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Bipartite Matching in the Semi-Streaming Model
Sebastian Eggert, Lasse Kliemann,

Peter Munstermann, Anand Srivastav

Abstract
We present the first deterministic 1 + ε approximation algorithm

for finding a large matching in a bipartite graph in the semi-streaming
model which requires only O ((1/ε)5) passes over the input stream. In
this model, the input graph G = (V,E) is given as a stream of its
edges in some arbitrary order, and storage of the algorithm is bounded by
O(n polylogn) bits, where n = |V |. The only previously known arbitrarily
good approximation for general graphs is achieved by the randomized
algorithm of McGregor (2005), which uses Ω ((1/ε)1/ε) passes. We show
that even for bipartite graphs, McGregor’s algorithm needs Ω (1/ε)Ω(1/ε)
passes, thus it is necessarily exponential in the approximation parameter.
The design as well as the analysis of our algorithm require the introduction
of some new techniques. A novelty of our algorithm is a new deterministic
assignment of matching edges to augmenting paths which is responsible
for the complexity reduction, and gets rid of randomization.

We repeatedly grow an initial matching using augmenting paths up
to a length of 2k + 1 for k = d2/εe. We terminate when the number of
augmenting paths found in one iteration falls below a certain threshold
also depending on k, that guarantees a 1 + ε approximation. The main
challenge is to find those augmenting paths without requiring an excessive
number of passes. In each iteration, using multiple passes, we grow a set of
alternating paths in parallel, considering each edge as a possible extension
as it comes along in the stream. Backtracking is used on paths that fail
to grow any further. Crucial are the so-called position limits: when a
matching edge is the ith matching edge in a path and it is then removed
by backtracking, it will only be inserted into a path again at a position
strictly lesser than i. This rule strikes a balance between terminating
quickly on the one hand and giving the procedure enough freedom on the
other hand.

Keywords: bipartite graph matching, streaming algorithms, approximation
schemes, approximation algorithms.



1 Introduction

Given a bipartite graph G = (A,B,E) with n := |A ·∪B| vertices, the maximum
cardinality matching problem (or maximum matching problem, as we will refer to
it) is to find a cardinality-maximal set of edges such that no two intersecting edges
are selected. An exact solution for this problem can be found in O(n2.5) time
with the algorithm of Hopcroft and Karp [4]. There is also a faster randomized
algorithm by Mucha and Sankowski [6], which runs in O(nω), where ω depends
on the running time of the best known matrix multiplication algorithm; it is
ω < 2.38. For massive graphs, not only the time complexity, but also the space
complexity plays an important role. In the streaming model, we assume that
the entire graph cannot be stored in random access memory (RAM). Therefore
the algorithm has no random access to the whole input, which is required for
most of the algorithms. The set of edges has to be stored on an external device,
like a disk or a tape, and is only presented as a stream. In this stream, each
edge is presented exactly once, and each time the stream is read, edges may
appear in an arbitrary order. The stream can only be read as a whole and
reading the whole stream once is called a pass (over the input). It sometimes
is assumed that the order in which edges appear is arbitrary, but the same for
each pass. However, our result works without such an assumption.

The number of passes used by the algorithm should be independent of the size
of the input graph. One is interested in a good approximation of the optimum,
and there the number of passes can and does depend on the approximation
parameter, e.g., [3, 5].

Standard streaming models, for example a (poly)log-space streaming model,
are too restrictive for graph problems. For example, it is impossible to decide if
there is a path of length 2 between two given vertices x and y [3]. This shows
that even easy graph problems are not solvable in this model. For solving graph
problems, Muthukrishnan [7] proposed the semi-streaming model: memory of
the algorithm is restricted to O(n polylogn), which is not enough to store the
entire graph if the graph is sufficiently dense, but enough to store Θ(n) edges.

Feigenbaum et al. [3] showed that finding an exact solution of the maximum
matching problem in one pass requires Ω(m) bits of space. Therefore, with the
given memory restriction, we aim for an approximation of a maximum matching.
We denote approximation factors as numbers from [1,∞). An approximation
algorithm for the maximum matching problem has an approximation factor
(or approximation guarantee) of ρ ≥ 1 if it always delivers a matching M with
ρ|M | ≥ OPT, where OPT denotes the cardinality of a maximum matching.
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We also call such a matching a ρ approximation. It is desirable to achieve an
arbitrarily good, say a 1 + ε approximation, where ε > 0, called approximation
parameter, can be arbitrarily small.1 An algorithm for finding a ( 2

3 − ε)
−1

approximation of a maximum matching in bipartite graphs was given by Feigen-
baum et al. [3]. This algorithm requires O

(
1
ε log 1

ε

)
passes over the input

stream. For general graphs, McGregor in his pioneering paper [5] gave the
first randomized algorithm in the semi-streaming model for finding a 1 + ε
approximation of a maximum matching with a constant number of passes over
the input stream, where ε is considered a constant. The dependence on 1/ε is
rather strong, namely Ω

(
(1/ε)1/ε) passes are needed. In Section 3 we show that

this requirement essentially also holds for the special case of bipartite graphs.
A more efficient approximation would insist on a polynomial dependence on
relevant parameters. In the last years this has been a key issue in the qualifi-
cation of efficiency, for example in research on parameterized complexity. For
the maximum (bipartite) matching problem it was not known whether there
is an approximation algorithm in the semi-streaming model requiring only a
polynomial number of passes in 1/ε.

Our Contribution. We present in the semi-streaming model a deterministic
1 + ε approximation algorithm for the maximum matching problem in bipartite
graphs with only O ((1/ε)5) passes over the input stream, and thus break the
exponential barrier on the number of passes.

Both, McGregor’s and our algorithm, build augmenting paths in a layer-wise
fashion. McGregor repeatedly uses randomization to decide which matching
edge may occur in which layer. As we show in Theorem 3.1, unfavorable random
decisions can be responsible for the requirement of a large number of passes.
The novelty of our approach is to introduce a new dynamic and deterministic
assignment of matching edges to layers, which is responsible for the complexity
reduction. We give a detailed description of our algorithm that can be easily
implemented.

1In the framework of approximation algorithms such an algorithm is called a PTAS
(polynomial-time approximation scheme) if it has polynomial running time for fixed ε, and an
efficient PTAS if the running time is an ε-independent polynomial in the input size times a
quantity dependent on ε, and an FPTAS (fully polynomial-time approximation scheme) if the
running time is polynomial in the input size and 1/ε.
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Organization. In Section 2 we introduce all relevant notions for graphs and
matchings. In Section 3 we briefly describe McGregor’s algorithm and show that
even on bipartite input it may require a number of passes exponential in 1/ε.

Section 4 explains the theoretical basis of our approximation technique.
In Section 5 we state our algorithm and give a detailed informal description.
Sections 6 and 7 provide analysis for approximation guarantee, number of
passes, time complexity, and space requirements. We conclude in Section 8 with
some open problems. Most interesting is the challenge to design a randomized
or deterministic algorithm for maximum matching in general graphs in the
semi-streaming model using only polynomially many passes over the input
stream.

2 Preliminaries

We denote N := {1, 2, 3, . . .} and [n] := {1, . . . , n} for each n ∈ N. We denote
by G = (A,B,E) a bipartite graph with vertex set V = A∪B, where A ∩B = ∅,
and edge set E. A setM ⊆ E is called a matching if no two edges inM intersect.
A matching M is an inclusion-maximal matching if M ∪ {e} is not a matching
for any e ∈M{ = E \M . A matching is called a maximum matching if it has
maximal cardinality among all matchings. Obviously, a maximum matching is
also an inclusion-maximal matching. A vertex is called free if it does not appear
in any edge fromM , and matched otherwise. The free vertices of a subset X ⊆ V
are denoted free(X). We often denote free vertices with small Greek letters,
e.g., α ∈ free(A) for a free vertex of partition A. For a matched vertex v denote
ΓM (v) := u where {v, u} ∈ M . We denote paths as sequences of vertices and
edges; this notation has redundancy, but will be helpful in some places. Denote
E(P ) the edges in a path P and V (P ) the vertices; we extend these notions to
sets of paths, i.e., if P is a set of paths then E(P) is the set of all edges that
occur in at least one of those paths. The length of a path P , denoted |P |, is its
number of edges. An M -augmenting path of length 2k+ 1 is a path with 2k+ 1
edges and 2k+ 2 vertices which is (M{,M)-alternating and starts and ends with
a free vertex, formally: (v0, e1, v1,m1, v2, . . . , v2k−1,mk, v2k, ek+1, v2k+1), where
v0 and v2k+1 are free vertices, ej = {v2j−2, v2j−1} ∈ M{ for j ∈ [k + 1] and
mj = {v2j−1, v2j} ∈ M for j ∈ [k]. For a matching M and an M -augmenting
path P , the symmetric difference M 4 E(P ) = (M ∪ E(P )) \ (M ∩ E(P )) is a
matching of size |M |+ 1.

Motivated by Berge’s famous theorem [1], stating that a matching is a
maximum matching if and only if there is no M -augmenting path, a majority of

4



matching algorithms uses augmenting paths for finding a maximum matching.
As well, our algorithm uses augmenting paths for increasing the size of the
matching constructed so far. It starts with an inclusion-maximal matching,
which can be found easily in one pass over the input by selecting an edge iff this
edge is not incident with any already selected edge. It is a well-known fact that
an inclusion-maximal matching is already a 2 approximation of a maximum
matching. But for our result, this approximation factor is not good enough. On
the other hand, we will not aim for eliminating all augmenting paths, but only
up to a certain limit. We will prove two lemmas, Lemma 4.1 and 4.2, which
guarantee a good approximation if there are only few augmenting paths left.
We will elaborated on this in Section 4.

3 McGregor’s Algorithm

We briefly describe McGregor’s Algorithm [5]. It is a randomized algorithm
and finds a 1 + ε approximation of a maximum matching in general graphs in
the semi-streaming model. We show that even on a bipartite input, it requires
Ω (1/ε)Ω(1/ε) passes over the input stream in order to achieve the claimed success
probability of 1 − e−1, cf. [5, Theorem 2]. It is hence – on bipartite graphs –
outperformed by our algorithm, which only needs a number of passes polynomial
in 1/ε, and moreover is deterministic.

McGregor’s algorithm takes a general graph G and a parameter ε as input.
It first computes an inclusion-maximal matching M , which is done in one pass
over the input stream. Define k := d 1

ε + 1e and r := Ω(kk). The algorithm
performs r iterations, each of them called a phase. A phase consists of k
iterations, i := 1, . . . , k, of a subroutine that tries to find a large set of pairwise
vertex-disjoint M -augmenting paths, each of length 2i+ 1. Of those k sets of
M -augmenting paths, one set A is chosen which yields the largest augmented
matching M 4 E(A), and then M is replaced by that augmented matching,
and the next phase starts. Each phase needs at least one pass over the input,
and so we have Ω(kk) passes, which means Ω

(
(1/ε)1/ε) passes. For each i

in each phase, a bipartite graph G′ is (implicitly) constructed, that captures
certain aspects of the relation of M to G and helps finding M -augmenting
paths. We describe the construction of the bipartite graph. The set of free
vertices is partitioned randomly into Fleft and Fright, with each vertex being
independently assigned to one of the sets with probability 1/2. Then matching
edges M are randomly partitioned into M1, . . . ,Mi, each one independently
assigned to one of these sets with probability 1/i. Each matching edge {u, v}
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is given an orientation randomly: either we have (u, v) or we have (v, u), each
chosen with probability 1/2 and independently for each edge.2 Denote the sets of
oriented edges by −→M1, . . . ,

−→
M i. The random choices reflected by sets Fleft, Fright

and −→M1, . . . ,
−→
M i fully specify the bipartite graph G′ = (V ′, E′) in the following

way. We interpret free vertices and directed matching edges as vertices of G′,
i.e., V ′ = Fleft ∪ Fright ∪⋃ij=1

−→
M j . Edges run as follows:

E′ = {
{
x, (u, v)

}
; x ∈ Fleft, (u, v) ∈ −→M1, {x, u} ∈ E}

∪
i−1
⋃
j=1
{
{

(s, t), (u, v)
}

; (s, t) ∈ −→M j , (u, v) ∈ −→M j+1, {t, u} ∈ E}

∪ {
{

(u, v), y
}

; (u, v) ∈ −→M i, y ∈ Fright, {v, y} ∈ E} .

We can think of G′ being in layers: on the left is Fleft, then we have3 −→M1, . . . ,
−→
M i,

and on the right we have Fright. All directed edges (which are vertices of G′)
point to the right. Edges in G′ only run between neighboring layers.

Storing E′ in memory is impossible in general, and so we only store V ′ and
determine parts of E′ as needed by passes over the input stream. A path in G′
between the ‘end’ layers Fleft and Fright yields an M -augmenting path of length
2i+ 1 in G. McGregor’s algorithm tries to find a large collection of such paths
once G′ is constructed; we skip those details here. In [5, Theorem 2] it is proved
that with probability at least 1− e−1, the algorithm finds a 1 + ε approximation
within the r phases. We show that this number of phases is actually required
even on bipartite input.

3.1 Theorem. There are bipartite instances on which McGregor’s algorithm
requires Ω (1/ε)Ω(1/ε) passes over the input stream to succeed with probability at
least 1− e−1.

Proof. Let 0 < ε ≤ 1/2 and t ∈ {1, . . . , b 1
2εc} and l := b1/tεc. Then l ≥ 2 and

tεl ≤ 1. Let G be the path on 2l − 1 edges. Suppose the algorithm chooses
an initial inclusion-maximal matching M such that there exists exactly one
M -augmenting path of length 2l − 1 in G, namely G itself. Then |M | = l − 1,
and the size of a maximum matching is l. This gives

(1 + tε) |M | = (1 + tε) (l − 1) = l + tε (l − 1)− 1 < l + tεl − 1 ≤ l = OPT .

2In [5] symbols “a” and “b” are used to mark the orientation.
3In [5] layers are enumerated with decreasing indices from left to right.
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HenceM is not a 1+ε approximation, in fact it is not even a 1+tε approximation.
The only way to find the desired approximation is to find that oneM -augmenting
path, which is G itself. To this end, the two free vertices must be assigned
to different layers, and all matching edges must be assigned to the layers and
oriented in a way that G occurs as a path in G′. This can only happen in
an iteration where i = l − 1, and then the probability that it happens is
p := 1

2
1

(l−1)(l−1)
1

2(l−1) . The probability that it does not happen within d phases
is (1−p)d. To push this probability below e−1, we need d ln(1−p) ≤ −1, hence,
using that for all 0 ≤ x we have ln(1 + x) ≤ x,

d ≥ −1
ln(1− p) = 1

ln ( 1
1−p )

= 1
ln (1 + ( 1

1−p − 1))
≥ 1

1
1−p − 1

≥ (l − 1)l−1 − 1 .

This is Ω (1/ε)Ω(1/ε) for t = O(1).

This lower bound still stands if we do a straightforward modification to the
algorithm, allowing it to use the knowledge that it is working on a bipartite
graph G = (A,B,E). Consider the following modification. We put the free
vertices of A into Fleft and the free vertices of B into Fright. Each matching
edge {a, b} with a ∈ A and b ∈ B is oriented (b, a). Probability p in the above
example is now p := 1

(l−1)(l−1) , yielding the same lower bound for d.

4 Our Approximation Technique

Like many previous approaches, we use augmenting paths to improve a given
matching. However, we do not aim to eliminate all augmenting paths, which
would guarantee optimality by Berge’s theorem. Instead, we do two restrictions.
For each k ∈ N, we call a path of length at most 2k + 1 a k-path. Then we can
express our restrictions as follows:
– We only consider augmenting k-paths, for a k that depends on the approxi-
mation parameter ε, namely k = d2/εe. Since a 2 approximation is already
achieved by an inclusion-maximal matching, we are only interested in ε < 1
and so k ≥ 3.

– We do not aim at finding all augmenting k-paths, but we are satisfied when
there exists a small enough inclusion-maximal set of k-paths.

For each k ∈ N let δ(k) := 1
2k(k+2) . The following two lemmas say that our

approach indeed works to gain an approximation of 1 + 2/k ≤ 1 + ε, provided
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that we can approximate inclusion-maximal sets of augmenting k-paths. The
following lemma is similar to [5, Lemma 1].

4.1 Lemma. Let M be an inclusion-maximal matching and M∗ a maximum
matching. Let D := M 4M∗ and for each i ∈ N0 let Di ⊆ 2D be the set of all
connected components of D that have i edges from M and i+ 1 edges from M∗.
(Thus Di is a set of sets of edges.) For each i ∈ N define αi := |Di|/|M | ∈ [0, 1].
Assume that there exists k ∈ N such that

∑k
i=1 αi ≤ 1/k. Then (1 + 2/k) |M | ≥

|M∗|, i.e., M is a 1 + 2/k approximation.

Proof. We start by upper-bounding
∑
i≥k+1 αi, i.e., the sum of those αi not

covered by the sum
∑k
i=1 αi. At most |M | −

∑k
i=1|Di| edges from M are

available to participate in components in Di for i ≥ k + 1. Each component in
such a Di needs at least k + 1 edges from M . Hence

∑
i≥k+1

αi |M | =
∑
i≥k+1

|Di| ≤

(
|M | −

k∑
i=1
|Di|

)
1

k + 1

= |M |
(

1
k + 1 −

1
k + 1

k∑
i=1

αi

)
,

and so ∑
i≥k+1

αi ≤
1

k + 1 −
1

k + 1

k∑
i=1

αi . (1)

Next we relate |M∗| to |M |. We do so by counting all edges in M∗ in a
particular scheme. Clearly, M∗ = (M \D) ·∪ (M∗ ∩D). Consider the second
part, i.e., the edges of M∗ in D. The components of D can be classified as
follows: those which have one edge less from M than from M∗ (those are
collected in D1,D2, . . .; note that D0 = ∅ since M is inclusion-maximal); those
which have an equal number of edges from M and M∗; and those which have
one edge more from M than from M∗. The latter do not occur, since they
would be M∗-augmenting paths. So if we count edges in M∗ ∩D, we can as
well first count M ∩D and then one more edge for each component in one of
the D1,D2, . . .. It follows

|M∗| = |M \D|+ |M ∩D|+
∑
i∈N
|Di| = |M |+

∑
i∈N
|Di| = |M |+

∑
i∈N

αi|M |
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= |M |
(

1 +
k∑
i=1

αi +
∑
i≥k+1

αi

)

≤ |M |

(
1 +

k∑
i=1

αi + 1
k + 1 −

1
k + 1

k∑
i=1

αi

)
by (1)

= |M |
(

1 + 1
k + 1 + k

k + 1

k∑
i=1

αi

)

≤ |M |
(

1 + 1
k + 1 + k

k + 1 ·
1
k

)
by assumption

= |M |
(

1 + 2
k + 1

)
≤ |M |

(
1 + 2

k

)
.

4.2 Lemma. Let M be an inclusion-maximal matching. Let Y be an inclusion-
maximal set of pairwise vertex-disjoint M -augmenting k-paths such that |Y| ≤
2 δ(k) |M |. Then M is a 1 + 2/k approximation of a maximum matching.

Proof. Let M∗ be a maximum matching. Let X be a cardinality-maximal
set of pairwise vertex-disjoint M -augmenting k-paths. Then |Y| ≥ 1

k+2 |X |,
since each path P ∈ Y can be incident with at most k + 2 paths from X ,
because P has two free vertices and at most k edges from M . It follows
|X | ≤ (k + 2) |Y| ≤ 2 (k + 2) δ(k) |M |.

Let D := M 4M∗ and Di, αi for each i ∈ N defined as in Lemma 4.1, and
let Z := ⋃ki=1Di. Then Z is a set of pairwise vertex-disjoint M -augmenting
k-paths, so |Z| ≤ |X |. Hence

k∑
i=1

αi|M | = |Z| ≤ |X | ≤ 2 (k + 2) δ(k) |M | = 1
k
|M | .

Lemma 4.1 now guarantees that M is a 1 + 2/k approximation.

5 Our Matching Algorithm

The main algorithm is shown on page 13. It implements the usual scheme
of starting with an arbitrary inclusion-maximal matching M , then repeatedly
computing a set of vertex-disjoint M -augmenting paths and replacing M by an
augmented version. We stop when the number of M -augmenting paths found
falls below the threshold of δ(k) |M |. (Together with the stopping criterion of
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the subroutine described below, this will later, in the proof of Theorem 6.5,
establish the “2δ(k) |M |” bound found in the previous lemma.) We only consider
M -augmenting paths of length at most 2k+1, i.e., k-paths. These are computed
by a subroutine Disjoint Paths. That subroutine is the most complex part;
it is displayed on page 14. We now give an explanatory description of it; an
illustration is given in Figure 1 on page 13. Input is the bipartite graph G,
given as a stream, a threshold parameter δ (usually chosen as δ(k)), a length
parameter k, and an inclusion-maximal matching M . The task is to find many
pairwise vertex-disjoint M -augmenting k-paths. The state of its main loop,
starting in line 6, is (essentially) given by:
– for each matching edge m ∈M a position limit `(m) ∈ {1, . . . , k + 1};
– the remaining vertices V ′;
– for each α ∈ free(A) a k-path P (α) = (α, . . .), called a constructed path;
– a boolean variable stuckα, which is used as an indicator to decide whether
P (α) got stuck, so it is time for backtracking.
The set of constructed paths is partitioned into incomplete paths I and

augmenting paths A. Set I consists of (M{,M)-alternating paths which could
not (yet) be completed toM -augmenting paths. Set A consist ofM -augmenting
paths; it is the result of Disjoint Paths when it terminates. Once an incomplete
path is completed to an M -augmenting path, it is moved from I to A and
never touched again until the end of this run of Disjoint Paths; its vertices
are removed from V ′. Denote I>0 the set of all incomplete paths that consist
of at least one edge (they in fact consist of at least two edges then). Several
invariants hold for the constructed paths during execution:
– Any two constructed paths are vertex-disjoint.
– All constructed paths are (M{,M)-alternating.
– Their vertices are alternately from A and B.
– Incomplete paths end with a vertex from A; if they have positive length, they
end with a matching edge.
We think of constructed paths starting at the left and proceeding to the

right.4 So, in each incomplete path, each vertex from B has a matching edge
to its right. If a matching edge m is contained in an incomplete path P , its
position limit `(m) is exactly so that m is matching edge number `(m) counted
from the left of P , that is edge number 2 `(m).

4The basic idea of growing vertex-disjoint paths in such a way is inspired by McGregor’s
subroutine “Find-Layer-Paths” [5, Section 2.2].
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Initialization is done by setting position limits `(m) := k + 1 for each
m ∈M (which is an impossible value for an edge inside a constructed path) and
constructed paths P (α) := (α) for each α ∈ free(A). By passing over the input,
the algorithm tries to extend the constructed paths. One execution of the forall
loop from line 8 to line 27 constitutes one pass over the input, and we will also
refer to one execution of that loop as a “pass”. Execution of one iteration of the
repeat loop from line 6 to the last line is referred to as one phase. The number
of passes is equal to the number of phases (when we count the last iteration of
the repeat loop, which ends in line 28, as one phase).

We first explain what happens for each edge during a pass. Let the current
edge be e = {a, b}, a ∈ A, b ∈ B, between two remaining vertices. It is tested
whether we can – and wish to – use e to extend an incomplete path. A path
P (α∗) can only be extended if it has a as its endpoint, i.e., P (α∗) = (α∗, . . . , a).
Since all paths are pairwise vertex-disjoint, there can be at most one path that
fulfills this condition. If there is none, we discard e and continue the pass with
the next edge. Otherwise, let P (α∗) = (α∗, . . . , a) be that path. We then have
to distinguish between two cases.

The first case is that b is a free vertex. Then we have found anM -augmenting
path, namely P := (α∗, . . . , a, e, b). We set A := A ∪ {P }, I := I \ {P (α∗)},
and update the set of remaining vertices V ′. Since our approximation theory
is based on inclusion-maximal sets of M -augmenting paths, we cannot make a
‘mistake’ by choosing the first occurring way to complete an incomplete path to
an augmenting one.

The other case is that b is a matched vertex, let m := {b,ΓM (b)} ∈M . Then
we check whether we are below m’s position limit, that is, whether the position
of m in P (α∗) upon insertion would be lesser than `(m). This means we check
for i < `(m), where i = |P (α∗)|

2 + 1. If this is the case, we set stuckα∗ := ff
because P (α∗) will be extended. (We set stuckα := tt for all α before each
pass; only if a path’s end is modified, it is not considered stuck. We will later
explain the meaning of the stuck flags in more detail.) Now there are two more
cases to consider. The first is that m is in no incomplete path (it then is in no
constructed path at all). Then we set5 P (α∗) := (α∗, . . . , a, e, b,m,ΓM (b)) and
`(m) := i. That is, we append e and its matching edge m to the incomplete
path and update m’s position limit. The second case is that m is included in
another incomplete path P (α̃) = (α̃, . . . , ã, ẽ, b,m,ΓM (b), . . .). The order is in
fact always (. . . , b,m,ΓM (b), . . .), since b ∈ B and ΓM (b) ∈ A; moreover it is

5Strictly, we should write I := (I \ (α∗, . . . , a)) ∪ {(α∗, . . . , a, e, b,m,ΓM (b))}. However,
in order to simplify notation, we treat I as a set of mutable objects, to which we refer by P (·).
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always e 6= ẽ. We now move b and its right wing in P (α̃) to P (α∗), i.e., we
set P (α̃) := (α̃, . . . , ã) and P (α∗) := (α∗, . . . , a, e, b,m,ΓM (b), . . .). Since P (α̃)
changed it is important to set stuckα̃ := ff as well because there now might be a
way to extend P (α̃) with an edge e ∈ E which has already gone by in this pass.
We set `(m) := i and also update the position limits of any matching edges to
the right of m in the subpath which we just moved, i.e., the next matching edge
m′ will get `(m′) := i+ 1, and so on.

Whenever a pass is over a test is done whether we shall carry on or finish
and return A to the main algorithm. We finish when |I>0| ≤ δ|M |. We
will later show that Disjoint Paths cannot find more then |I>0| additional
M -augmenting paths.

Right after that test, it is time for backtracking if needed, performed in
lines 29 and 30. Backtracking is used for every path P (α) which would – in
its current form – certainly not grow during the next pass. This is the case
when the end of P (α) remained unmodified during the previous pass, which
is reflected by its stuck flag stuckα. During backtracking we remove the last
two edges from each incomplete path in I>0 which has its stuck flag set, i.e.,
if we have P (α) = (α, . . . , a, e, b,m, a′) then we set P (α) := (α, . . . , a) for each
α ∈ free(A) such that P (α) ∈ I>0 and stuckα = tt. The justification for this
is that at this point, any admissible way of extending such a path has already
been tried. The removed edges will never be put at that position in P (α) again,
due to their position limits. This gives a chance to other edges to be included
there instead in future passes.

We can think of all matching edges being to the right, at position k + 1, in
the beginning. This is an impossible position to obtain inside of a constructed
path. Then, matching edges move to the left. Each time a matching edge m
is inserted into a constructed path, it moves at least one position to the left,
accompanied by a decrement of its position limit `(m). When it is removed by
backtracking, its position limit is not changed, hence the edge is still eligible for
being inserted in any position left of its last one. In particular, each position
limit `(m) is non-increasing over the steps of Disjoint Paths. If a matching
edge has reached the left end, that is, its position limit has been decreased
to 1, and if it then is removed by backtracking, it will not be inserted into any
constructed path again. If an edge is in some constructed path, the only way by
which it is made a non-member of any constructed path is that it is captured
by backtracking in line 30.

12



i = 4 k + 1 = 8

Figure 1. A state of Disjoint Paths. The non-filled vertices on the left are free vertices of
A, thick edges are matching edges. There are 6 incomplete paths, 5 of them in I>0. Length
parameter is k = 7, so we are looking for M -augmenting paths of length at most 2k + 1 = 15.
If the current edge in the stream is eligible for extending path number 2 or 4 (counted from
the top), the hypothetical new position of the appended matching edge would be i = 4. Hence,
any matching edge m to be used to extend these paths must have 4 = i < `(m). The matching
edge may, however, already be part of another incomplete path, e.g., it may be one of the last
three matching edges of the path at the top.

Algorithm 1: Approximate Maximum Matching
Input: bipartite graph G = (A,B,E), parameter ε > 0
Output: matching M

1 set k := d2/εe ;
2 set M := inclusion-maximal matching ;
3 repeat
4 set c := |M | ;
5 set A := Disjoint Paths(G, δ(k), k,M) ;
6 set M := M 4 E(A) ;
7 until |A| ≤ δ(k)c;
8 return M ;
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Algorithm 2: Disjoint Paths
Input: bipartite G = (A,B,E), δ > 0, k ∈ N, incl.-max. matching M
Output: M -augmenting k-paths A

1 forall the m ∈M do set `(m) := k + 1;
2 set A := ∅; set I := ∅; set V ′ := A ∪B;
3 forall the α ∈ free(A) do
4 set P (α) := (α);
5 set I := I ∪ {P (α)};
6 repeat
7 forall the α ∈ free(A) do set stuckα := tt;
8 forall the e = {a, b} ∈ E do /* assume a ∈ A, b ∈ B */
9 if a, b ∈ V ′ and ∃P (α∗) = (α∗, . . . , a) ∈ I then

/* position of hypothetical new matching edge: */
10 let i = |P (α∗)|

2 + 1;
11 if b is a free vertex then
12 set P (α∗) := (α∗, . . . , a, e, b);
13 set A := A ∪ {P (α∗)} /* store */;
14 set I := I \ {P (α∗)};
15 set V ′ := V ′ \ V (P (α∗));
16 else if i < `(m) with m = {b,ΓM (b)} then
17 if b is in no incomplete path then
18 set P (α∗) := (α∗, . . . , a, e, b,m,ΓM (b));
19 set stuckα∗ := ff;
20 set ` (m) := i;
21 else
22 let P (α̃) = (α̃, . . . , ã, ẽ, b,m,ΓM (b), . . .) ∈ I;

/* move right wing of b from P (α̃) to P (α):
*/

23 set P (α̃) := (α̃, . . . , ã);
24 set P (α∗) := (α∗, . . . , a, e, b,m,ΓM (b), . . .);
25 set stuckα̃ := ff;
26 set stuckα∗ := ff;
27 adjust `-values on new edges of P (α∗);
28 if |I>0| ≤ δ |M | then break and return A ;
29 forall the P (α′) ∈ I>0 with stuckα′ = tt do
30 remove last two edges from P (α′) /* backtrack */ ;
31 until forever ;
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6 Analysis – Approximation

We show in two steps that Disjoint Paths computes a sufficiently good
approximation of an inclusion-maximal set of M -augmenting k-paths. We first
show that a tightening of the stopping condition will make it find such an
inclusion-maximal set, i.e., an optimal solution to this subproblem. Then we
show that with our original stopping condition, we only miss a small number of
additional M -augmenting paths. Finally, we invoke Lemma 4.2 to prove the
approximation guarantee. We start with a simple proposition, that will be used
on two occasions.

6.1 Proposition. If an incomplete path has zero length after a pass, then it
had zero length before that pass already.

Proof. We only have to observe that none of the operations conducted during
a pass can reduce a path’s length to zero. Paths are only reduced in line 23
when we go from (α̃, . . . , ã, ẽ, b,m,ΓM (b), . . .) to (α̃, . . . , ã). The test in line 16
ensures 2 ≤ `(m), and so the new path cannot have zero length.

6.2 Lemma. If condition “|I>0| ≤ δ|M |” in line 28 is substituted by “|I>0| = 0”,
then algorithm Disjoint Paths finds an inclusion-maximal set of pairwise
vertex-disjoint M -augmenting k-paths.

Proof. Let the stop condition in line 28 be “|I>0| = 0”. Consider the point
of time when this condition is reached and the algorithm terminates. Let us
assume that there exists a path (α, e1, v1,m1, . . . ,mr, v2r, er+1, β) in G with
1 ≤ r ≤ k, ej ∈M{ for all j ∈ [r + 1], mj ∈M for all j ∈ [r], α ∈ free(A) and
β ∈ free(B), which is vertex-disjoint to all paths in A. In the following we show
that this assumption leads to a contradiction.

We show by induction over j, from j = r downwards to 1, that for all
1 ≤ j ≤ r it holds that `(mj) > j. In particular, `(m1) is thus greater than 1 all
the time, since position limit values are non-increasing. We can then conclude
as follows. In the beginning of the algorithm, free vertex α is made the starting
vertex of an incomplete path. Since α is in no M -augmenting path in A in
the end, its path remains incomplete all the time. In the last phase, when the
stop condition is fulfilled, there are no incomplete paths of positive length left,
i.e., all incomplete paths that remain incomplete consist of only one vertex.
Path P (α) is one of these. By Proposition 6.1 P (α) must have had zero length
already at the beginning of the pass. However, e1, which has α as an endpoint,
and m1 are in G[V ′] at all times. So, α occurs as vertex a in some pass with b
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such that a, b ∈ V ′ and {b,ΓM (b)} = m1. Since `(m1) > 1, the test in line 16 is
true, which results in e1 and m1 being added behind α. They stay there until
the end of the pass. This is a contradiction to that after this pass there are no
incomplete paths with positive length left. So the proof is finished.

We start the induction with j = r. Suppose that `(mr) ≤ r < k + 1, which
means that mr was inserted into some incomplete path – and was removed again
by backtracking, since in the end it is in no path from I>0 (since this set is
empty) nor in any path from A. Being removed by backtracking means that mr

has to be at the end of an incomplete and stuck path directly after a pass, say in
path P (α′). Being stuck in particular means that no changes were done to P (α′)
in the preceding pass. So P (α′) had the form (α′, . . . ,mr, v2r) during the whole
pass. But that way P (α′) would have been completed to (α′, . . . mr, v2r, er+1, β)
in the pass, because of er+1 = {v2r, β} ∈ E; a contradiction.

For the induction step, let 1 ≤ j < r and suppose that `(mj′) > j′ for all
j < j′. We argue similar to before, so assume that `(mj) ≤ j < k + 1, which
means that mj was inserted into some incomplete path and removed again by
backtracking. During a pass directly before a removal, mj has to constantly be
at the end of an incomplete path. Since the other matching edge mj+1 is in no
path in A in the end, it is in some incomplete path or in no constructed path at
all during that pass. By induction, we have `(mj+1) > j+1 > j ≥ `(mj). Hence,
ej+1 and mj+1 are inserted behind mj during that pass; a contradiction.

6.3 Lemma. Let r ≥ 0. If algorithm Disjoint Paths terminates when
|I>0| = 0 instead of |I>0| ≤ r, then it finds at most r additional pairwise
vertex-disjoint M -augmenting k-paths.

Proof. The lemma follows when we show that an incomplete path with zero
length at some point in time in line 28 will remain at zero length throughout
the rest of the algorithm.

Let P (α) have zero length in line 28 in some phase, i.e., P (α) = (α). By
Proposition 6.1, this path already had zero length before the preceding pass.
So during that pass, the algorithm was unable to grow this path. Therefore
there exists no edge e = {α, b} ∈ E with `({b,ΓM (b)}) ≥ 2. Since the position
limits do not increase during the algorithm, there will be no such an edge e ∈ E
in the following and the path will remain P (α) = (α) until Disjoint Paths
terminates.

6.4 Corollary. Let A be the output of Disjoint Paths(G, δ, k,M). Then there
exists an inclusion-maximal set Y of pairwise vertex-disjoint M-augmenting
k-paths such that |Y| ≤ |A|+ δ |M |.
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Proof. Apply Lemma 6.3 with r := δ |M | and choose as Y the set of M -
augmenting paths which would be constructed by Disjoint Paths with stop
condition “|I>0| = 0”.

The main approximation result now follows easily.

6.5 Theorem. Let ε > 0. Our matching algorithm, Algorithm 1, finds a 1 + ε
approximation of a maximum matching.

Proof. When the algorithm terminates, the last set of found M -augmenting
paths A satisfies |A| ≤ δ(k) |M |, with M referring to the non-augmented
matching, that is the matching for which A was computed. We apply Corol-
lary 6.4 with δ = δ(k) and receive existence of an inclusion-maximal set Y of
pairwise vertex-disjoint M -augmenting k-paths with |Y| ≤ |A| + δ(k) |M | ≤
δ(k) |M |+ δ(k) |M | = 2δ(k) |M |. The approximation follows from Lemma 4.2
with k = d2/εe.

7 Analysis – Pass, Time, and Space Requirements

7.1 Lemma. Algorithm Disjoint Paths needs at most 2kδ−1 + 1 passes.

Proof. The number of passes equals the number of phases, so we need to bound
the number of phases. Let Π be the set of all phases, save the last one, in which
the algorithm terminates. For each π ∈ Π let i(π) be the number of executions
of line 20, a(π) be the number of executions of line 27, and b(π) be the number
of executions of line 30 during π. In other words, we count the events that a
matching edge is inserted into a path after it was in no path at all (and its
position limit is adjusted), when position limits on the migrated right wing of a
path are adjusted, and when a matching edge is removed from some path by
backtracking.

Each position limit `(m), m ∈M is initialized with `(m) = k+1. Hence `(m)
can be decreased at most k times during the run of the algorithm. Altogether
there are at most k |M | decrements of position limits. These decrements happen
in line 20 or line 27. Hence∑

π∈Π
(i(π) + a(π)) ≤ k |M | . (2)

Fix a phase π ∈ Π. Since the algorithm does not terminate in π, we have
|I>0| > δ(k) |M | in line 28. The next backtracking applies to all paths in I>0

17



that are marked being stuck. Since all paths are marked being stuck at the
beginning of a phase, the only paths to which backtracking does not apply are
those for which line 19, line 25, or line 26 were executed during π. The number
of paths being marked unstuck is coupled with the numbers i(π) and a(π). Each
execution of line 20 can lead to at most one additional path not being marked
stuck. Each execution of line 27 can lead to at most two additional paths not
being marked stuck. With

U(π) := {P (α) ∈ I>0; stuckα = ff after the pass in π}

it follows |U(π)| ≤ i(π) + 2a(π) and hence

δ |M | < |I>0| = b(π) + |U(π)| ≤ b(π) + i(π) + 2a(π) . (3)

Now we sum over all π ∈ Π. An edge must be inserted into some path before
it can be removed by backtracking. Hence

∑
π∈Π b(π) ≤

∑
π∈Π i(π). It follows:

|Π| δ |M |
(3)
≤
∑
π∈Π

(b(π) + i(π) + 2a(π)) ≤ 2
∑
π∈Π

(i(π) + a(π))
(2)
≤ 2k |M | .

Hence |Π| ≤ 2kδ−1. Since Π does not include the last phase, we have to add 1
to get a bound on the total number of phases.

Using this lemma, we can show the claimed bound on the number of passes.

7.2 Theorem. Algorithm 1 needs O ((1/ε)5) passes. The per-edge processing
time is O(|V |). The total processing time is O ((1/ε)5 |V | |E|), so we have an
FPTAS.

Proof. The iteration of the loop in Algorithm 1 starts with an inclusion-maximal
matching M =: M0. In each iteration, the matching grows by at least δ(k) |M0|.
Since M0 is inclusion-maximal, in total it cannot grow by more than |M0| edges.
Hence there are at most δ(k)−1 = 2k (k + 2) iterations. Each iteration by
Lemma 7.1 needs at most 2kδ(k)−1 + 1 = 4k2 (k + 2) + 1 passes. Altogether,
using k ≥ 3, the number of passes is at most

2k (k + 2) (4k2 (k + 2) + 1) = 8k3 (k + 2)2 + 2k (k + 2)
≤ 8k3 (k + 2)2 + k2 (k + 2) ≤ 9k3 (k + 2)2 = O (k5) = O ((1/ε)5) .

As for the time complexity, the per-edge processing time of O(|V |) is clear
from the algorithm Disjoint Paths. It follows that one pass is in O(|E| |V |).
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Other operations done in one phase are clearly in O(|V |). The number of
phases equals the number of passes. Hence the total time spent in phases is
O ((1/ε)5 |V | |E|). One iteration of the main loop without subroutines is in
O(|V |). The number of passes clearly upper-bounds the number of iterations of
the main loop. This yields the stated time complexity.

7.3 Theorem. Algorithm 1 needs O(n logn) bits of space.

Proof. Storing one edge requires storing its endpoints, which are two numbers
between 1 and n, that is O(logn) bits. All the intermediate matchings M
have O(n) edges each. All constructed paths which have to be stored at the
same time are pairwise vertex-disjoint, hence have O(n) edges in total. Hence,
we require storage for O(n) edges, which is O(n logn) bits. In addition, the
position limits need to be stored. These are O(|M |) = O(n) numbers, each
between 1 and k + 1, that is O(n log k) in total. We may assume k = O(n),
since no improvements can be made by larger k (there are no augmenting paths
on more than n vertices). Clearly, all other state information, like the set of
remaining vertices V ′ and the position number i, can be expressed by O(n)
numbers between 1 and n, and hence fits into O(n logn) bits.

8 Open Questions

The most intriguing question is whether our approach can be adapted to the
maximum matching problem in general graphs, while maintaining a substantially
lower number of passes than McGregor’s algorithm needs. It is also worth asking
whether the number of passes can be reduced further for the bipartite case.
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