Optimal Polygonal Representation of Planar Graphs

E. R. Gansner?, Y. F. Hu?, M. Kaufmann?, and S. G. Kobourov*

1 AT&T Research Labs, Florham Park, NJ
{erg, yifanhu}@research.att.com
2 Wilhelm-Schickhard-Institut for Computer Science, Tiibingen University
mk@informatik.uni-tuebingen.de
3 Dept. of Computer Science, University of Arizona
kobourov@cs.arizona.edu

Abstract. In this paper, we consider the problem of representing graphs by polygons whose sides touch.
We show that at least six sides per polygon are necessary by constructing a class of planar graphs that cannot
be represented by pentagons. We also show that the lower bound of six sides is matched by an upper bound
of six sides with a linear time algorithm for representing any planar graph by touching hexagons. Moreover,
our algorithm produces convex polygons with edges with slopes 0, 1, -1.

1 Introduction

For both theoretical and practical reasons, there is a large body of work considering how to represent planar
graphs as contact graphs, i.e., graphs whose vertices are represented by geometrical objects with edges corre-
sponding to two objects touching in some specified fashion. Typical classes of objects might be curves, line
segments or isothetic rectangles, and an early result is Koebe’s theorem [20], which shows that all planar graphs
can be represented by touching disks.

In this paper, we consider contact graphs whose objects are simple polygons, with an edge occurring when-
ever two polygons have non-trivially overlapping sides. As with treemaps [3], such representations are preferred
in some contexts [4] over the standard node-link representations for displaying relational information. Using
adjacency to represent a connection can be much more compelling, and cleaner, than drawing a line segment
between two nodes. For ordinary users, this representation suggests the familiar metaphor of a geographical
map.

It is clear that any graph represented this way must be planar. As noted by de Fraysseix et al. [7], it is also
easy to see that all planar graphs have such representations for sufficiently general polygons. Starting with a
straight-line planar drawing of a graph, we can create a polygon for each vertex by taking the midpoints of all
adjacent edges and the centers of all neighboring faces. Note that the number of sides in each such polygon is
proportional to the degree of its vertex. Moreover, these polygons are not necessarily convex; see Figure 1.

It is desirable, for aesthetic, practical and cognitive reasons, to limit the complexity of the polygons involved,
where “complexity” here means the number of sides in the polygon. Fewer sides, as well as wider angles in the
polygons, make for simpler and cleaner drawings. In related applications such as floor-planning [24], physical
constraints make undesirable polygons with very small angles or many sides. One is then led to consider how
simple can such representations be. How many sides do we really need? Can we insist that the polygons be
convex, perhaps with a lower bound on the size of the angles or the edges? If limiting some of these parameters
prevents the drawings of all planar graphs, which ones can be drawn?

1.1 Our Contribution

This paper provides answers to some of these questions. Previously, it was known [12, 24] that all planar graphs
can be represented using non-convex octagons. On the other hand, it is not hard to see that one cannot use
triangles (e.g., K5 minus one edge cannot be represented with triangles).

Our main result is showing that hexagons are necessary and sufficient for representing all planar graphs. For
necessity we construct a class of graphs that cannot be represented using five or fewer sides. For sufficiency, we

Fig. 1. Given a drawing of a planar graph(a), we apportion the edges to the endpoints by cutting each edge in half (b),
and then apportion the faces to form polygons (c).

describe a linear-time algorithm that produces a representation using convex hexagons all of whose sides have
slopes 1, 0, or -1. Finally, we describe an alternative algorithm for generating convex hexagonal representations
for general planar graphs that leads to O(n) X O(n) drawing area.

1.2 Related Work

As remarked above, there is a rich literature related to various types of contact graphs. There are many re-
sults considering curves and line segments as objects (cf. [13, 14]). For closed shapes such as polygons, results
are rarer, except for axis-aligned (or isothetic) rectangles. In a sense, results on representing planar graphs as
“contact systems” can be dated back to Koebe’s 1936 theorem [20] which states that any planar graph can be
represented as a contact graph of disks in the plane.

The focus of this paper is side-to-side contact of polygons. The algorithms of He [12] and Liao et al. [24]
produce contact graphs of this type for any planar graph, with nodes represented by the union of at most two
isothetic rectangles, thus giving a polygonal representation by non-convex octagons. By relaxing the isothetic
constraint to allow angles of 45° we are able to reduce the number of sides to six, while enforcing convexity.

Although not considered by the authors, an upper bound of six for the minimum number of sides in a touch-
ing polygon representation of planar graphs might be obtained from the vertex-to-side triangle contact graphs of
de Fraysseix et al. [7]. The top edge of each triangle can be converted into a raised 3-segment polyline, clipping
the tips of the triangles touching it from above, thereby turning the triangles into side-touching hexagons. It is
likely to be difficult to use this approach for generating hexagonal representations as it involves computing the
amounts by which each triangle may be raised so as to become a hexagon without changing any of the adja-
cencies. Moreover, by the nature of such an algorithm, there would be many ‘“holes,” potentially making such
drawings less appealing, or requiring further modifications to remove them.

‘We now turn to contact graphs using isothetic rectangles, which are often referred to as rectangular layouts.
This is the most extensively studied class of contact graphs, due, in part, to the relation to application areas such
as VLSI floor-planning [22, 31], architectural design [28] and geographic information systems [10], but also due
to the mathematical ramifications and connections to other areas such as rectangle-of-influence drawings [25]
and proximity drawings [1, 16].

Graphs allowing rectangular layouts have been fully characterized [26, 30] with linear algorithms for de-
ciding if a rectangular layout is possible and, if so, constructing one. The simplest formulation [4] notes that
a graph has a rectangular layout if and only if it has a planar embedding with no filled triangles. Thus, K4 has
no rectangular layout. Buchsbaum et al. [4] also show, using results of Biedl et al. [2], that graphs that admit
rectangular layouts are precisely those that admit a weaker variation of planar rectangle-of-influence drawings.

Rectangular layouts required to form a partition of a rectangle are known as rectangular duals. In a sense,
these are “maximal” rectangular layouts; many of the results concerning rectangular layouts are built on results
concerning rectangular duals. Graphs admitting rectangular duals have been characterized [11,21, 23] and there
are linear-time algorithms [11, 19] for constructing them.

Another view of rectangular layouts arises in VLSI floorplanning, where a rectangle is partitioned into
rectilinear regions so that region adjacencies correspond to a given planar graph. It is natural to try to minimize
the complexities of the resulting regions. The best known results are due to He [12] and Liao et al. [24] who
show that regions need not have more than 8 sides. Both of these algorithms run in O(n) time and produce
layouts on an integer grid of size O(n) X O(n), where n is the number of vertices.

Rectilinear cartograms can be defined as rectilinear contact graphs for vertex-weighted planar graphs, where
the area of a rectilinear region must be proportional to the weight of its corresponding node. Even with this extra
condition, de Berg et al. [6] show that rectilinear cartograms can always be constructed in O(n log n) time, using
regions having at most 40 sides.

1.3 Preliminaries

Touching Hexagons Graph Representation: Throughout this paper, we assume we are dealing with a con-
nected planar graph G = (V, E). We would like to construct a set of closed simple polygons R whose interiors
are pairwise disjoint, along with an isomorphism R : V — R, such that for any two vertices u, v € V, the bound-
aries of R(u) and R(v) overlap non-trivially if and only if {u, v} € E. For simplicity, we adopt a convention of
the cartogram community and define the complexity of a polygonal region as the number of sides it has. We call
the set of all graphs having such a representation where each polygon in R has complexity 6 touching hexagons
graphs.

Canonical Labeling: Our algorithms begin by first computing a planar embedding of the input graph G = (V, E)
and using that to obtain a canonical labeling of the vertices. A planar embedding of a graph is simply a clockwise
order of the neighbors of each vertex in the graph. Obtaining a planar embedding can be done in linear time using
the algorithm by Hopcroft and Tarjan [15]. The canonical labeling or order of the vertices of a planar graph was
defined by de Fraysseix et al. [9] in the context of straight-line drawings of planar graphs on an integer grid of
size O(n) X O(n). While the first algorithm for computing canonical orders required O(n log n) time [8], Chrobak
and Payne [5] have shown that this can be done in O(n) time.

In this section we review the canonical labeling of a planar graph as defined by de Fraysseix et al. [8]. Let
G = (V,E) be a fully triangulated planar graph embedded in the plane with exterior face u, v, w. A canonical

labeling of the vertices vo = u,vi = v,vp,...,v,-1 = w is one that meets the following criteria for every
2<i<nm:
1. The subgraph G;_; € G induced by vg, vy,...,v,_; is 2-connected, and the boundary of its outer face is a

cycle C;_; containing the edge (u, v);
2. The vertex v; is in the exterior face of G;_;, and its neighbors in G;_; form an (at least 2-element) subinterval
of the path C;_; — (u,v).

The canonical labeling of a planar graph G allows for the incremental placement of the vertices of G on
a grid of size O(n) X O(n) so that when the edges are drawn as straight-line segments there are no crossings
in the drawing. The two criteria that define a canonical labeling are crucial for the region creation step of our
algorithm.

Kant generalized the definition for triconnected graphs. In this case, the vertices are partitioned into sets V
to Vx which can be either singleton vertices or chains of vertices [18].

2 Lower Bound of Six Sides

Here we show that at least six sides per polygon are needed in touching polygon representations of planar graphs.
We begin by constructing a class of planar graphs that cannot be represented by four-sided polygons and then
extend the argument to show that there exists a class of planar graphs that cannot be represented by five-sided
regions.

2.1 Four Sides Are Not Enough

Consider the fully triangulated graph G in Figure 2(a). G has three nodes on the outer face A, B and C, and
contains a chain of nodes 1, ..., kK which are all adjacent to A and B. Consecutive nodes in the chain, i and i + 1,
are also adjacent. The remaining nodes of G are degree-3 nodes /; and r; inside the triangles 4(A,#,i + 1) and
A(B, i, i+ 1).

(a) ()

Fig. 2. (a) The graph that provides the counterexample. (b) A pair of subsequent fair quadrilaterals adjacent to the same
sides of Q4 and Qs. (c) lllustration for Lemma 2.

Theorem 1. For k sufficiently large, there does not exist a touching polygon representation for G in which all
regions have complexity 4 or less.

Proof: Assume, for the sake of contradiction, that we are given a touching polygon drawing for G in which
all regions have complexity 4 or less. Without loss of generality, we assume that the drawing has an embedding
that corresponds to the one shown in Figure 2(a). Let Q4 and Qp denote the quadrilaterals representing nodes A
and B, and Q; denotes the quadrilateral representing node i. Once again, without loss of generality, let Q4 lie in
the left corner, Qp in the right corner and Q¢ at the top of the drawing.

We start with a couple of observations:

Observation 1: Since the three quadrilaterals Q4, Op, Q¢ are adjacent to the outer face, a complete side of
each quadrilateral is adjacent to the outer face.

From this observation, we conclude that at most three sides of each of the outer quadrilaterals are inside of
the drawing. We consider the three sides Ay, A,, A3 and By, By, B3 of Q4 and Qjp, respectively, numbered from
top to bottom; see Figure 2(b). The quadrilaterals of the chain are adjacent to the three sides in this order, such
that if Q; is adjacent to A; (resp. B)), then Q;, is adjacent to Ay (resp. By) with k > j. The adjacency of each Q;
defines two intervals, one on the polygonal chain A;, A;, As and another one on By, B, Bj.

Observation 2: Consider the c(= 4) corners of Q4 and Qp, where the sides A and A,, A, and A3, By and B>,
B, and Bj; coincide. Clearly, at most 2 of the intervals that are defined by the adjacencies of the Q;’s are adjacent
to each of the c corners. In total, this makes at most 2c = 8 intervals, that are adjacent to any of the corners of
Q4 or Op. Hence, at most 8 quadrilaterals of the chain Qy, ..., Oy are adjacent to corners of Q4 and/or Qp.

We now consider the quadrilaterals that do not define any of those intervals.

Let Q; be a quadrilateral that is not adjacent to any of the corners of the polygonal chains A;, A, A3 and
By, B,, B3. Two of its corners are adjacent to the same side Ay and to the same side B;, 1 < k,I < 3 of Qp. We
call such a quadrilateral a fair quadrilateral.

Lemma 1. Ifwe choose k large enough, there exists a pair of fair quadrilaterals Q; and Q;, that are adjacent
to the same sides of Q4 and Qp.

Proof: We use a counting argument. We know that at most 8 quadrangles are not fair. Hence, for & >
2 -2c + 2 = 18, there must be a pair of subsequent fair quadrilaterals. The worst case happens for k = 17 if

0>, 04, Os, . - . Q16 are not fair. We can state even more precisely that there are at least k— 17 pairs of subsequent
fair quadrilaterals. Note that the pair (Q;, Q;+1) of fair quadrilaterals where Q; is adjacent to the sides A; and
By, but Q;.1 is not adjacent to A; and B; does not have the property claimed in the lemma. We call such a pair
transition pair.

We can partition the set of fair quadrilaterals into at most 5 equivalence classes Cy, ..., Cs that denote the sets
of fair quadrilaterals, which are adjacent to the same sides of Q4 and Q. When we sweep through the chain
of middle quadrilaterals, we simultaneously proceed through the equivalence classes. Hence there exist at most
t = 4 transition pairs, namely pairs of subsequent fair quadrilaterals that are in different equivalence classes.

These equivalence classes denote the pairs of sides (A;, B;) that are used, beginning from the top with,
say, (A1, By), then (Ay, B,), (A2, B2), (A3, By) and finally (A3, B3). Note that this is not the only possible set of
equivalence classes, but by planarity, it is not possible to have (A,, B3) and (A3, B;) simultaneously. Hence, there
are at most 5 classes.

We repeat our counting argument from above and argue that for k > 23 there are at least S or more pairs of
subsequent fair quadrilaterals, so at least one has the property claimed in the lemma. O

Before we continue with the proof of the theorem, we include the following Lemma, illustrated in Fig-
ure 2(c):

Lemma 2. [f there are two regions R, S touching in some nontrivial interval 1 = (a,b) then at a, there is a
corner of R or S. The same holds for corner b.

Now, let (Q;, Qi+1) be a pair of fair same-sided quadrilaterals, touching sides A, and B,. Since Q; and Q41
have to be adjacent, the two sides next to each other touch. We can use the above Lemma 2 to show that each
interval that is shared by two polygons ends at two of the corners of the two polygons. Since there exist the
polygonal regions representing r; and /;, it is clear that the interval where Q; and Q;;| touch is disjoint from the
regions Q4 and Op. Hence the corners derived from Lemma 2 are not the corners of Q; or Q;, that are incident
to sides A, and B,. This is a contradiction, since then both Q; and Q;;; must have at least 5 corners, or one of
them has even 6 corners. m]

2.2 Five Sides Are Not Enough
If we allow the regions to be pentagons, we have to sharpen the argument a little more.

Lemma 3. If we choose k large enough, there exists a triple of fair pentagons P;, Pi.1, Piy that is adjacent to
the same sides of P, and Pg.

Proof: We prove this along the same lines as before. Now we have four sides with ¢ = 6 inner corners of the
pentagons P, and Pg. As before, we can see that at most 12 pentagons of the inner chain are not fair. Since we
aim now for triples and not just for pairs, we get a worst case where every third pentagon is not fair. Hence for
k > 3-2c+3, we get at least k — 38 fair subsequent pentagons. Next, we estimate the number of transition triples.
The number of equivalence classes of pentagons with sides solely on the same side of P4 and Pp is seven. As we
deal with triples, this makes a bound of at most 14 transition triples, since we can differentiate transition points
between the first two and the last two pentagons of the triple.

Hence, we have to grow k to 38 + 14 = 52 to ensure that a triple of fair same-sided pentagons exists. m}

Theorem 2. For k sufficiently large, there does not exist a touching polygon representation for G in which all
regions have complexity five or less.

Proof: We choose k to be at least 52. Now, let (P;, Pi1, Pi+2) be a triple of fair same-sided pentagons,
touching sides A, and B,. Since P; and P;,; have to be adjacent, the two sides next to each other touch. We can
use Lemma 2 that each interval that is shared by two polygons ends at two of the corners of the two polygons.
Since there exist the polygonal regions representing r; and /;, it is clear that the interval where Q; and Q;; touch
is disjoint from the regions P4 and Pp. Hence the corners derived from Lemma 2 are not the corners of P; or

P;. that are incident to sides A, and B,. This is a contradiction, since both P; and P, have at least 5 corners,
or one of them has even 6 corners. In the case, that P; and P;.; have exactly 5 corners, we repeat the same
argument for P;;; and P;.,. From the second application, we prove the existence of a second additional corner
at P;,; or that P;;» has two additional corners at the side opposite to P;.;. In both cases, we get a contradiction.
There exists a region with at least 6 corners. m}

Note that six-sided polygons are indeed sufficient to represent the graph in Figure 2(a). In particular, for
subsequent fair polygons P; and P;,|, we can use three segments on the lower side of P;, while the upper side of
P;;1 consists of only one segment which completely overlaps the middle of the three segments from the lower
side of P;.

3 Touching Hexagons Representation

In this section, we present a linear time algorithm that takes as input a planar graph G = (V, E) and which
produces a representation of G in which all regions are convex hexagons, thus proving that planar graphs belong
to the class of touching hexagons graphs.

3.1 Algorithm Overview

We assume that the input graph G = (V, E) is a fully triangulated planar graph with |V| = n vertices. If the graph is
planar but not fully triangulated, we can augment it to a fully triangulated graph with the help of dummy vertices
and edges, run the algorithm below and remove the polygons that correspond to dummy vertices. Traditionally,
planar graphs are augmented to fully triangulated graphs by adding edges to each non-triangular face. Were we
to take this approach, however, when we remove the dummy edges we have to perturb the resulting space
partition to remove polygonal adjacencies. As this is difficult to do, we convert our input graph to a fully
triangulated one by adding one additional vertex to each face and connecting it to all vertices in that face. The
above approach works if the input graph is biconnected. Singly-connected graphs must first be augmented to
biconnected graphs as follows. Consider any articulation vertex v, and let # and w be consecutive neighbors of v
in separate biconnected components. Add new vertex z and edges (z, u) and (z, w). Iterating for every articulation
point biconnects G and results in an embedding in which each face is bounded by a simple cycle.

The algorithm has two main phases. The first phase, computes the canonical labeling. In the second phase
we create regions with slopes 0, 1, -1 out of an initial isosceles right-angle triangle, by processing vertices in
the canonical order. Each time a new vertex is processed, a new region is carved out of one or more already
existing regions. At the end of the second phase of the algorithm we have a right-angle isosceles triangle which
has been partitioned into exactly n = |V| convex regions, each with at most 6 sides. We will show that creating
and maintaining the regions requires linear time in the size of the input graph. We illustrate the algorithm with
an example; see Figure 3.

3.2 Region Creation

In this section we describe the n-step incremental process of inserting new regions in the order given by
the canonical labeling, where n = |V|. The regions will be carved out of an initial triangle with coordinates
(0,0),(=1,1),(1,1). The process begins by the creation of Ry, R, and R,, which correspond to the first three
vertices, vo, V1, V2; see Figure 3(a). Note that the first three vertices in the canonical order form a triangular face
in G and hence must be represented as mutually touching regions.

At step i of this process, where 2 < i < n, region R; will be carved out from the current set of regions. Define
aregion as “active” at step i if it corresponds to a vertex that has not yet been connected to all its neighbors. An
invariant of the algorithm is that all active regions are non-trivially tangent to the top side of the initial triangle,
which we refer to as the “active front.”

New vertices are created in one of two ways, depending on the degree of the current node, v;, in the graph
induced by the first i vertices, G,. By the property of the canonical ordering and the active regions invariant, v;
is connected to 2 or more consecutive vertices on the outer face of G;_;:

1
%2 2 2° J 2
7 I i
%o 0 0
A QA
© @ © o) ©

Fig. 3. Incremental construction of the touching hexagons representation of a graph. Shaded vertices on the bottom
row and shaded regions on the top row are processed at this step. In general, the region defined at step i is carved at
distance 1/2 from the active front on the top. Note that the top row forms a horizontal line at all times.

1. If dg,(v;) > 2 then R;, the region corresponding to v;, is a quadrilateral carved out of all but the leftmost and
rightmost regions, by a horizontal line segment that is at distance 1/2' from the active front; see Figure 3(d).
Note that all but the leftmost and rightmost neighbors of v; are removed from the set of active regions as
their corresponding vertices have been connected to all their neighbors. Region R; is added to the new set
of active regions. Call this a “type 1 carving.”

2. If dg,(vi) = 2, let R, and R), be its neighbors on the frontier. Region R; is then carved out as a triangle from
either R, or R,

Lemma 4. The regions produced by the above algorithm are convex and have at most 6 sides.

Proof: First note that the above algorithm leads to the creation of at most fifteen different types of regions;
see Figure 4. Each region has a horizontal top segment, a horizontal bottom segment (possibly of length 0), and
sides with slopes -1 or 1. Moreover, each region can be characterized as either opening (the first two), static (the
next six), or closing (the last 7), depending on the angles of the two sides connecting it to the top horizontal
segment. Opening and static regions give rise to new regions via type 1 carvings (dashed arrows) and type 2
carvings (solid arrows). Closing regions only give rise to type 1 carvings.

We show that the regions produced as a result of type 1 and type 2 carvings from the initial triangle are
convex polygons with at most 6 sides with slopes 0, 1, -1 by induction on the number of steps. Assume that the
claim is true until right before step i; we will show that the claim is true after step i.

If dg,(vi) > 2 then the new region R; is created by a type 1 carving. Recall that R; is created by the addition
of the horizontal line segment at distance 1/2' from the top of the triangle, cutting through all but the leftmost
and rightmost neighbors of v;. It remains to show that the resulting region R; has exactly four sides and that the
complexity of the all other regions is unchanged. By construction, R; has a top and bottom horizontal segments
and exactly one line segment on the left and one line segment on the right. The construction of R; resulted in
modifications in the regions representing all but the leftmost and rightmost neighbors of v; in G;, and there is at
least one such neighbor. The changes in these regions are the same: each such region had its top carved off by
the bottom horizontal side of the new region R;. These changes do not affect the number of sides defining the
regions. Regions corresponding to nodes that are not adjacent to v; in G; are unchanged.

Otherwise, if d(v;) = 2 we must create a new region R; between two adjacent regions R, and R;,. By con-
struction, the complexity of the new region R; is 3, as we carve off a new triangle between regions R, and R;,
with a horizontal top side and apex at distance 1/2° from the active front. As a result of this operation either
the R, or R, was modified and all other regions remain unchanged. Specifically, the complexity of either R, or
R), must increase by exactly one. Without loss of generality, let R, be the region from which R; will be carved;
see Figure 5. It is easy to see that if R, had complexity 6 then it must have been a “closing” region (one of the
rightmost two in the last row on Fig. 4. Then the new region R; would have been carved out of R, which must
have complexity 5 or less as it is impossible to have R, and R, both “closing” and adjacent. Therefore, at the
end of step i the complexity of R, has increased by one but is still no greater than 6. O

Fig. 4. There are a fifteen possible region shapes, falling into three categories: 2 opening, 6 static, and 7 closing. Solid
arrows indicate type 2 (triangular) carving and dashed arrows indicate type 1 carving (a horizontal strip from the top of
the current region). The four filled quadrilateral regions are the only types created due to type 1 carving.

3.3 Running Time

The above algorithm can be implemented in linear time. The linear time algorithm for computing a canonical
labeling of a planar graph [5] requires a planar embedding as an input. Recall that planar embedding of a graph
is simply a clockwise order of the neighbors of each vertex in the graph. Obtaining a planar embedding can be
done in linear time using the algorithm by Hopcroft and Tarjan [15].

Creating and maintaining the regions in the second phase of our algorithm can also be done in linear time.
We next prove this by showing that each region requires O(1) time to create and requires O(1) number of
modifications.

Consider the creation of new regions. By the properties of canonical labeling, when we process the current
vertex v;, it is adjacent to at least two consecutive vertices on the outer face of G,_;. By construction of our
algorithm the vertices in the outer face of G;_; correspond to active regions and so have a common horizontal
tangent. If dg,(v;) = 2, then a new region R; is carved out of one of the neighboring regions R, or R;,. Determining
the coordinates of R; takes constant time, given the coordinates of R, and R, and the fact that R; will have height
1/2! and will be tangent to the active frontier. If dg,(v;) > 2, then all but the leftmost and rightmost neighbors
of v; have their corresponding regions carved, in order to create the new region R;. In this case the coordinates
of the R; can also be determined in constant time given the coordinates of the leftmost and rightmost neighbors
and the fact that R; will have height 1/27 and will be tangent to the active frontier. Note that the updates of the
regions between the leftmost and rightmost are considered in the modification step.

Consider the modifications of existing regions. As can be seen from the hierarchy of regions on Figure 4,
there are exactly 15 different kinds of regions and each region begins as a triangle and undergoes at most 4
modifications (e.g., from triangle, to quadrilateral, to pentagon, to hexagon, to quadrilateral). Moreover, once
a region goes from one type to the next, it can never change back to the same type (i.e., all the arrows point
downward). Finally note that the total number of region modifications is proportional to |E| and since G is
planar, |[E| = O(]V|) Thus, each region needs at most a constant number of modifications from the time it is
created to the end of the algorithm.

The algorithm described in this section, yields the following theorem:

Ry RS R

Fig. 5. Introducing region R; between R, and R,, assuming R; is carved out of R,. All the possible cases are shown,
assuming that R, and R, were convex, at most 6-sided regions with slopes 0, 1, -1. (There are five more symmetric
cases when R; is carved out of R,.) Note that these five regions correspond to the non-filled regions from the region-
creating hierarchy in Fig. 4 with two static regions in the first row and the three closing regions in the second row.

Theorem 3. A planar graph can be converted into a set of touching convex polygons with complexity at most
six, in linear time in the number of vertices of the graph.

As defined, the above algorithm requires exponential area, if polygonal endpoints are to be placed at integer
grid points. We show in the Appendix how to compact the initial exponential area drawings. However, the
compaction approach is not guaranteed to always find a small area drawing. Therefore, we next show with a
different algorithm that, in fact, O(n) X O(n) area suffices.

4 Hexagonal Representation of Planar Graphs using O(n) X O(n) Area

One drawback to the algorithms described in Sections 3 is it is not easy to obtain a good bound on the drawing
area. Using a different approach, we can show that any general n-vertex planar graph can be represented by
touching convex hexagons, drawn on the O(n) X O(n) grid. This approach is based on Kant’s algorithm for
hexagonal grid drawing of 3-connected, 3-planar graphs [17]. In Kant’s algorithm the drawing is obtained by
looking at the dual graph, and processing its vertices in the canonical order. In the final drawing, however,
there are two non-convex faces, separated by an edge which is not drawn as a straight-line segment. These
problems can be addressed by pre-processing the graph, by adding several extra vertices. When the dual of this
augmented graph is embedded, the faces corresponding to the extra vertices can be removed to yield the desired
grid drawing on area O(n) X O(n).

Let H = (V, E) be a 3-connected, 3-planar graph. Note that the dual D(H) is fully triangulated, as each face
in the dual corresponds to exactly one vertex in H. So, for f faces in H, we have f vertices in D(H). We first
compute a canonical ordering on the vertices of D(H) as defined by de Fraysseix et al. [7]. Let vy, ..., vy be the
vertices in D(H) in this canonical order.

Kant’s algorithm now constructs a drawing for H such that all edges but one have slopes 0°, 60°, or —60°,
with the one edge with bends lying on the outer face. The typical structure of those drawings is shown in
Figure 6(a).

The algorithm incrementally constructs the drawing by adding the faces of H in reverse order of the canoni-
cal order of the corresponding vertices in D(H). We let w; be the vertices of H. Let face F; correspond to vertex
v; in D(H). The algorithm starts with a triangular region for the face F s that corresponds to vertex v;. The vertex
w, which is adjacent to F¢, F{ and F; is placed at the bottom. Let w, and w, be the neighbors of w, in F;. These
three vertices form the corners of the first face Fy. (wy, w;) and (w,, wy) are drawn upward with equal lengths
and slopes -1 and 1, respectively. All the edges on the path between w, and w, along F s are drawn horizontally
between the two vertices. From this first triangle, all other faces are added in reverse canonical order to the upper
boundary of the drawing region. If a face is completed by only one vertex w;, this vertex is placed appropriately
above the upper boundary such that it can be connected by two edges with slopes -1 and 1, respectively. If the
face is completed by a path, then the two end segments of the path have slopes -1 and 1, while the other edges

(a) (b)

Fig. 6. (a) Polygonal structure obtain from Kant’s algorithm. (b) Graph G augmented by vertices z, y and x together with
its dual which serves as input graph for Kant’s algorithm.

are horizontal. The construction ends when w; is inserted, corresponding to the outer face F;. Note that there is
an edge between w; and w,, which is drawn using some bends. This edge is adjacent to the faces F; (the outer
face) and F>.

From this construction, we can observe that the angles at faces Fy, ..., F'3 have size < & as the first two edges
do not enter the vertex from above, and the last edge leaves the vertex upwards. Hence, we have the following
result.

Lemma 5. The faces Fy, ..., F3 are convex, and as the slopes of the edges are -1,0 or 1, they are drawn with at
most 6 sides.

This property is exactly what we are aiming for, as the vertices of our input graph G should be represented
by convex regions of at most 6 sides. Unfortunately, Kant’s algorithm creates two non-convex faces F; and F,
separated by an edge which is not drawn as a line segment. Furthermore, the face F's is drawn as large as all the
remaining faces F3,...F/y_; together.

Kant also gave an area estimate for the result of his algorithm. A corollary of Kant’s algorithm is the follow-
ing.

Corollary 1. For a given 3-connected, 3-planar graph H of n vertices, H — w, can be drawn within an area of
nf2—-1xn/2-1.

4.1 From Hexagonal Grid Drawing to Touching Hexagons

To apply Kant’s result to the problem of constructing touching hexagons representation, we enlarge the embed-
ded input graph G so that the dual of the resulting graph G’ can be drawn using Kant’s algorithm in such a way
that the original vertices of G correspond to the faces F3, ..., Fy_;.

We have to add 3 vertices which will correspond to the faces F'y, F, and Fy in Kant’s algorithm. Since G is
fully triangulated, let a, b and c be the vertices at the outer face of G in clockwise order. We add the vertices x, y
and z in the outer face and connect toG appropriately. We want z to correspond to the outer face Fj, y correspond
to F» and x to F'y. First, we add x and connect it to @, b and ¢ such that b and c are still in the outer face. Then

10

we add y and connect it to x, b and ¢ such that b is still in the outer face. Finally, we add z and connect it to x, b
and ¢ such that z, y and x are now in outer face, as shown in the Figure 6(b).

Since the vertices x,y,z are on the outer face, we can choose which one is first, second and last in the
canonical order. We can then apply Kant’s algorithm with the canonical order vi = z,v, = y and v, = x. After
constructing the final drawing, we remove the regions corresponding to vertices z, y and x, leaving us with a
hexagonal representation of G. Since Kant’s algorithm runs in linear time, and our emendations can be done in
constant time, we can summarize:

Theorem 4. For a fully triangulated planar graph G on n vertices, we can construct a contact graph of convex
hexagons in time O(n). The sides of the hexagons have slope 1, 0, or -1.

Given any planar graph G, if it is not biconnected, we can make it biconnected using a procedure attributed to
Read [27], adding a vertex and two edges at each articulation point. Once biconnected, we can fully triangulate
the graph by adding a vertex inside each non-triangular face and connecting that vertex to each vertex on the
face. We can then apply Theorem 4, to get a hexagonal representation of the extended graph. Finally, removing
the added vertices and their edges, we obtain a hexagonal representation of G. This gives us:

Theorem 5. For any planar graph G on n vertices, we can construct a contact graph of convex hexagons in
time O(n). The sides of the hexagons have slope 1, 0, or -1.

4.2 Area estimation

For a triangulated input graph G = (V, E), we have n vertices and, by Euler’s formula, 2n — 4 faces. Since we
enhanced our graph to n + 3 vertices, we have f = 2n + 2 faces. Those faces are the vertices in the dual D(G)
which is the input to Kant’s algorithm. His area estimation gives an area of n/2 — 1 X n/2 — 1 for f = n vertices
when we coalesce the faces F'y, F; and F into a single outer face by removing the corresponding vertices and
edges. Thus, we get an area bound of n X n using exactly the same argument as he did.

Theorem 6. For a fully triangulated planar graph G of n vertices, we can achieve a contact representation of
convex hexagons with area n X n.

5 Conclusion and Future Work

Thomassen [29] had shown that not all planar graphs can be represented by touching pentagons, where the
external boundary of the figure is also a pentagon and there are no holes between pentagons. Our results in this
paper are more general, as we do not insist on the external boundary being a pentagon or on there being no holes
between pentagons. Finally, it is possible to derive algorithms for convex hexagonal representations for general
planar graphs from several earlier papers, e.g., de Fraysseix et al. [7], Thomassen [29], and Kant [17]. However,
the work of Thomassen, Kant, and de Fraysseix et al. does not immediately lead to algorithmic solutions to the
problem of touching polygons graph representation with convex low-complexity polygons. To the best of our
knowledge, this problem has never been formally considered or described.

In this paper we presented several results about touching n-sided graphs. We showed that for general planar
graph six sides are necessary. Then we presented an algorithm for representing general planar graphs with
convex hexagons. Finally, we discussed a different algorithm for general planar graphs which also yields an
O(n) x O(n) drawing area.

Several interesting related problems are open. What is the complexity of the deciding whether a given pla-
nar graph can be represented by touching triangles, quadrilaterals, or pentagons? In the context of rectilinear
catrograms the vertex-weighted problem has been carefully studied. However, the same problem without the
rectilinear constraint has received less attention. Finally, it would be interesting to characterize the subclasses of
planar graphs that allow for touching triangles, touching quadrilaterals, and touching pentagons representations.

6 Acknowledgments

We would like to thank Therese Biedl for pointing out the very relevant work by Kant and Thomassen.

11

References

1.

2.

3.

9}

11.
12.
13.
14.

15.
16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

217.

28.

29.

30.
31.

G. D. Battista, W. Lenhart, and G. Liotta. Proximity drawability: A survey. In Proc. Graph Drawing, volume 894 of
Lecture Notes in Computer Science, pages 328-39. Springer-Verlag, 1994.

T. Biedl, A. Bretscher, and H. Meijer. Rectangle of influence drawings of graphs without filled 3-cycles. In Proc. 7th
Int’l. Symp. on Graph Drawing 99, pages 359-368, 1999.

M. Bruls, K. Huizing, and J. J. van Wijk. Squarified treemaps. In Proc. Joint Eurographics/IEEE TVCG Symp. Visual-
ization, VisSym, pages 33-42, 2000.

. A.L. Buchsbaum, E. R. Gansner, C. M. Procopiuc, and S. Venkatasubramanian. Rectangular layouts and contact graphs.

ACM Transactions on Algorithms, 4(1), 2008.

. M. Chrobak and T. Payne. A linear-time algorithm for drawing planar graphs. Inform. Process. Lett., 54:241-246, 1995.
. M. de Berg, E. Mumford, and B. Speckmann. On rectilinear duals for vertex-weighted plane graphs. Discrete Mathe-

matics, 309(7):1794-1812, 2009.

. H. de Fraysseix, P. O. de Mendez, and P. Rosenstiehl. On triangle contact graphs. Combinatorics, Probability and

Computing, 3:233-246, 1994.

. H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting Fary embeddings of planar graphs. In Procs. 20th

Symposium on Theory of Computing (STOC), pages 426-433, 1988.

. H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica, 10(1):41-51, 1990.
. K. R. Gabriel and R. R. Sokal. A new statistical approach to geographical analysis. Systematic Zoology, 18:54-64,

1969.

X. He. On finding the rectangular duals of planar triangular graphs. SIAM Journal of Computing, 22(6):1218-1226,
1993.

X. He. On floor-plan of plane graphs. SIAM Journal of Computing, 28(6):2150-2167, 1999.

P. Hlinény. Classes and recognition of curve contact graphs. Journal of Comb. Theory (B), 74(1):87-103, 1998.

P. Hlinény and J. Kratochvil. Representing graphs by disks and balls (a survey of recognition-complexity results).
Discrete Mathematics, 229(1-3):101-24, 2001.

J. Hopcroft and R. E. Tarjan. Efficient planarity testing. Journal of the ACM, 21(4):549-568, 1974.

J. W. Jaromczyk and G. T. Toussaint. Relative neighborhood graphs and their relatives. Proceedings of the IEEE,
80:1502-17, 1992.

G. Kant. Hexagonal grid drawings. In 18th Workshop on Graph-Theoretic Concepts in Computer Science, pages
263-276, 1992.

G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16:4-32, 1996. (special issue on Graph
Drawing, edited by G. Di Battista and R. Tamassia).

G. Kant and X. He. Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems.
Theoretical Computer Science, 172:175-93, 1997.

P. Koebe. Kontaktprobleme der konformen Abbildung. Berichte iiber die Verhandlungen der Sdchsischen Akademie
der Wissenschaften zu Leipzig. Math.-Phys. Klasse, 88:141-164, 1936.

K. KoZmiriski and W. Kinnen. Rectangular dualization and rectangular dissections. /EEE Transactions on Circuits and
Systems, 35(11):1401-16, 1988.

Y.-T. Lai and S. M. Leinwand. Algorithms for floorplan design via rectangular dualization. [EEE Transactions on
Computer-Aided Design, 7:1278-89, 1988.

Y.-T. Lai and S. M. Leinwand. A theory of rectangular dual graphs. Algorithmica, 5:467-83, 1990.

C.-C. Liao, H.-I. Lu, and H.-C. Yen. Compact floor-planning via orderly spanning trees. Journal of Algorithms, 48:441—
451, 2003.

G. Liotta, A. Lubiw, H. Meijer, and S. H. Whitesides. The rectangle of influence drawability problem. Computational
Geometry: Theory and Applications, 10:1-22, 1998.

M. Rahman, T. Nishizeki, and S. Ghosh. Rectangular drawings of planar graphs. Journal of Algorithms, 50(1):62-78,
2004.

R. C. Read. A new method for drawing a graph given the cyclic order of the edges at each vertex. Congressus
Numerantium, 56:31-44, 1987.

P. Steadman. Graph-theoretic representation of architectural arrangement. In L. March, editor, The Architecture of
Form, pages 94—115. Cambridge University Press, 1976.

C. Thomassen. Plane representations of graphs. In J. A. Bondy and U. S. R. Murty, editors, Progress in Graph Theory,
pages 43-69, 1982.

C. Thomassen. Interval representations of planar graphs. Journal of Comb. Theory (B), 40:9-20, 1988.

G. K. Yeap and M. Sarrafzadeh. Sliceable floorplanning by graph dualization. SIAM Journal on Discrete Mathematics,
8(2):258-80, 1995.

12

A Compact Grid Drawings

Figure A shows several examples of planar graphs and the corresponding output from our algorithm after a
compaction step which minimizes the required integer grid.

[N S TN =0 B

Fig.7. Examples illustrating input graphs and the corresponding plane partitions.

The algorithm given in Section 3.2 provides a touching hexagons representation of any planar graph. The
incremental process carves out polygons within an ever smaller band of active front, therefore in practice the
drawing is highly skewed. In this section we describe an algorithm to get a drawing on the grid.

13

It is easy to see that when looking at the vertices and edges created in the algorithm for touching hexagons,
if the horizontal edges are ignored, then the resulting graph is a “binary” tree, in the sense that each node has
a degree of no more than 2. To achieve a drawing on the grid, we employ a divide and conquer algorithm. We
need each edge to be of either 45 or -45 degree relative to the x axes, and that we have to constrain vertices
linked by the omitted horizontal edges to the same y-coordinates.

Let Grec be the graph derived from the touching hexagons algorithm. Define a cap as a maximal connected
component of vertices and horizontal edges of Gr¢s. After removing the edges in the caps from Greg, the
remaining graph Gr is a binary tree.

Define the frontal vertex set F' of a tree as the set of leaf vertices, such that if a vertex in this set is also in a
cap, then all the vertices in the same cap must also be leaves. This means that if a vertex that belongs to a cap
is in the front, every vertex in this cap is also in the front. We initialize the current tree to be G, = Gr, and the
horizontal shift of every vertex to 0.

— 1. Let F be the frontal vertex set of G.. If F is empty, exit.
— 2. For each vertex v in the front F,
e ifvisaleafin Gy, place vonatx =0andy = 0.
o if v has one subtree in G, say to the right, extend a line of 45 degree from the root of this right subtree
by 1 unit down and left to get the position of v.
e if v has two subtrees in G, shift the right subtree horizontally so that the two subtrees have a separation
of either distance 1 or 2, and the line of -45 degree from the root of the left subtree and the line of 45
degree from the root of the right subtree meet at a grid point. Record this position of v, and the shift at
the root of the right tree.
— 3. For each cap C in the front, set i to be the maximum of the absolute values of y coordinates of vertices
in C. For every vertex v € C,
e ifthe y(v) > —h, set y(v) = —h if v has no subtrees in Gr. Otherwise, by construction, vertex v must have
only one subtree, say to the right. Extend the 45 degree line from the root of the subtree till it intersects
with line y = —h, record the coordinates of the intersection point as the coordinates for v.
— 4. Delete F and its connecting edges from G¢, renaming the resulting tree G¢. Go to Step 1.

At the end of this algorithm, each vertex of G has x—, y— coordinates and a horizontal shift. A traversal from
the root is carried out to propagate the shifts and to get the final position of every vertex. This gives a drawing of
the Gr¢ on a grid. Figure A shows several graphs, and their corresponding touching hexagons representations
on a grid.

14

