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Abstract. The Hamiltonian Cycle problem is the problem of decid-
ing whether an n-vertex graph G has a cycle passing through all vertices
of G. This problem is a classic NP-complete problem. Finding an exact
algorithm that solves it in O∗(αn) time for some constant α < 2 was a
notorious open problem until very recently, when Björklund presented a
randomized algorithm that uses O∗(1.657n) time and polynomial space.
The Longest Cycle problem, in which the task is to find a cycle of
maximum length, is a natural generalization of the Hamiltonian Cycle
problem. For a claw-free graph G, finding a longest cycle is equivalent to
finding a closed trail (i.e., a connected even subgraph, possibly consisting
of a single vertex) that dominates the largest number of edges of some
associated graph H. Using this translation we obtain two deterministic
algorithms that solve the Longest Cycle problem, and consequently
the Hamiltonian Cycle problem, for claw-free graphs: one algorithm
that uses O∗(1.6818n) time and exponential space, and one algorithm
that uses O∗(1.8878n) time and polynomial space.

1 Introduction

We study exact algorithms for the Longest Cycle problem: given a graph G,
find a cycle in G with the largest number of vertices. This problem generalizes
the well-known NP-complete decision problem Hamiltonian Cycle (cf. [11])
that asks whether a graph G has a hamiltonian cycle, i.e., a cycle passing through
all vertices of G.

The Hamiltonian Cycle problem can be seen as a special case of the well-
known Traveling Salesman problem. The input of the latter problem is a
complete graph together with an edge weighting. The goal is to find a hamil-
tonian cycle of minimum total weight. Held and Karp [15] present a classic
dynamic programming algorithm that solves the Traveling Salesman prob-
lem in O∗(2n) time and O∗(2n) space for graphs on n vertices. The O∗-notation
? An extended abstract of this paper has been presented at WG 2009 [4].
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indicates that we suppress factors of polynomial order, and we use this nota-
tion throughout the paper. Polynomial-space algorithms for the Hamiltonian
Cycle problem (which is a special case of the Traveling Salesman) were
rediscovered several times [18, 17, 1]. It was a major and long outstanding open
problem whether the Hamiltonian Cycle problem, and more generally, the
Traveling Salesman problem, could be solved in O∗(αn) time for some con-
stant α < 2. Recently, Björklund [2] gave a Monte Carlo algorithm that solves
the Hamilton Cycle problem in O∗(1.657n) time. For bipartite graphs he
improved this bound by presenting a Monte Carlo algorithm that solves the
Hamilton Cycle problem in O∗(1.414n) time. Both algorithms use polyno-
mial space, and his first algorithm can also be used for solving the Traveling
Salesman problem with integer edge weights in O∗(w1.657n) time, where w is
the sum of all edge weights.

For some graph classes for which the Hamiltonian Cycle, and consequently
the Traveling Salesman problem, remains NP-complete, faster exact algo-
rithms have been designed. For planar graphs, and more generally, on graphs
excluding some fixed graph as a minor, the Hamiltonian Cycle problem can
be solved in O∗(c

√
n) for some constant c (cf. [7, 8, 27]). The Traveling Sales-

man problem can be solved in O∗(1.251n) time for cubic graphs [16] and in
O∗(1.890n) time for graphs with maximum degree 4 [9]. Both algorithms use
polynomial space. For graphs with maximum degree 4, an algorithm with time
complexity O∗(1.733n) is known [12], but this algorithm uses exponential space.
More generally, Björklund et al. [3] present an algorithm that solves the Travel-
ing Salesman problem in O∗((2− ε)n) for graphs with bounded degree, where
ε > 0 only depends on the maximum degree but not on the number of vertices.
They show that this bound can be improved further for regular triangle-free
graphs. These algorithms use exponential space. They also present a O∗((2−ε)n)
time algorithm that uses polynomial space for bounded degree graphs in which
the edges have bounded integer weights.

We consider the class of claw-free graphs, i.e., graphs that do not contain the
four-vertex star as an induced subgraph. This is a rich class containing, e.g., the
class of line graphs and the class of complements of triangle-free graphs. It is
also an intensively studied graph class, both within structural graph theory and
within algorithmic graph theory; see [10] for a survey.

The Hamiltonian Cycle problem is NP-complete for claw-free graphs.
Moreover, the problem remains NP-complete even on 3-connected cubic pla-
nar claw-free graphs [20]. A simple reduction from the latter result shows that
the Hamiltonian Cycle problem stays NP-complete on claw-free graphs of
minimum degree d for any fixed d ≥ 3; we first replace each vertex of a given
cubic claw-free graph G by a copy of the complete graph Kd+1 on d+ 1 vertices,
then arbitrarily choose three vertices of each Kd+1 as “terminals”, and finally
connect the terminals according to the edges of G in order to obtain a claw-free
graph G′ that has minimum degree d, such that G′ has a hamiltonian cycle
if and only if G has. The above results immediately imply that the Longest
Cycle problem is NP-hard for these subclasses of claw-free graphs as well. In
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contrast, the Hamiltonian Cycle problem can be solved in polynomial time
on claw-free n-vertex graphs that have minimum degree at least cn for any con-
stant c > 0 [19]. It is also known that every connected claw-free graph that is
locally connected has a hamiltonian cycle [23].

Our Results. We show that on claw-free graphs the Longest Cycle problem
can be solved significantly faster than in time O∗(2n). We present two determin-
istic exact algorithms. Our first algorithm usesO∗(1.6818n) time and exponential
space, and our second algorithm uses O∗(1.8878n) time and polynomial space.
Our techniques are based on a (known) transformation of the problem into the
problem of finding an optimum closed trail (i.e., a closed trail dominating the
largest number of edges) of an associated graph, and a new study of structural
properties of such trails. These techniques are different from the ones used in
the already known algorithms, and are of independent interest.

Paper organization. Some basic definitions are presented in Section 2. Sec-
tion 3 contains some structural results on closed trails, which will be used in the
exact algorithms described in Section 4 and Section 5. In Section 4 we translate
the problem of finding a longest cycle in a claw-free graph into the problem of
finding an optimum closed trail of an associated triangle-free graph. Two exact
algorithms for finding such an optimum closed trail are presented in Section 5.
Section 6 contains the conclusions and mentions some open problems.

2 Preliminaries

All graphs in this paper are finite, undirected and without multiple edges and
loops. For notation and terminology not defined in this paper we refer to [6].
We denote the vertex set and edge set of a graph G by V (G) and E(G), re-
spectively, and we assume throughout the paper that all graphs we consider
have a nonempty vertex set. The neighborhood of a vertex v in G is denoted by
NG(v) := {w ∈ V (G) | vw ∈ E(G)}, and dG(v) = |NG(v)| denotes the degree of
v. The maximum degree among the vertices of a graph G is denoted by ∆(G).
A 2-factor of G is a spanning subgraph of G in which all vertices have degree
2. The subgraph of G induced by some nonempty subset U ⊆ V (G) is denoted
by G[U ]. For any proper subset S ⊂ V (G), we write G− S to denote the graph
G[V (G) \ S], i.e., the graph obtained from G by removing all vertices of S. If
S = {v}, we write G − v instead of G − {v}. Similarly, for any set S ⊆ E(G),
the graph G− S is the graph obtained from G by removing all edges of S.

A graph is called triangle-free if it does not contain a subgraph isomor-
phic to the cycle on three vertices. A graph is called claw-free if it has no
induced subgraph isomorphic to the claw, i.e., the four-vertex star K1,3 =
({u, a, b, c}, {ua, ub, uc}). Let G be a claw-free graph. Then, for each vertex v
of G, the set of neighbors of v in G induces a subgraph with at most two compo-
nents. If this subgraph has two components, both of them must be cliques. If the
subgraph induced by NG(v) is connected but not complete, then the operation
that adds edges joining all pairs of nonadjacent vertices in NG(v) is called the
local completion of G at v.
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The line graph of a graph H with edges e1, . . . , ep is the graph L(H) with
vertices u1, . . . , up such that there is an edge between any two vertices ui and uj
if and only if ei and ej share one end vertex in H. Note that L(K3) = L(K1,3) =
K3; it is well-known that every connected line graph F 6= K3 has a unique H
with F = L(H) (see e.g. [13]). We call H the preimage graph of F . For K3 we
let K1,3 be its preimage graph.

A graph is called even if all its vertices have even degree. A graph is called a
closed trail if it is a connected even graph. Note that an even graph, and a closed
trail in particular, might consist of a single vertex. A closed trail that does not
consist of a single vertex is called nontrivial; note that a nontrivial closed trail
contains at least three vertices. Let T be a closed trail of a graph H. An edge
e ∈ E(H) is dominated by T if T contains at least one of the end vertices of
e. In this context “dominated” means “edge-dominated”, and this is the case
whenever we speak of domination in this paper. Note that, by definition, every
edge of a nontrivial closed trail T is dominated by T itself. For any closed trail
T of H, we denote by β(T ) the number of edges of H dominated by T , i.e.,
β(T ) := |E(H) \ E(H − V (T ))|. If every edge of H is dominated by T , i.e.,
if β(T ) = |E(H)|, then we say that T is a dominating closed trail of H. An
optimum nontrivial closed trail or ONCT of H is a nontrivial closed trail of H
that dominates at least as many edges of H as any other nontrivial closed trail
of H. A closed trail T of a graph H is called an optimum closed trail or OCT if
β(T ) ≥ β(T ′) for any closed trail T ′ of H. Note that every graph has an OCT,
and that an OCT of H is either an ONCT of H, or a single vertex with degree
∆(H) in case ∆(H) ≥ β(T ) for any nontrivial closed trail T of H.

For any integer k ≥ 1, a graph H is called k-degenerate if every subgraph
of H (including H itself) has a vertex with degree at most k. We say that H
is k-ordered if H allows a vertex ordering v1, . . . , v|V (H)| such that, for 1 ≤ i ≤
|V (H)|, the graph H[{v1, . . . , vi}] is connected and vi has at most k neighbors
in H[{v1 . . . , vi}].

3 Closed Trails of Low Degeneracy and Ordering

In this section we study structural properties of closed trails. We will use such
properties in the exact algorithms for the OCT problem presented in the next
two sections. A cycle C of a connected graph H is called removable if the graph
H − E(C) is connected, and non-separating if H − V (C) is connected. The
following result is due to Thomassen and Toft [26].

Theorem 1 ([26]). Every connected graph with minimum degree at least 3 has
an induced non-separating cycle.

Theorem 1 implies the following result.

Corollary 1. Every connected graph with minimum degree at least 3 has an
induced removable cycle.

4



Proof. Let H be a connected graph with minimum degree at least 3. By Theo-
rem 1, H has an induced non-separating cycle C. Since H − V (C) is connected,
all vertices of V (H)\V (C) belong to the same component of H−E(C). Since H
has minimum degree at least 3 and C is an induced cycle, every vertex of C has
a neighbor in V (H)\V (C). Hence H−E(C) is connected, so C is removable. ut

Using Corollary 1, we can prove the following result.

Lemma 1. Every closed trail contains a 2-degenerate spanning closed trail.

Proof. Since a closed trail consisting of a single vertex is 2-degenerate, the lemma
holds for such closed trails. We claim that every nontrivial closed trail contains a
2-degenerate spanning closed trail. Let H be a counterexample to this claim with
|E(H)| minimum, i.e., H is a nontrivial closed trail which does not contain a
2-degenerate spanning closed trail. In particular, H itself is not 2-degenerate. We
repeatedly remove vertices from H with degree at most 2 in the current subgraph
of H as long as possible. Let H ′ be the subgraph of H we obtain this way. Since
H is not 2-degenerate, H ′ indeed exists. Let H1 be a component of H ′. Since
H ′ has minimum degree at least 3, H1 has a removable cycle C by Corollary 1.
Then C is also a removable cycle in H, since H is a connected supergraph of H1.
Hence the graph H −E(C) is a spanning nontrivial closed trail of H. Since H is
a counterexample, H−E(C) is not 2-degenerate and H−E(C) does not contain
a 2-degenerate spanning closed trail. But then H − E(C) is a counterexample
to the claim that every nontrivial closed trail contains a 2-degenerate spanning
closed trail, contradicting the minimality of H. ut

The next lemma shows that the notions of degeneracy and ordering are closely
related.

Lemma 2. Every connected k-degenerate graph is (k+1)-ordered, for any k ≥ 1.

Proof. Let H be a connected k-degenerate graph, and suppose for contradiction
that H is not (k+1)-ordered. We repeatedly remove vertices from H with degree
at most k + 1 in the current subgraph of H, until we cannot remove any vertex
with degree at most k + 1 without making the current subgraph disconnected.
Let H ′ be the resulting (connected) subgraph of H. Since H is not (k + 1)-
ordered, H ′ indeed exists. Let U consist of all vertices with degree at most k in
H ′. By our procedure, every vertex of U is a cut vertex of H ′, and since H is
k-degenerate, U is not empty. Hence H ′ contains at least one cut vertex. Let D
be an end-block of H ′, i.e., a maximal 2-connected subgraph of H ′ containing
exactly one cut vertex x of H ′. By our procedure, every vertex of D − x has
degree at least k + 2 in H ′, which means that every vertex of D − x has degree
at least k + 1 in D − x. Since D − x is a subgraph of H, this contradicts the
k-degeneracy of H. ut

It is well-known that a connected graph is 1-degenerate if and only if it
is a tree. It is not hard to see that every tree, and therefore every connected
1-degenerate graph, is 1-ordered. This means that Lemma 2 can be slightly
strengthened for k = 1. The following result shows that Lemma 2 is best possible
for k ≥ 2.
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Proposition 1. For any k ≥ 2, there exists a connected k-degenerate graph that
is not k-ordered.

Proof. For any k ≥ 2, let Gk be the graph constructed as follows. Start with
the join of Ck+2 and Kk−1, i.e., the graph obtained from the disjoint union of a
cycle of length k+2 and an independent set S on k−1 vertices by making every
vertex of the cycle adjacent to every vertex of S. Let H be the graph obtained
from this graph by removing one edge cw, where c is a vertex of the cycle and
w is a vertex of S. Take k copies H1, . . . ,Hk of the graph H, and let c1, . . . , ck
denote the copies of vertex c in H1, . . . ,Hk, respectively. Finally, Gk is obtained
by adding a vertex x and edges xc1, . . . , xck. As an example, the graph G3 is
depicted in Figure 1.

It is straightforward to verify thatGk is k-degenerate. We claim thatGk is not
k-ordered. For contradiction, suppose Gk is k-ordered. By definition, Gk has an
ordering v1, . . . , v|V (Gk)| of its vertices such that, for 1 ≤ i ≤ |V (Gk)|, the graph
Gk[{v1, . . . , vi}] is connected and vi has at most k neighbors in Gk[{v1 . . . , vi}].
Since x is the only vertex of Gk with degree at most k in Gk, x = v|V (Gk)|. But
the fact that x is a cut vertex of Gk implies that the graph Gk[{v1, . . . , vi}] is
not connected for i = |V (Gk)| − 1, yielding the desired contradiction. ut

xc1

c2

c3

Fig. 1. The graph G3, which is 3-degenerate but not 3-ordered.

Lemma 1 and Lemma 2 together imply the following result, which will be
used in the exact algorithms described in the next two sections.

Corollary 2. Every graph has a 2-degenerate 3-ordered optimum closed trail.

Proof. Let T be an optimum closed trail of a graph H, and let S ⊆ E(H) be the
set of edges of H that are dominated by T . By Lemma 1, the graph T contains
a 2-degenerate spanning closed trail T ′. Since V (T ′) = V (T ), the set of edges of
H dominated by T ′ is exactly the set S. Hence T ′ is an optimum closed trail of
H. Since T ′ is 2-degenerate, T ′ is 3-ordered as a result of Lemma 2. ut
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4 Two Exact Algorithms for Finding a Longest Cycle

In this section we explain our two algorithms that solve the Longest Cycle
problem for a claw-free graph G on n vertices. We assume from now on that
G is connected, since we can treat the components of G separately in case G
is disconnected. We also assume that G contains a longest cycle, i.e., that G is
not a tree. Note that we can check in polynomial time whether G is a connected
graph other than a tree.

For the first, third and fourth step below we do not have to develop any new
theory or algorithms, but can rely on the beautiful existing machinery from the
literature.

Step 1: restrict to the preimage graph H of the closure of G

We recursively repeat the local completion operation, as long as this is possible.
This way we obtain the closure cl(G) of G. Ryjáček [25] showed that the closure
of G is uniquely determined, i.e., that the ordering in which one performs the
local completions does not matter. This means we can obtain cl(G) in polynomial
time. Ryjáček [25] also showed that the length of a longest cycle in G equals the
length of a longest cycle in cl(G). In particular, G is hamiltonian if and only
if cl(G) is hamiltonian. Furthermore he showed that for any claw-free graph G
there is a unique (triangle-free) graph H such that L(H) = cl(G). We can obtain
the preimage graph of a line graph in polynomial time (see e.g. [24]). Hence we
can compute the unique graph H with L(H) = cl(G) in polynomial time.

Step 2: find an OCT of H

Harary and Nash-Williams [14] showed that a hamiltonian cycle in a line graph
of any connected graph on at least three vertices corresponds to a dominating
closed trail of the graph itself. By an easy variation on their arguments, many
researchers have shown that a longest cycle in such a line graph corresponds to
an optimum closed trail of the graph itself. This result, combined with the results
from the previous step, implies that finding a longest cycle in G corresponds to
finding an OCT of H. In Section 5 we present two exact algorithms for finding
an OCT of a connected graph with n edges: one algorithm that uses O∗(1.6818n)
time and exponential space, and one algorithm that uses O∗(1.8878n) time and
polynomial space.

Step 3: translate the OCT of H back into a longest cycle in cl(G)

Let T be the OCT of H that we obtained in Step 2. We construct a longest
cycle in cl(G) by traversing T , picking up the edges (corresponding to vertices
in cl(G)) one by one and inserting dominated edges as soon as an end vertex of
a dominated edge is encountered. For traversing T we use the polynomial-time
algorithm that finds a eulerian tour in a connected even graph (cf. [6]). We point
out that in case T consists of a single vertex v, a longest cycle in cl(G) is any
cycle spanning the clique in cl(G) that corresponds to all edges of H dominated
by v.

Step 4: translate the longest cycle in cl(G) into one in G
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We can translate the longest cycle in cl(G) obtained in Step 3 into a longest
cycle in G in polynomial time by using the method described in [5]. There, two
of the present authors show how to translate a 2-factor of cl(G) into a 2-factor
of G. It is straightforward to adapt this process and apply it to a single cycle
D in cl(G) such that we find, in polynomial time, a cycle C in G with the same
length as D.

We mentioned that the first, third and fourth step above can be performed
in polynomial time. We also mentioned that we will show in Section 5 that the
second step can be executed in O∗(1.6818n) time using exponential space, or in
O∗(1.8878n) time using polynomial space. Hence, we have found the following.

Theorem 2. The Longest Cycle problem, and consequently the Hamilto-
nian Cycle problem, for a claw-free graph on n vertices can be solved in
O∗(1.6818n) time, using exponential space. It can also be solved in O∗(1.8878n)
time, using polynomial space.

5 Two Exact Algorithms for Finding an OCT

In this section we present two exact algorithms for solving the following problem.

Optimum Closed Trail (OCT)
Instance: a connected graph H.
Task: find an optimum closed trail of H.

Both algorithms can be outlined as follows.

Algorithm solving the Optimum Closed Trail problem

Input : a connected graph H
Output : an optimum closed trail of H

Test whether or not H is a tree

If H is a tree, output a vertex v of H with degree ∆(H)
If H is not a tree, find an optimum nontrivial closed trail T of H

Test whether or not β(T ) ≥ ∆(H)

If β(T ) ≥ ∆(H), output T
If β(T ) < ∆(H), output a vertex v of H with degree ∆(H)

The difference between the two algorithms is the way in which they compute
an ONCT of H in case H is not a tree. To find an ONCT of a connected
graph H other than a tree, both algorithms start by branching on vertices of
low degree by the same branching procedure, explained in Section 5.1. This
way both algorithms obtain a set of subproblems. Each subproblem has the
original graph H as input. However, for some subset of edges of H it is already
decided whether they will be included in or excluded from the ONCT. Our
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first algorithm, described in Section 5.2, solves each of the subproblems using
dynamic programming. Our second algorithm, described in Section 5.3, solves
each of the subproblems by guessing the remaining edges of a possible ONCT.

5.1 Branching on Vertices of Low Degree

Let H be an instance of the OCT problem, and suppose H is not a tree. As can
be seen in the outline of the algorithms at the start of Section 5, both algorithms
find an ONCT of H. In order to find an ONCT of H, both algorithms start by
assigning a so-called parity label `(v) ∈ {0, 1} to each vertex v of H. This is to
keep track of the parity of the number of edges that are incident to a vertex in
the partial ONCT that we will be building. Note that if T is an ONCT of H,
then dT (v) is even for every v ∈ V (H). After all, a vertex is either not in T (i.e.,
dT (v) = 0), or a vertex has an even number of incident edges in T (since T is a
nontrivial closed trail). Hence we initially set `(v) := 0 for every v ∈ V (H).

Both algorithms now branch on vertices of degree at most d∗, thus creating
a number of subproblems; more specifically, d∗ = 4 for our first algorithm, and
d∗ = 12 for our second algorithm. The choice of these values of d∗ is explained
in the next sections. During the branching process, the size of the graphs under
consideration decreases, and we might change the `-labels of certain vertices.

Suppose v is a vertex of degree d ≤ d∗ in H. If `(v) = 0 (respectively
`(v) = 1), then the algorithm branches into 2d−1 subproblems, each subproblem
corresponding to a possible way of choosing an even (respectively odd) number
0 ≤ p ≤ d of edges incident with v that are guessed to be in the ONCT. We call
the chosen edges old trail edges. For each choice W of old trail edges, we perform
the following two operations:

1. set `(w) := `(w) + 1 (mod 2) for every w with vw ∈W ;
2. delete v and all its d incident edges.

Repeat this procedure as long as the remaining graph contains a vertex of degree
at most d∗. Let H ′ be the resulting graph. Then H ′ has minimum degree d∗+ 1
and each vertex u ∈ V (H ′) has some label `(u) ∈ {0, 1}. Let E(H) = E(H ′) ∪
R(H ′) ∪W (H ′), where W (H ′) contains all old trail edges and R(H ′) contains
all other edges we removed from H. In the next stage, edges in W (H ′) will be
assumed to be in the ONCT we are looking for, whereas edges in R(H ′) will
be assumed not to be in the ONCT. If there exists a vertex v ∈ V (H) \ V (H ′)
incident with an odd number of old trail edges, then we discard the subproblem.
The reason for this is the fact that we can never obtain a nontrivial closed trail
in such a subproblem, since v will have odd degree in that trail and that is not
possible. Otherwise, we keep the subproblem and call the tuple (H ′,W (H ′), `)
a stage-2 tuple.

Lemma 3. The branching phase creates T (n1) = O∗(2 d∗−1
d∗ n1) stage-2 tuples,

where n1 is the total number of edges deleted during this phase.
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Proof. Since for a vertex v of degree d we remove d edges and create 2d−1

subgraphs, we find T (n1) = 2d−1 · T (n1 − d), which yields T (n1) = O∗(2 d−1
d n1).

Since d ≤ d∗, we end up with O∗(2 d∗−1
d∗ n1) stage-2 tuples. ut

We point out that the time complexity mentioned in Lemma 3 isO∗(1.6818n1)
if d∗ = 4 and O∗(1.8878n1) if d∗ = 12.

5.2 An O∗(1.6818n) Time Algorithm That Uses Exponential Space

In this section, we start by explaining how the first of our two algorithms for the
OCT problem finds an ONCT of the input graph H in case H is not a tree. We
then prove that our first algorithm for finding an OCT of a connected graph H
is correct, and that it runs in O∗(1.6818n) time.

Let H be an input of the OCT problem other than a tree. In case H has
vertices of degree at most 4, we apply the branching procedure described in Sec-
tion 5.1. Suppose that during the branching process n1 edges were deleted (possi-
bly n1 = 0). Then, by Lemma 3, O∗(1.6818n1) stage-2 tuples (H ′,W (H ′), `) have
been created. Each of these stage-2 tuples will be processed using the dynamic
programming procedure described below.

Let (H ′,W (H ′), `) be a stage-2 tuple. If W (H ′) forms a dominating closed
trail of H, i.e., if every edge of H has at least one end vertex in common with an
edge in W (H ′), then we have found an optimum closed trail and the algorithm
outputs this trail. If this is not the case, then we enter the dynamic programming
phase.

Our approach is to keep track of viable solutions in the following way. For a
subset S ⊆ V (H ′) and a labeling `′ : S → {0, 1}, we say that the tuple (S, `′)
is an option if there is a subset E′ of edges in H ′[S] such that the following two
conditions are both satisfied:

(i) all vertices of S are in the same component of the graph (V (H), E′∪W (H ′));
(ii) for each u ∈ S, the label `′(u) describes the parity of the number of edges in

E′ ∪W (H ′) that are incident with u.

We apply dynamic programming to determine whether a tuple (S, `′) is an
option. Hence, we start with considering each u ∈ V (H ′). We define two la-
belings `∗ : {u} → {0, 1} with `∗(u) := `(u) and ¯̀ : {u} → {0, 1} with
¯̀(u) := `(u) + 1 (mod 2). Then ({u}, `∗) is an option if u is incident with
at least one old trail edge. Otherwise ({u}, `∗) is not an option. Furthermore, for
every u ∈ V (H ′), ({u}, ¯̀) is not an option.

Suppose that we know for all sets S ⊆ V (H ′) of size at most k and all
labelings `′ : S → {0, 1} whether (S, `′) is an option or not. Then for each set
S ⊆ V (H ′) of size k, for each vertex v ∈ V (H ′) \ S, and for each {0, 1}-labeling
`′ of S ∪ {v}, we do as follows. Let p be the number of old trail edges incident
with v. We consider every possible way of choosing 0 ≤ q ≤ 3 edges incident
with v and a vertex in S. The chosen edges will be referred to as new trail edges.
For each choice N of new trail edges, we set `′(x) := `′(x) + 1 (mod 2) for every
x ∈ S with vx ∈ N . We then perform the following three tests.
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(1) Check if (S, `′) is an option.
(2) Check if p+ q is even if `′(v) = 0 and odd if `′(v) = 1.
(3) If q = 0, check if there is a path from v to S in H only using old trail edges.

Only if the answers to tests (1), (2) and (3) are all affirmative, we say that
(S ∪ {v}, `′) is an option. If so, we also check whether the set E′ of all new
trail edges together with the edges of W (H ′) belong to the same component of
(V (H), E′ ∪W (H)), and whether all parities are even, i.e., we check whether

(4) for each old trail edge e there is a path, consisting of only old trail edges,
connecting e to a vertex in S ∪ {v};

(5) each vertex x in S ∪ {v} has label `′(x) = 0 and each vertex y ∈ V (H ′) \
(S ∪ {v}) incident with an old trail edge has label `(y) = 0.

If the answers to tests (4) and (5) are both affirmative, the algorithm has detected
a nontrivial closed trail T of H (as we prove in Theorem 3 below). We may
assume that the algorithm also finds T , since that only requires some extra
“bookkeeping” during the dynamic programming phase; we omitted the details
for clarity of presentation. The algorithm then checks how many edges of H are
dominated by T by computing β(T ). If β(T ) = |E(H)|, then T is a dominating
closed trail of H. Since every dominating closed trail is an optimum closed trail,
the algorithm outputs T . Otherwise the algorithm stores T , unless it has already
found a nontrivial closed trail T ′ with β(T ′) ≥ β(T ) before, in which case T is
discarded. If k < |V (H ′)|, the algorithm repeats the above procedure for all sets
S ⊆ V (H ′) of size k + 1, all vertices v ∈ V (H ′) \ S and all {0, 1}-labelings `′ of
S ∪ {v}. If k = |V (H ′)|, then the algorithm terminates.

We now show that our first algorithm for finding an OCT is correct.

Theorem 3 (Correctness). When run on a connected graph H, the algorithm
returns an optimum closed trail of H.

Proof. As shown in the outline at the beginning of Section 5, the algorithm
starts by checking if the input graph H is a tree. If H is a tree, then every closed
trail of H consists of a single vertex. In particular, an optimum closed trail of
H consists of a single vertex v of degree ∆(H). Hence the algorithm correctly
outputs v in this case. If H is not a tree, then H contains a nontrivial closed
trail; in particular, H contains an ONCT. We show below that the algorithm
in fact finds such an ONCT T of H by executing the branching and dynamic
programming procedures described in Section 5.1 and Section 5.2, respectively.
Since an OCT of H might consist of a single vertex even if H is not a tree, the
ONCT T is not necessarily an OCT of H. Hence the algorithm checks if a vertex
v of maximum degree in H dominates more edges of H than T does. If so, then
v is an OCT of H, and the algorithm correctly outputs v. Otherwise T is both
an ONCT and an OCT of H, so the algorithm correctly outputs T .

It remains to show that, in case H is not a tree, the algorithm finds an ONCT
T of H by executing the branching and dynamic programming procedures de-
scribed in Section 5.1 and Section 5.2, respectively. Note that H has an optimum
nontrivial closed trail by our assumption that H is not a tree.
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We first show that if the algorithm computes β(T ) for a subgraph T of H,
then T is a nontrivial closed trail of H. Only if the algorithm has found a stage-2
tuple (H ′,W (H ′), `) with some option (S, `) for which the answers to tests (4)
and (5) are both affirmative, it computes β(T ) for a subgraph T of H consisting
of all old trail edges in W (H ′) plus all new trail edges that have been added
between the vertices of S. The dynamic programming, together with tests (3)
and (4), ensures that T is connected. Tests (1), (2) and (5) together with the
definition of a stage-2 tuple ensure that T is even. Hence, every subgraph T of
H for which the value of β(T ) is computed is a nontrivial closed trail of H.
Note that the algorithm does not compute β(T ) for each nontrivial closed trail
T of H, but only for those that can be “built up” satisfying certain connectivity
conditions throughout the dynamic programming phase.

It remains to show that the algorithm always finds an optimum nontrivial
closed trail T of H. Due to Corollary 2 we may assume that T is 3-ordered. We
show that our algorithm stores T , unless it has already stored another optimum
nontrivial closed trail of H before it finds T . Let V ′ consist of all vertices that
are not removed in the branching procedure, so V ′ := V (H ′) for the graph H ′

in every stage-2 tuple. Let T ′ be the subgraph of T with V (T ′) = V (T ) ∩ V ′.
Then there exists a stage-2 tuple (H ′,W (H ′), `) such that W (H ′) is exactly the
set of edges of T that are incident with at least one vertex in V (T ) \ V ′, and
such that `(v) = 0 if v ∈ V ′ \ V (T ′), and `(v) = 0 (respectively `(v) = 1) if
v ∈ V (T ′) and v is incident with an even (respectively odd) number of edges in
W (H ′). Since our algorithm considers all possible stage-2 tuples, it will detect
tuple (H ′,W (H ′), `). As T is 3-ordered, each component of T ′ is 3-ordered. This
means that our dynamic programming procedure, based on the number of ways
a vertex can be made adjacent to a set S with at most three edges, will find a
labeling `′ such that (Ti, `′) is an option for each component Ti of T . As these
components are connected to each other via old trail edges, at some moment
(T ′, `) will be formed. Then tests (1)-(5) will all be successful and the algorithm
will compute β(T ) for the subgraph T . Since T is an optimum nontrivial closed
trail ofH, there is no other nontrivial closed trail ofH that dominates more edges
of H than T does. Hence the algorithm will store T , unless it has encountered
a nontrivial closed trail T ′ of H with β(T ′) = β(T ) before it found T , in which
case the algorithm has stored T ′. ut

Below we give the overall time complexity of our first algorithm for solving
the OCT problem.

Theorem 4 (Running time). The algorithm runs in O∗(1.6818n) time on a
connected graph with n edges.

Proof. From the outline of the algorithm at the beginning of Section 5 it is clear
that all steps not involving finding an ONCT can be performed in polynomial
time. Hence it suffices to prove that the algorithm finds an ONCT of a connected
graph H other than a tree in O∗(1.6818n) time, where n = |E(H)|.

We first prove that the dynamic programming procedure presented at the
beginning of Section 5.2 runs in O∗(3p) time on any p-vertex graph. Let H ′ be a
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graph on p vertices. There are
(
p
k

)
sets S ⊆ V (H ′) of cardinality k, each of those

sets has 2k possible labelings `′, and there are
(
k
0

)
+
(
k
1

)
+
(
k
2

)
+
(
k
3

)
= O(k3)

ways to attach a new vertex v to a subset of cardinality k by using at most 3
edges. Each of the tests (1)-(5) can be done in polynomial time, and the same
holds for computing β(T ) for a nontrivial closed trail T of H. Hence the time
complexity of this procedure is

O∗
( p∑
k=1

(
p

k

)
· 2k · O(k3)

)
= O∗(3p).

Let H be an instance of the OCT problem having n edges, and suppose H
is not a tree. The algorithm repeatedly branches on vertices of degree at most
d∗ = 4. Let n1 be the number of edges deleted during this branching phase. Then
we obtain O∗(1.6818n1) stage-2 tuples by Lemma 3. Let (H ′,W (H ′), `) be such
a stage-2 tuple, where H ′ is a graph of minimum degree 5 having n2 := n− n1

edges and, say, p vertices. As shown above, the dynamic programming procedure
uses O∗(3p) time. Since the minimum degree in H ′ is 5, we obtain n2 ≥ 5p/2,
or equivalently p ≤ 2n2/5. Hence we can process each stage-2 tuple in time
O∗(3

2n2
5 ) = O∗(1.5519n2). This means that the overall time complexity of our

algorithm on a graph H having n = n1 + n2 edges is

O∗(1.6818n1 · 1.5519n2) = O∗(1.6818n).

If we choose d∗ 6= 4, then the above time complexity is no longer guaranteed. ut

Theorem 3 and Theorem 4 immediately imply the following.

Corollary 3. The OCT problem for a connected graph H with n edges can be
solved in O∗(1.6818n) time, using exponential space.

5.3 An O∗(1.8878n) Time Algorithm That Uses Polynomial Space

We describe our second algorithm for solving the OCT problem in the proof of
the following theorem.

Theorem 5. The OCT problem for a connected graph H with n edges can be
solved in O∗(1.8878n) time, using polynomial space.

Proof. The second algorithm strongly resembles the first algorithm, described
in Section 5.2. The only difference is the way in which the algorithm finds an
ONCT of H in case H is not a tree. In order to prove correctness of our second
algorithm for the OCT problem, it therefore suffices to prove correctness of the
procedure of finding an ONCT of H described below.

Let H be a connected graph other than a tree. The algorithm executes the
branching procedure described in Section 5.1, but this time we perform branching
on vertices of degree at most d∗ = 12. Suppose we delete n1 edges during the
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branching process. By Lemma 3, this yields O∗(211n1/12) = O∗(1.8878n1) stage-
2 tuples (H ′,W (H ′), `), where each graph H ′ has p vertices of degree at least
13 and n2 = n− n1 edges. Note that n2 ≥ 13p/2, or equivalently p ≤ 2n2/13.

Since we assumed H not to be a tree, H has an ONCT T . By Theorem 2 we
may assume that T is 2-degenerate. Let T ′ denote the (2-degenerate) subgraph
of T that remains after the branching procedure. Note that T ′ is a subgraph of
the graph H ′ of some stage-2 tuple (H ′,W (H ′), `). It is well-known that any 2-
degenerate graph on p vertices has at most 2p (or, more precisely, at most 2p−3)
edges. For every stage-2 tuple (H ′,W (H ′), `), we check for every possible subset
S ⊆ E(H ′) of edges up to cardinality 2p whether S together with the old trail
edges in W (H ′) forms a nontrivial closed trail T of H. If so, then we compute the
number β(T ) of edges of H dominated by T , which can be done in polynomial
time. If β(T ) = |E(H)|, then T is a dominating closed trail of H. Since every
dominating closed trail is an optimum closed trail, the algorithm outputs T .
Otherwise the algorithm stores T , unless it has already found a nontrivial closed
trail T ′ with β(T ′) ≥ β(T ) before, in which case T is discarded. Since we check
all subsets S ⊆ E(H ′) for every stage-2 tuple (H ′,W (H ′), `), we are guaranteed
to find an optimum nontrivial closed trail of H. This proves that our second
algorithm for the OCT problem is correct.

From the outline of the algorithm at the beginning of Section 5 it is clear that
all steps not involving finding an ONCT can be performed in polynomial time.
Since the above procedure for finding an ONCT evidently only uses polynomial
space, it remains to determine the time complexity of this procedure. Using
Stirling’s approximation n2! ≈ nn2

2 e−n2
√

2πn2 and the fact that p ≤ 2n2/13, the
total number of checks per stage-2 tuple can be estimated as follows:

2p∑
k=1

(
n2

k

)
≤ 2p

(
n2

2p

)
≤ 2p

(
n2
4n2
13

)
= O∗

(( 1
αα(1− α)1−α

)n2
)
,

where α = 4/13, which constitutes O∗(1.8539n2) checks. Since each of those
checks can be performed in polynomial time and the number of stage-2 tuples
we have to process is O∗(1.8878n1), the overall time complexity of our second
algorithm is

O∗(1.8878n1 · 1.8539n2) = O∗(1.8878n) .

If we choose d∗ 6= 12, then this time complexity is no longer guaranteed. ut

6 Conclusions

We presented the first deterministic exact algorithms breaking the 2n barrier
for the Longest Cycle problem on claw-free graphs. Our first algorithm uses
O∗(1.6818n) time and exponential space, whereas our second algorithm uses
O∗(1.8878n) time and polynomial space. A natural question is whether similar
approaches can be used for other generalizations of the Hamiltonian Cycle
problem. Since a hamiltonian cycle is a connected 2-factor, the related NP-hard
problem of determining a 2-factor with the smallest number of components in
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a claw-free graph G seems an obvious candidate. It was shown in [5] that this
problem is equivalent to finding a smallest set of edge-disjoint stars with at least
three edges and nontrivial closed trails that together dominate all edges of the
preimage graph H of the closure of G. However the approach in Section 5 for
finding an OCT of H does not generalize in a straightforward way to finding
such a smallest set of edge-disjoint stars with at least three edges and nontrivial
closed trails. In fact, we do not believe a similar approach is possible because
the counterpart of Section 5 would involve solving the following problem, which
turns out to be NP-hard.

Decomposition in ≥ 3-Stars and Closed Trails (DEC)
Instance: a connected graph H.
Task: find a decomposition (partition) of E(H) into stars with at least three
edges and nontrivial closed trails.

It is not difficult to prove that the DEC problem is NP-hard by a reduction from
the following decision problem, which is known to be NP-complete [21].

Decomposition in ≥ 3-Stars (DECOMP)
Instance: a connected graph H.
Question: can E(H) be decomposed into stars with at least three edges?

Let G be an instance of the DECOMP problem. Replace each edge uv of G
by the gadget illustrated in Figure 2, i.e., replace uv by a graph with vertex set
{u, a, b, c, d, e, f, v} and edge set {ua, ab, bc, cd, de, ef, fv, ae, bf}. Then, consid-
ering the edge cd, one readily checks that E(G) has a decomposition into stars
with at least three edges if and only if the newly constructed graph has a decom-
position of its edge set into stars with at least three edges and nontrivial closed
trails. This shows that the decision version of the DEC problem is NP-complete,
and hence that the DEC problem is NP-hard. Note that the construction shows
that the DEC problem remains NP-hard even when restricted to 2-degenerate
graphs.

u v u va

b

c

d

e

f

Fig. 2. The gadget for replacing the edges of G.

Since a hamiltonian cycle is a connected 2-regular spanning subgraph, an-
other direction would be to consider the problem of finding a connected spanning
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3-regular subgraph of a claw-free graph. We have no idea how to generalize our
approach in order to solve this problem. We heavily relied on the closure tech-
nique and the relationship between longest cycles in a claw-free graph G and
optimum closed trails in the preimage graph H of the closure of G. We think it
is highly unlikely that there is a natural counterpart of our approach for finding
connected 3-regular spanning subgraphs.

Another interesting open problem is whether we can solve the Traveling
Salesman problem for claw-free graphs in O∗(αn) time for some constant α <
2. This also requires some new ideas, as our current approach involving the
relationship between longest cycles in a claw-free graph G and optimum closed
trails in the preimage graph H of the closure of G does not suffice.

Recall that Björklund [2] recently gave a Monte Carlo algorithm that solves
the Hamilton Cycle problem in O∗(1.414n) time for bipartite graphs. It re-
mains an interesting question whether there exists a deterministic O∗(αn) time
algorithm that solves the Hamiltonian Cycle problem for bipartite graphs for
some constant α < 2. Since Müller [22] showed that the Hamiltonian Cycle
problem is NP-complete even for chordal bipartite graphs, i.e., bipartite graphs
that do not contain a cycle on six or more vertices as an induced subgraph, the
same question can be asked for this graph class. One might also try to design fast
deterministic exact algorithms for the Hamiltonian Cycle problem restricted
to superclasses of claw-free graphs such as K1,4-free graphs.

Acknowledgments. We thank an anonymous referee for some useful comments
that helped us to improve the readability of our paper.
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23. D. J. Oberly, S.K. Simić and D. P. Sumner. Every connected, locally connected
nontrivial graph with no induced claw is hamiltonian. Journal of Graph Theory
3(4) 351–356, 1979.

24. N.D. Roussopoulos. A max{m,n} algorithm for determining the graph H from its
line graph G. Information Processing Letters 2(4), 108–112, 1973.
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