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Abstract

We devise an approximate feasibility test for sporadic multiprocessor real-time scheduling. We
give an algorithm that, given a task system and € > 0, correctly decides either that the task system
can be scheduled using the Earliest Deadline First algorithm on m speed-(2 — 1/m + €) machines, or
that the system is not schedulable by any algorithm on m unit speed machines. This error bound
is known to be best possible for EDF. The running time of the algorithm is polynomial in the size
of the task system and 1/e. We also provide a generalized tight bound that trades off speed with
additional machines.

Keywords: real-time scheduling, sporadic task system, feasibility test, Earliest Deadline First, ap-
proximation algorithm

1 Introduction

We study the problem of scheduling recurring processes, or tasks, on a multiprocessor platform. An
instance of the problem is given by a finite set T of tasks which need to be executed by the system; each
task can generate an arbitrarily long or even infinite sequence of jobs.

In the periodic version of the problem, a task 7 € T is characterized by a quadruple of positive
integers: an offset o, that represents the time instant when the first job generated by the task is released,
an execution time C,, a relative deadline D, and a period T,.. Each occurrence of task 7 is represented
by a job: the k-th occurrence of the task is released at time o, + (k — 1)T, requires C; units of processor
time and must complete its execution before time o, + (k — 1)T- + D,. Note that a periodic task system
defines a single, infinite sequence of jobs.

In the sporadic case, each task is characterized by a triple (C, D,,T,) where C, D, have the same
meaning as in the periodic case, while 7' denotes the minimum separation between successive occurrences
of the task. Note that in a sporadic task system the time instant when the next invocation of a task
will be released after the minimal separation time has elapsed is unknown. Thus, in contrast with the
periodic case, there are infinitely many job sequences that conform to the system’s specification.

The correctness of a hard real-time system requires that all jobs complete by their deadlines. A task
system is feasible if every sequence of jobs that is consistent with the parameters of the task system
admits a schedule meeting all the deadlines, and it is schedulable by a given algorithm if the algorithm
constructs a feasible schedule for every such sequence of jobs. In the sequel we focus on preemptive
scheduling algorithms that are allowed to interrupt the execution of a job and resume it later; job
migration is also allowed.

A feasibility test for a task system is an algorithm that takes as input a description of the task system
and answers whether the system is feasible or not. A feasibility test is exact if it correctly identifies all
feasible and infeasible task systems and sufficient if it correctly identifies all infeasible task systems, but
may give a wrong answer for feasible task systems. A sufficient feasibility test is a natural requirement
in hard-deadline real-time applications. In fact, from a practical point of view, there is no difference
between a task system that is not feasible and one that cannot be proven to be feasible.

In the case of a single machine, the problem has been widely studied and effective scheduling algo-
rithms are quite well understood [7,11,16]. In this paper we study the feasibility problem for sporadic
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task systems on identical parallel machines. The problem is not only interesting from a theoretical point
of view but is also relevant in practice. In fact, real-time multiprocessor systems are becoming com-
mon, both in the form of single-chip architectures characterized by a small number of processors, and of
large-scale signal-processing systems with many processing units.

Single machine scheduling. In the case of a single machine it is known [7,10,16] that the Earliest
Deadline First scheduling algorithm (EDF), which at each instant in time schedules the available job
with the earliest absolute deadline (with ties broken arbitrarily), is an optimal scheduling algorithm for
scheduling a sporadic (or periodic) task system, in the following sense: if it is possible to schedule a given
collection of jobs such that all the jobs meet their deadlines, then the schedule generated by EDF for
this collection of jobs will meet all deadlines as well. Despite this positive result, the feasibility problem
for periodic or sporadic task systems on one processor is coNP-hard [7,12,15].

For this reason, approximate feasibility tests have been proposed that run efficiently (say, in time
polynomial in the description of the system) but introduce a small error in the decision process, controlled
by an accuracy parameter. Such approaches have been developed for EDF scheduling and for other
scheduling algorithms. Two different paradigms can be used to define approximate feasibility tests:
pessimistic and optimistic. If a pessimistic feasibility test returns “feasible”, then the task system is
guaranteed to be feasible. If the test returns “infeasible”, the task system is guaranteed to be infeasible
on a slower processor, of computing capacity (1 —€), where € denotes the error parameter. Conversely, if
an optimistic test returns “feasible”, then the task system is guaranteed to be feasible on a (1 + ¢)-speed
processor. If the test returns “infeasible”, the task system is guaranteed to be infeasible on a unit speed
processor [9]. These two approaches are in fact equivalent, as by scaling the input parameters it is
possible to turn an optimistic test into a pessimistic one, or vice versa.

Fully polynomial-time approximation schemes (FPTAS) are known for a single processor. That is,
for any € > 0 there exists a feasibility test that returns an e-approximated answer, and the running time
of the algorithm is polynomial in the input size of the task system and in 1/e (see for example [1,2,9,13]
and references therein).

Finally, we remark that in the uniprocessor case the sporadic feasibility problem is known to reduce
to a special case of the periodic feasibility problem in which all tasks have zero offset (i.e. each task
releases its first job at time zero) [7]. The fact that this special case remains coNP-hard was established
recently [12].

Multiple machine scheduling. We first observe that in the multiprocessor case the previously men-
tioned analogy between sporadic and periodic problems does not hold; that is, the sporadic feasibility
problem cannot be reduced to the periodic feasibility problem by setting the tasks’ offsets to zero (Figure

1).
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Figure 1: In this example, (C1, D1,T1) = (1,1,2), (Cy, D2, T2) = (2,2,3), (Cs, D3, T5) = (3,4,6). There
are two processors. In case (a), all three tasks are activated simultaneously at time zero and the periodic
sequence is schedulable. In case (b), tasks 2 and 3 are activated one time unit later and task 3 cannot
be completed within its deadline (marked with ).

Moreover, in the multiprocessor case EDF is no longer an optimal algorithm and in fact no optimal
scheduling algorithm is known. However, it is known that any feasible task system on m unit speed
machines is EDF-schedulable on m machines of speed 2 — 1/m [17]. This result holds for EDF as well as
for other scheduling algorithms. For EDF this result is tight, while for other algorithms it has not been
improved since then. Subsequent work has analyzed the advantage of trading speed for machines [14],
while further work on conditions for EDF-schedulability has been done by Baker [3].

Note that the result of [17] does not imply an efficient test for deciding when EDF (possibly with
extra speed) can schedule a sporadic task system. Thus, the main open problem in order to apply the
result of Phillips et al. [17] is the lack of an efficient feasibility test.

This problem attracted attention in recent years (see e.g. [4] and references therein for a thorough
presentation). A number of special cases have also been studied; for example, when for each task the



deadline is equal to the period (implicit-deadline task systems), it is known that the condition
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gives a necessary and sufficient test for the feasibility of the system.

However, not much was known regarding the feasibility of an arbitrary-deadline task system. In a
recent work, Baruah and Baker [6] gave a 2.62-approximate feasibility test in the case of constrained-
deadline sporadic task systems, that is, task systems in which for each task the deadline is at most equal
to the period. The same guarantee was later extended to arbitrary-deadline sporadic task systems [5].
For periodic task systems, it turns out that no efficient approximate feasibility test is possible unless
P = NP [8]. We refer the reader to the survey [4] for feasibility tests that are known for other special
cases.

Our contribution. We give an efficient approximate feasibility test for arbitrary-deadline sporadic
task systems with an approximation guarantee of 2 — 1/m + ¢, for any fixed ¢ > 0. More precisely,
we give a test that, given a sporadic task system T and € > 0, decides either that the system can be
scheduled by EDF on m speed-(2 — 1/m + €) machines, or that the instance violates at least one of two
basic conditions which are both necessary for feasibility on m unit speed machines. The running time
is polynomial in the input size of T and 1/e. In fact we give a slightly more general result, allowing to
trade some extra speed for extra machines. Note that extra machines are in general less powerful than
extra speed.

One of the two basic conditions of our test is trivial. The other condition is the crucial one; it provides
a lower bound on the processing requirement of an arbitrary time interval. We call this processing
requirement the forward forced demand. This concept is strong enough to approximately capture the
feasibility of scheduling a sporadic task system on a multiprocessor platform, but also simple enough to
be approximated in polynomial time up to an arbitrarily small € > 0: we give an algorithm that checks
this condition in time polynomial in the input size of T and 1/, for any desired error bound € > 0.

Apart from improving the bound in [5], our result is tight from the point of view of EDF-schedulability.
It might be possible to improve the bound by considering schedulability with respect to an algorithm
different from EDF, but notice that such an improvement would have to break the long standing bound
of Phillips et al. [17]. As a byproduct of our analysis, we also obtain an alternative proof of the optimality
of EDF for uniprocessor systems.

Outline of the paper. The rest of the paper is structured as follows. In Section 2 we give the necessary
definitions and introduce the concept of forced forward demand. Section 3 provides the main connection
between forced forward demand and EDF-schedulability. In Section 4 we complete the description of the
feasibility test by providing a fully polynomial time approximation scheme to estimate the worst-case
forced forward demand of a sporadic task system.

2 Preliminaries

An instance of the feasibility problem for sporadic task systems is a finite set of tasks T. Each task
7 € T is defined by three positive integers: an execution time C;, a relative deadline D, and a minimum
separation time T,. Every task may generate jobs from time to time. A job j is defined by the task 7(j)
it belongs to and by a release date 7;, a nonnegative integer. We abbreviate C; := C.;), Dj := D, (j
and Tj := Ty (;), and we call d; := r; + D; the absolute deadline of job j. Each job j requires a processor
to be allocated to it for C; time units during the interval [rj,7; + D;). Jobs can be preempted and
migrated without penalty, but each job may execute on at most one processor at any given instant in
time, and jobs from the same task cannot be processed in parallel.

A sporadic job sequence R is any countable set of jobs from tasks in T with the following property:
any distinct jobs j and k from the same task 7 satisfy |r; —ri| > T. Job sequence R is schedulable
when there exists a schedule satisfying the execution requirements of all jobs in R. A task system T is
feasible if all job sequences from T are schedulable.

Given a real number z we denote by x" its positive part, that is ™+ := max (z,0).



Definition 2.1. Let T be a task system, R a job sequence, A = [t,t’) an interval, 7 a task and j a job.
We define the following quantities.

_(t— )Tt i . Y
FFD(j,A)::{(()Cj t—r)") ifd; e Aord; =t,

otherwise.
FFDg(r,A):= Y FFD(j,A).
JER:T(j)=T
FFDR(A) := Y FFDg(r,A).
T€T

Quantity FFD(j, A) is called the forward forced demand of j in A. Similarly, the quantity FFDg(A) is
called the forward forced demand of the interval. We write FFD(7, A) and FFD(A), respectively, when
the task system T and the sequence R are implicitly fixed. The quantity FFD(A)/||A|| is called the load
of interval A.

Note that when 7; € A the forward forced demand equals the execution time of the job. If C; < T
for all tasks 7, then each task 7 can have at most one job with release date outside the interval that has
strictly positive forward forced demand in the interval.

The following proposition easily follows from the fact that the forward forced demand of a job in an
interval is a lower bound on the amount of work that has to be performed on the job during the interval,
if the job’s deadline has to be met.

Proposition 2.1. Let R, A and m be such that FFDr(A) > m ||Al|. Then R is not schedulable on m
unit speed machines.

Proposition 2.2. Let 7 € T be such that C; > min(D,,T.). Then T is not feasible on any number of
unit speed machines.

Proof. It C- > D,, then the sequence consisting of a single 7-job is clearly not schedulable (recall that
a job can be processed on at most one processor at any given time). If C. > T, then any sufficiently
long periodic sequence of 7-jobs with period T is not schedulable (jobs from the same task have to be
processed sequentially). O

We use the notation EDF[M, o] to denote the Earliest Deadline First scheduling algorithm executed
on M speed-o machines. We do not assume any particular tie-breaking rule for the algorithm. A job
sequence R is EDF-schedulable if, on input R, EDF produces a schedule that meets the requirements of
all jobs in R. A task system T is EDF-schedulable if every job sequence from T is EDF-schedulable.

Definition 2.2. Let T be a task system and R a job sequence. For a task 7 € T, an interval A = [t/,?)
is called 7-busy before t if executing algorithm EDF[M, o] on the sequence R yields at any time in A a
positive remaining execution time for at least one of the jobs of task 7.

Observe that when at time t there is some pending job from task 7, the maximal 7-busy interval
before ¢ is well-defined, unique, and starts with the release date of some job of 7. Moreover, all the
execution requirements from 7-jobs released before a maximal 7-busy interval A are satisfied by EDF
strictly before A.

3 A feasibility test

In this section we present and discuss the conditions that will be used for testing feasibility of a sporadic
task system. The main result of this section is the following.

Theorem 3.1. Let M be a positive integer and o > 1. Consider a task system T satisfying C,. <
min(D,,T;) for all 7 € T. If R is a job sequence which cannot be scheduled by EDF on M speed-o
machines, then there is an interval A such that FFDg(A)/||A|| > M(o — 1) + 1.

Before giving the proof we explain the main intuition. Given a job sequence on which EDF fails,
we will inductively construct an interval with high load; this interval will be a witness of the non-
schedulability of R. The interval will be composed of several subintervals, each of which will be 7-busy
for some appropriate task 7. Whenever EDF does not process a job of 7 in the subinterval, it must have
all machines busy.



Algorithm 1 Construction of an Infeasibility Certificate

J1 := job that missed its deadline at g

A = [t1,1t) := maximal 7(j;)-busy interval before tg

Al = Zl

X := time intervals in A; when a job of task 7(j) is being processed
Y1 = Al \ X1

1:=2

repeat

Let j; denote a job such that:

(i)  the release date of j; is strictly before t;_1;

(i) EDF (ji,UZ) Y2) > FFD(ji, Aia).

A, = [t;,t;_1) := maximal 7(j;)-busy interval before t;_;

A; = [ti, to) o

X, := time intervals in A; when a job of task 7(j;) is being processed

Y =AM\ X,

until no such job exists

In order to conclude that the load of the whole interval is large, we establish two facts: first, that
the fraction of a subinterval in which its associated task is processed is small, i.e., in a large part of the
subinterval all machines must be busy; second, that what is processed in those busy subintervals is part
of the forward forced demand of the witness interval.

From now on we assume that R is a job sequence which cannot be scheduled by EDF[M, o], and that
to is the first point in time when EDF fails a deadline. We can without loss of generality assume that
no job has absolute deadline after ty: after removing such jobs, EDF still fails some deadline at ¢y and
the forward forced demand has not increased.

We define inductively a finite sequence of pairs (¢;,j;), for 1 < i < k, where ¢; is a time and j; is a
job. The sequence is defined in Algorithm 1 and illustrated in Figure 2. We use the notation EDF(j,.S)
for the total work that EDF[M, o] allocates to a job j in a given subset S of R..

The sequence defines time intervals A; := [t;,t9) and A; := [t;,t;_1). Each interval A; is partitioned
into two subsets X; and Y; := A; \ X;. The subset X; is the set of time instants in A; for which a job of
task 7(j;) is being processed by EDF. Due to the way EDF schedules, X; is a finite union of intervals.
Further, we set z; := || X;|| and y; := || Yi|.

Let £ be the amount of work that EDF[M, o] failed to complete before ¢y for jobs of task 7(j1). By
assumption, & > 0. The last definitions we need are W; := Moy; + ox; and W; := py— W, +E.

Lemma 3.2. Assume that Algorithm 1 produces the sequence of pairs ((t1,j1), (t2, j2), - -, (tk, jx)). Then
the following hold for alli=1,... k.

1.t < tioy;

2. During interval Y; all M machines are busy;

3. All jobs scheduled by EDF[M, o] during Y; have absolute deadline in A;;
4. Wiy >m!||Al], where m' := M (o —1) + 1.

Proof. The proof is by induction on 7.

Basis of the induction. Job j; is defined as one of the jobs that EDF[M, o] failed to complete within
to, though they were due. Then A; (= A;) is the maximal 7(j; )-busy interval before to. This also defines
t1 as the lower endpoint of this interval. Clearly, ¢; < t; since relative deadlines are strictly positive;
thus property 1 holds.

Now, if at a certain time in A; no job of 7(j;) is processed by EDF, then at that time all machines
must be busy with jobs that have deadlines not later than to. This yields properties 2 and 3. For
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Figure 2: Illustration of the construction in Lemma 3.2. Shaded rectangles represent busy intervals. The
interval’s label is the task 7 for which the interval is 7-busy.

property 4 we use the fact that EDF failed at ty for j;:

Wy = Wi+¢€
> M0y1+0.931:MO'(HZ1H—$1)+U:L‘1.
We obtain -
“los Mo— (M —1)22L (1)
[A]] [A]]

In A, EDF’s schedule devotes x; time units to jobs of task 7(j;) at processing speed o. Since the
interval A is maximally 7(j1)-busy before t; and j; is not completed within tg, all these jobs must be
released in the interval, and all except j; have their deadline in the interval. The interval A; starts
with the release date of some job of task 7(j1) (possibly j; itself). Therefore the number of 7(j;)-jobs
processed by EDF in Ay is at most [ (||A:|| — Dj, + T},)/T}, |, and we can bound:

agxry Cj ||Z1H - Djl + le (le Cj1>
— < = < ma ,— | <1 2
50~ Tad] T =mel DTy, @

The middle inequality can be verified by distinguishing the cases D;, < T}, and Dj;, > Tj,: in the case
Dj, <Tj,, using ||A]| > Dj, one has

C;j . Hle — Dy, +Tj, _ G 1+ Tj1:Dj1
144 T Ty, 144
C, T, —D; C,;
S J1 (1+ J1 ]1> _ ¢.
le Djl Dj1

In the case D;, > T},

(lj . 81| = Dy, + T3, — <1— Djl_TJi) < le.
144 T ;s A )~ T

Combining (1) and (2) we get property 4:

)

3
S

Wi
! >M(o—-1)+1=m'.
184
The inductive step. As the release date of j; is strictly before ¢;_1, we have t; < t;_; so that

property 1 holds. Properties 2 and 3 again follow from the fact that A; is 7(j;)-busy. Here, take into
account for property 3 that j; has a deadline in A;_1 by induction.

To prove property 4 it suffices to show W; > m/ sz} , because by induction W;_1 > m’ ||A;_1|. By
definition

=

ox;

1]

L= Mo — (M —1)

18]

D



Figure 3: Illustration of the analysis in Theorem 3.1. The shaded area corresponds to the contribution
ox;, the dotted area to the contribution Moy;. When 7(j;) is not executing, all M processors are busy.

We want to establish ox; < ||Z1H Having that, property 4 follows as it did in the base case of the
induction. For this part we use a simplified notation by setting 7 := 7(j;), ¢ := Cy(;,), T := T(;,), and

We will bound ox; by the work performed by EDF on job j; during A;, plus the amount of work
done for other jobs of task 7 that are released during A; and before rj, (jobs of T released later than j;
are not processed in A;). Assume there are ¢ > 0 such jobs. Then

ox; < q-c+EDF(j;, A;). (3)

As the deadline of j; is in A;_1, by definition of forward forced demand and by choice of j;,

EDF(ji, A;) < ¢ — EDF(j;, Ai_1) (4)
1—1
<c—EDF <y U Ys>
s=1
< c¢—FFD(j;, Ai1)
<1 — T,

As g jobs of T have been released in [t;,r;,), we also have

tio1—rj < HZzH —-q-T (5)
Combining (3),(4) and (5) gives

ori g 9 (T—¢) _ 1,

2] 1A
where the last inequality holds since ¢ > 0 and ¢ < T by assumption. Property 4 now follows as in the
base case of the induction. O

Proof of Theorem 8.1. At each step of Algorithm 1 the interval A; is strictly extended backwards to the
release date of at least one job which is released before ty. As there are finitely many tasks, all with
a positive minimum separation time, there are finitely many such jobs. So at some point the breaking
condition, namely that there is no job j; with the required properties, must hold.

Let k be the last index for which an appropriate job ji was found. We claim that FFD(Ay) > W.
In the value W we count oz; for each X;, because the whole 7-demand processed in a 7-busy interval
is part of the forward forced demand of that interval. Also, the demand that EDF failed to process
before tg is part of the forward forced demand of Ag. For each Y; part we count Moy;, which is by
Lemma 3.2(2) exactly what is processed in those times by EDF; see Figure 3 for an illustration. By
Lemma 3.2(3) all jobs processed in some Y; have their deadline in the interval A; and therefore also in
Ag. Finally, there is no job among those processed in some Y; with release date before t;, which has
been counted in the term Moy; with more than its forward forced demand in A;. The forward forced
demand in the greater interval Ay can only be greater, and thus we count for no job more in Wy than
in FFD(Aj). We conclude

FFD(Ag) > Wy.

On the other hand, by Lemma 3.2(4) applied to i = k, Wi, > m/||Ag||. The theorem follows. O
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Figure 4: Example illustrating the construction in Lemma 4.1. Each interval is labeled with the corre-
sponding length.

We required C. < min(D.,T;) for all 7 € T. This condition can be trivially tested, and as we saw in
Proposition 2.2 it is necessary for feasibility.

Now, assume o > 1+ mT’l We get m’ = M(o0 — 1) + 1 > m. Then, if a task system T allows for
a job sequence R with an interval A generating a forward forced demand FFDg(A) > m||A]| as in the
theorem, by Proposition 2.1 it cannot be scheduled by any algorithm on m unit speed machines. So both
the conditions of the theorem,

(1) C; < min(D,,T;) for each task 7 € T, and
(2) FFDR(A) < m||A|| for each job sequence R and interval A

are necessary for feasibility on m unit speed machines. By Theorem 3.1 they are also sufficient for
EDF-schedulability on M speed-o machines. Therefore, all that is missing for an approximate feasibility
test is an efficient procedure testing whether a task system T admits a job sequence R with an interval
A generating a forward forced demand FFDg(A) > m||A||. For this we will provide an FPTAS in the
following section. As this procedure determines the maximal load only up to an arbitrary positive error
term, we will need to choose o slightly larger than 1 + % to obtain the efficient test.

We remark that the minimum speed-up factor of 1+ m771 implicit in Theorem 3.1 cannot be improved,
as it is known to be tight for EDF [14]. In fact a corollary of Theorem 3.1 is the well-known fact that
EDF is an optimal scheduling algorithm for a single processor [16]. To see this, consider Theorem 3.1
when 0 =1 and M = m = 1. The theorem then states that if EDF fails to schedule a sequence, there
is an interval A such that FFD(A) > ||A||. But then by Proposition 2.1 no algorithm can successfully
schedule the same sequence of jobs on a unit speed processor.

4 A fully polynomial-time approximation scheme for load esti-
mation

In this section we show how to efficiently compute an arbitrarily good estimate of the worst-case load
of a sporadic task system. Together with Theorem 3.1, this will yield an efficient feasibility test. We
remark that one cannot expect to design a polynomial-time algorithm for computing the worst-case load
exactly: for one processor, by Theorem 3.1 such an algorithm would decide feasibility of a sporadic task
system in polynomial time, thus solving a coNP-hard problem [12].

The following observation will facilitate the computation.

Lemma 4.1. Assume C. < min(D,,T;) for all tasks 7 of a sporadic task system T, and let ¢ € N.
Then

(+T, — D,
sup  FFDR(A) = S ke Cy 4 (Cr + £ = Dy — ky - T, where by = {+J .
R, A: || A= = I;
Proof. To see that the supremum is at least as claimed, consider the interval A = [¢,¢t + ) and the

sequence R where, for each task 7, ¢ 4+ £ is the deadline of some 7-job, and jobs are separated according
to the minimum separation time 7; more precisely, there is a 7-job released at time t +¢ — D, —i- T,
for all ¢ > 0 such that the absolute deadline of the job is in A (see Figure 4 for an example). There



are k; + 1 jobs that can contribute to FFDg(7,A). Of these, the last k, have both release date and
absolute deadline within A, and thus contribute k - C'; to the forward forced demand; the remaining job
has release date before A and forward forced demand equal to (C, — (T, — (¢ — D, — (k—1)T;)))". After
rearranging terms, the total forward forced demand is seen to be the same as in the claim.

To see that this is maximal, consider any job sequence R and any interval A with |A|| = £. As
C, < T, for all 7, at most k + 1 jobs can contribute to FFDg (7, A), and all such jobs have deadline in
A. Now we modify the sequence in the following way: we first eliminate jobs that are not contributing
to the forward forced demand; then, for each contributing job, starting with the one released last, we
delay its release date as much as possible so that 1) the deadline of the job remains inside the interval;
2) the release date of the job does not violate the minimum separation time constraint. Notice that
this modification does not decrease the total forward forced demand. On the other hand, after the
modification we obtain a pair (R, A) that can be analyzed exactly as in the first part of the claim. [

In view of Lemma 4.1, we define for a given instance T the functions
w, () =k, - Cr +(Cr+4—D; —k, - Ty)"
w(l) == ZwT(E).

7T

Lemma 4.1 states that w(¢) is the maximum forward forced demand of any job sequence of T in any
interval of length ¢. The construction of the lemma also showed that the maximal forward forced demand
is achieved for each task independently. As a consequence it only remains to find the optimal length of
the interval: the value of ¢ that maximizes the load w(¢)/¢.

We use Algorithm 2 to approximate the maximum of w(¢)/¢ within a factor of € in time polynomial in
the input size of T and 1/e. In fact, we devise a polynomial-time computable function ¢ which pointwise
approximates the load. We also show that there is a polynomial size set of integers, a priori determinable,
in which the function ¢ must achieve its maximum. The approximation algorithm then simply consists
in evaluating ¢ for every point from this subset.

Algorithm 2 Load Estimation(T, ¢)
For each 7 € T, compute:

threshold(7) := D, 4+ T /e,
S'(1) := {¢ € (0, threshold(r)] : £ = q- T, + D, for some q € N},
S"(r) := {¢ € (0, threshold(7)] : ¢ = ¢ - Ty + D, — C, for some g € N}.

Let S := Uzer (8'(7) US”(7) U {threshold(7)}) U {1, 00}.
Output

o w,(0) D\ C,

T:4<threshold () T:0>threshold(r

Lemma 4.2. For any task system T and € € (0,1) Algorithm 2 outputs A € Q such that (1 —e)A\* < A <

¥, where \* := sup FEDR(A) - 7pe running time of the algorithm is polynomial in the size of T and
R.A AT

1/e.
Proof. We will show that for all £ € N the function

o0 = Y w}(@ + > (1 - %) %

T:4<threshold(7) T:4>threshold(r)

approximates the load w(¢)/¢ in the sense that for all £ > 1,

(1-9" < g < 10, ()

We will also show that we can find the maximum of ¢ by only considering points in S. This will
complete the proof, since the number of points in S is polynomial in the input, and similarly ¢ can be
evaluated in polynomial time for any given point.



Recall that by definition,

{+T, — D,

w, (0) = {TJ C,+ <CT +(-D, - V*TTDJ -TT>+. (7)

As the second term is nonnegative, after multiplying both sides by 7). we obtain

which implies

w7(€)>&- 1_&
2 ¢ )

If we sum this inequality over all tasks 7 we obtain the upper bound on ¢ in (6).

To obtain the lower bound in (6) it suffices to consider tasks 7 for which threshold(7) < ¢ (for each
other task, the term w,(¢)/¢ in ¢(¢) exactly accounts for the contribution of the task). This condition is
equivalent to D, + T /e < ¢, implying T, < (£ — D,) - e. Using again (8) gives C; < w,(¥) - €.

If we start again from (7) and use the shorthand

(+T, - D,
=|———| - T —(¢—-D
T \‘ Tr J T (Z T))
after observing that z, € [0,7,] we can bound
CT C‘r +
— (¢ — — = C— — < .
wr(¢) — (£ — D) 7= T +(c—z)T <C;

We thus obtain

wr(0) wr(0) = ©
which can be equivalently expressed as
{—D, C; wy ()
T T (1- .
A

Summing this last bound over all tasks completes the proof of (6).

To conclude the proof we observe that S has been defined so that between any two consecutive points
01,0 € S the function £ - ¢(¢) is linear (compare with the definitions of ¢(¢) and w(¢)). This implies
that within any such interval [¢1, 2] the maximum of ¢ is achieved at an extreme point of the interval.
Therefore, the global maximum of ¢ is attained at some point in S, and the lemma follows. O

Theorem 4.3. Let m,M € N, e € (0,1), and o > 1 +M‘1(£ —1). There exists a feasibility test that,
given a task system T, € and m, decides whether T is EDF-schedulable on M speed-o machines, or T is
not feasible on m unit speed machines. The running time of the test is polynomial in the size of T, 1/e
and logm.

Proof. By Lemma 4.2 we can verify within the claimed time bound the following conditions:

(C1) For all tasks 7 € T, C; < min(D,,T5).

(C2) A <m, where (1 —€)A* <A< A" and A" := supg A %RH(A).
Both conditions are necessary for scheduling T on m unit speed machines; this follows from Proposition
2.2 for (C1), and from Proposition 2.1 for (C2).

On the other hand, (C2) implies, by definition of A\*, that there is no job sequence R and interval A
such FFDg(A) > 2 [|A||. By the assumption on o, M(o — 1) +1> Tizey» and the claim follows from
Theorem 3.1. O

Corollary 4.4. Let m € N and € € (0,1). There exists a feasibility test that, given a task system T, e
and m, decides whether T is EDF-schedulable on m speed-(2 — 1/m + €) machines, or T is not feasible
on m unit speed machines. The running time of the test is polynomial in the size of T, 1/e and logm.
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