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Abstract

The sequential importance sampling (SIS) algorithm has gained considerable popu-
larity for its empirical success. One of its noted applications is to the binary contingency
tables problem, an important problem in statistics, where the goal is to estimate the
number of 0/1 matrices with prescribed row and column sums. We give a family of
examples in which the SIS procedure, if run for any subexponential number of trials,
will underestimate the number of tables by an exponential factor. This result holds for
any of the usual design choices in the SIS algorithm, namely the ordering of the columns
and rows. These are apparently the first theoretical results on the efficiency of the SIS
algorithm for binary contingency tables. Finally, we present experimental evidence that
the SIS algorithm is efficient for row and column sums that are regular. Our work is a
first step in determining the class of inputs for which SIS is effective.

1 Introduction

Sequential importance sampling is a widely-used approach for estimating the cardinality of a
large set of combinatorial objects. It has been applied in a variety of fields, such as protein
folding [14], population genetics [10], and signal processing [12]. Binary contingency tables
is an application where the virtues of sequential importance sampling have been especially
highlighted; see Chen et al. [7]. This is the subject of this note. Given a set of non-negative
row sums r = (r1, . . . , rm) and column sums c = (c1, . . . , cn), let Ω = Ωr,c denote the set of
m× n 0/1 tables with row sums r and column sums c. Let N =

∑

i ri denote the number of
edges in the corresponding bipartite graphs.
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Our focus is on algorithms for estimating |Ω|. There are algorithms [11, 3] for estimating |Ω|
(and sampling (almost) uniformly at random from Ω) which provably run in time polynomial
in n and m for any row/column sums. We discuss these algorithms, which use Markov chain
Monte Carlo (MCMC) methods, in more detail later in the introduction. In this paper, we
study a simpler method known as sequential importance sampling (SIS).

SIS has several purported advantages over the more classical Markov chain Monte Carlo
(MCMC) method, such as:

Speed: Chen et al. [7] claim that SIS is faster than MCMC algorithms (their paper shows, by
experiment, that for the studied inputs, SIS is superior to the MCMC algorithm of [2];
moreover the authors state that they are not aware of any MCMC-based algorithm that
achieves similar results in both accuracy and time as SIS). In fact, Blanchet [5] recently
proved that SIS requires O(N2) time when all of the row and column sums are at most
o(N1/4) (see Bayati et al. [1] for a related result for a different algorithm). In contrast,
we present a simple example where SIS requires an exponentially large (in n,m) number
of samples to give an approximately correct answer. Note that, as mentioned earlier, a
MCMC algorithm was presented in [11, 3] which is guaranteed to require at most time
polynomial in n,m for every input.

Convergence Diagnostic: One of the difficulties in MCMC algorithms is determining when
the Markov chain of interest has reached the stationary distribution, unless we have
analytical bounds (as in the case of [11, 3]). SIS seemingly avoids such complications
since its output is guaranteed to be an unbiased estimator of |Ω|. Unfortunately, it is
unclear how many estimates from SIS are needed before we have a guaranteed close
approximation of |Ω|. In our example for which SIS requires exponential time, the
estimator appears to converge, but it converges to a quantity that is off from |Ω| by an
exponential factor.

Before formally stating our results, we detail the sequential importance sampling approach
for contingency tables, following [7]. The general importance sampling paradigm involves
sampling from an ‘easy’ distribution µ over Ω that is, ideally, close to the uniform distribution.
At every round, the algorithm outputs a table T along with µ(T). Since for any µ whose
support is Ω one has

E[1/µ(T)] = |Ω|,

the algorithm takes many trials and outputs the average of 1/µ(T) as an estimate of |Ω|.
More precisely, let T(1), . . . ,T(t) denote the outputs from t trials of the SIS algorithm. The
final estimate is

Xt =
1

t

t
∑

ℓ=1

1

µ(T(ℓ))
. (1)

One typically uses a heuristic to determine how many trials t are needed until the estimator
has converged to the desired quantity.

The sequential importance sampling algorithm of Chen et al. [7] constructs the table T

in a column-by-column manner. It is not clear how to order the columns optimally, but
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this will not concern us as our negative results will hold for any ordering of the columns.
Suppose the procedure is assigning column i conditional on an existing assignment to columns
1, . . . , i− 1. For 1 ≤ j ≤ m, let r′j be equal to rj less the total number of 1’s seen in row j in
columns 1, . . . , i− 1. Thus, r′1, . . . , r

′

m are the residual row sums after taking into account the
assignments in the first i− 1 columns.

The procedure of Chen et al. chooses column i from the following probability distribution.
The distribution is the projection onto column i of the uniform distribution over assignments
to columns i, . . . , n where the row sums are r′1, . . . , r

′

m and column i sums to ci (but ignoring
the column sums ci+1, . . . , cn). The distribution is easy to describe in closed form. Let
T1,i, . . . ,Tm,i ∈ {0, 1}m denote the assignment to column i, where

∑

j Tj,i = ci. Let n′ =
n− i+ 1 be the number of not yet assigned columns. Clearly, Tj,i must be 0 for every j with
r′j = 0, and Tj,i must be 1 for every j with r′j = n′. Let J = {j ∈ {1, . . . , m} | 0 < r′j < n′},
that is, J is the set of rows whose entries are not forced to 0 or 1. Then, the probability of
the assignment Tj,i for j ∈ J is proportional to

∏

j∈J

(

r′j
n′ − r′j

)Tj,i

. (2)

Sampling from this distribution over assignments for column i can be done efficiently by
dynamic programming (see Section 3.1 of [7]).

Remark 1. The described procedure may “get stuck”, that is, run into a situation when no
valid assignment is possible for the i-th column. In such case, 1/µ(T(ℓ)) is set to zero in
(1) for this trial and the procedure moves to the next trial. Chen et al. also devised a more
subtle sampling procedure for the i-th column which never gets stuck. We do not describe this
interesting modification of the procedure, as the two procedures are equivalent for the input
instances which we discuss in this paper. The reason is that for our instances even for the
distribution given by (2) SIS never gets stuck.

We now state our negative result. This is a simple family of examples where the SIS
algorithm will grossly underestimate |Ω| unless the number of trials t is exponentially large.
Our examples will have the form (1, 1, . . . , 1, dr) for row sums and (1, 1, . . . , 1, dc) for column
sums, where the number of rows is m + 1, the number of columns is n + 1, and we require
that m+ dr = n+ dc. An important feature of our examples is that they are “bad” examples
regardless of whether the SIS procedure constructs the table column-by-column or row-by-row.

Theorem 2. Let β > 0, γ ∈ (0, 1) be constants satisfying β 6= γ and consider the input
instances r = (1, 1, . . . , 1, ⌊βm⌋), c = (1, 1, . . . , 1, ⌊γm⌋) with m + 1 rows. Fix any order
of columns (or rows, if sequential importance sampling constructs tables row-by-row) and let
Xt be the random variable representing the estimate of the SIS procedure after t trials of the
algorithm, that is, Xt is given by (1). There exist constants s1 ∈ (0, 1) and s2 > 1 such that
for every sufficiently large m and for any t ≤ sm2 ,

Pr

(

Xt ≥
|Ωr,c|

sm2

)

≤ 3sm1 .
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We mentioned earlier that there are MCMC algorithms which provably run in time poly-
nomial in n and m for any row/column sums. In particular, Jerrum, Sinclair, and Vigoda [11]
presented a polynomial time algorithm for estimating the permanent of a non-negative matrix.
For the case of 0/1 matrices, their result corresponds to a randomized algorithm, which for
a bipartite graph G, estimates the number of perfect matchings of G within a multiplicative
factor (1± ǫ) in time polynomial in |G| and 1/ǫ. The binary contingency tables problem stud-
ied in this paper can be reduced to counting perfect matchings via a reduction of Tutte [13].
More recently, Bezáková, Bhatnagar and Vigoda [3] presented a related simulated annealing
algorithm that works directly with binary contingency tables to solve the problem studied in
this paper for all row/column sums, and has an improved polynomial running time compared
with [11]. We note that, in addition to being formally asymptotically faster than any expo-
nential time algorithm, a polynomial time algorithm has additional theoretical significance in
that it (and its analysis) implies non-trivial insight into the structure of the problem.

As a side note, we remark that even though SIS grossly underestimates the number of
binary contingency tables for our examples with m + 1 rows with row sums (1, 1, . . . , 1, dr)
and n + 1 = m + dr − dc + 1 columns with column sums (1, 1, . . . , 1, dc), it is possible to
compute this number exactly using the formula

(

m
dc

)(

n
dr

)

(m− dc)! +
(

m
dc−1

)(

n
dr−1

)

(m− dc + 1)!.
Some caveats are in order here. Firstly, the above results imply only that MCMC out-

performs SIS asymptotically in the worst case; for many inputs, SIS may well be much more
efficient. Secondly, the rigorous worst case upper bounds on the running time of the above
MCMC algorithms are still far from practical. Chen et al. [7] showed several examples where
SIS outperforms MCMC methods. We present a more systematic experimental study of the
performance of SIS, focusing on examples where all the row and column sums are identical
as well as on the “bad” examples from Theorem 2. Our experiments suggest that SIS is ex-
tremely fast on the balanced examples, while its performance on the bad examples confirms
our theoretical analysis. Understanding conditions under which SIS performs well is, perhaps,
the most interesting open problem in the area. Specific problems include extending the result
of [5] to multiway contingency tables [8] and random graphs with prescribed degrees [6].

We also note that the following simple modification of SIS may lead to better performance.
Rather than assigning entries in a column-by-column or row-by-row manner, assign at each
step either the row or the column with the largest residual sum. It can easily be verified
that this enhanced scheme does produce correct results for the input instances in Theorem 2.
However, we provide experimental evidence that there are input instances for which even this
enhanced strategy fails. These inputs are similar in flavor to those in Theorem 2, but slightly
more complicated.

We begin in Section 2 by presenting a few basic lemmas that are used in the analysis of our
negative example. In Section 3 we present our main example where SIS is off by an exponential
factor, thus proving Theorem 2. Finally, in Section 4 we summarize some experimental results
for SIS that support our theoretical analysis.
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2 Preliminaries

We will continue to let µ(T) denote the probability that a table T ∈ Ωr,c is generated by
sequential importance sampling algorithm. We let π(T) denote the uniform distribution over
Ωr,c, which is the desired distribution.

Before beginning our main proofs we present two straightforward technical lemmas which
are used at the end of the proof of the main theorem. The first lemma claims that if a large
set of binary contingency tables gets a very small probability under SIS, then SIS is likely to
output an estimate which is not much bigger than the size of the complement of this set, and
hence very small. For S ⊂ Ωr,c, let S = Ωr,c \ S denote its complement.

Lemma 3. Let p ≤ 1/2 and let S ⊆ Ωr,c be such that µ(S) ≤ p. Then for any a > 1, and any
t, we have

Pr
(

Xt ≤ a|S|
)

≥ 1− pt− 2/a.

Proof. The probability that all t SIS trials are not in S is at least

(1− p)t ≥ 1− pt.

(This well-known inequality valid for p ≥ 0 follows by induction on t.)
Let T(1), . . . ,T(t) be the t tables constructed by SIS. Then, with probability at least 1−pt,

we have T(ℓ) ∈ S for all ℓ, 1 ≤ ℓ ≤ t. Notice that for a table T constructed by SIS from S,
we have

E

(

1

µ(T)
| T ∈ S

)

=
|S|

µ(S)
.

Let F denote the event that T(ℓ) ∈ S for all ℓ, 1 ≤ ℓ ≤ t; hence,

E (Xt | F) =
|S|

µ(S)
.

We can use Markov’s inequality to estimate the probability that SIS returns an answer
which is more than a factor of a worse than the expected value, conditioned on the fact that
no SIS trial is from S:

Pr
(

Xt > a|S|
∣

∣F
)

≤ Pr

(

Xt > (a/2)
|S|

µ(S)

∣

∣F

)

≤
2

a
,

where in the first inequality we used µ(S) ≥ 1/2.
Finally, removing the conditioning we get:

Pr
(

Xt ≤ a|S|
)

≥ Pr
(

Xt ≤ a|S|
∣

∣F
)

Pr (F)

≥

(

1−
2

a

)

(1− pt)

≥ 1− pt−
2

a
.
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The second technical lemma shows that if in a row with large sum (linear in m) there
exists a large number of columns (again linear in m) for which the SIS probability of placing
a 1 at the corresponding position differs significantly from the correct probability, then in any
subexponential number of trials the SIS estimator will very likely exponentially underestimate
the correct answer.

Let Ai−1 denote the set of all assignments of 0/1 to columns 1, . . . , i − 1 such that the
column sums are satisfied and none of the row sums are exceeded. Thus, A ∈ Ai−1 denotes
that A is a specific assignment of 0/1 to the first i − 1 columns. Finally, for A ∈ Ai−1, we
use the following notation:

π (Tj,i = 1 |Ti−1 = A) =
π (S ′′)

π (S ′)
,

where
S ′ = {T ∈ Ωr,c : the first i− 1 columns of T are the same as A},

and
S ′′ = {T ∈ S ′ : Tj,i = 1}.

Similarly, we use

µ (Tj,i = 1 |Ti−1 = A) =
µ(S ′′)

µ(S ′)
. (3)

As we mentioned in Remark 1, SIS will never get stuck for our input instances. For such
input instances, (3) is the same as the probability that SIS assigns 1 to Tj,i, given that the
first i− 1 columns are filled with A.

Lemma 4. Let α < β be positive constants. Consider a class of instances of the binary
contingency tables problem, parameterized by m, with m + 1 row sums, the last of which is
⌊βm⌋. The remaining row sums and column sums can be arbitrary as long as the SIS procedure
never gets stuck. Suppose that there exist constants f < g and a set I of cardinality ⌊αm⌋ > 0
such that one of the following statements is true:

(i) for every i ∈ I and any A ∈ Ai−1,

π(Tm+1,i = 1 | Ti−1 = A) ≤ f < g ≤ µ(Tm+1,i = 1 | Ti−1 = A),

(ii) for every i ∈ I and any A ∈ Ai−1,

µ(Tm+1,i = 1 | Ti−1 = A) ≤ f < g ≤ π(Tm+1,i = 1 | Ti−1 = A).

Then there exists a constant b1 ∈ (0, 1) such that for any constant 1 < b2 < 1/b1 and any
sufficiently large m, for any t ≤ bm2 ,

Pr

(

Xt ≥
|Ωr,c|

bm2

)

≤ 3(b1b2)
m.

6



Proof. We will analyze case (i); the other case follows from analogous arguments.
Let U1, . . . , Un be the entries in the last row of a uniformly random contingency table with

the prescribed row and column sums. (Note that U1, . . . , Un are random variables.) Similarly,
let V1, . . . , Vn be the entries in the last row of a contingency table with the prescribed row and
column sums generated by SIS.

The random variable Ui is dependent on Uj for j < i and Vi is dependent on Vj for j < i.
However, for every i ∈ I, Ui is stochastically dominated by U ′

i , where U ′

i , i ∈ I is a set of
independent Bernoulli random variables that take value 1 with probability f . Similarly, for
every i ∈ I, Vi stochastically dominates V ′

i , where V ′

i , i ∈ I is a set of independent Bernoulli
random variables that take value 1 with probability g.

Now we may use the Chernoff bound (see, e.ġ., [9], Theorem 1.1). Let k = ⌊αm⌋. Then

Pr

(

∑

i∈I

U ′

i − kf >
g − f

2
k

)

≤ exp(−(g − f)2k/2)

and

Pr

(

kg −
∑

i∈I

V ′

i >
g − f

2
k

)

≤ exp(−(g − f)2k/2).

Let S be the set of all tables which have less than kf + (g − f)k/2 = kg − (g − f)k/2
ones in the last row of the columns in I. Let b1 := exp(−(g − f)2α/4) ∈ (0, 1). Then
exp(−(g − f)2k/2) ≤ bm1 for m ≥ 1/α. Thus, by the first inequality, under the uniform
distribution over all binary contingency tables the probability of the set S is at least 1 − bm1 .
However, by the second inequality, SIS constructs a table from the set S with probability at
most bm1 .

We are ready to use Lemma 3 with S as defined above and p = bm1 . Since under the
uniform distribution the probability of S is at least 1− bm1 , we have that |S| ≥ (1− bm1 )|Ωr,c|.
Let b2 ∈ (1, 1/b1) be any constant and consider t ≤ bm2 SIS trials. Let a = (b1b2)

−m. Then, by
Lemma 3, with probability at least 1− pt− 2/a ≥ 1 − 3(b1b2)

m the SIS procedure outputs a
value which is at most an abm1 = b−m

2 fraction of |Ωr,c|.

3 Proof of Main Theorem

In this section we prove Theorem 2. Before we analyze the input instances from Theorem 2,
we first consider the following simpler class of inputs.

3.1 Row sums (1, 1, . . . , 1, d) and column sums (1, 1, . . . , 1)

The row sums are (1, . . . , 1, d) and the number of rows ism+1. The column sums are (1, . . . , 1)
and the number of columns is n = m + d. We assume that sequential importance sampling
constructs the tables column-by-column. If SIS constructed the tables row-by-row, starting
with the row with sum d, then it would in fact output the correct number of tables exactly.
However, in the next subsection we will use this simplified case as a tool in our analysis of
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the input instances (1, . . . , 1, dr), (1, . . . , 1, dc), for which SIS must necessarily fail regardless
of whether it works row-by-row or column-by-column, and regardless of the order it chooses.

Lemma 5. Let β > 0, and consider an input of the form (1, . . . , 1, d), (1, . . . , 1) with m + 1
rows where d = ⌊βm⌋. Then there exists a constants s > 1, such that for any sufficiently large
m, for any t ≤ sm,

Pr

(

Xt ≥
|Ωr,c|

sm

)

≤ 3(1/2)m.

The idea for the proof of the lemma is straightforward. By the symmetry of the column
sums, for large m and d and α ∈ (0, 1) a uniform random table will have about αd ones in
the first αn cells of the last row, with high probability. We will show that for some α ∈ (0, 1)
and d = βm, sequential importance sampling is very unlikely to put this many ones in the
first αn columns of the last row. Therefore, since with high probability sequential importance
sampling will not construct any table from a set that is a large fraction of all legal tables, it
will likely drastically underestimate the number of tables.

Before we prove the lemma, let us first compare the column distributions arising from the
uniform distribution over all binary contingency tables with the SIS distributions. We refer
to the column distributions induced by the uniform distribution over all tables as the true
distributions. The true probability of 1 in the first column and last row can be computed as
the number of tables with 1 at this position divided by the total number of tables. For the
sequence of row and column sums specified in the statement of Lemma 5, let Z(m, d) denote
the total number of tables with these row/column sums. Note, Z(m, d) =

(

n
d

)

m! =
(

m+d
d

)

m!,
since a table is uniquely specified by the positions of ones in the last row and the permutation
matrix in the remaining rows and corresponding columns. Therefore,

π(Tm+1,1 = 1) =
Z(m, d− 1)

Z(m, d)
=

(

m+d−1
d−1

)

m!
(

m+d
d

)

m!
=

d

m+ d
.

On the other hand, by the definition of sequential importance sampling, Pr (Ti,1 = 1) ∝
ri/(n− ri), where ri is the row sum in the i-th row. Therefore,

µ(Tm+1,1 = 1) =
d

n−d
d

n−d
+m 1

n−1

=
d(m+ d− 1)

d(m+ d− 1) +m2
.

Observe that if d ≈ βm for some constant β > 0, then for sufficiently large m we have

µ(Tm+1,1 = 1) > π(Tm+1,1 = 1).

As we will see, this will be true for a linear number of columns, which turns out to be enough to
prove that in polynomial time sequential importance sampling exponentially underestimates
the total number of binary contingency tables with high probability.

Proof of Lemma 5. We will find a constant α such that for every column i < αm we will be
able to derive an upper bound on the true probability and a lower bound on the SIS probability
of 1 appearing at the (m+ 1, i) position.

8



For a partially filled table with columns 1, . . . , i− 1 assigned, let di be the remaining sum
in the last row and let mi be the number of other rows with remaining row sum 1 (note that
this determines the contents A ∈ Ai−1 of the first i − 1 columns, up to permutation). Then
the true probability of 1 in the i-th column and last row can be bounded as

π(Tm+1,i = 1 | Ti−1 = A) =
di

mi + di
≤

d

m+ d− (i− 1)
=: f(d,m, i),

while the probability under SIS can be bounded as

µ(Tm+1,i = 1 | Ti−1 = A) =
di(mi + di − 1)

di(mi + di − 1) +m2
i

≥
(d− (i− 1))(m+ d− i)

d(m+ d− 1) +m2

=: g(d,m, i).

Observe that for fixed m, d, the function f is increasing and the function g is decreasing in i,
for i < d.

Recall that we are considering a family of input instances parameterized by m with d =
⌊βm⌋, for a fixed β > 0. We will consider i < αm for some α ∈ (0, β). Let

f∞(α, β) := lim
m→∞

f(d,m, αm) =
β

1 + β − α
; (4)

g∞(α, β) := lim
m→∞

g(d,m, αm) =
(β − α)(1 + β − α)

β(1 + β) + 1
; (5)

△β := g∞(0, β)− f∞(0, β) =
β2

(1 + β)(β(1 + β) + 1)
> 0, (6)

and observe that for fixed β, f∞ is increasing in α and g∞ is decreasing in α, for α < β. Let
α, 0 < α < β be such that g∞(α, β)− f∞(α, β) ≥ △β/2. Such an α exists by continuity (we
only need to take a small enough α).

By the above, for any ǫ > 0 and sufficiently large m, and for any i < αm, the true
probability is upper-bounded by f∞(α, β) + ǫ and the SIS probability is lower-bounded by
g∞(α, β)− ǫ. For our purposes it is enough to fix ǫ = △β/8. Now we can use Lemma 4 with α
and β defined as above, f = f∞(α, β)+ ǫ and g = g∞(α, β)−ǫ (notice that all these constants
depend only on β), and I = {1, . . . , ⌊αm⌋}. Let b1 ∈ (0, 1) be the constant guaranteed by
Lemma 4 and let b2 = 1/(2b1). This finishes the proof of the lemma with s = b2.

Remark 6. Notice that every contingency table with row sums (1, 1, . . . , 1, d) and column
sums (1, 1, . . . , 1) is binary. Thus, this instance proves that the column-based SIS procedure
for general (non-binary) contingency tables [7] has the same flaw as the binary SIS procedure.
We expect that the negative example used for Theorem 2 also extends to general (i. e., non-
binary) contingency tables, but the analysis becomes more cumbersome.
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3.2 Row sums (1, 1, . . . , 1, dr) and column sums (1, 1, . . . , dc)

We will now prove our main result, using ideas from the proof of Lemma 5.

Proof of Theorem 2. Recall that we are working with row sums (1, 1, . . . , 1, dr), where the
number of rows is m + 1, and column sums (1, 1, . . . , 1, dc), where the number of columns is
n + 1 = m + 1 + dr − dc. We will eventually fix dr = ⌊βm⌋ and dc = ⌊γm⌋, but to simplify
our expressions we work with dr and dc for now.

The theorem claims that the SIS procedure fails for an arbitrary order of columns with
high probability. We first analyze the case when the SIS procedure starts with columns of sum
1; we shall address the issue of arbitrary column order later. As before, under the assumption
that the first column has sum 1, we compute the probabilities of 1 being in the last row for
uniform random tables and for SIS respectively. For the true probability, the total number
of tables can be computed as

(

m
dc

)(

n
dr

)

(m − dc)! +
(

m
dc−1

)(

n
dr−1

)

(m − dc + 1)!, since a table is
uniquely determined by the positions of ones in the dc column and dr row and a permutation
matrix on the remaining rows and columns. Thus we have

π(Tm+1,1 = 1) =

(

m
dc

)(

n−1
dr−1

)

(m− dc)! +
(

m
dc−1

)(

n−1
dr−2

)

(m− dc + 1)!
(

m
dc

)(

n
dr

)

(m− dc)! +
(

m
dc−1

)(

n
dr−1

)

(m− dc + 1)!

=
dr(n− dr + 1) + dcdr(dr − 1)

n(n− dr + 1) + ndcdr
=: f2(m, dr, dc);

µ(Tm+1,1 = 1) =
dr

n−dr
dr

n−dr
+m 1

n−1

=
dr(n− 1)

dr(n− 1) +m(n− dr)
=: g2(m, dr, dc).

Let dr = ⌊βm⌋ and dc = ⌊γm⌋ for some constants β > 0, γ ∈ (0, 1) (notice that this choice
guarantees that n ≥ dr and m ≥ dc, as required). Then, as m tends to infinity, f2 approaches

f∞

2 (β, γ) :=
β

1 + β − γ
,

and g2 approaches

g∞2 (β, γ) :=
β(1 + β − γ)

β(1 + β − γ) + 1− γ
.

Notice that f∞

2 (β, γ) = g∞2 (β, γ) if and only if β = γ. Moreover, f∞

2 (β, γ) < g∞2 (β, γ) if and
only if β > γ. Suppose that β > γ, that is, f∞

2 (β, γ) < g∞2 (β, γ) (the opposite case follows
analogous arguments and uses the second part of Lemma 4). As in the proof of Lemma 5,
we can define α such that if the importance sampling does not choose the column with sum
dc in its first αm choices, then in any subexponential number of trials it will exponentially
underestimate the total number of tables with high probability. Formally, we derive an upper
bound on the true probability of 1 being in the last row of the i-th column, and a lower bound
on the SIS probability of the same event (both conditioned on the fact that the dc column is
not among the first i− 1 columns assigned). Assume that we already assigned the first i− 1

columns of the table. Let d
(i)
r be the current residual sum in the last row (that is, d

(i)
r is dr

10



less the number of ones assigned to the last row of columns 1, . . . , i− 1), mi be the remaining
number of rows with sum 1, and ni the remaining number of columns with sum 1 (note that
this determines the contents A ∈ Ai−1 of the first i− 1 columns, up to permutation). Notice

that ni = n− i+ 1, m ≥ mi ≥ m− i+ 1, and dr ≥ d
(i)
r ≥ dr − i+ 1. Then

π(Tm+1,i = 1 | Ti−1 = A) =
d
(i)
r (ni − d

(i)
r + 1) + dcd

(i)
r (d

(i)
r − 1)

ni(ni − d
(i)
r + 1) + nidcd

(i)
r

≤
dr(n− dr + 1) + dcd

2
r

(n− i+ 1)(n− i− dr + 2) + (n− i+ 1)dc(dr − i+ 1)

≤
dr(n− dr + 1) + dcd

2
r

(n− i)(n− i− dr) + (n− i)dc(dr − i)

=: f3(m, dr, dc, i);

µ(Tm+1,i = 1 | Ti−1 = A) =
d
(i)
r (ni − 1)

d
(i)
r (ni − 1) +mi(ni − d

(i)
r )

≥
(dr − i)(n− i)

drn+m(n− dr)

=: g3(m, dr, dc, i).

As before, notice that if we fix m, dr, dc > 0 satisfying dc < m and dr < n, then f3 is an
increasing function and g3 is a decreasing function in i, for i < min{n − dr, dr}. Recall that
n− dr = m− dc.

Let α be a number such that 0 < α < min{1 − γ, β} (we will further specify how α is
chosen shortly—it will be small enough to satisfy equations (9) and (10) below). Suppose that
i ≤ αm < min{m−dc, dr}. Thus, the upper bound on f3 in this range of i is f3(m, dr, dc, αm)
and the lower bound on g3 is g3(m, dr, dc, αm). If dr = ⌊βm⌋ and dc = ⌊γm⌋, then the upper
bound on f3 converges to

f∞

3 (α, β, γ) := lim
m→∞

f3(m, dr, dc, αm) =
β2

(1 + β − γ − α)(β − α)
(7)

and the lower bound on g3 converges to

g∞3 (α, β, γ) := lim
m→∞

g3(m, dr, dc, αm) =
(β − α)(1 + β − γ − α)

β(1 + β − γ) + 1− γ
. (8)

Let
△β,γ := g∞3 (0, β, γ)− f∞

3 (0, β, γ) = g∞2 (β, γ)− f∞

2 (β, γ) > 0.

We set α > 0 to satisfy
g∞3 (α, β, γ)− f∞

3 (α, β, γ) ≥ △β,γ/2. (9)

(Small enough α will work, by the continuity of (7) and (8) for α ∈ (0,min{1− γ, β}).
Now we can conclude this part of the proof identically to the last paragraph of the proof

of Lemma 5.
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It remains to deal with the case when sequential importance sampling picks the dc column
within the first ⌊αm⌋ columns. Suppose dc appears as the k-th column. In this case we focus
on the subtable consisting of the last n+1− k columns with sum 1, m′ rows with sum 1, and
one row with sum d′, an instance of the form (1, 1, . . . , 1, d′), (1, . . . , 1). We will use arguments
similar to the proof of Lemma 5.

First we express d′ as a function of m′. The number of rows with row sum 1 decreased by
at least dc − 1 = ⌊γm⌋− 1 ≥ γm− 2, and at most by (α+ γ)m. Hence, (1−α− γ)m ≤ m′ ≤
(1− γ)m+ 2. Similarly, dr − αm ≤ d′ ≤ dr where dr = ⌊βm⌋ ≥ βm− 1. Let β ′ be such that
d′ = β ′m′. Thus, (β − α− 1/m)/(1− γ + 2/m) ≤ β ′ ≤ β/(1− α− γ).

Now we find α′ such that for any i ≤ α′m′ we will be able to derive an upper bound on the
true probability and a lower bound on the SIS probability of 1 appearing at position (m′+1, i)
of the (n+ 1− k)×m′ subtable, no matter how the first k columns were assigned.

By the derivation in the proof of Lemma 5 (see expressions (4) and (5)), as m′ (and thus
also m) tends to infinity, the upper bound on the true probability approaches

f∞(α′, β ′) = lim
m→∞

β ′

1 + β ′ − α′

≤ lim
m→∞

β
1−α−γ

1 +
β−α− 1

m

1−γ+ 2

m

− α′

=

β
1−α−γ

1 + β−α
1−γ

− α′

=: f∞

4 (α, β, γ, α′)

and the lower bound on the SIS probability approaches

g∞(α′, β ′) = lim
m→∞

(β ′ − α′)(1 + β ′ − α′)

β ′(1 + β ′) + 1

≥ lim
m→∞

(
β−α− 1

m

1−γ+ 2

m

− α′)(1 +
β−α− 1

m

1−γ+ 2

m

− α′)

β
1−α−γ

(1 + β
1−α−γ

) + 1

=
(β−α
1−γ

− α′)(1 + β−α
1−γ

− α′)
β

1−α−γ
(1 + β

1−α−γ
) + 1

=: g∞4 (α, β, γ, α′).

Let us evaluate f∞

4 and g∞4 for α = α′ = 0:

f∞

4 (0, β, γ, 0) =

β
1−γ

1 + β
1−γ

and

g∞4 (0, β, γ, 0) =

β
1−γ

(1 + β
1−γ

)
β

1−γ
(1 + β

1−γ
) + 1

.
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Substituting x for β/(1−γ), we can see that f∞

4 (0, β, γ, 0) < g∞4 (0, β, γ, 0) since β/(1−γ) ≥ 0.
Now let△′

β,γ := g∞4 (0, β, γ, 0)−f∞

4 (0, β, γ, 0) > 0. By continuity, for small enough α, α′ > 0
we have

g∞4 (α, β, γ, α′)− f∞

4 (α, β, γ, α′) ≥ △′

β,γ/2. (10)

Now we proceed in a fashion similar to the last paragraph of the proof of Lemma 5. More
precisely, let ǫ := △′

β,γ/8 and let f := f∞

4 (α, β, γ, α′) + ǫ and g := g∞4 (α, β, γ, α′) − ǫ be the
upper bound (for sufficiently large m) on the true probability and the lower bound on the
SIS probability of 1 appearing at the position (m+ 1, i) for i ∈ I := {k + 1, . . . , k + ⌊α′m′⌋}.
Therefore Lemma 4 with parameters α′, β, I of size |I| = ⌊α′m′⌋, f , and g implies the
statement of the theorem.

Finally, if the SIS procedure constructs the tables row-by-row instead of column-by-column,
symmetrical arguments hold. This completes the proof of Theorem 2.

4 Experiments

We performed several experimental tests which show sequential importance sampling to be a
promising approach for certain classes of input instances.

We ran the sequential importance sampling algorithm for binary contingency tables, using
the following stopping heuristic. Let N = n+m. For some ǫ, k > 0 we stopped if the last kN
estimates were all within a (1 + ǫ) factor of the current estimate. We set ǫ = 0.01 and k = 5.

Figure 1(a) shows the evolution of the SIS estimate as a function of the number of trials
on the input with all row and column sums ri = cj = 5, and 50 × 50 matrices. In our
simulations we used the more delicate sampling mentioned in Remark 1, which guarantees
that the assignment in every column is valid, i. e., such an assignment can always be extended
to a valid table (or, equivalently, that the random variable Xt is always strictly positive). Five
independent runs are depicted, together with the correct number of tables ≈ 1.038 × 10281,
which we computed exactly. To make the figure legible, the y-axis is scaled by a factor of 10280

and it only shows the range from 10 to 10.7. Note that the algorithm appears to converge to
the correct estimate, and our stopping heuristic appears to capture this behavior.

In contrast, Figure 1(b) depicts the SIS evolution on the negative example from Theorem
2 with m = 300, β = 0.6 and γ = 0.8, i. e., the input is (1, . . . , 1, 179), (1, . . . , 1, 240) on a
301× 240 matrix. In this case the correct number of tables is

(

300

240

)(

239

179

)

(300− 240)! +

(

300

239

)(

239

178

)

(300− 239)! ≈ 9.684× 10205.

We ran the SIS algorithm under three different settings: first, we constructed the tables
column-by-column where the columns were ordered from the largest sum, as suggested in
the paper by Chen et al. [7] (the red curves correspond to three independent runs with this
setting); second, we ordered the columns from the smallest sum (the green curves); and
third, we constructed the tables row-by-row where the rows were ordered from the largest
sum (the blue curves). The y-axis is on a logarithmic scale (base 10) and one unit on the
x-axis corresponds to 1000 SIS trials. We ran the SIS estimates for twice the number of trials
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determined by our stopping heuristic to indicate that the unfavorable performance of the SIS
estimator on this example is not the result of a poor choice of stopping heuristic. Notice that
even the best estimator differs from the true value by about a factor of 40, while the blue
curves are off by more than a factor of 1000.

Figure 2 represents the number of trials required by the SIS procedure (computed by our
stopping heuristic) on several examples for n× n matrices. The four curves correspond to 5,
10, ⌊5 log n⌋ and ⌊n/2⌋-regular row and column sums. The x-axis represents n, the number
of rows and columns, and the y-axis captures the required number of SIS trials. For each n
and each of these row and column sums, we took 20 independent runs and we plotted the
median number of trials. For comparison, in Figure 3 we plotted the estimated running time
for our bad example from Theorem 2 (recall that this is likely the running time needed to
converge to a wrong value!) for n + m ranging from 20 to 140 and various settings of β, γ:
0.1, 0.5 (red), 0.5, 0.5 (blue), 0.2, 0.8 (green), and 0.6, 0.8 (black). In this case it is clear that
the convergence time is considerably slower compared with the examples in Figure 2.

4.1 Alternating Rows and Columns

The bad input instances from Theorem 2 can be efficiently handled by an enhanced SIS
approach which considers both rows and columns for updating. More precisely, the enhanced
SIS algorithm assigns entries to the row or column with the largest residual sum. We believe
there are input instances for which this enhanced SIS algorithm requires exponential time,
but proving such a result appears to be technically difficult. We instead give experimental
evidence that there are such bad input instances for the enhanced SIS algorithm.

Specifically, we conjecture that for the family of inputs of the form r = (1, 1, . . . , 1, ⌊m/2⌋,
⌊m/2⌋, . . . , ⌊m/2⌋) and c = (1, 1, . . . , 1, ⌊m/2⌋, ⌊m/2⌋, . . . , ⌊m/2⌋), where m denotes the over-
all number of rows and there are ⌊m/2⌋ rows with sum ⌊m/2⌋ and ⌊m/2⌋ columns with sum
⌊m/2⌋, the enhanced SIS strategy fails to converge quickly to |Ω|. A theoretical analysis of
the performance on this family of inputs is difficult because, unlike the simpler instances of
Theorem 2, the true row and column distributions are apparently rather hard to estimate in
this case. Therefore, we opted to perform experiments that suggest that even the enhanced
SIS algorithm is inefficient for this class of inputs.

We now describe these experiments. We did 30 million SIS trials form = 100, and repeated
this 12 times. The estimates of |Ω| from these 12 experiments are presented in Figure 4. In
the figure it is clear that after 30 million trials these 12 experiments yield quite different
estimates of |Ω|, differing by a factor on the order of 103. These results strongly suggest
that the enhanced SIS algorithm has failed to converge to an estimate of |Ω| after 30 million
trials. Moreover, we believe that the values produced by the enhanced SIS algorithm after 30
million trials are substantial underestimates of the true value of |Ω|; however, since we know
of no feasible method for accurately estimating |Ω| on these examples, we cannot compare the
experimental estimates to the true value of |Ω|.
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Figure 1: The estimate produced by sequential importance sampling as a function of the
number of trials on two different instances. In both figures, the horizontal line shows the
correct number of corresponding binary contingency tables. (a) The left instance is a 50 ×
50 matrix where all ri = cj = 5. The x-axis is the number of SIS trials, and the y-axis
corresponds to the estimate scaled down by a factor of 10280. Five independent runs of
sequential importance sampling are depicted. Notice that the y-axis ranges from 10 to 10.7,
a relatively small interval, thus it appears SIS converges to the correct estimate. (b) The
input instance is from Theorem 2 with m = 300, β = 0.6 and γ = 0.7. The estimate (y-axis)
is plotted on a logarithmic scale (base 10) and one unit on the x-axis corresponds to 1000
SIS trials. Note that in this instance SIS appears to converge to an incorrect estimate. Nine
independent runs of the SIS algorithm are shown: the red curves construct tables column-
by-column with columns sorted by decreasing sum, the blue curves construct row-by-row
with rows sorted by decreasing sum, and the green curves construct column-by-column with
columns sorted increasingly.

20 40 60 80 100

200

400

600

800

1000

1200

Figure 2: The number of SIS trials before the algorithm converges, as a function of the input
size. The curves correspond to 5 (red), 10 (blue), ⌊5 logn⌋ (green), and ⌊n/2⌋ (black) regular
row and column sums.
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Figure 3: The number of SIS trials until the algorithm converges as a function of m+ n. The
inputs are of the type described in Theorem 2, with β = 0.1, γ = 0.5 (red), β = γ = 0.5 (blue),
β = 0.2, γ = 0.8 (green), and β = 0.6, γ = 0.8 (black). The right plot shows the same four
curves with the number of SIS trials plotted on a logarithmic scale. Note that the algorithm
appears to be converging in sub-exponential time. Recall from Figure 1 that it is converging
to the wrong estimate.
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Figure 4: The estimate produced by the enhanced SIS scheme discussed in Section 4.1 as a
function of the number of trials for the input r = c = (1, 1, . . . , 1, ⌊m/2⌋, ⌊m/2⌋, . . . , ⌊m/2⌋),
where m is the number of rows (and columns), and the number of rows (and columns) with
marginal sum ⌊m/2⌋ is ⌊m/2⌋. The x-axis depicts the number of SIS trials scaled down by a
factor of 10,000, totalling 30,000,000 trials. The y-axis depicts the SIS estimate divided by a
factor of 10200, on a logarithmic scale (base 10). Twelve independent runs are shown.
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