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Abstract
Given a set system (X, R), the hitting set problem is to find
a smallest-cardinality subset H ⊆ X, with the property that
each range R ∈ R has a non-empty intersection with H . We
present near-linear time approximation algorithms for the
hitting set problem, under the following geometric settings:
(i) R is a set of planar regions with small union complexity.
(ii) R is a set of axis-parallel d-rectangles in R

d. In both
cases X is either the entire d-dimensional space or a finite
set of points in d-space. The approximation factors yielded
by the algorithm are small; they are either the same as or
within an O(log n) factor of the best factors known to be
computable in polynomial time.
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F.2.2 [Theory of Computation]: Analysis of Algorithm
and Problem Complexity Nonnumerical Algorithms and Prob-
lems [Computations on discrete structures, geometrical prob-
lems and computations]
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1. INTRODUCTION
A range space (X, R) is a pair consisting of an underlying

universe X of objects and a family R of subsets of X (called
ranges). A subset H ⊆ X is called a hitting set of (X, R) if it
intersects every range in R. In many geometric applications,
X is the entire R

d and the ranges in R are simply-shaped
regions (halfspaces, balls, simplices, etc.) that are subsets
of R

d. Given a range space (Rd, R) of the above kind, the
geometric hitting-set problem is to find a smallest set H ⊂
R

d of points that intersects all regions of R; we call H a
hitting set for R. Several applications require X to be a
finite point set, in which case we regard each range R ∈ R

as the intersection R∩X; with a slight abuse of notation, we
denote this range space as (X, R). We refer to this version
of the problem as the discrete model, and to the version in
which X = R

d as the continuous model. Let κ := κ(X, R)
denote the size of the smallest subset of X that is a hitting
set of (X, R).

The hitting-set problem is NP-Complete even for very
simple geometric settings in R

2, e.g., when R is a set of unit
disks or squares [26, 28]. Therefore attention has mostly
focused on developing polynomial-time approximation al-
gorithms. In some applications, such as sensor networks,
database systems, information retrieval, and computer vi-
sion, the sets X and R change dynamically and it is neces-
sary to construct a hitting set repeatedly (or just update it
dynamically); see, e.g., [5, 9, 42]. In such situations, it is
desirable to obtain a trade-off between the size of the hit-
ting set and the time spent in computing it—one may prefer
to have a slightly larger hitting set if it can be computed
much faster. Motivated by these applications, we study the
problem of computing a hitting set in near-linear time and
present algorithms of this kind for several special cases.

Previous results. The well-known greedy algorithm gives
a polynomial-time (log n)-approximation for computing a
hitting set [43], and the known lower-bound results suggest
that this is the best approximation factor one can hope to
achieve in polynomial time for general range spaces [25].
However, by exploiting the underlying geometry, one can
obtain polynomial-time algorithms with better approxima-
tion ratio for many geometric hitting-set problems. These
algorithms employ and adapt a wide range of novel tech-
niques, including variants of the greedy algorithm, dynamic
programming, LP-relaxation, and ε-nets. It is beyond the
scope of this paper to give a comprehensive review of the
known results. We refer the reader to [11, 12, 13, 14, 30]
and the references therein. We only mention a few results
that are directly relevant to our results.



A polynomial-time (1 + ε)-approximation algorithm, for
any ε > 0, is known under the continuous model if R is a set
of “fat” objects [13]; see also [30]. However these techniques
do not extend to the discrete model. Given a parameter
0 < ε < 1, an ε-net for a (finite) range space (X, R) is a
subset N ⊆ X with the property that N intersects every
range r ∈ R, whose size is at least ε|X|. In other words,
N is a hitting set for all the “heavy” ranges. By a seminal
result of Haussler and Welzl [29], a range space of finite VC-
dimension (see [29] for the definition) has an ε-net of size
O((1/ε) log(1/ε)). Improved bounds on the size of ε-nets are
known in several special cases. For example, ε-nets of size
O(1/ε) exist when X is a point set and R is a set of halfspaces
in two and three dimensions, pseudo-disks in the plane, or
translates of a fixed convex polytope in 3-space; see [17, 31,
34, 35, 40]. Recently, Aronov et al. [10] have shown the
existence of ε-nets of size O((1/ε) log log(1/ε)) for the case
where R is a set of n axis-parallel rectangles or boxes in R

2 or
R

3, respectively. Generalizing a technique by Clarkson [15],
Brönnimann and Goodrich [12] presented a general method
for computing a hitting set for a range space, under the
discrete model, using ε-nets. More precisely, let (X, R) be a
range space for which an ε-net of size O((1/ε)ϕ(1/ε)) can be
constructed in polynomial time. Brönnimann and Goodrich
present an iterative reweighted sampling scheme to compute
a hitting set H ⊆ X for R of size O(κϕ(κ)) in polynomial
time (as a matter of fact, their technique is applied under a
wider context and exploits the existence of weighted ε-nets—
see [12] and Section 5 for further details). Hence, a hitting
set of size O(κ log κ) can be computed, under the discrete
model, for any range space with finite VC-dimension. The
size reduces to O(κ log log κ) if R is a set of axis-parallel
rectangles in R

2 or boxes R
3, or to O(κ) in each of the

cases mentioned above when there exists a linear-size ε-net.
Several other instances with improved bounds are listed in
[10].

Both the greedy and the Brönnimann–Goodrich algorithms
terminate in O(κ log |R|) stages. A straightforward imple-
mentation of the greedy algorithm takes Ω(|X||R|) time per
stage, which can be improved to O((|X| + |R|)polylog(|R|))
(expected) time per stage if the complexity of the union of
the regions in R is near linear [11]. Similarly, a straight-
forward implementation of the Brönnimann–Goodrich al-
gorithm takes Ω(|X| + |R|) time (per stage). Thus the
bounds on the running time of these approaches is Ω((|X|+
|R|)κ log n). It is not clear whether the running of these al-
gorithms can be improved to O((|X| + |R|)polylog(|R|)) or

even to O((|X| + |R| + κO(1))polylog(|R|)). Although near-
linear algorithms are known for computing a hitting set un-
der the continuous model in several special cases, such as an
O(1)-approximation algorithm when the objects are fat [13],
no such algorithms are known under the discrete model even
for very simple cases, e.g., the case of disks in the plane.

Our results. In this paper we present near-linear algo-
rithms for computing a hitting set of approximately optimal
size, under both the discrete and continuous models. How-
ever, we begin in Section 2 by describing an algorithm for
computing a shallow cutting of a set of planar regions, aug-
mented with some additional procedures, which will be used
by our hitting-set algorithms. Although algorithms for con-
structing shallow cuttings are known [4, 34], adapting them
to support the additional procedures required in our scenario
in nontrivial. We instead use a randomized incremental ap-

proach to construct shallow cuttings, based on a variant of
of the algorithm of Agarwal et al. [3] for constructing lev-
els in arrangements. As a by-product result, we obtain an
efficient algorithm to approximate the “largest depth” in an
arrangement of planar regions, which, to our knowledge, is
faster than previous algorithms for this problem.

We first consider the case when R is a set of n closed,
connected planar regions of constant description complexity
and X is a set of m points in the plane.1 For simplicity,
we assume throughout the paper that X hits all the re-
gions in R. This assumption can easily be relaxed because
our algorithm can detect when X does not hit all the re-
gions. We further assume that the union complexity of any
subset of R of size r is O(rϕ(r)), where ϕ(r) is a slowly
growing function (ideally, o(log r) or at worst O(log r)). We
describe in Section 3 a randomized algorithm that com-
putes a hitting set H ⊆ X for R of size O(κϕ(κ) log n),
in expected time O((m log κ + nϕ(κ) log2 κ) log n). For the
continuous model (i.e., when X = R

2), the expected run-
ning time is O(nϕ(κ) log2 κ log n), yielding a similar approx-
imation factor as in the discrete case. Roughly speaking,
our approach can be regarded as a variant of the greedy
algorithm, in which we carefully choose O(κϕ(κ)) points
at each stage and cause the algorithm to terminate within
log n stages. In contrast, the greedy algorithm terminates
in O(κ log n) stages and chooses one point at each stage.
We obtain a faster algorithm by reducing the number of
stages, but have to pay an extra ϕ(κ) factor in the out-
put size. There are various classes of planar regions with
small union complexity; see [7] for a comprehensive survey.
Here we just mention that we obtain near-linear hitting-set
algorithms, with small approximation factors of the above
kind, for (i) pseudo-disks [33], with approximation factor
O(log n), (ii) fat wedges and fat triangles [39], with respec-
tive approximation factors O(log n) and O(log n log log κ),
(iii) locally γ-fat objects [19], with approximation factor
O(log2 (κ)βs+2(κ) log n), where s is a constant that depends
on the description complexity of the objects, and βt(q) =
λt(q)/q, where λt(q) is the maximal length of Davenport-
Schinzel sequences of order t on q symbols (see [41]), (iv) re-
gions bounded by Jordan arcs having three intersections per
pair [22], with approximation factor O(α(κ) log n), where
α(·) is the (extremely slowly growing) inverse Ackermann
function.

We next consider in Section 4 the case in which R is a set
of n axis-parallel rectangles and X a set of m points in the
plane. The union complexity of R can be quadratic in the
worst case, so we cannot apply the previous algorithm di-
rectly. We present an algorithm that computes a hitting set
H ⊆ X for R of size O(κ log n) in time O((m + n) log2 n).
It turns out that the continuous problem is considerably
simpler in this case: a hitting set of size O(κ logd−1 κ) for
a set of n orthogonal rectangles in R

d can be computed in
O(n logd−1 n) time by a simpler algorithm (the one-dimensional
problem has an exact solution, computable in O(n log n)
time).

Finally, we present in Section 5 a fast implementation
of the iterative reweighted-sampling scheme of Brönnimann
and Goodrich, for the case of axis-parallel d-rectangles in R

d.
Given a set X of m points and a set R of n axis-parallel d-

1A set has constant description complexity if it is a semi-algebraic
set defined by a constant number of polynomial equations and
inequalities of constant maximum degree; see [8] for details.



rectangles in R
d, we can compute a hitting set H ⊆ X for R

of O(κ log κ) size in O((m+n+κd+1)polylog(mn)) random-
ized expected time. The main ingredient of our algorithm is
a data structure that, after O((m + n)polylog(mn)) prepro-
cessing time, can implement each stage of the Brönnimann–
Goodrich algorithm in O(κdpolylog(mn)) time. We improve
the approximation factor to O(log log κ), for d = 2, 3, using
the recent result by Aronov et al. [10], while keeping the
expected running time O((m + n + κd+1)polylog(mn)).

2. ARRANGEMENTS AND CUTTINGS
Arrangements and levels. Let R be a set of n (closed)
connected planar regions of constant description complex-
ity. We refer to the boundaries of regions in R as boundary
curves. Without loss of generality, we assume that the re-
gions in R are in general position, that is, no point is incident
to more than two boundary curves, and when two curves
meet at a point, they cross each other there. Let A(R) de-
note the arrangement of R [8], and let U(R) =

S

R denote
the union of R. The combinatorial complexity of A(R) is
the number of its vertices, edges, and two-dimensional faces,
and the combinatorial complexity of U(R) is the number of
vertices and edges of A(R) that appear along ∂U(R). For
r ≤ n, let f(r) denote the maximum complexity of the union
of a subset of r regions in R, measured as above. We assume
that f(r) is nearly linear, i.e., f(r) ≤ rϕ(r), where ϕ(·) is
a slowly growing function (e.g., ϕ(r) = ln r). We refer to
such a set of regions as well behaved — they have constant
description complexity and the complexity of the union of
any of their subset is near linear.

The depth of a point p ∈ R
2 in A(R), denoted by ∆(p,R),

is the number of regions R ∈ R that contain p in their inte-
rior. For 0 ≤ l ≤ n, the l-level of A(R), denoted by Al(R),
is the set of all points whose depth is l; thus, the 0-level is
the closure of the complement of U(R). Let A≤l(R) denote
the set of points whose level is at most l, i.e., A≤l(R) =
Sl

j=0 Aj(R). The complexity of A≤l(R) is the number of

vertices and edges of A(R) that lie in A≤l(R). A well-known
result by Clarkson and Shor [16] implies that the complex-
ity of A≤l(R) is O(l2f(n/l)) = O(nlϕ(n/l)). In particular,
if l∗ = maxp∈R2 ∆(p,R), then the complexity of A(R) is
O(nl∗ϕ(n/l∗)). Thus if the union complexity is small and
the arrangement is “shallow” (i.e., its maximum depth is
small), the overall arrangement complexity is also relatively
small.

Figure 1. Vertical decomposition of A≤1; the level of the shaded
regions ≥ 2.

Vertical decomposition. The vertical decomposition of
a cell C in A(R), denoted by Cq , is obtained by erecting,
within C, a vertical line through each vertex and x-extremal
point on ∂C until it meets ∂C again (or else extends to ∞).
Cq partitions C into pseudo-trapezoidal cells, each bounded
by at most two arcs of ∂C and at most two vertical seg-
ments; some of the cells may be degenerate — they may be
unbounded or may have fewer than four edges. The num-
ber of pseudo-trapezoids in Cq is proportional to the num-
ber of vertices in C. The vertical decomposition of A(R)
or A≤l(R), denoted by A

q(R) and A
q

≤l(R), respectively, is
obtained by computing the vertical decomposition of each
of its cells. The number of pseudo-trapezoids in A

q

≤l(R) is

O (nlϕ(n/l)); see Figure 1.
A pseudo-trapezoidal cell τ in A

q(R) is defined by a set
D(τ ) of at most four regions in the sense that τ is a cell in
A

q(D(τ )). We call a pseudo-trapezoid τ ⊆ R
2 primitive if

there exists a set D = D(τ ) of at most four regions of R

such that τ ∈ A
q(D).

Shallow cuttings. Let l ≥ 0 and 1 ≤ r ≤ n be two pa-
rameters. A collection Ξ of (possibly unbounded) pairwise-
disjoint primitive cells is called a (1/r)-cutting of A≤l(R),
also known as a shallow (1/r)-cutting, if the union of the
cells in Ξ covers A≤l(R) and at most n/r boundary curves
of R cross each cell τ ∈ Ξ. The size of Ξ is the number of
its cells. The set of boundary curves that cross a cell τ ∈ Ξ,
denoted by Rτ , is called the conflict list of τ .

The notion of shallow cutting was originally introduced by
Matoušek [34] for a set of halfspaces in R

d, and this notion
was subsequently extended to other regions (see e.g. [4]). It
is shown in [34] (see also [4]) that there exists a (1/r)-cutting
of A≤l(R) of size O(qrϕ(r/q)), where q = l(r/n) + 1.

The proof of the above property is constructive and based
on a two-level random sampling. Namely, choose a random
subset G ⊆ R of r regions, compute A

q(G), and discard those
cells of Aq(G) that do not intersect A≤l(R). For each remain-
ing cell τ , let Rτ be its conflict list. If |Rτ | ≤ n/r, add τ to
the final cutting Ξ. Otherwise, if (t − 1)n/r ≤ |Rτ | ≤ tn/r,
for t > 1, choose a random sample Gτ ⊆ Rτ of O(t log t)
regions, compute A

q(Gτ ), clip each cell of A
q(Gτ ) within τ ,

and add the clipped cell to Ξ if it intersects A≤l(R). It is
shown that Ξ is a (1/r)-cutting of A≤l(R) whose expected
size is O(qrϕ(r/q)).

Our hitting-set algorithm will construct a shallow cutting
and perform some additional steps on the cutting. We there-
fore describe an efficient algorithm to construct a shallow
cutting, based on the two-stage sampling scheme described
in [34, 4]. It uses a variant of the randomized incremental
construction of Agarwal et al. [3] for constructing A≤l(R).
This approach is more suitable for our purposes than the
ones described in [34, 4], since it aids us to track additional
information that we need to maintain—see below.

Let r and l be two parameters. Let 〈R1, . . . , Rn〉 be a
random permutation of R, and let Ri = 〈R1, . . . , Ri〉. In
the first stage, we insert the regions in Rr in order. The
algorithms maintains the following structure after the first i
steps:

(i) A set Ξi of cells of A
q(Ri) that potentially intersect

A≤l(R).

(ii) The conflict lists: For every (primitive) cell τ ∈ Ξi,
the set Rτ ⊆ R \ Ri whose boundary curves cross τ ;



for every region R ∈ R \ Ri, we attach the list of all
cells τ with R ∈ Rτ . Set nτ := |Rτ |.

(iii) For each cell τ ∈ Ξi, the level lτ of one of its (arbitrary
chosen) interior points p with respect to A(R).

The algorithm maintains the invariant that lτ ≤ l + nτ . A
cell satisfying this condition is referred to as active.

Suppose we have inserted the regions in Ri−1 and we have
the above structure. We insert the region Ri and update the
structure as follows.

(i) We find all cells of Ξi−1 intersected by R, using the
conflict lists. We split these cells, re-decompose them
into primitive cells if necessary, update the conflict
lists, and compute the level information for the new
cells.

(ii) We then test each of the newly created cells τ to see
whether it is active. If τ is not active, we discard it
along with its conflict list.

We refer the reader to the original paper [3] for further de-
tails.

The time spent at each step is proportional to the number
of newly created and destroyed cells τ in that step plus the
size of their respective conflict lists. A cell destroyed in step
i must have been created in an earlier step, so it suffices to
bound the number of cells created in step i and the total
size of their conflict lists. Following the analysis in [3], the
expected time spent in step i is

O

„

n

i2

„

1 +
i2

n2
nϕ(n/l)

“

l +
n

i
log i

”

««

(1)

= O
`

n/i2 + ϕ(n/l)(l + (n/i) log i)
´

.

The above bound is obtained by the following intuitive
(and imprecise) argument. At the ith step, the set of active
cells of A(Ri) lie at level at most h = l + nτ , and, the anal-
ysis of Clarkson-Shor [16] implies that nτ = O((n/i) log i).
The complexity of A≤h(R) is O(nhϕ(n/l)). The probabil-
ity of a vertex of A≤h(R) to appear in A(Ri) is roughly
O(i2/n2), so the expected number of active cells in Ξi is
O

`

(i2/n2) · nhϕ(n/l)
´

, and the expected size of the conflict
list of each of these cells is O(n/i). The probability that
a cell of Ξi was created at the ith-step is roughly O(1/i).
Putting this together, one can deduce that the size of the
conflict lists of the newly created cells at step i is bounded
by (1). Summing over all r steps, the total expected running
time of the first stage of the algorithm is

O((n log2 r + rl)ϕ(n/l)). (2)

Put Ξ′ := Ξr. For each cell τ ∈ Ξ′, let nτ = |Rτ |. Next,
we refine each cell of Ξ′ as follows. Suppose (t − 1)n/r <
nτ ≤ tn/r. We refer to t as the excess in τ . If t = 1,
we add τ to the final cutting Ξ. Otherwise, we apply the
second sampling step on τ by constructing a (1/t)-cutting
(here this is just the “standard” cutting) for Rτ . This is
done by choosing a random sample Sτ of c′t log t regions of
Rτ , for some sufficiently large constant c′ > 0. We maintain
the primitive cells induced by Sτ (confined within τ ) that
meet A≤l(R) along with their conflict lists. The primitive
cells (clipped within τ ) computed by this second stage are
then added to the final cutting Ξ. A standard Clarkson-
Shor analysis [16] shows that the expected time spent on τ

in the second stage is O(tnτ log t) = O((n/r)t2 log t), and
the number of cells created is O(t2 log2 t).

For t ≥ 0, let η(r, t, l) denote the expected number of cells
in Ξ′ with excess at least t. The following two bounds on
η(r, t, l), proved in [4, 34, 6]2, bound the expected size of the
final cutting and the expected running time of the algorithm:

η(r, 0, l) = O (qrϕ(r/q)) and η(r, t, l) = O
`

2−tη(r/t, 0, l)
´

,

where q = 1 + lr/n. Summing the expected running time of
the second stage over all cells τ and using the above inequal-
ities, we obtain that the total expected time of the second
stage is:

X

t≥1

O

„

t2n log t

r

«

η(r, t, l) =
X

t≥1

O

„

t2n log t

2tr

«

η(r/t, 0, l)

= O
“n

r
· η(r, 0, l)

”

= O((n + lr)ϕ(n/l)).

Adding the expected time of the first stage, the expected
running time of the overall algorithm is

O((n log2 r + lr)ϕ(n/l)). (3)

Similarly, one can show that the total number of cells in Ξ
is O(qrϕ(r/q)). Hence we obtain the following:

Lemma 2.1. Let R be a set of n well-behaved planar re-
gions, let l ≥ 0, r ≥ 1 be two parameters, and let q = 1+lr/n.
A (1/r)-cutting for A≤l(R) of size O(qrϕ(r/q)), along with
the conflict list of each cell, can be computed in expected time
O((n log2 r + lr)ϕ(n/l)).

Remarks: (1) As indicated by the analysis, the running
time is dominated by the first stage of the algorithm.
(2) The algorithm in [3] inserts all elements R1, . . . , Rn (and
thus r = n in this case) in order to obtain the final structure
A≤l(R), whereas ours stops after a prespecified number of
steps to obtain the shallow cutting.

Next, we describe two extensions of this algorithm, each of
which will be crucial for our hitting-set algorithm. We can
construct a directed acyclic graph, called a history dag and
denoted by H, whose nodes are the trapezoids constructed
by the algorithm (in the first or the second stage). There is
an edge (τ ′, τ ) in H if τ is created by destroying τ ′. It is well
known that the out-degree of each node is O(1) and that the
expected length of any path is O(log r) [38]. Let X be a set
of m points in R

2. By tracing a path through H, we can
compute the cell of Ξ containing a point p ∈ X if such a cell
exists. We can thus locate all points of X in Ξ in expected
time O(m log r). Let Ξ∗ ⊆ Ξ be the set of nonempty cells,
which contain at least one point of X. Again, by using the
history dag H, we can compute the regions of R that contain
at least one cell of Ξ∗. We thus obtain the following:

Corollary 2.2. Let R and Ξ be as defined above, and let
X be a set of m points in R

2. We can compute in O(m log r+
(n log2 r+lr)ϕ(n/l)) expected time: (i) X∩τ for each τ ∈ Ξ,
and (ii) the subset of regions of R that contain at least one
nonempty cell of Ξ.

2In the first two citations this lemma is proved under the repe-
tition model. The reader is referred to the analysis given in [6,
20] for a proof of this lemma (or some of its variants) under our
model.



Let δ∗ = maxp∈X ∆(p,R). We can compute a value δ ∈
[δ∗/2, δ∗] by performing an exponential search on δ and using
the shallow-cutting algorithm and Corollary 2.2 at each step.
Initially, we set δ = n/2. At each step of the search, we
set l = δ, r = n/l, construct a (1/r)-cutting Ξ of A≤l(R),
and use the history dag to track the depth of each point in
X. More specifically, for each nonempty cell τ ∈ Ξ∗, we
maintain Nτ , the number of regions that contain τ (that
is, its depth with respect to the regions in R \ Rτ ). Let
τ 0 = arg maxτ∈Ξ Nτ . If Nτ0 ≥ nτ0 , we stop and return
Nτ0 . Otherwise we set δ = δ/2 and repeat the above step.
Note that when the algorithm terminates, Nτ0 ∈ [δ∗/2, δ∗],
as desired.

A closer inspection of the algorithm presented above shows
that Ξ need not be reconstructed from scratch at each step.
Note that the value of r is 2i in the ith step. Indeed, since the
algorithm for the first sampling stage is incremental, we can
compute Ξ2i from Ξ2i−1 by inserting R2i−1+1, . . . , R2i as de-
scribed above, and removing the cells that are no longer ac-
tive (recall that the value of l decreases by half at each step).
A careful analysis shows that the total expected time spent
in the first stage, over the entire exponential search, is within
a constant factor of the time spent in constructing Ξr∗ ,
where r∗ is the final value of r when the algorithm termi-
nated. By (2), the total expected time spent in the first stage
is thus O(nϕ(n/δ∗) log2(n/δ∗)). The second sampling stage
is applied from scratch at each step. Since the running time
of that stage is only O((n + lr)ϕ(n/l)) = O(nϕ(n/δ∗)) and
the number of steps in the exponential search is O(log (n/δ)),
this is subsummed by the time bound for the first sampling
stage. Putting all the pieces together, we conclude the fol-
lowing:

Corollary 2.3. Let R be a set of n well-behaved planar
regions, let X be a set of m points in R

2, and let δ∗ =
maxp∈X ∆(p, R). We can compute a value δ ∈ [δ∗/2, δ∗], in
expected time O

`

m log(n/δ∗) + nϕ(n/δ∗) log2(n/δ∗)
´

.

3. WELL-BEHAVED REGIONS
In this section we describe our hitting-set algorithm for a

set R = {R1, . . . , Rn} of n well behaved regions in R
2. We

first consider the discrete model in which the hitting points
are to be taken from a finite set X ⊂ R

2 of size m, and then
consider the continuous model in which X = R

2.

The discrete model. The algorithm works in stages. At
the beginning of the ith stage, we have subsets Ri ⊆ R,
Xi ⊆ X, and a hitting set Hi−1 = X \ Xi for R \ Ri. Set
ni = |Ri| and mi = |Xi|. Initially, R1 = R, X1 = X, and
H0 = ∅. The algorithm terminates when Ri = ∅ or Xi = ∅.
The ith stage consists of the following steps:

Set li = maxp∈Xi
∆(p,Ri). By Corollary 2.3, we can com-

pute, in O(mi log(ni/li) + niϕ(ni/li) log2(ni/li)) expected
time, an integer hi ∈ [li/2, li]. Put ri := max{ni, cni/hi},
for some constant c > 4. Using Lemma 2.1, we construct a
(1/ri)-cutting Ξi of A≤2hi

(Ri) of size O(riϕ(ri)). Note that
if hi ≤ c, Ξi is simply the vertical decomposition A

q(Ri) of
A(Ri). Since each point of Xi has depth at most li ≤ 2hi

and Ξi covers A≤2hi
(Ri), each of these points lies in some

cell of Ξi. For each cell τ ∈ Ξi, let X
(τ)
i = Xi ∩ τ , and let

Ξ∗
i ⊆ Ξi denote the subset of cells τ for which X

(τ)
i 6= ∅.

For each τ ∈ Ξ∗
i , we choose an arbitrary point pτ of X

(τ)
i .

Let H̄i denote the set of chosen points; |H̄i| = O(riϕ(ri)) =

O((ni/li)ϕ(ni/li)). By Corollary 2.2, H̄i can be computed
(along with Ξ∗

i ) in O(mi log(ni/li) + niϕ(ni/li) log2(ni/li))
time. Set Hi = Hi−1 ∪ H̄i and Xi+1 = Xi \ H̄i.

Using Corollary 2.2, we also compute the set Gi ⊆ Ri of
regions that fully contain a cell of Ξ∗

i , and then augment it
by scanning the conflict lists Rτ , for each cell τ ∈ Ξ∗

i (recall
that each such list consists of those regions whose boundaries
cross τ ), and by adding a region R ∈ Rτ to Gi if pτ ∈ R.
It is clear that H̄i is a hitting set for the augmented Gi, so
we set Ri+1 = Ri \ Gi. Note that no region of Ri+1 contains
a point of H̄i. Putting everything together, the expected
running time of the ith stage is

O(mi log(ni/li) + niϕ(ni/li) log2(ni/li)).

As mentioned above, the algorithm terminates when Xi = ∅
or Ri = ∅. Suppose the algorithm terminates after k steps.
If Rk+1 = ∅, we return H = Hk as the hitting set for R. If
Xk+1 = ∅ and Rk+1 6= ∅, then we conclude that no point
of X lies inside any region of Rk+1, and thus a hitting set
for (X, R) does not exist. The next two lemmas bound the
value of k and the size of H .

Lemma 3.1. The algorithm stops within ⌈log2 n⌉ stages.

Proof. We claim that for any j > 1, lj ≤ lj−1/2, which
will prove the lemma, since l1 ≤ n. Indeed, let p ∈ Xj be
a point of the maximum depth lj with respect to Rj . By
construction, p lies in a cell τ ∈ Ξj−1, which must contain
another point q 6= p that was chosen for H̄j−1 (one such
point was chosen, and it could not have been p, for then p
would have belonged to H̄j−1 and not included in Xj). At
the (j−1)th stage, we eliminate all the regions of Rj−1 that
contain q. Hence, if p lies in a region R ∈ Rj , then q 6∈ R.
Since both of p, q lie in τ , the boundary of R intersects τ and
thus R ∈ Rτ . Since Ξj−1 is a (1/rj−1)-cutting, there are at
most nj−1/rj−1 ≤ hj−1/c ≤ lj−1/2 such regions, therefore
∆(p, Rj) ≤ lj−1/2, as claimed.

Lemma 3.2. |H | = O(κϕ(κ) log n).

Proof. Let κj be the size of the smallest subset of Xj

that meets all regions of Rj . Observe that κj ≥ nj/lj ≥
rj/(2c), since each point of Xj can intersect at most lj ≤ 2hj

elements of Rj . Since |H̄j | ≤ |Ξj | = O(rjϕ(rj)), we obtain
|H̄j | = O(κjϕ(κj)). Next, we claim that κj ≤ κ. This
follows from the observation that if H∗ is an optimal hitting
set for R (of size κ), then H∗ \ Hj−1 is a hitting set for
Rj , for the simple reason that, by construction, no point in
Hj−1 intersects any region of Rj . Hence, |H̄j | = O(κϕ(κ)),
implying that |H | = O(κϕ(κ) log n).

Putting everything together, we obtain the following:

Theorem 3.3. Let R be a set of n regions of constant
description complexity in R

2 such that the union complexity
of any r of them is O(rϕ(r)), and let X be a set of m points
in R

2. A hitting set for (X, R) of size O(κϕ(κ) log n), where
κ = κ(X, R), can be computed in randomized expected time
O((m log κ + nϕ(κ) log2 κ) log n).

The continuous model. In the continuous model, the
points in the hitting set can be chosen anywhere in the plane,
i.e., X = R

2. The following simplified version of the previous
algorithm and its analysis apply to this case.



The ith stage now proceeds as follows. We have a set
Ri of regions, and a hitting set Hi−1 for R \ Ri. We set
li = maxp∈R2 ∆(p, Ri), compute a value hi ∈ [li/2, li], and
set ri = cni/hi, with the same choice of c as above. We then
construct a (1/ri)-cutting Ξi of the entire A(Ri) (which is
simpler to do than to construct a shallow cutting). The size
of Ξi is, as above, O(riϕ(ri)). We choose a point in each
cell of Ξi, and let H̄i be the set of chosen points. We remove
the regions that contain one of the points in H̄i, as above,
put Hi = Hi−1 ∪ H̄i, and set Ri+1 to be the set of regions of
Ri that have not yet been hit. We note that this algorithm
is significantly simpler than that of the discrete case, since
in the latter we need to compute a shallow cutting, locate
the points of Xi in Ξi, and distinguish between empty and
nonempty cells of Ξi, which is the major reason for con-
structing a shallow cutting, instead of just a “standard” one
(that is, with respect to the entire arrangement A(R)).

Following the same analysis as above, we can argue that
|H̄i| = O(κϕ(κ)) for each i, and that the algorithm termi-
nates in O(log n) stages. Hence, we obtain the following:

Theorem 3.4. Let R be a set of n regions of constant
description complexity in R

2 such that the union complexity
of any r of them is O(rϕ(r)). A hitting set for (R2, R) of
size O(κϕ(κ) log n), where κ = κ(R2, R), can be computed
in O(nϕ(κ) log2 κ log n) randomized expected time.

4. AXIS-PARALLEL RECTANGLES
We now present a near-linear algorithm for computing a

hitting set for a collection of axis-parallel rectangles. As in
Section 3, we first describe the algorithm for the discrete
model and then for the continuous model.

The discrete model. Let R = {R1, . . . , Rn} be a set of
n axis-parallel rectangles in R

2, and let X be a set of m
points in R

2. We follow the same iterative approach as in
Section 3, which works in ⌈log2 n⌉ stages, but each stage is
implemented differently. At the beginning of the ith stage,
we have a subset Ri ⊆ R, a subset Xi ⊆ X, and a hitting
set Hi−1 = X \ Xi, for R \ Ri; we set ni = |Ri|, mi = |Xi|.
Initially, R1 = R, X1 = X, and H0 = ∅. The algorithm
terminates when Xi = ∅ or Ri = ∅. The ith stage proceeds
as follow.

Let li = maxp∈Xi
∆(p,Ri). By a sweep-line algorithm, li

can be computed in O((mi + ni) log ni) time [21]. Next, we
sweep Ri and Xi from left to right by a vertical line L. We
maintain the intersection of L with the rectangles of Ri, a
set of intervals, in a segment tree. When L reaches a point
p ∈ Xi, we compute in O(log ni) time, δp, the number of
rectangles (currently) in Ri that contain p. If δp ≥ li/2,
we add p to H̄i, delete the set Gp of rectangles of Ri that
contain p from Ri, and update the segment tree. Note that
once a rectangle of Ri is deleted, it does not contribute to
the depth of subsequent points of Xi. Let Gi = ∪p∈H̄i

Gp,
Ri+1 = Ri \ Gi (the set of remaining rectangles), Xi+1 =
Xi \ H̄i, and Hi = Hi−1 ∪ H̄i. By construction, H̄i is a
hitting set for Gi. Moreover, Gp ∩ Gq = ∅, for p 6= q ∈ H̄i,
and |Gp|, |Gq | ≥ li/2. Following the same argument as in
Section 3, we can conclude that H̄i ≤ 2κ, and li+1 ≤ li/2.

If Ri+1 = ∅, we return Hi as the hitting set of (X, R). If
Ri+1 6= ∅ and Xi+1 = ∅, we conclude that a hitting set does
not exist for (X, R) and we stop. Since the ith stage takes
O((mi + ni) log ni) time, we conclude the following:

Theorem 4.1. Given a set R of n axis-parallel rectangles
in R

2 and a set X ⊂ R
2 of m points, a hitting set for (X, R)

of size O(κ log n) can be computed in O((m+n) log2 n) time,
where κ = κ(X, R).

The continuous model. The algorithm for the discrete
case can be extended to the continuous case as well, yield-
ing an O(log n) approximation factor within a similar time
bound. However, we describe a different algorithm that not
only yields an approximation factor of O(log κ) but also ex-
tends to higher dimensions.

We construct an interval tree T over R, as follows. Let J

be the set of the x-projections of the rectangles in R; J is
a set of n intervals in R. Using a greedy algorithm [18], we
compute in O(n log n) time an optimal hitting set Q ⊂ R for
J. Let L be the set of vertical lines x = q, for q ∈ Q. The
lines of L intersect all rectangles in R. Since R has a hitting
set of size κ, we have k := |L| = |Q| ≤ κ.

The lines in L partition the plane into k+1“atomic” slabs.
We construct a balanced binary tree T over these slabs. Each
node v of T is associated with a slab σv. Specifically, the
ith leaf of T is associated with the ith leftmost atomic slab.
If v is an interior node of T with children w and z, then
σv = σw ∪ σz. Let ℓv ∈ L be the common boundary of σw

and σz. A rectangle R ∈ R is stored at the highest node
v of T for which ℓv intersects R. Since each rectangle in R

intersects at least one line in L, it is associated with a unique
interior node of T. Let Rv ⊆ R be the set of rectangles stored
at v, and put nv := |Rv |. For i ≤ log2(k + 1), let V (i) be

the set of nodes of T whose level is i. Set R(i) =
S

v∈V (i) Rv.
The time to construct these subsets is clearly O(n log κ). See
Figure 2 for an illustration.

Rw

v

z
Rv

w

Rz

Figure 2. Interval tree T with two atomic slabs associated with the
nodes w, z, whose parent node is v. The light rectangles are stored
at w, z, whereas the black rectangles are stored at v. Black circles
denote the hitting set of I and hollow circles denote the hitting set
of R.

For a node v, let Jv = {R ∩ ℓv | R ∈ Rv}. Since we can
use any point in R

2 to hit the rectangles of Rv, we observe
that there exists an optimal hitting set Hv for Rv in which
every point lies on the line ℓv. Hv is also a hitting set for
Jv , so it suffices to compute a hitting set for Jv . As above,
we can construct an optimal hitting set Hv for Jv (i.e., for
Rv) in O(nv log nv) time, using a greedy algorithm [18]; set
κv = |Hv|. By construction, for any two nodes v and w



at the same level of T, Rv and Rw are pairwise disjoint, so
their respective hitting sets are also disjoint. Consequently,
P

v∈V (i) κv ≤ κ. Hence, H =
S

v∈T
Hv is a hitting set for R

of size O(κ log κ).
This algorithm can be extended to d-rectangles in any

dimension d, using induction on d, while paying a log κ factor
in the size of the hitting set and a log n factor in the running
time at each inductive step. Omitting the straightforward
details, we obtain:

Theorem 4.2. Given a set R of n axis-parallel d-rectangles
in R

d, a hitting set for (Rd, R) of size O(κ logd−1 κ) can be
computed in O(n logd−1 n) time, where κ = κ(Rd, R).

5. ITERATIVE REWEIGHTED SAMPLING
SCHEME

This section describes a faster implementation of the iter-
ative reweighted scheme of Brönnimann and Goodrich and
of Clarkson [12, 15] to compute a hitting set for (X, R),
where X is a set of m points and R is a set of n axis-parallel
d-rectangles in R

d. The size of the hitting set is O(κ log κ),
and the running time is O∗((m + n + κd+1)).3 The size can
be improved to O(κ log log κ), for d = 2, 3, using the recent
result of Aronov et al. [10]. For simplicity, we only describe
the algorithms for d = 2.

We first briefly recall this general technique. We are given
a range space (X, R), and the goal is to find a small subset
H ⊆ X that intersects every range of R. Suppose we know
(or guess) the value of κ. The algorithm works in phases, and
it maintains a weight function ω : X → Z. Initially, ω(p) = 1
for each p ∈ X. In each phase, the algorithm performs
two main steps. It first constructs a (1/2κ)-net N ⊆ X
of the weighted range space (X, R). Next, it determines
whether N is a hitting set for R. If the answer is yes, the
algorithms returns N and stops. Otherwise, the algorithm
finds a witness range R that does not intersect N ; note that
ω(R) ≤ ω(X)/2κ. The algorithm then doubles the weight
of each point in X ∩ R, and repeats the above two steps.
The analysis of [12, 15] shows that the algorithm terminates
within g(κ) := O(κ log (n/κ)) rounds. Since we do not know
the value of κ, we conduct an exponential search for κ. If the
algorithm does not stop within g(κ) phases for the current
guess of κ, we double the value of κ and restart.

Let W be the set of “witness” ranges identified by the
algorithm in the current phase. The technique needs the
following two procedures:

Verifier. Given a subset H ⊆ X, the procedure returns
yes if H is indeed a hitting set for R, or else returns a
witness range R ∈ R that does not intersect H .

ε-Net Generator. This procedure maintains a subset W ⊂
R of “witness” ranges. The weight ω(p) of a point p in
X is 2wp , where wp is the number of ranges in W that
contain p. The procedure supports two operations:
(i) insert a range into W, and (ii) given a parameter
ε > 0, return an ε-net N for the weighted range space
(X, R, ω), i.e., a subset N of X such that, for any range
R ∈ R with ω(R) ≥ εω(X), R ∩ N 6= ∅.

3Under this context, a bound of the form O∗(f(q)) means that
the actual bound is O(f(q) · polylog(nm)).

(a, a)

x = y

(α−, α+)

α+aα−

Figure 3. The transformation for the one-dimensional problem.
Mapping an interval [α−, α+] to the point (α−, α+), and a point
a ∈ R to the quadrant [−∞, a] × [a,∞].

If we implement the verifier and the ε-net generator in a
brute-force manner, each phase of the algorithm can be im-
plemented in O((m+n)κ log n) time, since |W| = O(κ log n)
and |N | = O(κ log κ). We show that in our setting, where X
is a set of m points and R is a set of n axis-parallel rectangles
in R

2, we can preprocess X and R in O∗((m + n)) time so
that each phase can be implemented in O∗(κ2) time, which
is considerably faster than a naive implementation for small
values of κ.

The verifier. We wish to preprocess a set R = {R1, . . . , Rn}
of n axis-parallel rectangles in R

2 into a data structure, so
that we can determine whether a set H of points is a hit-
ting set for R. Suppose Ri = [α−

i , α+
i ] × [β−

i , β+
i ]. We

map Ri to a point πi = (α−
i , α+

i , β−
i , β+

i ) ∈ R
4, and put

Π = {πi | 1 ≤ i ≤ n}. We preprocess Π in O(n log3 n) time
into a 4-dimensional range-searching data structure [1] so
that for a query axis-parallel box B ⊆ R

4, we can determine
in O(log2 n) time whether B ∩ Π 6= ∅. If so, then it also
returns a point of Π ∩ B.

A point p = (a, b) ∈ R
2 intersects a rectangle Ri ∈ R if

α−
i ≤ a ≤ α+

i and β−
i ≤ b ≤ β+

i , i.e., the point πi lies in
the orthant Op = [−∞, a] × [a,∞] × [−∞, b] × [b,∞]; see
Figure 3 for a 1D illustration. Let KH = R

2 \
S

p∈H Op.

Hence H is a hitting set for R if and only if Π ⊂
S

p∈H
Op,

i.e., KH∩Π = ∅. Put h := |H |. Using a simple variant of the
algorithm by Kaplan et al. [32], we decompose KH in time
O(h2 log2 h) into a family B of O(h2) disjoint boxes. We
query the range-searching data structure on Π with each box
B ∈ B and determine, in O(log2 n) time, whether B∩Π = ∅.
If the answer is yes for all boxes, we conclude that H is a
hitting set for R. Otherwise, there is a box B ∈ B for which
the query procedure returns a point πj ∈ B. We return the
rectangle Rj as the witness rectangle that is not hit by H .
We have thus shown:

Lemma 5.1. R can be preprocessed in time O(n log3 n)
into a data structure so that we can determine in O(h2 log2 n)
time whether a set H of h points is a hitting set of R.

The ε-net generator. Let W be the set of “witness” rect-
angles maintained by the procedure, and let s = |W|; re-
call that s = O(κ log (n/κ)). Let Γ be the set of 4s lines
that support the edges of the rectangles in W. We maintain
the arrangement A(Γ). For each cell τ ∈ A(Γ), which is a
rectangle, let Xτ = X ∩ τ , and let wτ be the number of
rectangles in W that contain τ . The weight ω(p) of each
point p ∈ Xτ is 2wτ . Set ω(τ ) = ω(Xτ ) = 2wτ |Xτ |, and
Ω = ω(X) =

P

τ
ω(τ ). For each cell τ ∈ A(Γ), we main-

tain two copies of Xτ , one sorted by the x-coordinates and
the other by the y-coordinates, and the quantities wτ , ω(τ ).



When a new rectangle R is inserted into W, we add the set
ΓR of the four lines supporting the edges of R to Γ, and split
each of the cells of A(Γ) that intersect a line of ΓR, to obtain
A(Γ ∪ ΓR). If a cell τ is split into two subcells τ− and τ+,
we first set wτ− = wτ+ = wτ . Next, we split Xτ into the
respective subsets Xτ− and Xτ+ . This can be accomplished
in O(min{|Xτ− |, |Xτ+ |}) time, using standard techniques.
(A cell may be split into more than just two subcells, a sit-
uation which we handle in much the same way.) Finally, we
increment the value of wτ for all those cells that lie inside
R and update the values of ω(τ ) for each cell. Updating the
arrangement and the weights of all the cells take O(s2) time.
The total time spent in splitting the point sets over all inser-
tions is O(m log m), which we can charge to preprocessing.
Hence, the amortized time spent in inserting a rectangle is
O(s2). See Figure 4.

R

(a) (b)

Figure 4. (a) A(Γ) and the sets Xτ . (b) Insertion of a rectangle
R (shaded rectangle) into W. The weight of each point inside R
(denoted as hollow circles) is doubled.

Given a parameter ε, we compute an ε-net of (X, R) by
choosing a random subset N ⊆ X of size O((1/ε) log (1/ε)),
where each point of X is chosen with probability propor-
tional to its weight. In order to choose a point of X ran-
domly, we first randomly choose a cell τ ∈ A(Γ) with proba-
bility ω(τ )/Ω, and then choose a point of Xτ uniformly. Af-
ter O(s2) preprocessing, a random cell of A(Γ) can be chosen
in O(log s) time; see e.g. [37]. Hence, we can compute N in
randomized expected time O(s2 + (1/ε) log (1/ε) log s). We
have thus shown:

Lemma 5.2. We can maintain W and X into a data struc-
ture so that after O(m log m) preprocessing, a rectangle can
be inserted into W in O(s2) time, and an ε-net of (W,R, ω)
of size O(1/ε log (1/ε)) can be constructed in randomized ex-
pected time O(s2 + (1/ε) log (1/ε) log s).

An improved ε-net generator for d = 2, 3. The recent
construction by Aronov et al. [10] can be adapted to con-
struct an ε-net of (X, R, ω) of size O(1/ε log log (1/ε)) for
d = 2, 3. This requires building a more sophisticated data
structure on W and X. In particular, we build a data struc-
ture that supports the following four operations:

(i) Insert(R): Insert a new rectangle R into W.

(ii) Wt(R): Return ω(R ∩ X).

(iii) Rank(w): The rank of a point p ∈ X is the sum of
the weights of the points lying to the left of p. Return
the leftmost point whose rank is at least w.

(iv) Random(t,R): Return t random points from R ∩ X;
each point is chosen with probability ω(p)/ω(X).

Insert takes O∗(s2) time, Wt, Rank take O(s∗) time,
and the last operation takes O∗(s + t) time. Before de-
scribing the data structure we describe how the construc-
tion by Aronov et al. [10] can be implemented quickly. Set
r = (c/ε) log log (1/ε), where c ≥ 1 is a sufficiently large
constant.

I. Choose a random subset S ⊆ X, where each point
p of X is chosen with probability rω(p)/ω(X). The
expected size of S is r.

II. Divide the plane into a set Σ of r slabs by drawing r−1
vertical lines so that the weight of the points lying in
each slab is at most ⌈ω(X)/r⌉.

III. Build a binary tree T with r leaves. Each node v ∈ T

is associated with a slab σv. The ith most leaf of T is
associated with the ith leftmost slab of Σ. For an in-
terior node v with children w and z, σv = σw ∪σz. Set
Sv = S∩σv. We call a rectangle M anchored (with re-
spect to v) if one of the edges of M lies on the common
boundary line σv ∩ σu, where u is the sibling of v. We
construct the set Mv of maximal anchored rectangles
that do not contain any point of Sv in their interior,
i.e., an anchored rectangle M ∈ Mv if int(M)∩Sv = ∅
and there is no anchored rectangle M ′ ⊃ M such that
int(M ′) ∩ Sv = ∅. See Figure 5 for an illustration.
Aronov et al. [10] showed that |Mv | = O(|Sv |) and
that Mv can be computed in O(|Sv| log |Sv|) time. Set
M =

S

v∈T
Mv . The expected size of M is O(r log r).

IV. For each M ∈ M, compute ω(M ∩ X). If there exists
an integer tM ≥ c log log(1/ε), such that tM · n/r ≤
ω(M ∩ X) ≤ (1 + tM ) · n/r, then we choose a random
subset SM ⊆ X ∩ M of µM = O(tM log tM ) points;
each point is chosen with probability proportional to
its weight. Otherwise SM = ∅.

V. Return N = S ∪
`
S

M∈M
SM

´

.

σv σu

M2
M1

Figure 5. Two siblings nodes u and v; black circles are points in
S, the first random sample; M1 (resp. M2) is a maximal anchored
empty rectangle at v (resp. u); double circles are random samples
chosen at the second stage; hollow circles are the remaining points
in X.

Aronov et al. [10] proved that N is an ε-net of (X, R, ω)
and that the expected size of N is O(r) = O(1/ε log log (1/ε)).
As for the running time, step I can be implemented in O∗(r+
s) time by calling Random(r,R2). Step II can be imple-
mented in O∗(sr) time by calling the procedure Rank r− 1
times. Finally, we spend O∗(s) time to compute ω(X ∩ M)
using Wt(M) and another O∗(s + |SM |) time to construct
SM using Random. Hence, step IV takes

O∗ ((|M| + ΣM∈M |SM |) s) = O∗ (|N | · s) = O∗(s/ε)



expected time. Hence, the total time spent in constructing
the ε-net is O∗(s/ε).

We now describe the data structure, an extension of the
one for the previous ε-generator, for storing W and X that
supports operations (i)–(iv). More presicely, let Γ be the set
of the 4s lines supporting the edges of the rectangles in W.
We maintain A(Γ), which is a (2s + 1) × (2s + 1) grid; see
Figure 4. When convenient, we will represent a cell of A(Γ)
as τi,j , for 0 ≤ i, j ≤ 2s. For each cell τ ∈ A(Γ), let Xτ , wτ ,
and ω(τ ) be as defined above. Abusing the notation a little,
let Xij denote Xτij

. In addition, to maintaining these quan-
tities, we also preprocess Xτ into a dynamic range-tree data
structure Ψ(τ ) so that ω(Xτ ∩ R), for a query rectangle R,
can be computed in O(log2 m) time [21]. This data structure
can also choose a random point of Xτ ∩R in O(log m) time.
For each column j of A(Γ), we maintain a height-balanced

binary tree Cj so that, for an interval [a, b],
Pb

i=a
ω(τi,j) can

be computed in O(log n) time. Using Cj , we can also choose
a random cell among τa,j , . . . , τb,j , where each cell is chosen
with probability proportional to its weight. With this data
structure at our disposal, each of the four desired operations
can be performed as follows.

Insert(R): We first update A(Γ) as earlier. Suppose a
cell τ of A(Γ) is split into two cells τ− and τ+ and |Xτ− | ≤
|Xτ+ |. We obtain Ψ(τ+) from Ψ(τ ) by deleting the points
of Xτ− from Ψ(τ ), and we construct Ψ(τ−) by building the
range tree on Xτ− . This step takes O(|Xτ− | log2 |Xτ− |)
time and we charge it to preprocessing—each point of X is
charged O(log m) times, with a total of O(log3 m) units over
the entire sequence of operations. Next, for each column j
of the arrangement, we reconstruct the binary tree Cj . The
total amortized time spent in the insertion is O∗(s2).

Wt(R): Let τaL,bL
(resp., τaR,bR

) be the cell of A(Γ)
containing the lower left (resp., upper right) vertex of R, i.e.,
τa,b ∩ R 6= ∅ for aL ≤ a ≤ aR and bL ≤ b ≤ bR. For a cell
τ ∈ A(Γ) that intersects ∂R, we compute ω(Xτ ∩ R) using
Ψ(τ ). If aR > aL+1 and bR > bL+1 (i.e., a cell τ ∈ A(Γ)
such that τ ⊂ R), for each bL < b < bR, we compute Wb =
P

aL<a<aR
ω(τa,b) using Cb. We then add these quantities

to obtain ω(X ∩ R). The time spent is O∗(s).
Random(t,R): We choose a random point of A ∩ R in

three stages: first choose the column j from which the point
is chosen, next choose the cell τ within column j from which
the point is chosen, and finally choose a random point of
Xτ ∩ R. After O∗(s) preprocessing, each point is chosen
in O(log2 s) time. In more detail, let aL, bL, aR, bR, Wb be
the same as in Wt(R). Let Y = {ω(Xτ ∩ R) | τ ∩ ∂R 6=
∅}

S

{Wb | bL < b < bR}. We store Y in a tree so that
a random item of Y can be chosen in O(log s) time with
probablilty proportional to its value. If we choose Wb, then
we choose a random cell τa,b, aL < a < aR, with probability
ω(τa,b)/Wb, using Cb. Finally, we choose a random point of
Xτa,b

∩ R using Ψ(Xτa,b
). If an item ω(Xτ ∩ R) is chosen

from Y , we choose a random point of Xτ ∩ R using Ψ(Xτ ).
By repeating this procedure t times, we choose t random
points of X ∩ R. The total time spent is O∗(s + t).

Rank(w): Let p∗ ∈ X be the point of rank w. We
find in O(s) time the column j of A(Γ) that contains p∗.
Note that Ψ(τ ) stores the points of Xτ sorted by their x-
coordinates. Let w̄ be the rank of p∗ within column j, i.e.,
w̄ = w −

P

b<j
w(τa,b). Using the technique by Fredrickson

and Johnson [27], we choose, in O∗(s) time, a point of rank
w̄ from the set

S

i
Xij . Hence, Rank(w) takes O∗(s) time.

Putting the pieces together. Returning to the prob-
lem of computing a hitting set for R in our setting, we
plug the above procedures into the general machinery. Ob-
serving that |H | = O(κ log κ), |W| = O(κ log n), and ε =
1/(2κ), we conclude that, after O∗(m + n) preprocessing,
each phase of the algorithm can be implemented in O∗(κ2)
time. Hence, the expected running time of the overall algo-
rithm is O∗((m + n + κ3)). Both the verifier and the ε-net
generator procedures can be extended to any dimension d ≥
2 (the improved ε-net generator with respect to the bound
of Aronov et al. [10] is extended only to d = 3), therefore the
hitting-set algorithm can be extended to higher dimensions.
The expected running time is then O∗((m + n + κd+1)). We
thus conclude the following:

Theorem 5.3. Let X be a set of m points in R
d, and let

R be a set of n d-rectangles in R
d. A hitting set for (X, R)

of size O(κ log κ) can be computed in randomized expected
time O∗((m + n + κd+1)), where κ = κ(X, R). For d = 2, 3,
the size of the hitting set is O(κ log log κ).

Remark: We note that with some effort we can speed up
the overall running time for the ε-net generator (presented
for any dimension d) to be nearly O

`

n + κd
´

, over all steps k
of the algorithm, however, we are not aware of any technique
that achieves a similar time bound for the verifier.
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[35] J. Matoušek, R. Seidel, and E. Welzl. How to net a
lot with little: Small ε-nets for disks and halfspaces. In
Proc. 6th Annu. Sympos. Comput. Geom., 16–22, 1990.
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