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Abstract. We consider transactional memory contention management
in the context of balanced workloads, where if a transaction is writing,
the number of write operations it performs is a constant fraction of its
total reads and writes. We explore the theoretical performance bound-
aries of contention management in balanced workloads from the worst-
case perspective by presenting and analyzing two new polynomial time
contention management algorithms. The first algorithm Clairvoyant is
O(
√
s)-competitive, where s is the number of shared resources. This al-

gorithm depends on explicitly knowing the conflict graph. The second
algorithm Non-Clairvoyant is O(

√
s · log n)-competitive, with high proba-

bility, which is only a O(log n) factor worse, but does not require knowl-
edge of the conflict graph, where n is the number of transactions. Both
of these algorithms are greedy. We also prove that the performance of
Clairvoyant is tight, since there is no polynomial time contention man-
agement algorithm that is better than O((

√
s)1−ǫ)-competitive for any

constant ǫ > 0, unless NP⊆ZPP. To our knowledge, these results are sig-
nificant improvements over the best previously known O(s) competitive
ratio bound.

1 Introduction

The ability of multi-core architectures to increase application performance de-
pends on maximizing the utilization of the computing resources provided by
them and using multiple threads within applications. These architectures present
both an opportunity and challenge for multi-threaded software. The opportunity
is that threads will be available to an unprecedented degree, and the challenge
is that more programmers will be exposed to concurrency related synchroniza-
tion problems that until now were of concern only to a selected few. Writing
concurrent programs is a non-trivial task because of the complexity of ensuring
proper synchronization. Conventional lock based synchronization (i.e., mutual
exclusion) suffers from well known limitations, so researchers considered non-
blocking transactions as an alternative. Herlihy and Moss [16] proposed Trans-
actional Memory (TM), as an alternative implementation of mutual exclusion,
which avoids many of the drawbacks of locks, e.g., deadlock, reliance on the
programmer to associate shared data with locks, priority inversion, and fail-
ures of threads while holding locks. Shavit and Touitou [23] extended this idea
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to Software-only Transactional Memory (STM) by proposing a novel software
method for supporting flexible transactional programming of synchronization
operations [15,12,13].

A transaction consists of a sequence of read and write operations to a set of
shared system resources (e.g. shared memory locations). Transactions may con-
flict when they access the same shared resources. If a transaction T discovers that
it conflicts with another transaction T ′ (because they share a common resource),
it has two choices, it can give T ′ a chance to commit by aborting itself, or it can
proceed and commit by forcing T ′ to abort; the aborted transaction then retries
again until it eventually commits. To solve the transaction scheduling problem
efficiently, each transaction consults with the contention manager module for
which choice to make. Dynamic STM (DSTM) [15], proposed for dynamic-sized
data structures, is the first STM implementation that uses a contention man-
ager as an independent module to resolve conflicts between two transactions and
ensure progress. Of particular interest are greedy contention managers where a
transaction restarts immediately after every abort. As TM has been gaining
attention, several (greedy) contention managers have been proposed in the lit-
erature [2,11,10,5,21,19]. which have been assessed formally and experimentally
by specific benchmarks [20].

A major challenge in guaranteeing progress through transactional contention
managers is to devise a policy which ensures that all transactions commit in the
shortest possible time. The goal is to minimize the makespan which is defined as
the duration from the start of the schedule, i.e., the time when the first transac-
tion is issued, until all transactions commit. The makespan of the transactional
scheduling algorithm can be compared to the makespan of an optimal off-line
scheduling algorithm to provide a competitive ratio. The makespan and competi-
tive ratio primarily depend on the workload − the set of transactions, along with
their arrival times, duration, and resources they read and modify [3].

The performance of some of the contention managers has been analyzed for-
mally in [3,2,11,10,21,22] (the detailed description is given in Section 1.2). The
best known formal bound is provided in [2] where the authors give an O(s)
competitive ratio bound, where s is the number of shared resources. When the
number of resources s increases, the performance degrades linearly. A difficulty
in obtaining better competitive ratios is that the scheduling problem of n con-
current transactions is directly related to the vertex coloring problem which is a
hard problem to approximate [17]. A natural question which we address here is
whether it is possible to obtain better competitive ratios. As we show below, it is
indeed possible to obtain sub-linear competitive ratios for balanced transaction
workloads.

1.1 Contributions

In this paper, we study contention management in the context of balanced work-
loads which have better performance potential for transactional memory. A bal-
anced workload consists of a set of transactions in which each transaction has the



following property: if the transaction performs write operations, then the num-
ber of writes it performs is a constant fraction of the total number of operations
(read and writes) of the transaction. The balancing ratio β expresses the ratio
of write operations of a transaction to the overall operations of the transaction.
The balancing ratio is bounded as 1

s ≤ β ≤ 1, since a writing transaction writes
to at least one resource. In balanced workloads β = Θ(1) for all the transactions
which perform writes. Balanced workloads can also include read-only transac-
tions, but we assume that there is at least one transaction that performs writes,
since otherwise the scheduling problem is trivial (no conflicts).

Balanced transaction workloads represent interesting and practical transac-
tion memory scheduling problems. For example balanced workloads represent
the case where we have small sized transactions each accessing a small (con-
stant) number of resources, where trivially β = Θ(1). Other interesting sce-
narios are transaction workloads which are write intensive, where transactions
perform many writes, as for example in scientific computing applications where
transactions have to update large arrays.

We present two new polynomial time contention management algorithms
which are especially tailored for balanced workloads and analyze their theoretical
performance boundaries from the worst-case perspective. The first algorithm,

called Clairvoyant, is O
(
ℓ ·

√
s
β

)
-competitive where s is the number of shared

resources, and ℓ expresses the logarithm ratio of the longest to shortest execution
times of the transactions. (The transaction execution time is the time it needs
to commit uninterrupted from the moment it starts.) For balanced transaction
workloads where β = Θ(1), and when transaction execution times are close
to each other, i.e. ℓ = O(1), Algorithm Clairvoyant is O(

√
s)-competitive. This

algorithm is greedy and has the pending commit property (where at least one
transaction executes uninterrupted each time). However, it depends on assigning
priorities to the transactions based on the explicit knowledge of the transaction
conflict graph which evolves while the execution of the transactions progresses.
It also assumes that each transaction knows how long is its execution time and
how many resources it accesses.

The second algorithm, called Non-Clairvoyant, is O
(
ℓ ·

√
s
β · logn

)
-

competitive, with high probability (at least 1 − 1
n ), where n is the number

of transactions concurrently executing in n threads. For balanced transaction
workloads, where β = Θ(1), and when transaction execution times are close to
each other, i.e. ℓ = O(1), Algorithm Non-Clairvoyant is O(

√
s · logn)-competitive.

This is only a O(log n) factor worse than Clairvoyant, but does not require explicit
knowledge of the conflict graph. The algorithm is also greedy. This algorithm
uses as a subroutine a variation of the RandomizedRounds scheduling algorithm
by Schneider and Wattenhofer [21] which uses randomized priorities and doesn’t
require knowledge of the conflict graph.

The O(
√
s) bound of Algorithm Clairvoyant is actually tight. Through a re-

duction from the graph coloring problem, we show that it is impossible to ap-
proximate in polynomial time any transactional scheduling problem with β = 1



and ℓ = 1 with a competitive ratio smaller than O((
√
s)1−ǫ) for any constant

ǫ > 0, unless NP⊆ZPP. To our knowledge, these results are significant improve-
ments over the best previously known bound of O(s) for transactional memory
contention managers. For general workloads (including non-balanced workloads),
where transactions are equi-length (ℓ = O(1)), our analysis gives O(s) compet-
itive worst case bound, since β ≥ 1/s. This bound matches the best previously
known bound of O(s) for general workloads. The parametrization of β that we
provide gives more tradeoffs and flexibility for better scheduling performance, as
depicted by the performance of our algorithms in balanced workloads.

1.2 Related Work

Almost 10 year after publishing the seminal paper [16] to introduce the new
research area of transactional memory, Herlihy et al. [15] proposed Dynamic
STM (DSTM) for dynamic-sized data structures. Later on, several other STM
implementations have been proposed, such as TL2 [4], TinySTM [8], and RSTM
[18] to name a few. Among them, DSTM is the first practical obstruction-free1

implementation that seeks advice from the contention manager module to either
wait or abort a transaction at the time of conflict.

Several contention managers have been proposed in STM and the perfor-
mance of some of them has been analyzed formally in [3,2,11,10,21,22]. The first
formal analysis of the performance of a contention manager is given by Guerraoui
et al. [11] where they present the Greedy contention manager which decides in fa-
vor of older transactions using timestamps and achieves O(s2) competitive ratio.
This bound holds for any algorithm which ensures the pending commit property
(see Definition 1). Attiya et al. [2] improve the competitive ratio to O(s), and
prove a matching lower bound of Ω(s) for any deterministic work-conserving
algorithm which schedules as many transactions as possible (by choosing a max-
imal independent set of transactions). The model in [2] is non-clairvoyant in the
sense that it requires no prior knowledge about the transactions while they are
executed.

Schneider and Wattenhofer [21] present a deterministic algorithm Commit-
Bounds with competitive ratio Θ(s) and a randomized algorithm Randomize-
dRounds with makespan O(C logn) with high probability, for a set of n trans-
actions, where C denotes the maximum number of conflicts among transactions
(assuming unit execution time durations for transactions). Sharma et al. [22]
study greedy contention managers for M × N execution windows of transac-
tions with M threads and N transactions per thread and present and analyze
two new randomized greedy contention management algorithms. Their first al-
gorithm Offline-Greedy produces a schedule of length O(τmax · (C+N log(MN)))
with high probability, where τmax is the execution time duration of the longest
transaction in the system, and the second algorithm Online-Greedy produces a
schedule of length O(τmax ·(C log(MN)+N log2(MN))). The competitiveness of

1 A synchronization mechanism is obstruction-free if any thread that runs for a long
time it eventually makes progress [14].



both of the algorithms is within a poly-log factor of O(s). Another recent work
is Serializer [5] which resolves a conflict by removing a conflicting transaction T
from the processor core where it was running, and scheduling it on the processor
core of the other transaction to which it conflicted with. It is O(n)-competitive
and in fact, it ensures that two transactions never conflict more than once.

TM schedulers [3,6,24,1] offer an alternative approach to boost the TM per-
formance. A TM scheduler is a software component which decides when a partic-
ular transaction executes. One proposal in this approach is Adaptive Transaction
Scheduling (ATS) [24] which measures adaptively the contention intensity of a
thread, and when the contention intensity increases beyond a threshold it serial-
izes the transactions. The Restart and Shrink schedulers, proposed by Dragojević
et al. [6], depend on the prediction of future conflicts and dynamically serialize
transactions based on the prediction to avoid conflicts. The ATS, Restart, and
Shrink schedulers are O(n)-competitive. Steal-On-Abort [1] is yet another pro-
posal where the aborted transaction is given to the opponent transaction and
queued behind it, preventing the two transactions from conflicting again.

Recently, Attiya et al. [3] proposed the BIMODAL scheduler which alternates
between writing epochs where it gives priority to writing transactions and read-
ing epochs where it gives priority to transactions that have issued only reads so
far. It achieves O(s) competitive ratio on bimodal workloads with equi-length
transactions. A bimodal workload contains only early-write and read-only trans-
actions.

Outline of Paper. The rest of the paper is organized as follows. We present our
TM model and definitions in Section 2. We present and formally analyze two
new randomized algorithms, Clairvoyant and Non-Clairvoyant, in Sections 3 and
4, respectively. The hardness result of balanced workload scheduling is presented
in Section 5. Section 6 concludes the paper.

2 Model and Definitions

Consider a system of n ≥ 1 threads P = {P1, · · · , Pn} with a finite set of s shared
resources R = {R1, . . . , Rs}. We consider batch execution problems, where the
system issues a set of n transactions T = {T1, · · · , Tn} (transaction workload),
one transaction Ti per thread Pi. Each transaction is a sequence of actions
(operations) each of which is either a read or write to some shared resource.
The sequence of operations in a transaction must be atomic: all operations of a
transaction are guaranteed to either completely occur, or have no effects at all.
A transaction that only reads shared resources is called read-only; otherwise it
is called a writing transaction. We consider transaction workloads where at least
one transaction is writing.

After a transaction is issued and starts execution it either commits or aborts.
A transaction that has been issued but not committed yet is said to be pending.
A pending transaction can restart multiple times until it eventually commits.
Concurrent write-write actions or read-write actions to shared objects by two or



more transactions cause conflicts between transactions. If a transaction conflicts
then it either aborts, or it may commit and force to abort all other conflicting
transactions. In a greedy schedule, if a transaction aborts due to conflicts it
then immediately restarts and attempts to commit again. We assume that the
execution time advances synchronously for all threads and a preemption and
abort require negligible time. We also assume that all transactions in the system
are correct, i.e., there are no faulty transactions.2

Definition 1 (Pending Commit Property [11]). A contention manager
obeys the pending commit property if, whenever there are pending transactions,
some running transaction T will execute uninterrupted until it commits.

Let R(Ti) denote the set of resources used by a transaction Ti. We can write
R(Ti) = Rw(Ti) ∪ Rr(Ti), where Rw(Ti) are the resources which are to be
written by Ti, and Rr(Ti) are the resources to be read by Ti.

Definition 2 (Transaction Conflict). Two transactions Ti and Tj conflict if
at least one of them writes on a common resource, that is, there is a resource R
such that R ∈ (Rw(Ti) ∩R(Tj)) ∪ (R(Ti) ∩Rw(Tj)) (we also say that R causes
the conflict).

From the definition of transaction conflicts we can define the conflict graph for
a set of transactions. In the conflict graph, each node corresponds to a transaction
and each edge represents a conflict between the adjacent transactions.

Definition 3 (Conflict Graph). For a set of transactions T , the conflict
graph G(T ) = (V,E) has as nodes the transactions, V = T , and (Ti, Tj) ∈ E
for any two transactions Ti, Tj that conflict.

Let γ(Rj) denote the number of transactions that write resource Rj . Let
γmax = maxj γ(Rj). Denote λw(Ti) = |Rw(Ti)|, λr(Ti) = |Rr(Ti)|, and λ(Ti) =
|R(Ti)|, the number of resources which are being accessed by transaction Ti for
write, read, and both read and write. Let λmax = maxi λ(Ti). Note that in the
conflict graph G the maximum node degree is bounded by λmax · γmax, and also
there is a node whose degree is at least γmax.

For any transaction Ti we define the balancing ratio β(Ti) =
|Rw(Ti)|
|R(Ti)|

as the

ratio of number of writes versus the total number of resources it accesses. For a
read-only transaction β(Ti) = 0. For a writing transaction it holds 1

s ≤ β(Ti) ≤
1, since there will be at least one write performed by Ti to one of the s resources.
We define the global balancing ratio as the minimum of the individual writing
transaction balancing ratios: β = min(Ti∈T )∧(λw(Ti)>0) β(Ti). We define balanced
transaction workloads as follows (recall that we consider workloads with at least
one writing transaction):

2 A transaction is called faulty when it encounters an illegal instruction producing a
segmentation fault or experiences a page fault resulting to wait for a long time for
the page to be available [10].



Definition 4 (Balanced Workloads). We say that a workload (set of trans-
actions) T is balanced if β = Θ(1).

In other words, in balanced transaction workloads the number of writes that
each writing transaction performs is a constant fraction of the total number of
resource accesses (for read or write) that the transaction performs.

Each transaction Ti has execution time duration τi > 0. The execution time is
the total number of discrete time steps that the transaction requires to commit
uninterrupted from the moment it starts. In our model we assume that the
execution time of each transaction is fixed. Let τmax = maxi τi be the execution
time of the longest transaction, and τmin = mini τi be the execution time of the

shortest transaction. We denote ℓ =
⌈
log

(
τmax

τmin

)⌉
+ 1. We finish this section

with the basic definitions of makespan and competitive ratio.

Definition 5 (Makespan and Competitive Ratio). Given a contention
manager A and a workload T , makespanA(T ) is the total time A needs
to commit all the transactions in T . The competitive ratio is CRA(T ) =
makespanA(T )
makespanopt(T ) , where opt is the optimal off-line scheduler.

3 Clairvoyant Algorithm

We describe and analyze Algorithm Clairvoyant (see Algorithm 1). The writ-
ing transactions are divided into ℓ groups A0, A1, . . . , Aℓ−1, where ℓ =⌈
log

(
τmax

τmin

)⌉
+ 1, in such a way that Ai contains transactions with execution

time duration in range [2i ·τmin, (2
i+1−1) ·τmin], for 0 ≤ i ≤ ℓ−1. Each group of

transactions Ai is then again divided into κ subgroups A0
i , A

1
i , . . . , A

κ−1
i , where

κ = ⌈log s⌉+ 1, such that each transaction T ∈ Aji accesses (for read and write)
a number of resources in range λ(T ) ∈ [2j, 2j+1−1], for 0 ≤ j ≤ κ−1. We assign
an order to the subgroups in such a way that Aji < Alk if i < k or i = k ∧ j < l.
Note that some of the subgroups may be empty. The read-only transactions are
placed into a special group B which has the highest order.

At any time t the pending transactions are assigned a priority level which de-
termines which transactions commit or abort. A transaction is assigned a priority
which is one of: high or low. Let Πh

t and Π l
t denote the set of transactions which

will be assigned high and low priority, respectively, at time t. In conflicts, high
priority transactions abort low priority transactions. Conflicts between trans-
actions of the same priority level are resolved arbitrarily. Suppose that Ât is
the lowest order subgroup that contains pending transactions at time t. Only
transactions from Ât can be given high priority, that is Πh

t ⊆ Ât.
The priorities are determined according to the conflict graph for the trans-

actions. Let Tt denote the set of all transactions which are pending at time t.
(Initially, T0 = T .) Let T̂t denote the pending transactions of Ât at time t. (Ini-

tially, T̂0 = Â0.) Let Ŝt denote the set of transactions in T̂t which are pending
and have started executing before t but have not yet committed or aborted. Let
Ŝ′
t denote the set of transactions in Tt which conflict with Ŝt. Let Ît be a maximal



Algorithm 1: Clairvoyant

Input: A set T of n transactions with global balancing ratio β;
Output: A greedy execution schedule;

- Divide writing transactions into ℓ = ⌈log( τmax

τmin
)⌉+ 1 groups A0, A1, · · · , Aℓ−1 in

such a way that Ai contains transactions with execution time duration in range
[2i · τmin, (2

i+1 − 1) · τmin]; Read-only transactions are placed in special group B;

- Divide Ai again into κ = ⌈log s⌉+ 1 subgroups A0
i , A

1
i , · · · , Aκ−1

i in a way that

each subgroup A
j
i contains transactions that access a number of resource in the

range [2j , 2j+1 − 1];

- Order the groups and subgroups such that Aj
i < Al

k if i < k or i = k ∧ j < l;
special group B has highest order;

foreach time step t = 0, 1, 2, 3, . . . do
Set Definitions:
Tt: set of transactions that are pending; // T0 ← T
Ât: lowest order group that contains pending transactions;

T̂t: set of transactions in Ât which are pending; // T̂0 ← Â0

Ŝt: set of transactions in T̂t which were started before t;

Ŝ′

t: set of conflicting transactions in Tt which conflict with Ŝt;

Ît : maximal independent set in the conflict graph G(T̂t \ Ŝ′

t);
Priority Assignment:

High priority transactions: Πh
t ← Ît ∪ Ŝt;

Low priority transactions: Π l
t ← Tt \Πh

t ;
Conflict Resolution:

Execute all pending transactions;
On conflict of transaction Tu with transaction Tv:

if (Tu ∈ Πh
t ) ∧ (Tv ∈ Π l

t) then abort(Tu, Tv); else abort(Tv, Tu);

independent set in the conflict graph G(T̂t \ Ŝ′
t). Then, the set of high priority

transactions at time t is set to be Πh
t = Ît ∪ Ŝt. The remaining transactions are

given low priority, that is, Π l
t = Tt \Πh

t . Note that the transactions in Πh
t do

not conflict with each other. The transactions Πh
t will remain in high priority

in subsequent time steps t′ > t until they commit, since the transactions in Ŝt′

are included in Πh
t′ .

This algorithm is clairvoyant in the sense that it requires explicit knowledge
of the various conflict relations at each time t. The algorithm is greedy, since at
each time step each pending transaction is not idle. The algorithm also satisfies
the pending commit property since at any time step t at least one transaction
from Ât will execute uninterrupted until it commits. We have assumed above
that each transaction knows its execution length and the number of resources it
accesses. Clearly, the algorithm computes the schedule in polynomial time.



3.1 Analysis of Clairvoyant Algorithm

We now give a competitive analysis of Algorithm Clairvoyant. Define τ jmin =
2i · τmin and τ jmax = (2i+1 − 1) · τmin. Note that the duration of each transaction
T ∈ Aji is in range [τ jmin, τ

j
max], and also τ jmax ≤ 2τ jmin. Define λjmin = 2j and

λjmax = 2j+1 − 1. Note that for each transaction T ∈ Aji , λ(T ) ∈ [λjmin, λ
j
max],

and λjmax ≤ 2λjmin. Let γ
j
i (Rv) denote the number of transactions in a subgroup

Aji that write Rv, 1 ≤ v ≤ s. Let γjmax = maxi∈[1,ℓ],v∈[1,s]γ
j
i (Rv).

In the next results we will first focus on a subgroup Aji and we will assume
that there are no other transactions in the system. We give bounds for the com-
petitive ratio for Aji which will be useful when we later analyze the performance
for all the transactions in T .

Lemma 1. If we only consider transactions in subgroup Aji , then the competitive

ratio is bounded by CRClairvoyant(A
j
i ) ≤ 2 · λjmax + 2.

Proof. Since there is only one subgroup, Ât = Aji . A transaction T ∈ Aji conflicts
with at most λjmax ·γjmax other transactions in the same subgroup. If transaction
T is in low priority it is only because some other conflicting transaction in
Aji is in high priority. If no conflicting transaction is in high priority then T
becomes high priority immediately. Since a high priority transaction executes
uninterrupted until it commits, it will take at most λjmax · γjmax time steps until
all conflicting transactions with T have committed. Thus, it is guaranteed that
in at most λjmax · γjmax · τ jmax time steps T becomes high priority. Therefore, T
commits by time (λjmax · γjmax + 1) · τ jmax. Since T is an arbitrary transaction in
Aji , the makespan of the algorithm is bounded by:

makespanClairvoyant(A
j
i ) ≤ (λjmax · γjmax + 1) · τ jmax.

There is a resource that is accessed by at least γjmax transactions of Aji for write.
All these transactions have to serialize because they all conflict with each other
in the common resource. Therefore, the optimal makespan is bounded by:

makespanopt(A
j
i ) ≥ γjmax · τ jmin.

When we combine the upper and lower bounds we obtain a bound on the
competitive ratio of the algorithm:

CRClairv.(A
j
i ) =

makespanClairv.(A
j
i )

makespanopt(A
j
i )

≤ (λjmax · γjmax + 1) · τ jmax

γjmax · τ jmin

≤ 2 · λjmax + 2.

Lemma 2. If we only consider transactions in subgroup Aji , then the competitive

ratio is bounded by CRClairvoyant(A
j
i ) ≤ 4 · s/β

λj
max

.

Proof. Since the algorithm satisfies the pending-commit property, if a transac-
tion T ∈ Aji does not commit, then some conflicting transaction T ′ ∈ Aji must
commit. Therefore, the makespan of the algorithm is bounded by:

makespanClairvoyant(A
j
i ) ≤ |Aji | · τ jmax.



Each transaction in T ∈ Aji accesses at least λw(T ) resources for write. Since

we only consider transactions in Aji , λw(T ) ≥ β ·λjmin ≥ β ·λjmax/2. Consequently,
by the pigeonhole principle, there will be a resource R ∈ R which is accessed by
at least

∑
T∈Aj

i
λw(T )/s ≥ |Aji | · β · λjmax/(2s) transactions for write. All these

transactions accessing R have to serialize because they conflict with each other.
Therefore, the optimal makespan is bounded by:

makespanopt(A
j
i ) ≥

|Aji | · β · λjmax

2s
· τ jmin.

When we combine the above bounds of the makespan we obtain the following
bound on the competitive ratio of the algorithm:

CRClairvoyant(A
j
i ) =

makespanClairvoyant(A
j
i )

makespanopt(A
j
i )

≤ |Aji | · τ jmax

|Aj
i
|·β·λj

max

2s · τ jmin

≤ 4 · s/β
λjmax

.

From Lemmas 1 and 2, we obtain:

Corollary 1. If we only consider transactions in subgroup Aji , then the

competitive ratio of the algorithm is bounded by CRClairvoyant(A
j
i ) ≤ 4 ·

min
{
λjmax,

s/β

λj
max

}
.

We now continue to provide a bound for the performance of individual groups.
This will help to provide bounds for all the transactions.

Lemma 3. If we only consider transactions in group Ai, then the competitive

ratio of the algorithm is bounded by CRClairvoyant(Ai) ≤ 32 ·
√

s
β .

Proof. Since λjmax = (2j+1 − 1), Corollary 1 gives for each subgroup Aji compet-
itive ratio

CRClairvoyant(A
j
i ) ≤ 4 ·min

{
2j+1 − 1,

s/β

2j+1 − 1

}
≤ 8 ·min

{
2j ,

s/β

2j

}
.

Let ψ = log(s/β)
2 . Note that min

{
2j, s/β2j

}
≤ 2j , ∀j ∈ [0, ⌊ψ⌋]; and

min
{
2j, s/β2j

}
≤ s/β

2j = 22ψ−j , ∀j ∈ [⌊ψ⌋ + 1, κ − 1]. Group Ai contains κ

subgroups of transactions. In the worst case, Algorithm Clairvoyant will commit
the transactions in each subgroup according to their order starting from the low-
est order subgroup and ending at the highest order subgroup, since that’s the
order that the transactions are assigned a high priority. Therefore,

CRClairv.(Ai) ≤
κ−1∑

j=0

CRClairv.(A
j
i )

=

⌊ψ⌋∑

j=0

CRClairv.(A
j
i ) +

κ−1∑

j=⌊ψ⌋+1

CRClairv.(A
j
i )



≤ 8 ·




⌊ψ⌋∑

j=0

2j +
k−1∑

j=⌊ψ⌋+1

22ψ−j


 ≤ 8 ·

(
2 · 2ψ + 2 · 2ψ

)
= 32 ·

√
s

β
.

Theorem 1 (Competitive Ratio of Clairvoyant). For set of transactions T ,

Algorithm Clairvoyant has competitive ratio CRClairvoyant(T ) = O
(
ℓ ·

√
s
β

)
.

Proof. As there are ℓ groups of transactions Ai, and one group B, in the worst
case, Algorithm Clairvoyant will commit the transactions in each group according
to their order starting from the lowest order group and ending at the highest
order group. Clearly, the algorithm will execute the read-only transactions in
group B in optimal time. Therefore, using Lemma 3, we obtain:

CRClairvoyant(T ) ≤
ℓ−1∑

i=0

CRClairvoyant(Ai) + CRClairvoyant(B)

≤
ℓ−1∑

i=0

32 ·
√
s

β
+ 1 = 32 · ℓ ·

√
s

β
+ 1.

The corollary below follows immediately from Theorem 1.

Corollary 2 (Balanced Workload). For balanced workload T (β = O(1)) and
when ℓ = O(1), Algorithm Clairvoyant has competitive ratio CRClairvoyant(T ) =
O(

√
s).

4 Non-Clairvoyant Algorithm

We present and analyze Algorithm Non-Clairvoyant (see Algorithm 2). This al-
gorithm is similar to Clairvoyant given at Section 3 with the difference that the
conflicts are resolved using priorities which are determined without the explicit
knowledge of the conflict graph.

Similar to Algorithm Clairvoyant, the transactions are organized into groups
and subgroups. Lower order subgroups have always higher priority than higher
order subgroups. At each time step t, let Ât denote the lowest order subgroup.
Clearly, the transactions in Ât have higher priority than the transactions in all
other subgroups, and in case of conflicts only the transactions in Ât win. When
transactions in the same subgroup conflict, the conflicts are resolved according
to random priority numbers. When a transaction starts execution it chooses
uniformly at random a discrete number r(T ) ∈ [1, n]. In case of a conflict of
transaction Tw with another transaction Tx in the same subgroup with r(Tx) <
r(Tw), then Tx aborts Tw, and otherwise Tw aborts Tx. When transaction Tw
restarts, it cannot abort Tx until Tx has been committed or aborted. After
every abort, the newly started transaction chooses again a new discrete number
uniformly at random in the interval [1, n]. The idea of randomized priorities has
been introduced originally by Schneider and Wattenhofer [21] in their Algorithm
RandomizedRounds.



Algorithm 2: Non-Clairvoyant

Input: A set T of n transactions with global balancing ratio β;
Output: A greedy execution schedule;

- Divide transactions into ℓ = ⌈log( τmax

τmin
)⌉+ 1 groups A0, A1, · · · , Aℓ−1 in such a

way that Ai contains transactions with execution time duration in range
[2i · τmin, (2

i+1 − 1) · τmin]; Read-only transactions are placed in special group B;

- Divide Ai again into κ = ⌈log s⌉+ 1 subgroups A0
i , A

1
i , · · · , Aκ−1

i in a way that

each subgroup A
j
i contains transactions that access a number of resource in the

range [2j , 2j+1 − 1];

- Order the groups and subgroups such that Aj
i < Al

k if i < k or i = k ∧ j < l;
special group B has highest order;

foreach time step t = 0, 1, 2, 3, . . . do
Execute all pending transactions; // at t = 0 issue all transactions

On (re)start of transaction T :
r(T )← random integer in [1, n];

On conflict of transaction Tu ∈ A
j
i with transaction Tv ∈ Al

k:
if A

j
i < Al

k then abort(Tu, Tv);

else if A
j
i > Al

k then abort(Tv, Tu);

else if r(Tu) < r(Tv) then abort(Tu, Tv) ; // The case A
j
i = Al

k

else abort(Tv, Tu);
// In case a transaction Tu aborts Tv because r(Tu) < r(Tv),

then when Tv restarts it cannot abort Tu until Tu

commits or aborts

This algorithm is non-clairvoyant in the sense that it does not depend on
knowing explicitly the conflict graph to resolve conflicts. The algorithm is greedy
but does have the pending commit property. The groups and subgroups can be
implemented in the algorithm since we assume that each transaction knows
its execution time and the number of resources that it accesses. Clearly, the
algorithm computes the schedule in polynomial time.

4.1 Analysis of Non-Clairvoyant Algorithm

In the analysis given below, we study the properties of Algorithm Non-Clairvoyant
and give its competitive ratios. We use the following adaptation of the response
time analysis of Algorithm RandomizedRounds given in [21]. It uses the following
Chernoff bound:

Lemma 4 (Chernoff Bound). Let X1, X2, . . . , Xn be independent Poisson tri-
als such that, for 1 ≤ i ≤ n, Pr(Xi = 1) = pri, where 0 < pri < 1. Then, for
X =

∑n
i=1Xi, µ = E[X ] =

∑n
i=1 pri, and any 0 < δ ≤ 1,Pr(X < (1 − δ)µ) <

e−δ
2µ/2.

Lemma 5 (Adaptation from Schneider and Wattenhofer [21]). Given
a transaction scheduling problem with n concurrent transactions, where each



transaction has execution time at most τ , the time span a transaction T needs
from the moment it is issued until commit is 16·e·(dT+1)·τ ·lnn with probability
at least 1− 1

n2 , where dT is the number of transactions conflicting with T .

Proof. Consider the respective conflict graph G of the problem with the n trans-
action. Let NT denote the set of conflicting transactions for T (these are the
neighbors of T in G). Let r(T ) denote the random priority number choice of T
in range [1, n]. The probability that for transaction T no transaction T ′ ∈ NT
has the same random number is:

Pr(∄T ′ ∈ NT |r(T ) = r(T ′)) =

(
1− 1

n

)dT
≥

(
1− 1

n

)n
≥ 1

e
.

The probability that r(T ) is at least as small as r(T ′) for any transaction T ′ ∈
NT is 1

dT+1 . Thus, the chance that r(T ) is smallest and different among all its

neighbors in NT is at least 1
e·(dT+1) . If we conduct 16 · e · (dT + 1) · lnn trials,

each having success probability 1
e·(dT+1) , then the probability that the number

of successes Z is less than 8 lnn becomes: Pr(Z < 8 · lnn) < e−2·lnn = 1/n2,
using the Chernoff bound of Lemma 4. Since every transaction has execution
time at most τ , the total time spent until a transaction commits is at most
16 · e · (dT + 1) · τ · lnn, with probability at least 1− 1/n2.

We now give competitive bounds for some subgroup Aji and later extend the
results to all the transactions in T . The proofs are similar as in the analysis of
Algorithm Clairvoyant and can be found in the appendix.

Lemma 6. If we only consider transactions in subgroup Aji , then the competitive

ratio is bounded by CRNon−Clairvoyant(A
j
i ) ≤ 64 · e · λjmax · lnn with probability

at least 1− |Aj

i
|

n2 .

Lemma 7. If we only consider transactions in subgroup Aji , then the competitive

ratio is bounded by CRNon−Clairvoyant(A
j
i ) ≤ 64 · e · s/β

λj
max

· lnn with probability

at least 1− |Aj
i
|

n2 .

From Lemmas 6 and 7, we obtain:

Corollary 3. If we only consider transactions in subgroup Aji , then the com-

petitive ratio of the algorithm is bounded by CRNon−Clairvoyant(A
j
i ) ≤ 64 · e ·

min
{
λjmax,

s/β

λj
max

}
· lnn with probability at least 1− |Aj

i
|

n2 .

We now provide a bound for the performance of individual groups which will
help to provide bounds for all the transactions.

Lemma 8. If we only consider transactions in group Ai, then the competitive

ratio of the algorithm is bounded by CRNon−Clairvoyant(Ai) ≤ 512 · e ·
√

s
β · lnn

with probability at least 1− |Ai|
n2 .



Theorem 2 (Competitive Ratio of Non-Clairvoyant). For a set
of transactions T , Algorithm Non-Clairvoyant has competitive ratio

CRNon−Clairvoyant(T ) = O
(
ℓ ·

√
s
β · logn

)
with probability at least 1− 1

n .

The corollary below follows immediately from Theorem 2.

Corollary 4 (Balanced Workload). For balanced workload T (β = O(1))
and when ℓ = O(1), Algorithm Non-Clairvoyant has competitive ratio
CRNon−Clairvoyant(T ) = O(

√
s · logn) with probability at least 1− 1

n .

5 Hardness of Balanced Transaction Scheduling

In this section, we show that the performance of Clairvoyant is tight by reducing
the graph coloring problem to the transaction scheduling problem.

A Vertex Coloring problem instance asks whether a given graph G is
k-colorable [9]. A valid k-coloring is an assignment of integers {1, 2, · · · , k} (the
colors) to the vertices of G so that neighbors receive different integers. The
chromatic number, χ(G) is the smallest k such that G has a valid k-coloring.
We say that an algorithm approximates χ(G) with approximation ratio q(G)
if it outputs u(G) such that χ(G) ≤ u(G) and u(G)/χ(G) ≤ q(G). Typically,
q(G) is expressed only as a function of n, the number of vertices in G. It is
well known that known Vertex Coloring is NP-complete. It is also shown
in [7] that unless NP⊆ZPP, there does not exist a polynomial time algorithm
to approximate χ(G) with approximation ratio O(n1−ǫ) for any constant ǫ > 0,
where n denotes the number of vertices in graph G.

A Transaction Scheduling problem instance asks whether a set of trans-
actions T with a set of resources R has makespan k time steps. We give a poly-
nomial time reduction of the Vertex Coloring problem to the Transaction

Scheduling problem. Consider an input graphG = (V,E) of theVertex Col-

oring problem, where |V | = n and |E| = s. We construct a set of transactions
T such that for each v ∈ V there is a respective transaction Tv ∈ T ; clearly,
|T | = |V | = n. We also use a set of resources R such that for each edge e ∈ V
there is a respective resource Re ∈ R; clearly, |R| = |E| = s. If e = (u, v) ∈ E,
then both the respective transactions Tu and Tv use the resource Re for write.
Since all transaction operations are writes, we have that β = 1. We take all the
transactions to have the same execution length equal to one time step, that is,
τmax = τmin = 1, and ℓ = 1.

LetG′ be the conflict graph for the transactions T . Note thatG′ is isomorphic
to G. Node colors in G correspond to time steps in which transactions in G′ are
issued. Suppose that G has a valid k-coloring. If a node v ∈ G has a color x, then
the respective transaction Tv ∈ G′ can be issued and commit at time step x,
since no conflicting transaction (neighbor in G′) has the same time assignment
(color) as Tv. Thus, a valid k-coloring in G implies a schedule with makespan
k for the transactions in T . Symmetrically, a schedule with makespan k for T
implies a valid k-coloring in G.



It is easy to see that the problem Transaction Scheduling is in NP .
From the reduction of the Vertex Coloring problem, we also obtain that
Transaction Scheduling is NP -complete.

From the above reduction, we have that an approximation ratio q(G) of
the Vertex Coloring problem implies the existence of a scheduling algo-
rithm A with competitive ratio CRA(T ) = q(G) of the respective Transac-

tion Scheduling problem instance, and vice-versa. Since s = |R| = |E| ≤ n2,
an (

√
s)1−ǫ competitive ratio of A implies at most an n1−ǫ approximation ra-

tio of Vertex Coloring. Since, we know that unless NP⊆ZPP, there does
not exist a polynomial time algorithm to approximate χ(G) with approxima-
tion ratio O(n1−ǫ) for any constant ǫ > 0, we obtain a symmetric result for the
Transaction Scheduling problem:

Theorem 3 (Approximation Hardness of Transaction Scheduling). Un-
less NP⊆ZPP, we cannot obtain a polynomial time transaction scheduling algo-
rithm such that for every input instance with β = 1 and ℓ = 1 of the Trans-

action Scheduling problem the algorithm achieves competitive ratio smaller
than O((

√
s)1−ǫ) for any constant ǫ > 0.

Theorem 3 implies that the O(
√
s) bound of Algorithm Clairvoyant, given in

Corollary 2 for β = O(1) and ℓ = O(1), is tight.

6 Conclusions

We have studied the competitive ratios achieved by transactional contention
managers on balanced workloads. The randomized algorithms presented in this
paper allow to achieve best competitive bound on balanced workloads. We also
establish hardness results on the competitive ratios in our balanced workload
model by reducing the well known NP-complete vertex coloring problem to the
transactional scheduling problem.

There are several interesting directions for future work. As advocated in [15],
our algorithms are conservative − abort at least one transaction involved in
a conflict − as it reduces the cost to track conflicts and dependencies. It is
interesting to look whether the other schedulers which are less conservative can
give improved competitive ratios by reducing the overall makespan. First, our
study can be complemented by studying other performance measures, such as
the average response time of transactions under balanced workloads. Second,
while we have theoretically analyzed the behavior of balanced workloads, it is
interesting to see how our contention managers compare experimentally with
prior transactional contention managers, e.g., [5,24,11,1].
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A Proofs of Section 4

Proof of Lemma 6:

Proof. Since there is only one subgroup, a transaction T ∈ Aji conflicts with at
most dT ≤ λjmax · γjmax other transactions in the same subgroup. From Lemma
5, it will take at most x = 16 · e · (λjmax · γjmax + 1) · τ jmax · lnn time steps until T
commits, with probability at least 1− 1

n2 . Considering now all the transactions

in Aji , and taking the union bound of individual event probabilities, we have

that all the transactions in Aji commit within time x with probability at least

1− |Aj
i
|

n2 . Therefore, with probability at least 1− |Aj
i
|

n2 , the makespan is bounded
by:

makespanNon−Clairvoyant(A
j
i ) ≤ 16 · e · (λjmax · γjmax + 1) · τ jmax · lnn.

Similar to Lemma 1, there is a resource that is accessed by at least γjmax

transactions of Aji for write so that all these transactions have to be serialized
because of the conflicts. Therefore, the optimal makespan is bounded by:

makespanopt(A
j
i ) ≥ γjmax · τ jmin.

By combining the upper and lower bounds, we obtain a bound on the com-
petitive ratio:

CRNon−Clairvoyant(A
j
i ) =

makespanNon−Clairvoyant(A
j
i )

makespanopt(A
j
i )

≤ 16 · e · (λjmax · γjmax + 1) · τ jmax · lnn
γjmax · τ jmin

≤ 32 · e · (λjmax + 1) · lnn
≤ 64 · e · λjmax · lnn,

with probability at least 1− |Aj
i
|

n2 .

Proof of Lemma 7:

Proof. Since for any transaction T ∈ Aji , dT ≤ |NT | ≤ |Aji | − 1, similar to the

proof of Lemma 6, with probability at least 1 − |Aj
i
|

n2 , the makespan is bounded
by:

makespanNon−Clairvoyant(A
j
i ) ≤ 16 · e · |Aji | · τ jmax · lnn.

Similar to Lemma 2, the optimal makespan is bounded by:

makespanopt(A
j
i ) ≥

|Aji | · β · λjmax

2s
· τ jmin.



When we combine the above bounds of the makespan we obtain a bound on
the competitive ratio:

CRNon−Clairvoyant(A
j
i ) =

makespanNon−Clairvoyant(A
j
i )

makespanopt(A
j
i )

≤ 16 · e · |Aji | · τ jmax · lnn
|Aj

i
|·β·λj

max

2s · τ jmin

≤ 64 · e · s/β
λjmax

· lnn,

with probability at least 1− |Aj
i
|

n2 .

Proof of Lemma 8:

Proof. Since λjmax = (2j+1 − 1), Corollary 3 gives for each subgroup Aji compet-
itive ratio

CRNon−Clairvoyant(A
j
i ) ≤ 64 · e ·min

{
2j+1 − 1,

s/β

2j+1 − 1

}
· lnn

≤ 128 · e ·min

{
2j,

s/β

2j

}
· lnn,

with probability at least 1− |Aj
i
|

n2 . Following the proof steps as in Lemma 3, we
obtain:

CRNon−Clairvoyant(Ai) ≤ 512 · e ·
√
s

β
· lnn.

This bound holds with with probability at least 1 −
∑κ−1

j=0
|Aj

i
|

n2 = 1 − |Ai|
n2 , since∑κ−1

j=0 |Aji | = |Ai|.
Proof of Theorem 2:

Proof. As there are ℓ groups of transactions Ai, and one group B, in the worst
case, Algorithm Non-Clairvoyant will commit the transactions in each group ac-
cording to their order starting from the lowest order group and ending at the
highest order group. Clearly, the algorithm will execute the read-only transac-
tions in group B in optimal time. Therefore, using Lemma 8 we obtain:

CRNon−Clairvoyant(T ) ≤
ℓ∑

i=1

CRNon−Clairvoyant(Ai) + CRNon−Clairvoyant(B)

≤
ℓ−1∑

i=0

512 · e ·
√
s

β
· lnn+ 1

= 512 · e · ℓ ·
√
s

β
· lnn+ 1,

with probability at least 1−
∑ℓ−1

i=0
|Ai|

n2 = 1− n−1, since
∑ℓ−1

i=0 |Ai| = |T | = n.
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