F ∩ S has at most
ρ = O(ǫ−1) non-corner components4 (boundary components property); and each component of F ∩∂R
contains a portal of R (portal property).

3 Structural theorem

Let R be a dissection square. Divide R into a regular γ × γ grid of cells, where γ is a constant
power of two determined later; see Figure 1(b). We say R is the owner of these cells. The level
of these cells, as well as the new lines they introduce, is defined in accordance with the dissection.
That is, we assign them levels as if they are normal dissection squares and we have continued
the dissection procedure for log γ more levels. There are several lemmas in the work of [12] to
prove the structural property they require (this is the main contribution of that work). We modify
the dynamic programming definition such that its proof of correctness needs a simpler structural
property. The proof of this property is simpler than that in the aforementioned paper.

Theorem 6. There is a solution F having expected length at most (1 + 1
2ǫ)OPT such that each

dissection square R satisfies the locality property : if the terminals t1 and t2 are inside a cell C of R and
are connected to ∂R via F , then they are connected in F ∩ R.

The proof has ideas similar to [12, Theorem 3.2, and Lemmas 3.3, 3.4, 3.5 and 3.9]. We first
mention and prove a lemma we need in order to prove Theorem 6. The lemma more or less appears
in [2, 12].

Lemma 7. For the forest F output by Theorem 5, comp(F ∩ L) ≤ length(F ).

We can now prove the main structural result. A side S of a square R is called private if it does
not lie on a side of the parent square R′ of R. Observe that out of any two opposite sides of a
dissection square, exactly one is private.
Proof of Theorem 6. We start with a solution F satisfying Theorem 5. The final solution is
produced by iteratively finding the smallest cell C owned by a square R that violates the locality
property, and adding σ(C,F ) to F , where σ(C,F ) is defined as the union of the private sides of C
and any side of C having non-empty intersection with F . We claim the locality property is realized
after finitely many such additions. If after adding σ(C,F ) to F , the cell C still violates the locality
property, there has to be exactly two opposite sides of the cell having non-empty intersection with
F ; otherwise, the σ(C,F ) is clearly connected. However, in case of the opposite sides, one middle
side will be a private side of C and hence included as well.

Next, we argue that the conditions of Theorem 5 still hold. Take a side S of any square R. If
the conditions are to be affected for S, it has to be due to an addition involving a cell C that has
a side S′ such that (1) S′ has non-empty intersection with S, and (2) S′ is added to F as part of
σ(C,F ). The condition will be trivial if S′ contains S. Thus, we assume that C is a smaller square
than R. So S′ cannot be a private side of C. However, the number of components on S cannot
increase if S′ has already an intersection with F .

4Non-corner components are those not including any corners of squares. Note that each square can have at most
four corner components.
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Finally we show that the additional length is not large. Let F ∗ = F∩L, and let G = {(x, y) : x =
2i, y = 2j} be the set of all grid points. We will charge the additions to the connected components
of F ∗ − G. Notice that

comp(F ∗ − G) ≤ comp(F ∗) + 3|F ∗ ∩ G| (1)

≤ comp(F ∗) + 3 · (length(F ∗) + comp(F ∗)) (2)

= 4 comp(F ∗) + 3 length(F )

≤ 7 length(F ), by Lemma 7. (3)

Inequality (1) holds because removal of each grid point on F ∗ increases the number of components
by at most three. To obtain (2), notice that in any connected component of F ∗, the distance
between any two points of F ∗ ∩G is at least 2. Hence, if there are more than one such points, there
cannot be more than length(F ∗) ones.

We charge this addition to a connected component of (∂R ∩ F ) − G, in such a way that each
connected component is charged to at most twice: once from each side. For simplicity, we duplicate
each connected component of (F ∩ ℓ)−G: they correspond to squares from either side of ℓ. For any
dissection square R, let CR refer to the connected components of F ∩R that reach ∂R. Further, let
KR be the set of connected components of (F ∩ ∂R) − G. When σ(C,F ) is added where R is the
owner of C, there are k ≥ 2 components c1, . . . , ck ∈ CR that become connected. Any element of
KR connected via F ∩ R to a component c ∈ CR is said to be an interface of c. The addition will
be charged to a free interface of some c ∈ CR with maximum level. This element will no longer be
free for the rest of the procedure. We argue this procedure successfully charges all the additions
to appropriate border components. To this end, we shortly prove the following stronger claim via
induction on the number of additions performed. We call a dissection square R violated if the
locality property does not hold for a cell C owned by R.

Claim 8. At all times during the execution of this procedure, any component c ∈ CR has a free
interface, for each violated square R. As a result, any addition can be charged to a free component.

The second statement of the claim follows from the first part. The first part is proved as follows.
The claim clearly holds at the beginning, since all interfaces are free, and each component has an
interface. Suppose the addition σ(C,F ) is performed and let R be the owner of C. We show any
dissection square R′ will stay fine. Notice that the size of the squares R for which the addition is
performed is increasing in time. Hence, any dissection square R′ smaller than R is irrelevant in the
statement of the claim, since they cannot be violated. For R itself, each ci has at least one free
interface. One of the interfaces is used, and thus the new component formed by their union has a
free interface. Suppose for the sake of reaching a contradiction that a component c′ ∈ CR′ has no
free interface after the addition. Thus R′ contains R, and the charging was not done to a private
side of R. Recall that prior to the addition, c′ is connected to some components of CR with at least
two free interfaces in R. One of them still remains free. We charged to the interface of maximum
level and it was in ∂R′. Hence, the free interface is also in ∂R, leading to a contradiction.

Let (the random variable) cℓ,j denote the number of charges to components on ℓ ∈ L due to cells
C owned by squares R of level j. Independently of the randomness

∑

ℓ

∑

j cℓ,j ≤ 2 comp(F ∗ − G)
by the above discussion and Claim 8. Note the cost of adding σ(C,F ) (charged to a component on
R) is at most 4L′/γ where L′ is the side length of R. The total increase due to charges to ℓ is at
most

∑

j≥depth(ℓ) cℓ,j
4L
γ2j where L is the side length of the bounding box. Due to the randomization
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in the dissection, we have Pr[depth(ℓ) = i] = 2i/L; see [2] for instance. The expected increase in
length is thus

∑

ℓ

∑

i

2i

L

∑

j≥i

cℓ,j
4L

γ2j
≤ 4

γ

∑

ℓ

∑

j

cℓ,j

2j

∑

i≤j

2i

≤ 8

γ

∑

ℓ

∑

j

cℓ,j

≤ 16

γ
comp(F ∗ − G) by Claim 8

≤ 112

γ
length(F ) by (3).

We pick γ to be the smallest power of two larger than 112(1 + ǫ) · 2ǫ−1 to finish the proof.

Therefore, with probability 1/2, we have length(F ) ≤ (1 + ǫ)OPT. In the entire argument, no
attempt was made to optimize the parameters.

4 The algorithm

A subsolution for R is a finite set of line segments F ⊂ R satisfying conditions of Theorems 5 and
6, with the extra property that any terminal t in R is connected via F either to its mate or to ∂R.
A configuration χ = (K,P) for R has two portions: a set K of pairs κi = (Pi,Mi) and a partition
P whose ground set is K, such that

• Pi is a subset of portals of R;

• Mi is a bitmap of size γ × γ;

• Pi and Pj are disjoint if i 6= j;

• the total number of portals, namely
∑

i |Pi|, is at most 4(ρ + 1); and

• bitmaps Mi and Mj are disjoint if i 6= j.

The configuration captures sufficient information about F so as to make it possible to take care of
the interaction between R and the outside. In particular, each pair (P,M) describes a connected
component of F , by specifying the set of portals on its boundary and the set of cells connected to
these portals. Roughly speaking, the partition P tells us which components κi and κj need to be
connected from outside R: this implies the existence of a pair of terminals that are in κi and κj ,
respectively, but they are not connected in R. We will see below why this restrictive abstraction
does not lose any crucial subsolutions.

We say a subsolution F is compatible with a configuration χ = (K,P) if

1. for any connected component κ of F that intersects ∂R, there exists a pair κ′ = (P,M) ∈ K
such that

• κ spans P ;

• each connected component of κ ∩ ∂R contains a portal of P ;
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• the bitmap M has value one in the positions corresponding to any cell C containing a
terminal t of κ; and

2. any terminal pair located in different components κ1 and κ2 of K are either connected via
F ∩ R, or κ1 and κ2 are in the same set of P.

4.1 The dynamic programming

In the dynamic program, we build a table TR[χ], indexed by configurations for each dissection
square R. The goal is to populate this table so that TR[χ] is the minimum length of a subsolution
for R that is compatible with χ. First of all, we show that for each R, the number of configurations
is small. Consider χ = (K,P). There are at most λ = 4(ρ + 1) pairs in K. For a particular
κ = (P,M), there are

∑λ
i=0

(

m+1
i

)

= O(mλ+1) options for the set of portals P . The bitmap M

has 2γ2

possibilities. A crude upper bound of 2λ2

is trivial for possibilities of P. Thus, the total
number will be at most

Φ =
[

O
(

mλ+1
)

· 2γ2
]λ

· 2λ2

= O(poly(m)) = O(poly log(n)).

Theorems 5 and 6 guarantee the existence of a near-optimal solution all whose subproblems are
compatible with a configuration: The connected components of F reaching ∂R can be decomposed
into disjoint bitmaps because of Theorem 6. Theorem 5 on the other hand ensures each connected
component on ∂R contains a portal, and the total number of such components is small. The details
of the DP update, as well as its correctness proof, appears below.

The final solution of the problem is obtained from the minimum TR[χ] where R is the bounding
box, and P of χ does not require any connections: i.e., all sets of the partition are singletons. This
would imply all the necessary connections have been made inside R. To actually construct the
solution, we need to store additional information in each dynamic programming state indicating
which configurations it was last updated from. It is then straightforward to recursively construct
the solution, by taking the union of the pertinent configurations.

Here we show how the dynamic programming table for Euclidean prize-collecting Steiner forest
is updated from the already-computed values. And finally we show why the update routine is
sound and complete. The table TR[χ] is populated in the order of increasing size for R. For a
base dissection square R, finding the value of TR[χ] is straightforward. Notice that there is at most
one point (possibly with several terminals collocated) inside R. Depending on whether the mates
of those terminals are collocated with them or not, we may need to connect some of them to the
boundary ∂R. There are only a constant number of portals in χ, hence we can go over all the ways
to connect them up and find the smallest value. Note that there cannot be any Steiner point inside
R.

Now we get to the update rule. Consider a dissection square R and a corresponding configuration
χ = (K,P). Let Ri for i = 1, 2, 3, 4, be the children of R in the dissection. Take corresponding
configurations χi = (Ki,Pi). Notice that each cell of R consists of exactly four cells of one Ri. We
can expand a bitmap M of Ri to a bitmap M ′ of dimensions 2γ×2γ for R, by placing three all-zero
bitmaps of dimensions γ×γ at appropriate locations around M . We do this in such a way that the
portion corresponding to M still points to Ri inside R. Consider all the components κ = (P,M)
corresponding to the four subsquares, expand their bitmap, and collect them in K1. Merge the
partitions Pi to get P ′. If there is a terminal pair (s, t) where s is in Ri and t is in a different Rj ,

9



Algorithm EuclideanSteinerForest

Input: Set of terminals V in the plane, and set D of pairs of terminals
Output: A forest F connecting pairs in D

1. Carry out the perturbation and scaling.

2. Let L be smallest power of two larger than 2n2ǫ−1d, where d is the maximum distance
of a pair.

3. Perform a random dissection in the bounding box of side L.

4. Place m + 1 portals on each side of a dissection square, where m is the smallest power
of two larger than 4ǫ−1 log L.

5. Solve the base cases TR[χ] for leaf dissection squares R:
Go over all possible ways of connecting the portals and the center point.

6. Populate the table TR[χ] in increasing order of size for R:
For any χ = (K,P) corresponding to R consisting of R1, . . . , R4:

(a) Go over all configurations χi = (Ki,Pi) corresponding to Ri.

(b) Build K1 from the union of all components of Ki with expanded bitmaps.

(c) Build P ′ from the union of Pi.

(d) If there is a terminal pair (t1, t2) where t1 ∈ Ri1 and t2 ∈ Ri2 for i1 6= i2,

• If there is no bitmap in χi1 (or χi2) containing the cell containing t1 (or t2
respectively), the configuration is bad.

• Otherwise, merge the sets corresponding to the appropriate components in P ′.

(e) Build K2 by merging components having the same portals, and make appropriate
changes to P ′.

(f) Build K3 by removing portals not on ∂R.

(g) If any component with empty portal set has unsatisfied connectivity requirement
in P ′, the current configurations are not consistent.

(h) Build K4 by eliminating components with empty portal set.

(i) If any bitmap contradicts the locality property, these configurations are not con-
sistent.

(j) If the configurations are consistent, update TR[χ] with .

min

{

TR[χ] +

4
∑

i=1

TRi
[χi]

}

.

7. Find the final solution among TR[χ] where R is the bounding box and χ has no unsat-
isfied requirement.

8. Construct the solution F by recursively following the values from TR[χ].

Figure 2: The algorithm for Euclidean Steiner forest problem.
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there should be a component corresponding to each of these in Ri and Rj, respectively. Otherwise,
these configurations do not correspond to any (valid) subsolution. Merge the sets corresponding to
these components in P ′: i.e., they have to be connected. Next merge any two components of K1 if
they share a portal, and build K2. Further, make appropriate changes in P ′. Build K3 by removing
from K2 all portals not on ∂R. Some of these components reach ∂R and some do not, namely
those with an empty portal set P . If there is any component with empty portal set that is not one
partition set, we deem the configurations χi as inconsistent : in this case, some components that
are required to be connected together do not reach the boundary. Otherwise, remove all the pairs
in K3 with empty portal set to obtain K4. Now, if there is a cell of R whose four constituent cells
reach the boundary as more than one connected component, the configurations are not consistent
either: this contradicts the property of Theorem 6. Finally, reduce the dimensions of the bitmaps
to γ × γ such that a cell of the new bitmap acquires value one if and only if there is a one in one
of the positions corresponding to the constituent cells in the original bitmap. Now, χ = (K,P)
is said to be consistent with the four configurations χ1, . . . , χ4 if and only if P contains all the
requirements of P ′, i.e., P ′ is a refinement of P, and in addition, there exists a κ = (P,M) ∈ K for
any κ′ = (P ′,M ′) ∈ K′ such that P ⊆ P ′ and M = M ′. In case these configurations are consistent,
TR[χ] will take the minimum of its current value and

∑

i TRi
[χi]. You can refer to Figure 2 for a

summary.

4.2 Proof of correctness

Correctness follows from induction on the size of the square R that all dynamic programming states
have their intended value. In particular, we know that there is a near-optimal solution all whose
subsolutions are compatible with one configuration. Hence, these will be computed correctly and
give the final solution. More specifically the following claim holds for all DP states.

Lemma 9. A dynamic programming state TR[χ] ends up having the minimum value corresponding to
a solution F of R, such that for any dissection square R′ which is a descendant of R in the dissection
tree, the subsolution F ∩ R′ of R′ is compatible with a configuration χ′ for R′.

Now, we are at the position to prove the main Theorem regarding the Euclidean Steiner forest
problem.
Proof of Theorem 1. By Lemma 9, the proposed dynamic programming is sound and complete.
There are Φ = O(poly(n)) DP states. To solve each non-base state, we go over at most Φ4 child
states and then perform a polynomial consistency check. Each base case state is computed in
constant time. Hence, the total algorithm runs in time O(poly(n)).

4.3 Highlights of the new ideas

Here, we point out the differences between our work and the previous work of [12]. Borradaile et
al. use closed paths to identify the connected zones of the dissection square. These paths consist of
vertical and horizontal lines and all the break-points are the corners of the cells. As part of their
structural property, they prove that they can guarantee a solution in which these zones can be
identified via paths whose total length is at most a constant η times the perimeter of the square R.
Then each path is represented by a chain of {1, 2, 3} of length at most O(ηγ): the three values are
used to denote moving one unit forward, or turning to the left or right. This results in a storage of
3O(ηγ) which is a constant parameter. Instead, we use a bitmap of size γ × γ to address this issue.

11



Each zone is represented by a bitmap that has an entry one in the cells of the zone. The bound
that we obtain, 2γ2

, may be slightly worse than the previous work, however, a simpler structural
property, namely the locality property, suffices as the proof of correctness. Borradaile et al. in
contrast need a bound on the total length of the zone boundaries, as noted above.

In addition to the simplification made due to this change, both to the proof and the treatment
of the dynamic programming, we simplify the proof further. Borradaile et al. charge the additions
of σ(C,F ) to three different structures, and the argument is described and analyzed separately for
each. We manage to perform a universal treatment and charging all the additions to the simplest
of the three structures in their work. But this can be done only after showing F ∗ −G has a limited
number of components. The proof is simple yet elegant—a weaker claim is proved in [12], but even
the statement of the claim is hard to read.

5 Multiplicative prizes

We first tackle the S-multiplicative prize-collecting Steiner forest problem. Then, we will take a look
at its asymmetric generalization. Finally, we show how the multiplicative prize-collecting Steiner
forest problem can be reduced to S-MPCSF.

5.1 Collecting a fixed prize

Suppose we are given S, the amount of prize we should collect. Let OPT be the minimum cost
of a forest F that collects a prize of at least S, and suppose Q ⊆ D is the set of terminal pairs
connected via F . We show how to find a forest with cost at most (1 + ǫ)OPT that collects a prize
of at least (1 − ǫ′)S. By the structural property, we know that there is a solution F ′ connecting
the same set of terminal pairs Q whose cost is at most (1+ ǫ)OPT, yet it satisfies the conditions of
Theorems 5 and 6. Round all the vertex weights down to the next integer multiple of θ = ǫ′

√
S/2n.

In a connected component of F ′ of total weight Ai that lost a weight ai due to rounding, the lost
prize is A2

i − (Ai − ai)
2 ≤ 2aiAi ≤ 2ai

√
S, because the total weight of the component is at most√

S. Thus, F ′ collects at least S − 2nθ
√

S ≤ (1 − ǫ′)S from the rounded weights.
Each dynamic programming state consists of a dissection square R, a set of components K, and

a new parameter Π which denotes the total prize collected inside R by connecting the terminal
pairs. Each element of K—corresponding to a connected component in the subsolution—now has
the form κ = (P,Σ) where P denotes the portals of κ, and Σ is the total sum of the weights in
κ. The DP is carried out in a fashion similar to that of [2]. The values of Σ and Π are easy to
determine for the base cases. It is not difficult to update them, either. Whenever two components
κ1 = (P1,Σ1) and κ2 = (P2,Σ2) merge in the DP, the sum Σ for the new component is simply
Σ1 + Σ2. Besides, the merge increases the Π value of the DP state by 2Σ1Σ2.
Proof of Theorem 2. The soundness and completeness is simple and is along the same lines as
the proof of Theorem 1. Carrying out the above operation assumes the values of Σ and Π could
be stored accurately. However, as they describe the dynamic programming states, their size should
be sufficiently small or else the algorithm will not run in polynomial time. Here does the rounding
help us. All values of Σ are stored as multiples of θ and the values of Π are stored as multiples of θ2.
Notice that as we round the vertex weights at the beginning, throughout the algorithm the values
of Σ and Π will be multiples of their respective units. Hence, no extra precision error will occur
and we find the aforementioned solution. If at any time during the execution of the algorithm,
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the value of Σ goes above
√

S, we truncate it to
√

S. Similarly, the value of Π is not allowed to
surpass S. This does not eliminate any solution, because at the point of truncation, the subsolution
has already gathered sufficient prize. Hence, the range of Σ is from zero up to

√
S, and this gives√

S/θ = 2n/ǫ′ different values. Similarly for Π, there are at most S/θ2 = 4n2/ǫ′2 options. There
are at most

Φ1 =
[

O
(

mλ+1
)

· 2γ2 · 2n/ǫ′
]λ

· 2λ2 · 4n2/ǫ′2 = O

(

poly
(

n,
1

ǫ′

)

)

DP states for each square R. The running time is polynomial in Φ1 and the claim follows.

To start the algorithm, we need to guarantee the instance satisfies the conditions at the begin-
ning of Section 2. See Appendix A.1 for details of how this is achieved.

5.2 The asymmetric prizes

The basic idea is to store two parameters Σs and Σt for each component of K. These parameters
store the total weight of the first and second type in the component, namely

∑

i φ
s
i and

∑

i φ
t
i,

respectively. The difficulty is that to collect a prize of A = AsAt in a component, only one of the
parameters As or At needs to be large. In particular, we cannot do a rounding with a precision
like ǫ′

√
A/n. It may even happen that As is large in one component, whereas we have a large At

in another. In fact, we cannot store the values of the Σs or Σt as multiples of a fixed unit. To
get around the problem, Σs is stored as a pair (v, x), where v is a vertex of the graph and x is an
integer. Together they show that Σs is x · ǫ1φ

s(v)/n2; the value of ǫ1 will be chosen later, and v is
supposed to be the vertex of largest type-one weight present in the component. A similar provision
is made for Σt. Finally, the value of Π is stored as a multiple of ǫ2A/n; we will shortly pick the
value of ǫ2.

Whenever Σs
1 = (v1, x1) and Σs

2 = (v1, x1) are added to give Σs = (v, x), we do the calculation
as follows: let v be the vertex v1 or v2 that has the larger φs value, and then

x =

⌊

x1φ
s(v1)/n

2 + x2φ
s(v2)/n

2

ǫ1φs(v)/n2

⌋

.

Proof of Theorem 4. The precision error for Σs = (v, x) is at most n · ǫ1φ
s(v)/n2 = ǫ1φ

s(v)/n,
because there is an accumulation of at most n rounding errors each of which has been less than
ǫ1φ

s(v)/n2. Notice that if Σs is stored in terms of the vertex v, it has to include v and thus its
type one weight is at least φs(v). Hence, the precision error is at most a ǫ1/n multiplicative factor.
Therefore, when we do a multiplication of ΣsΣt to get an addition to Π, the error is at most a
multiplicative 2ǫ1/n: (1 − ǫ1/n)As(1 − ǫ1/n)At ≥ (1 − 2ǫ1/n)AsAt. Next a rounding error may
happen to store the value in terms of ǫ2A/n. Each Π on the other hand is made up of at most n
addition terms, so the total error is at most n(2ǫ1/n + ǫ2/n)A. We pick ǫ1 = ǫ2 = ǫ′/3 to conclude
that the total error is bounded by ǫ′A.

All the discussion applies to Σt as well. Due to truncation and rounding, there are at most
n/ǫ2 options for Π. And each Σs (or Σt) has at most n2/ǫ1 possibilities. Thus, the total number
of DP states for each dissection square is Φ2 = poly(n, 1/ǫ′). Therefore, we obtain a bicriteria
approximation to the asymmetric variant of the problem.
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5.3 The prize-collecting version: trade-off between penalty and forest cost

In the prize-collecting variant, we pay for the cost of the forest, and for the prizes not collected. If
the total weight is ∆, the prize not collected is ∆2 minus the collected prize. One difficulty here is to
determine the correct range for the collected prize so that we can use the algorithm of Section 5.1.
The trivial range is zero to ∆2. However, the rounding precision we pick for the penalties should
also take into account the cost of the forest. If the cost of the intended solution is much smaller
than ∆2, we cannot simply go with rounding errors like ǫ∆/n. Otherwise, the error caused due to
rounding the penalties will be too large compared to the solution value.

The trick is to find an estimate of the solution value, and then consider two cases depending
on how the cost compares to the total penalty. Using a 3-approximation algorithm, we obtain a
solution of value ω. We are guaranteed that OPT ≥ ω/3. If ∆2 ≤ ω/3, the optimum solution is to
collect no prize at all. Otherwise, assume ∆2 > ω/3. To beat the solution of value ω, we should
collect a prize of at least ∆2 − ω.

We first consider the simpler case when ω/∆2 > 1/n2: For an ǫ′ > 0 whose precise value will
be fixed below, we use the algorithm of Section 5.1 to find a bicriteria (1 + ǫ/2, 1− ǫ′)-approximate
solution for collecting a prize S; this is done for any S which is a multiple of ǫ′∆2 in range [(1 −
ǫ′)∆2 −ω,∆2]. We select the best one after adding the uncollected prize to each of these solutions.
Suppose the optimal solution OPT collects a prize S′. Let OPTf = OPT − (∆2 − S′) be the
length of the forest. Round S′ down to the next multiple of ǫ′∆2, say S. Fed with prize value S,
the algorithm finds a solution that collects a prize of at least (1 − ǫ′)S with forest cost at most
(1 + ǫ/2)OPTf .

Claim 10. The total cost of this solution is at most (1 + ǫ)OPT if ǫ′ =
min( ǫ

3
,1)

6n2 .

Proof. The total cost of this solution is
(

1 +
ǫ

2

)

OPTf +
[

∆2 − (1 − ǫ′)S
]

≤
(

1 +
ǫ

2

)

OPTf +
[

∆2 − (1 − ǫ′)(1 − ǫ′)S′]

≤ OPT +
ǫ

2
OPTf + (2ǫ′ + ǫ′2)S′

= OPT +
ǫ

2
OPT + (2ǫ′ + ǫ′2)

S′

OPT
OPT

≤ OPT +
ǫ

2
OPT + (2ǫ′ + ǫ′2)

∆2

OPT
OPT

≤ OPT +
ǫ

2
OPT + (2ǫ′ + ǫ′2)3n2OPT (4)

≤ OPT +
ǫ

2
OPT +

ǫ

2
OPT (5)

= (1 + ǫ)OPT,

where (4) follows from ∆2

OPT ≤ n2ω
ω/3 = 3n2, and (5) uses the definition of ǫ′.

The other case, i.e., ω/∆2 ≤ 1/n2, is more challenging. Notice that in order to carry out the
same procedure in this case, ǫ′ may not be bounded by 1/poly(n) and thus the running time may
not be polynomial. The solution, however, has to collect almost all the prize. Thus, one of the
connected components includes almost all the vertex weights. We set aside a subset B of vertices
of large weight. The vertices of B have to be connected in the solution, or else the paid penalty
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will be too large. Then, dynamic programming proceeds by ignoring the effect of these vertices
and only keeping tabs on how many vertices from B exist in each component. At the end, we only
take into account the solutions that gather all the vertices of B in one component and compute the
actual cost of those solutions and pick the best one. In the following, we provide the details of our
method and prove its correctness.

Let B be the set of all vertices whose weight is larger than nω/∆.

Lemma 11. All the vertices of B are connected in the optimal solution.

Proof. There are at most n components, so there is a component, say C, whose total weight is
not less than ∆/n. We claim all the vertices of B are inside this component. The penalty paid by
the optimal solution is at most ω ≤ ∆2/n. If there is any vertex of B outside C, the penalty of the
solution is more than ∆/n · nω/∆ = ω, yielding a contradiction.

Next, we round up all the weights to the next multiple of θ = ǫ′ω/∆ for vertices not in B.
Define OPT′ as the optimal solution of the resulting instance. Let OPTf be the length of the forest
in OPT, and define OPT′

f similarly. Let OPTπ and OPT′
π denote the penalty paid by OPT and

OPT′, respectively. Assume that ǫ′ ≤ 1.

Lemma 12. OPT′
π ≤ OPTπ + 12nǫ′OPT.

Proof. We recompute the penalties paid by OPT using the rounded weights. The pair (s, t) not
connected in OPT is either of the two kinds: (1) one of s and t is in B; or (2) none of them is in B.
The total rounding error for the penalties of the first type is bounded by n∆θ. There are at most
n2 pairs of the second type. Since the weights of these terminals are at most nω/∆, the error is
not more than n2[2(nω/∆)θ + θ2]. Hence, the total error is at most

n2[2(nω/∆)θ + θ2] + n∆θ ≤ n2

[

(ǫ′2 + 2nǫ′)
ω2

∆2

]

+ nǫ′ω

≤ n2

[

3nǫ′
ω2

∆2

]

+ nǫ′ω because ǫ′ ≤ 1

=
(

3n2 ω

∆2
+ 1
)

nǫ′ω

≤ 4nǫ′ω because
ω

∆2
≤ 1

n2
,

which is no more than 12nǫ′OPT as desired.

Suppose we use a dynamic programming approach similar to the previous subsections to find
the approximately minimum forest length for any specified collected prize amount; in particular, we
obtain a bicriteria (1+ ǫ/2, 1− ǫ′)-approximate solution. During this process, we ignore the weights
associated with vertices in B. Consider a DP state χ = (K,Π) corresponding to a dissection square
R. Each component κ ∈ K looks like (P,Σ, µ): the new piece of information, µ, is an integer number
denoting the number of vertices of B inside κ. Extending the previous algorithm to populate the
new DP table is simple. Finally, we look at all the configurations χ for the bounding box such
that the µ value of one component is exactly |B| whereas it is zero for all other components. This
guarantees that all elements of B are inside the former component and hence we can add up the
penalties involving those vertices. Let K = {κ1, κ2, . . . , κq} where κi = (Pi,Σi), and let κ1 be the
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component containing B. The additional cost due to vertices of B is

(

∑

v∈B
φ(v)

)

·
(

q
∑

i=2

Σi

)

.

Finally, we report the best solution corresponding to these configurations.
Proof of Theorem 3. Let us first see that the algorithm described runs in polynomial time. It
is sufficient to bound the number of configurations. The new piece of information has at most n
possibilities. Further, Σ ≤ n2

ǫ′ θ is always a multiple of θ. Similarly, Π will not exceed n4

ǫ′2
θ2 and is

always a multiple of θ2.
We pick ǫ′ = 1

24n . By Lemmas 11 and 12, the rounding does not increase the penalties paid by
the optimal solution by more than ǫ/2OPT. We then utilize the algorithm described for S-MPCSF
to find a solution of cost at most (1+ǫ/2)OPTf +OPTπ +ǫ/2OPT ≤ (1+ǫ)OPT. Finally, changing
the weights back to the original values clearly does not increase the cost.

6 Evidence for Hardness

So far PTASs for geometric problems in Euclidean plane including ours and those of Arora [2]
and Mitchell [29] can be easily generalized for Euclidean d-dimensional space, for any constant
d > 2. However we can prove the following theorem on the hardness of the problem for Euclidean
d-dimensional space.

Theorem 13. If notorious densest k-subgraph is hard to approximate within a factor O(n
1

d ) for some
constant d, then for any d′ > 2d + 1, the k-forest problem in Euclidean d′-dimensional space is hard to

approximate within a factor O(n
1

2d
− 1

d′−1 ).

Proof. Hajiaghayi and Jain [22] show that if densest k-subgraph is hard to approximate within

a factor O(n
1

d ), then the k-forest problem on stars is hard to approximate within a factor O(n
1

2d ).
On the other hand, Gupta [20] shows that a tree metric of size n can be embedded into Euclidean

d′-dimensional space with distortion in O(n
1

d′−1 ). Thus for any d′ > 2d + 1, we cannot obtain an

approximation factor o(n
1

2d
− 1

d′−1 ) for k-forest in Euclidean d′-dimensional space, since otherwise by
solving the problem in Euclidean d′-dimensional space, finding an Eulerian tour and shortcutting
it, and finally embedding it back into the star, we can obtain a better approximation than O(n

1

2d ),
a contradiction.

Note as mentioned above that, despite extensive study, the current best approximation factor
for notorious densest k-subgraph is O(n1/3−ǫ) [16] and thus we do not expect to have any PTAS
for k-forest in 8-dimensional Euclidean space.

Unlike the general cases of these problems, as far as PTASs for the case of Euclidean spaces are
concerned, it seems k-forest and prize-collecting Steiner forest problems are essentially equivalent.
Indeed in Lemma 15, we prove that any PTAS for k-forest results in a PTAS for prize-collecting
Steiner forest, and we believe that any DP algorithm giving a PTAS for PCSF computes along its
way the optimal solution to different k-forest instances.

Thus based on the evidences above, we do believe Euclidean k-forest and Euclidean prize-
collecting Steiner forest have no PTASs in their general forms.
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7 Conclusion

Besides presenting a simpler and correct analysis of the PTAS for the Euclidean Steiner forest
problem, we showed how the approach can be generalized to solve multiplicative prize-collecting
problems.

Generalizing our results to planar graphs, especially obtaining a PTAS for Steiner forest, has
been a long-standing open problem in this field. The question was settled very recently by Bateni,
Hajiaghayi and Marx [6]. While Borradaile, Klein and Kenyon-Mathieu [11] gave a PTAS for
Steiner tree on planar graphs, a main ingredient of their algorithm is solving Steiner tree on graphs
of bounded-treewidth. However in a sharp contrast, Gassner [18] showed recently that Steiner forest
is NP-hard even on graphs of treewidth at most 3. Bateni et al. [6] gives a PTAS for the problem on
graphs of bounded treewidth, and uses it to obtain a PTAS for planar and bounded-genus graphs.

Last but not least, obtaining any improvement over the approximation factor 2.54 in [22] for
multiplicative prize-collecting Steiner forest in general graphs seems very interesting.
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A Deferred proofs and further discussion

Proof of Lemma 7. The proof of Theorem 5 (although not reproduced here) does not increase
comp(F ∩ L). Hence, it suffices to prove the result for the forest F specified at the beginning of
Section 2. Observe that by (II), F ∩L consists merely of singleton points, because no Steiner point
lies on a line ℓ ∈ L. Further notice that the ℓ1-length of F is at most

√
2 length(F ). Let F x be

the total absolute distance F travels in the x direction. Since x-coordinate difference of any two
consecutive break-points of F is a multiple of 2 and the intersection with vertical lines of L occurs
at coordinates of the form (2i, y), the total number of intersections with vertical lines is exactly
F x/2. We can similarly argue for the intersections with horizontal lines, and finally conclude that

comp(F ∩ L) ≤
√

2
2 length(F ).

Proof of Lemma 9. This is clearly true for the base cases of the DP since we go over all
the possibilities. Next, take any configuration χ = (K,P) corresponding to a non-leaf dissection
square R, and suppose there is a subsolution F with respect to R compatible with χ, such that
any subsolution F ′ formed by restricting F to a dissection square R′ which is a descendant of R is
compatible with some configuration χ′ of R′. Let Fi be the subsolutions restricted to the subsquares
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Ri. Each of them is thus compatible with an appropriate χi = (Ki,Pi). By inductive hypothesis, the
dynamic programming states TRi

[χi] have been correctly computed. Each connected component
of F not connected to ∂R has to have all its terminal pairs satisfied. This is taken care of by
checking the partition P ′: the terminals in components that do not advance in the dynamic table
to TR[χ] have their demands satisfied internally. In addition, the locality property for F ensures
the configurations will be consistent, and hence we perform an update of TR[χ] from TRi

[χi]. This
finishes the completeness proof.

Verifying that the update rule is sound is trivial. If the four configurations χi update χ, then
there exists a subsolution F formed by the union of the corresponding subsolutions Fi, that is
compatible with χ.

A.1 The preliminary conditions for multiplicative prizes

In Section 2, we said that standard perturbation and scaling techniques allow us to assume with a
cost increase of at most O(ǫOPT) that the bounding box of the instance has side length at most
n2ǫ−1OPT, while restricting all vertices and Steiner points to points of the form (2i + 1, 2j + 1) for
integers i and j. The claim is based on the following two premises:

1. If d is the maximum distance of a pair in D, then OPT ≥ d.

2. If u and v are farther than n2d, they cannot be connected in the optimum solution.

Using this, the instance can be broken up into disjoint subinstances and then the perturbation can
be carried out. However, the first premise is false in the case of multiplicative prizes since not all
the pairs need to be connected. Next we show how similar conditions can be guaranteed in this
case.

The value of OPT can be guessed using binary search. To begin the search, we can get crude
bounds of ω/n ≤ OPT ≤ ω, using simple approximation algorithms for the general cases of PCSF
and k-forest.5 Knowing OPT, we build a graph G′ on the vertices: there is an edge between u
and v if and only if their distance is at most OPT. The diameter of each connected component is
at most nOPT. We consider each of them separately, since two vertices in different components
cannot be connected in the optimal solution.

The side length of the bounding box is at most nOPT. Scale the instance by 8ǫ−1 and let
OPT′ = 8ǫ−1OPT denote the new optimal value. Build a grid in the bounding by lines with
equations x = 2i and y = 2j for integers i, j. Move each vertex and Steiner point to the closest
point of the form (2i + 1, 2j + 1). Notice that there are at most n Steiner points. Assuming
OPT > 0, the change in the solution value due to the perturbation is at most 2n · 4 = 8n ≤ ǫOPT′.
Hence, we can assume that

• the side length of the bounding box is at most nǫ−1OPT′, and

• the vertices and Steiner points are at coordinates (2i + 1, 2j + 1) for integers i, j.

A.2 k-MST as a special case of S-MPCSF

Here we show that (even the symmetric) S-MPCSF is a generalization of the rooted k-MST problem
(for which the best approximation guarantee is 2). Suppose we are given an instance I of the rooted

5The best known approximation algorithms known for these problems are 2.54 and min{
√

k,
√

n}, respectively.
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k-MST problem. It consists of a graph G(V,E), edge lengths ce, a root vertex r and a number k.
Suppose r is not to be counted among the k vertices. We build the new instance I ′ of the S-MPCSF
problem as follows. The graph G′ is the same as G. The weights of all vertices are one, except for
r whose weight is n2. Then, the goal will be to find the cheapest forest that gathers a prize of at
least S = (n2 + k)2 = n4 + 2n2k + k2.

Theorem 14. The instance I of the rooted k-MST problem is equivalent to the instance I ′ of the
S-MPCSF problem.

Proof. As we noted in Subsection 1.2, in case of polynomially bounded integer weights, we can
make sure the returned solution collects a prize of at least S (without any approximation factor).
This can be achieved by picking ǫ′ < 1/S.

Obviously, any tree connecting k vertices to the root is translated to a forest that collects a
prize of at least S. Let each vertex not spanned by the tree be a singleton component in the forest.

Finally, we claim that any solution of value S or higher translates to a solution of value at least
k for the original instance. The resulting tree is just the component of the forest containing the
root vertex. Suppose for the sake of reaching a contradiction that the component spans k′ < k
non-root vertices. The total prize collected is at most

(n2 + k′)2 + (n − k′ − 1)2 < n4 + 2n2k′ + k′2 + n2

= S + 2n2(k′ − k) + k′2 + n2 − k2

< S + 2n2(k′ − k + 1)

≤ S,

yielding a contradiction, and proving the supposition is false.

A.3 PCSF vs. k-forest

Lemma 15. An α-approximation algorithm for the k-forest problem gives an α(1 + ǫ)-approximation
algorithm for the prize-collecting Steiner forest problem, for any constant ǫ > 0.

Proof. We show how to approximate a PCSF instance I by invoking several (polynomially many)
instances I ′ of the k-forest problem. Obtain an estimate ω for I, such that ω

3 ≤ OPT ≤ ω using a
general-case 3-approximation algorithm. Let πi be the penalty of the pair i in I. Without loss of
generality, we can assume that πi ≤ 2ω for any pair i. Let θ = ǫω/3n. Place pi = ⌊πi

θ ⌋ copies of
the pair i in I ′. Find an α-approximate solution to the resulting k-forest instance for every value
of 0 ≤ k ≤ n′, where n′ is the number of pairs in I ′. Compute the PCSF value for each of these
solutions and report the best one.

We show that at least one of these candidate solutions is good. Let OPTf and OPTπ be
the length of the forest and the paid penalty of the optimal solution, respectively. Suppose OPT
connects a subset of terminal pairs Q. Then, OPTπ =

∑

i6∈Q πi. Focus on the candidate solution
with k =

∑

i∈Q⌊πi/θ⌋. The length of the corresponding k-forest instance is at most OPTf , because
a possible solution is that of connecting the copies of Q. To compute the PCSF value, we add the
penalty of pairs in Q that are not connected using this tree. We can assume either all or no copies
of each pair is connected. The number of pairs not connected is at most n′ − k, and their penalties

21



sum to no more than

∑

i not connected

πi ≤
∑

i not connected

(pi + 1)θ

≤
∑

i not connected

piθ + nθ

≤ (n′ − k)θ + nθ

≤ OPTπ + nθ

= OPTπ + ǫω/3

≤ OPTπ + ǫOPT.

Thus, the PCSF value of the best candidate solution is at most αOPTf + OPTπ + ǫOPT ≤
α(1 + ǫ)OPT. It remains to show the instances I ′ have polynomial size. Since π ≤ 2ω, each pair
i will have pi ≤ 6nǫ−1 copies. Hence, I ′ has polynomial size and we can use the approximation
algorithm for the k-forest.
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