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Abstract. Set agreement is a fundamental problem in distributed computing in which pro-
cesses collectively choose a small subset of values from a larger set of proposals. The im-
possibility of fault-tolerant set agreement in asynchronous networks is one of the seminal
results in distributed computing. In synchronous networks, too, the complexity of set agree-
ment has been a significant research challenge that has now been resolved. Real systems,
however, are neither purely synchronous nor purely asynchronous. Rather, they tend to al-
ternate between periods of synchrony and periods of asynchrony. Nothing specific is known
about the complexity of set agreement in such a “partially synchronous” setting.
In this paper, we address this challenge, presenting the first (asymptotically) tight bound
on the complexity of set agreement in such systems. We introduce a novel technique for
simulating, in a fault-prone asynchronous shared memory, executions of an asynchronous
and failure-prone message-passing system in which some fragments appear synchronous to
some processes.
We use this simulation technique to derive a lower bound on the round complexity of set
agreement in a partially synchronous system by a reduction from asynchronous wait-free set
agreement. Specifically, we show that every set agreement protocol requires at least b t

k
c +

2 synchronous rounds to decide. We present an (asymptotically) matching algorithm that
relies on a distributed asynchrony detection mechanism to decide as soon as possible during
periods of synchrony. From these two results, we derive the size of the minimal window of
synchrony needed to solve set agreement.
By relating synchronous, asynchronous and partially synchronous environments, our simu-
lation technique is of independent interest. In particular, it allows us to obtain a new lower
bound on the complexity of early deciding k-set agreement complementary to that of [14],
and to re-derive the combinatorial topology lower bound of [15] in an algorithmic way.



1 Introduction

Set agreement was first introduced by Chaudhuri [8] to capture the power of allowing more
choices than consensus [18], where only a single decision value is permitted. Each process pi
begins with an initial value vi; eventually, every process outputs one of the initial values as a
decision. In k-set agreement, the set of all values output can be of size at most k. The power of set
agreement depends on the parameter k. When k = 1, set agreement reduces to consensus. When
k = n, the problem is trivial, i.e., processes can act entirely independently.

Impossibility Results and Lower Bounds. In a collection of seminal papers, Borowski and Gafni [5],
Herlihy and Shavit [16], and Saks and Zaharoglou [20] showed that fault-tolerant asynchronous
set agreement is impossible (while at the same time revealing a deep connection between dis-
tributed computing and algebraic topology). Chaudhuri et al. [9] further developed these tech-
niques, establishing a tight lower bound on the round complexity of synchronous set agreement:
in a system with t failures, at least b tk c+ 1 rounds are necessary. More recently, Gafni et al. [14]
and Guerraoui et al. [15] considered the feasibility of reaching an early decision: how fast can an
algorithm tolerating up to t failures decide in an execution with at most f < t failures? They both
show (in two different ways) that at least b fk c+ 2 rounds are needed.

Partial Synchrony. Set agreement has been extensively studied in both synchronous and asyn-
chronous systems. Real world distributed systems, however, are neither purely synchronous nor
purely asynchronous. Instead, they tend to exhibit periods of synchrony when the network is well
behaved, and periods of asynchrony when the network is poorly behaved. (For example, consider
a TCP network [6] under varying loads, which may affect the message delivery delays.) To de-
scribe such a system, Dwork et al. [11] introduced the idea of partial synchrony. They assume for
every execution some (unknown) time GST (global stabilization time), after which the system is
synchronous. In this paper, we study the feasibility and complexity of set agreement in the context
of partially synchronous systems, determining the minimum-sized window of synchrony in which
k-set agreement can be solved.

Of course, the lower bounds for synchronous systems [9,12] imply an immediate lower bound
here of b tk c + 1 rounds. The question, then, is whether there exists any matching algorithm that
terminates in a synchronous window of size b tk c+ 1, or is there some inherent cost to tolerating
asynchrony? Moreover, how does this cost depend on t and k?

We answer these questions by showing that at least b tk c+ 2 synchronous rounds are required
for k-set agreement, and then introducing an algorithm that terminates in any window of syn-
chrony of size at least b tk c + 4 rounds. Together, these results show that there exists an inherent
price to tolerating asynchronous executions, and that this price is constant in the context of the
set agreement problem.

Lower Bound By Reduction. The technique for deriving the lower bound is an important con-
tribution, as it provides new insights into the complexity of set agreement. Instead of relying on
topology, as is typically required for set agreement lower bounds, we derive our result by reducing
the feasibility of asynchronous set agreement to the problem of solving set agreement in a win-
dow of size b tk c+1. Since asynchronous set agreement is known to be impossible, this reduction
immediately implies that at least b tk c+ 2 synchronous rounds are required for k-set agreement.

Our main tool is a technique for simulating “locally synchronous” executions in an asyn-
chronous system. In particular, we show how to perform a k-fault-tolerant simulation of a message-
passing system in an asynchronous shared memory system where each simulated execution ap-
pears synchronous to some processes.

This technique can be viewed as a generalization of the simulation technique of [12], moving
from synchronous systems to cover the spectrum of partially synchronous ones. There are two
new key observations. First, when the simulation is run for an epoch of length b tk c + 1 rounds,
we show that either some simulator sees a window of synchrony of size b tk c+ 1 rounds, or some
simulator fails. Second, we observe that these epochs of length b tk c+1 can be repeated until either
some simulator fails, or some simulator decides. From this we conclude that we have successfully
simulated a set agreement protocol, resulting in the desired reduction.



Early Deciding Synchronous Set Agreement. Our technique turns out to be of more general in-
terest as we can re-derive and extend existing lower bounds for synchronous early deciding set
agreement.

It has been previously shown [14,15], using sophisticated techniques, that even in an execution
with f < t failures, some process cannot decide prior to round b fk c + 2. Strictly speaking, these
two results differ in how failures are counted. In [15], the lower bound is global: some process
requires at least b fk c + 2 rounds. In [14], the lower bound is local: every process decides after
round b fk c + 2. The latter bound applies in the case where the total number of processes n is
unbounded and an unbounded number of failures can occur.

Using our simulation technique, we re-derive both lower bounds in a simpler and more general
manner, in the standard model where t and n are bounded and known a priori. Of note, both lower
bounds are corollaries of a single theorem that relates the number of processes which decide early
with the worst-case round complexity of an algorithm. Basically, we show that if d processes
decide by round b fk c + 1 in executions with at most f failures, then in the worst-case, some
process takes at least time b tk c+ E(·) + 1 to decide (where E is a function of t, k and d).

Upper Bound for Eventually Synchronous Agreement. We then present the first known algorithm
for k-set agreement that tolerates periods of asynchrony. Our algorithm guarantees correctness,
regardless of asynchrony, and terminates as soon as there is a window of synchrony of size b tk c+
O(1). For simplicity, we show synchronous round complexity of b tk c+4. Closing the gap between
these bounds remains an intriguing challenge.

Two basic ideas underlie our algorithm. First, processes collectively execute an asynchrony
detection sub-protocol that determines whether a round appears synchronous or asynchronous.
A process can decide when it sees b tk c + O(1) synchronous rounds. Even so, different sets of
processes may have different views of the system when the decision occurs, since there are only
b tk c + O(1) rounds to exchange information. Second, each process maintains an estimate, i.e., a
value that it is leaning toward choosing. In each round, each process adopts the minimum estimate
that it receives. If a process is about to decide, however, it can elevate the priority of its estimate,
causing other processes to adopt its value instead.

The key property of the algorithm is that there are at most k different high priority estimates in
the system when a decision occurs. In a synchronous system, this would follow from the following
fact: if there are k + 1 distinct estimates that remain at the end of a round, then there must have
been at least k failures during that round. In a partially synchronous system, however, this is not
true, as asynchronies can play the same role as failures in keeping extra values in the system.
Instead, we rely on a careful analysis of the distributed asynchrony detection.

Implications. Several implications arise from our simulation technique and its usage. First, it
provides additional evidence that the impossibility of fault-tolerant asynchronous k-set agree-
ment is a central result in distributed computing, as it implies non-trivial results in both partially
synchronous and synchronous models. Second, it highlights close connections between models
that have differing levels of synchrony. In particular, our simulation technique takes advantage
of structural similarities between eventually synchronous set agreement and early deciding set
agreement to establish lower bounds in two different models of synchrony. The uncertainty re-
garding asynchrony (found in a partially synchronous execution) turns out to be fundamentally
similar to the uncertainty regarding failures (found in an early deciding execution).

2 Model

In this section, we define three basic models of computation: the partially synchronous model of
computation, the synchronous model of computation, and the asynchronous model of computa-
tion.

The partially synchronous model ESn,t consists of n deterministic processesΠ = {p1, . . . , pn},
of which up to t < n may fail by crashing. (Note that the algorithm in Section 5 uses t < n/2.)
The processes communicate via a message-passing network, modeled much as in [10, 11, 17]:
time is divided into rounds. In each round, a process sends messages, receives messages, and



performs some local computation. We assume that processes may fail by crashing. If a process p
fails while sending messages in a round r, any subset of the messages that p sends in that round
may be delivered to their recipients. A process that has not crashed by the end of round r is called
non-failed at round r.

In this model, there is no assumption that every message broadcast in a round is also delivered
in that round. Instead, we assume only that if all non-failed processes broadcast a message in
round r, then each process receives at least n−tmessages in that round. (This can be implemented
by delaying a round r+1 message until at least n− t round r messages have been received.) We
assume that the network is partially synchronous: there is some round GST after which every
message sent by a non-failed process is delivered in the round in which it is sent. Similar round-
based models have been studied by Charron-Bost and Schiper [7] (the heard-of model), by Keidar
et al. [17] (the GIRAF model), and by Schmid et al. [4, 21] (the perception-based fault model).

The synchronous model Sn,t is identical to ESn,t, except that we assume every process knows,
a priori, that GST = 0, i.e., that every message is delivered in the round that it is sent.

The asynchronous model ASn,k consists of n processes Π = {p1, p2, . . . , pn}, up to k of
which may crash. The processes communicate via single-writer, multi-readers (SWMR) regis-
ters. The memory is organized in arrays X[1 . . . n] of n registers; entry X[i] of an array can be
written only by pi. We assume that registers are initialized with an special value ⊥. Also, for
simplicity, we consider that each register is written at most once. (Note that our simulations have
this property.)

In addition to read() and write() operations, a process can also invoke X.snapshot() to read
all the contents of X in a logically instantaneous single operation. Let x and x′ be the result of
any two snapshot operations on X , possibly invoked at different processes. We assume that the
following hold: Containment: x ⊆ x′∨x′ ⊆ x3; Self inclusion: Let v be the value written by pi in
X[i] prior to invokingX.snapshot(), with no interveningX[i].write(·) operations by any process;
let x be the result of the snapshot operation; then x[i] = v. An implementation of snapshots on
top of SWMR registers can be found in [1, 3]; thus, snapshots provide no extra computational
power in this model. k-set agreement is known to be impossible in ASn,k [5, 16, 20].

Adopt-commit objects. Our simulation relies on adopt-commit objects to coordinate which mes-
sages are delivered in each simulated round. An adopt-commit object AC , introduced in [12,22],
supports one operation propose(v) that returns a decision (dec, v) where dec ∈ {adopt, commit}.
The object satisfies the following properties: Termination: Each invocation by a correct process
terminates. Validity: If a process decides (dec, v) then some process invoked AC .propose(v).
Agreement: If a process decides (commit, v), then every decision is (·, v). Convergence: If every
process proposes the same v, then (commit, v) is the only possible decision.

Note that these properties ensure that the only case when distinct values v are returned by
processes is when every process returns (adopt, ·). Wait-free implementations of adopt-commit
objects in ASn,k can be found in [12, 22]. These implementations also satisfy: Commit Validity:
Assume pj invokes AC .propose(v); then pj cannot get back (commit, v′) with v 6= v′.

3 Simulating Synchronous Views: a Lower Bound for k-Set Agreement

In this section, we present an algorithm for simulating executions of the partially synchronous
model ESn,t in the asynchronous system ASn,k. Assuming an algorithm for solving k-set agree-
ment in a window of synchrony of size at most b tk c + 1, we use the simulation to derive a k-set
agreement algorithm in ASn,k

4. This leads to a contradiction, as k-set agreement is impossible in
the ASn,k model.

Preliminaries. Let A be a protocol designed for the round based model ESn,t, and let α be an
execution of A. We can assume without loss of generality that algorithm A directs each non-

3 For two vectors v and v′, v ⊆ v′ if ∀i, 1 ≤ i ≤ n : v[i] 6= ⊥ ⇒ v[i] = v′[i]. Recall that each register is
written to at most once in our simulations.

4 It is essential for the parameter k of the set agreement problem to be the same as the maximum number
of failures k among the simulators, since we reduce from the impossibility of k-set agreement in ASn,k.



failed process to send a message to all processes in each round5. A trace of the execution α is a
sequence of vectors (REC1, REC2, . . .), with the property that vector RECr is associated with
round r and describes the set of messages received by each process in that round. In particular,
if process pi has not failed by the end of round r, RECr[i] is the set of processes from which
process pi receives messages in round r. If pi has not failed by the end of round r, then we assume
that it always receives its own message in that round, i.e., pi ∈ RECr[i]. On the other hand, if
process pi crashes during round r, then RECr[i] = ⊥. Also, since a failed (crashed) process
does not recover, RECr[i] = ⊥ implies that RECr+1[i] = ⊥, and pi /∈ RECr+1[j] for each
process pj that has not failed by the end of round r. Moreover, by our model assumptions, any set
RECr[j] 6= ⊥ is of size at least n− t.

A round r is synchronous if every non-failed process receives a message from each non-failed
process in round r. A window of synchrony of size ` is a sequence of ` consecutive synchronous
rounds. Formally, rounds r1, . . . , r1+`−1 form a window of synchrony if the following properties
hold: (1) ∀r1 ≤ r < r1+`−1,∀i, j such thatRECr+1[j] 6= ⊥ andRECr[i] 6= ⊥,RECr+1[j] ⊆
RECr[i] and (2) ∀i, j such that RECr[j] 6= ⊥ and RECr[i] 6= ⊥, pj ∈ RECr[i].

We say that process pi has a synchronous view of rounds r′, r′ + 1, . . . , r in α if the state of
pi is the same at the end of round r and at the end of an execution α′ that consists in r rounds and
in which rounds r′, r′ + 1, . . . , r are synchronous.

Overview. The simulation pseudocode is presented in Figure 1. The aim is to simulate an execu-
tion of algorithm A in model ESn,t in which some processes have synchronous views of a large
number of rounds, namely at least b tk c + 1 consecutive rounds. The basic idea is similar to that
of [12]—we simulate each synchronous round by writing messages to shared memory, and we
then run a weak agreement protocol to determine which messages to “deliver” to each simulated
process. In order to maintain synchronous views, we might have to mute some processes. Intu-
itively, a muted process continues receiving messages, but its messages are not received by other,
non-muted processes. If the message of some process pj is not received by some process pi in
round r (this implies in a synchronous execution that pj fails in round r), then allowing in round
r + 1 the message of pj to be delivered to pi causes the view of pi to be no longer synchronous.
As our goal is to maintain a synchronous view for at least one process, it might thus be required to
mute some processes. Muted processes may however receive arbitrary messages, even from other
muted processes. As long as no messages from muted processes are received by a non-muted
process, the views of the non-muted processes remain synchronous.

As we will see, in each simulated round, the messages from at most k non-muted processes
may be delivered to some but not all processes. Thus, the simulation mutes at most k new pro-
cesses per round, where k is the number of processes that may crash in ASn,k. In the following,
we refer to processes in ASn,k as simulators. As at most k simulated processes may be muted in
a simulated round, by the end of the simulation of the first b tk c simulated rounds, at most t sim-
ulated processes may have been muted. Therefore, in round b tk c, a simulated process pi that has
a synchronous view of the first b tk c rounds may receive as few as n− t messages (but not fewer)
from distinct processes. More precisely, at most kb tk c processes are muted in the simulation of
the first b tk c rounds and in addition, at most k messages from non-muted processes might be not
delivered to pi in round b tk c+ 1.

We are able to extend this synchronous view by one more round, i.e., we show that in round
bt/kc + 1, at least one process pj has a synchronous view of size bt/kc + 1. Thus, assuming an
algorithm where every process decides by the end of round GST + bt/kc+ 1, we conclude that
simulated process pj must decide. Each process is simulated by one simulator. If the simulator
of pj does not fail, it then can write this decision in shared memory thereby enabling every other
simulator to decide. Otherwise, the simulator of pj fails. In this case, we continue, repeating the
simulation for another bt/kc+1 rounds, again resulting in either a process deciding or the failure
of its simulator. Eventually, after k + 1 repetitions (which we refer to as phases), we argue that
some process decides and its associated simulator does not fail.

This simulation implies a lower bound on the round complexity of k-set agreement in ESn,t.
We assume, for the sake of contradiction, that there exists an algorithmA for ESn,t in which, for

5 Any algorithm A can be easily modified to satisfy this property.



Parameters:1
Algorithm A, number of phases numP , round array [R1, . . . , RnumP+1 ]2

Shared variables:3
AC[1..RnumP+1][1..n], array of adopt-commit objects4
DEC [1..n],VAL[1..RnumP + 1][1..n], array of SWMR registers. Each entry is initially ⊥.5

Local variables:6
Si, sF lagi, variables with global scope7

procedure propose(vi): start Task T1; start Task T2;8

Task T1:9
( ,mi)← compute(0, vi, true) % messages for the first round10
for ρ = 1 to numP do11

% Begin a new phase:12
Si ← ∅ ; sFlagi ← true % these variables will be modified in simulate13
for r = Rρ to Rρ+1 − 1 do14

reci ← simulate(mi, r) % Simulate send/receive of round r.15
(di,mi)← compute(r, reci, sFlagi) % Compute message for the next round.16
if di 6= ⊥ then DEC [i].write(di); stop T2; return di17

Task T2:18
repeat for j = 1 to n do deci[j]← DEC [i] until (∃` : deci[`] 6= ⊥)19
stop T1; return deci[`]20

procedure simulate( mi, r ) % Simulate round r where pi sends message mi.21
reci ← ∅; VAL[r][i].write(mi)22
repeat viewi ← VAL[r].snapshot() until |{j : viewi[j] = ⊥}| ≤ k23

Mi ← {j : viewi[j] = ⊥} ;24

for j = 1 to n do25
if j ∈ Si ∪Mi then statei[j]← AC[r][j].propose(suspect)26
else statei[j]← AC[r][j].propose(alive)27

if statei[j] = (commit, suspect ) then Si ← Si ∪ {j}28
else if statei[j] = (adopt, suspect ) then Si ← Si ∪ {j}; reci ← reci ∪ {〈j,VAL[r][j]〉}29
else reci ← reci ∪ {〈j,VAL[r][j]〉}30

% Complete view of round r, if necessary:31
if |reci| < n− t then reci ← {〈j, viewi[j]〉 : viewi[j] 6= ⊥} ; sFlagi ← false32
if 〈i,mi〉 /∈ reci then reci ← reci ∪ {〈i, viewi[i]〉} ; sFlagi ← false33

return reci34

Fig. 1. Simulating A in ASn,k, code for simulator pi.

every execution, every correct process decides by the end of round GST + bt/kc + 1. We then
show that our simulation of A solves k-set agreement in ASn,k, which is impossible [5, 16, 20].

3.1 Basic Setup

The simulation depends on three parameters: the algorithm A being simulated, the number of
phases numP , and an array R1, R2, . . . , RnumP+1 where each Ri indicates the first round in the
ith phase, with R1 = 1. That is, each phase i consists in Ri+1 −Ri rounds.

For process pi, the algorithmA is described by a function compute(r, rec, sFlag), where r is
a round number and rec a set of messages received by pi in round r. (The third parameter, sFlag ,
indicates whether the view of pi of the rounds of the phase is so far synchronous, and is used
primarily in Section 4.) The compute function returns a pair (di,mi), where mi is the message
to be sent in the next round, and di is the decision value or ⊥, if no decision has been reached.
Without loss of generality, we assume that each process sends the same message to all processes,
including itself.



3.2 Simulating Synchronous Rounds

Each process in ASn,k simulates one process in ESn,t. We will refer to the processes in ASn,k
as simulators. We denote simi the simulator in ASn,k that simulates the process pi in ESn,t. The
simulation begins with a call to propose(vi) (line 8), where vi is simi’s proposal (recall that the
aim of the simulators is to solve k-set agreement in ASn,k). The simulation is divided into phases
(lines 11–17); each phase is divided into rounds.

Simulation overview. The simulation at simi begins with an invocation of propose(vi) (line 8),
where vi is simi’s proposal and also the input toA of the simulated process pi. This launches two
tasks T1 and T2 that run in parallel. In task T1 (lines 9–17), simi simulates steps of algorithm
A in order to obtain a decision di for pi. When a decision is reached, simi writes it in DEC [i],
decides, and exits (line 17). In task T2 (lines 18–20), simi periodically reads the shared array
DEC . When it observes a non-⊥ value, the simulator decides that value and exits.

Round overview. In order to simulate round r (lines 14–17), simulator simi invokes simulate(mi, r)
(line 15), where mi is pi’s message for round r, which was computed at the end of the simula-
tion of the previous round. The simulate procedure returns a set of pairs 〈j,mj〉, where mj is
the message received from pj by pi in the simulated round r, and modifies the local variables Si
and sF lagi. The simulator then calls the compute function (line 16), which returns di, a possible
decision, and mi, the next message to send.

Failed, muted and suspected processes. A simulated process pi fails in the simulated execution
whenever its dedicated simulator simi fails. Let us fix a phase ρ. To simplify the discussion, the
rounds of this phase are numbered 1, . . . , R. The goal is to simulate an execution in which in each
phase a process has a synchronous view of the rounds of the phase.

To that end, each simulator maintains a set of suspected processes Si and a flag sFlag i. The
set is emptied and the flag is set to true at the beginning of each phase (line 11). sFlag i = true at
the end of round r indicates that process pi has a synchronous view of rounds 1, . . . , r. The fact
that process pj is in Si at the end of round r means that simulator simi suspects that there exists
some round r′ ≤ r in which the message of pj was not delivered to every process. Suspicions
might not be accurate but they are complete in the following sense: if the message of pj is not
delivered to some non-failed process in round r′, then pj is suspected by every simulator by the
end of the next round r′ + 1. Process pj is muted at round r if it is suspected by every non-failed
simulator at the end of round r. As within a phase no processes are ever removed from the sets
Si, a muted process never recovers from this state during a phase. Furthermore, we ensure that
for every muted process pj at round r, no process pi with sFlag i = true delivers a message from
pj in round r + 1, for every round r of phase ρ. This property is central to show the existence of
a process with a synchronous view at the end of each phase.

Simulating a round. The simulate function (lines 21–34) carries out the send/receive step. For
round r, simulator simi writes the message mi into the register VAL[r][i] (line 22), and then
performs repeated snapshots of VAL[r] (line 23) to discover the messages proposed by other
simulators. Since k simulators may fail in ASn,k, the simulator cannot wait for all n simulators
to write a value to the array VAL[r]. As soon as simi discovers (n− k) messages in its snapshot
of VAL[r], it continues. The variable Mi then stores the set of up to k processes from which a
message has not been received in this simulated round. Since the array VAL[r] is read by snapshot
operations, the sets Mi are ordered by containment. Moreover, the largest set is of size at most k.

The simulators then agree on which messages to deliver in round r using a sequence of n
adopt-commit objects (lines 25–30). Simulator simi records the set of messages pi receives in
round r in the local variable reci, which is empty at the beginning of the simulation of the round
(line 22). If a simulator simi misses a message from a process pj in round r (i.e., if pj ∈ Mi),
or if simulator simi suspects pj (i.e., if pj ∈ Si), then it proposes suspecting pj to the jth adopt-
commit object AC [r][j] of the sequence (line 26). Otherwise, the simulator proposes that pj is
alive (line 27). Three decisions are possible.



1. (commit, suspect) (line 28): in this case, the simulator mutes process pj in round r. By
agreement, we know that every simulator either adopts or commits to suspecting pj , and so
every non-failed simulator sim` adds pj to S`. The round r message mj of pj (if any) is not
received by pi. This is materialized by the fact that reci remains unchanged.

2. (adopt, suspect) (line 29): in this case, we cannot determine whether pj is simulated as muted
or not in round r, as the decision of other simulators may be (adopt, suspect), (commit, suspect),
or (adopt, alive); even so, to be safe, simulator simi adds pj to Si. We know, however, by
validity, that some process proposed pj as alive, and so VAL[r][j] must contains the message
from pj , which we add to the set reci of messages to be received.

3. (·, alive) (line 30): as in the second case, we add the message from VAL[r][j] to reci.

Notice that if any simulator commits to suspect pj , then by agreement every other simulator
sim` either adopts or commits to suspect pj and adds pj to S`. Then, in the following round,
every simulator proposes suspect pj (line 26) which implies by convergence that every simulator
commits to suspect pj . It thus follows that the message from pj , if any, is ignored. By using the
adopt-commit objects in this way, we ensure that once a process is simulated as muted, it stays in
this state in each subsequent round.

The end of the phase. This approach results in not delivering messages from up to k new processes
in each round (see Lemma 6). Eventually, the set of messages received by a process may fall below
n − t, the bound on the minimal number of messages received per round in ESn,t. In this case,
not all simulated processes may maintain a synchronous view. We establish however the existence
of a process that receives at least n − t messages per round and has a synchronous view of size
b tk c+ 1 at the end of the phase (Lemma 4).

If simulator simi discovers that the set of messages reci is too small or does not contain the
message of pi, the set reci is augmented to ensure that it contains enough messages (|reci| ≥ n−t,
line 32) and that it contains the round r message of pi (line 33). This augmentation is always
possible since the number of missing messages in the array VAL[r] is bounded by k ≤ t and hence
pi observes at least n− t round r messages. Since the view of pi is then no longer synchronous,
the flag sFlag i is set to false.

Finally, we examine whether and when processes decide. Assume we are simulating an exe-
cution of a set agreement protocol that decides by round GST + bt/kc+1, and assume that each
phase is of size at least bt/kc+1. Then, since at least one simulated process pi has a synchronous
view of the entire phase, we conclude that pi decides by the end of the phase. Either the simulator
of pi fails, or it writes the decision to the shared memory DEC [i]. In the latter case, every other
simulator eventually observes the decision (lines 18–20) and terminates. Thus, if no decision is
reached, then a simulator fails in each phase. Since there are only k possible failures in ASn,k,
by the end of phase k+ 1 every simulator reaches a decision, completing a successful simulation
of a k-set agreement protocol for ESn,t in ASn,k.

3.3 Analysis of the Simulation

We now provide some basic lemmas showing that the simulation is correct. The main claims
are Lemma 2, which shows that the simulated execution is a correct execution of ESn,t, and
Lemma 4, which shows that in every phase, there is at least one process that has a synchronous
view of the entire phase.

We say that a simulator participates in the simulation of round r if it reaches the r-th iteration
of the inner loop of task T1 (line 15). When we refer to the value of the variable vari of some
simulator simi at some point in the execution, we implicitly assume that at this point simi has
not failed. We first argue that the simulation is non-blocking. The only blocking statement is the
repeat on line 23; since there are at most k failures, it never delays a simulator forever:

Lemma 1. If no simulator decides and writes its value to DEC prior to round r, then no simu-
lator is blocked forever while simulating round r.

Proof. The only possibility for a simulator to be blocked while simulating a round is in the repeat
statement of line 23. Fix r′ ≤ r to be the smallest round such that an invocation of simulate(·, r′)



by a correct simulator pi never terminates. As no simulator has decided while simulating rounds
1, . . . , r′ − 1, and there are at most k failures possible in the system, at least n − k simulators
eventually start simulating round r′. Therefore, the number of non-⊥ entries in VAL[r′] is even-
tually ≥ n − k. Consequently, every participating simulator terminates the simulation of round
r′. ut

Next, we observe that the algorithm simulates an execution of A in ESn,t, meaning that there
is an execution of ESn,t where each process sends and receives the same messages as in the
simulation.

Lemma 2. For every r ≥ 1, there exists an execution α of ESn,t executing A where in every
round r′ ≤ r ofα, every process pj ∈ Π receives exactly the messages returned by simulate(mi, r

′).

Proof. For contradiction, let r ≥ 1 be the first round for which no such execution α exists. Let α
be the r − 1 round execution that satisfies the requirements of the lemma through round r − 1,
i.e., such that for every pj ∈ Π , for every round r′ ≤ r− 1, process pj receives exactly the set of
messages returned by simulate(mj , r

′) in round r′ of α.
Fix some process pj that does not receive the messages returned by the call to simulate(mj , r)

in round r ofα. First, it is easy to observe that every message returned by the call to simulate(mj , r)
was sent by some process in round r of α, as every such message was previously written in
VAL[r], and hence was computed (line 16) at the end of round r − 1. Second, notice that the
set rec returned is of size at least n − t: otherwise, additional messages are selected from viewj
to ensure that this is the case (line 32); moreover, it is clear that the simulate procedure only
proceeds when |viewi| ≥ n − k. Thus we can extend the execution α with the delivery to pj of
the messages returned by the call to simulate(mj , r). Execution α remains a valid execution of
ESn,t, contradicting our hypothesis that no such execution existed. ut

For each simulator pi, let RECri denote the value of the variable reci after pi has executed the
adopt-commit protocol, and before the completion steps of line 32 and line 33. That is, RECri is the
value of reci on line 31 of the instance simulate(mi, r). We say that pj ∈ RECi if 〈j, 〉 ∈ reci. Let
Sri be the value of Si when simi completes the simulation of round r. The set S[r] =

⋃
simi∈Π S

r
i

is the set of suspected processes at the end of the simulation of round r. We now show that, within
a phase, each RECri set could have been received in a synchronous execution. In particular, if a
process pi does not receive a message in round r from some process p` (p` /∈ RECri ), then p` is
simulated as muted in round r + 1, and no sets RECr

′

j with r′ > r ever again contain a message
from p`. This follows from the agreement and convergence properties of adopt-commit objects.

Lemma 3. For every round r in phase ρ (except for the last), for every pi, pj ∈ Π: RECr+1
j ⊆

RECri .

Proof. Fix pi, p` and r such that for some round r, p` /∈ RECri . Then we conclude that the status
of p` from pi’s point of view is (commit, suspect). Due to the agreement property of adopt-
commit, for every participating simulator simj , the state of p` is (·, suspect), and so simj adds
p` to Srj . Thus, in round r + 1, every participating simulator proposes suspect for p`. Due to the
convergence property of adopt-commit, every simulator gets back (commit, suspect) for p`, and
hence no set RECr+1

j includes p`. ut

We now show that some process has a synchronous view of size r − Rρ + 1 for every round
Rρ ≤ r ≤ Rρ+1 − 1. In other words, there exists an execution α of the system ESn,t in which
(1) some process pi receives exactly the same sets of messages in α as in the simulation and, (2)
every round Rρ, . . . , r in α is synchronous.

Lemma 4. Let r be some arbitrary round in phase ρ. If there is some simulator simi such that
pi ∈ RECri and |RECri | ≥ n− f , for some f ≤ t, then there is an execution α of ESn,t executing
A such that (1) every round Rρ, . . . , r is synchronous in α, (2) process pi receives exactly the set
of messages returned by simulate( , r′) in each round r′ of α and, (3) at most f processes fail in
α.



Proof. By Lemma 2, there exists a (Rρ − 1)-rounds execution β of system ESn,t in which
each process receives exactly the set of messages returned by the successive invocations of
simulate( , r′′) in each round 1 ≤ r′′ ≤ Rρ − 1. Let γ be the suffix of β defined as follows.
Without loss of generality, we assume that in β no process has failed by the end of round Rρ− 1.
For every round r′ in {Rρ, . . . , r − 1}:

1. ∀pj ∈ Π , process pj fails in round r′ if and only if pj has not failed prior to round r′ and
there exists a simulator sim` that does not simulate the reception of the message from pj in
round r′, i.e., pj /∈ RECr

′

` .
2. For every pair of processes pj , p` that have not failed by the end of round r′ − 1 according

to the previous item, process p` receives a message from process pj in round r′ if and only if
we have at simulator sim` pj ∈ RECr

′

` .

In round r′ = r, process pj ∈ Π fails if and only if pj has not failed by the end of round r − 1
and pj /∈ RECri . In that case, no processes receive a message from pj in round r.

Let α = β · γ. Consider a round r′ in {Rρ, . . . , r}. Let pj and p` denote a pair of processes
that have not failed by the end of round r′. It follows from item 1 above that pj ∈ RECr

′

` and
therefore p` receives a message from pj in round r′. Moreover, for every round r′ < r in phase
ρ and every pair of processes pj , p` that have not failed before round r′ + 1, RECr

′+1
i ⊆ RECr

′

j

by Lemma 3. Thus, γ forms a window of synchrony. Finally, by construction, at most f failures
occur in execution α and process pi receives the same sets of messages in α and in the simulation.

ut

Let Mr
i denote the set of simulator ids from which simi misses messages at line 24 in the

invocation of simulate(·, r). Let viewri denote the value of the variable viewi at simulator simi

after the repeat loop (line 23). We next establish that for every round r, the sets Mr
i at different

simulators are ordered by containment.

Lemma 5. Let i1 ≤ . . . ≤ ix the ids of the simulators that invoke simulate(·, r) and execute
line 24 in these instances. Denote X this set. There exists a bijection σ : X → {1, . . . , |X|} such
that Mr

iσ(1)
⊆ . . . ⊆Mr

iσ(x)
. Moreover, we have viewriσ(1) ⊇ . . . ⊇ view

r
iσ(x)

.

Proof. The array VAL[r] is read by each simulator simij in snapshots. By the containment prop-
erty of snapshot operations, the views viewrij obtained by each simulator at line 23 are ordered
by containment. Let σ : X → {1, . . . , |X|} a bijection such that σ(ij) ≤ σ(i`) if and only if
viewiσ(j) ⊇ viewiσ(`), for every ij , i` ∈ X . It then follows that Mr

iσ(1)
⊆ . . . ⊆ Mr

iσ(x)
since

Mr
i = {1, . . . , n} \ {` : viewi[`] = ⊥}6 for every i ∈ X . The second part of the lemma follows

from the definition of σ. ut

The next lemma shows a bound on the increase in suspicions in each simulated round:

Lemma 6. For every r in phase ρ (except for the last), |S[r + 1]\S[r]| ≤ k.

Proof. During the simulation of round r+1, new suspicions may only be introduced when some
simulator simi misses a round r + 1 message at line line 23 from a process that has not been
suspected before. Observe also that for every simulator simi, the set of missed messages has the
property that |Mr

i | ≤ k. Moreover, the setsMr
i at different simulators are ordered by containment

(Lemma 5). Consequently, at most k new suspicions are introduced in the simulation of round
r + 1, from which we conclude that |S[r + 1]\S[r]| ≤ k. ut

Finally, we show that new suspicions do not necessarily imply that less messages are received
by all processes. Even when there are x new processes suspected in a simulated round, there are
some processes that deliver the messages from these suspected processes. This fact allows us to
extend the simulation one round further than it might be expected.

6 Recall that for two size n vectors v, v′, v ⊆ v′ if and only if ∀i, 1 ≤ i ≤ n : v[i] 6= ⊥ ⇒ v[i] = v′[i],
given that our simulation has the property that a register is written to only once.



Lemma 7. Let r be a round in phase ρ such that |S[r − 1]| ≤ f for some f ≤ t. Let ∆ =
S[r]\S[r − 1]. (1) At least n − |S[r]| simulators simi are such that pi ∈ RECri and |RECri | ≥
n − |S[r]|; (2) For every x ≤ |∆|, there exist x simulators simi ∈ ∆ such that pi ∈ RECri and
|RECri | ≥ n− f − (x− 1).

Proof. Let j such that pj /∈ S[r]. By definition of S[r], no simulators decide (commit , suspect)
of (adopt , suspect) for pj in round r. Hence, every simulator simi adds pj to RECri (line 30).
This holds in particular for each simulator simi such that i ∈ Π \ S[r] which proves (1).

For (2), let C = Π\S[r − 1] denote the set of processes that have not been suspected by the
end of round r − 1. Fix x ≤ |∆|. Consider the simulation of round r. We order the simulators
in ∆ according to the size of their snapshot7 of VAL[r] at the end of the repeat loop (line 23),
breaking ties using the order of ids. Since snapshots are related by containment, a simulator with
higher rank has a larger snapshot, missing fewer messages from other simulators. Notice also that
due to the self-inclusion property of the snapshot operations, a simulator always finds its own
round r message included in the snapshot.

Consider the last x simulators simy1 , . . . , simyx in the order defined above, and fix some
simulator simy` for 1 ≤ ` ≤ x. It follows from Lemma 5 that (1) Myx ⊆ . . . ⊆ My2 ⊆ My1

and, (2) y` /∈My` . Observe also that by definition of S[r], each simulator sees a value in VAL[r]
for every process pi ∈ Π\S[r]. And the only ids in C that can be missed by simy` are the ids of
the simulators that are ordered after it, i.e., C ∩My` ⊆ {y`+1, . . . , yx}.

Consider the proposals made by the simulator simy` for the adopt-commit objects (line 25).
Notice that simy` proposes suspect only for processes in Sy` ∪ My` . By definition of C, C ∩
(Sy` ∪My`) = C ∩My` ⊆ {y`+1, . . . , yx}. Consequently, for each i ∈ C\{y`+1, . . . , yx}, simy`

proposes (alive) to the adopt-commit object associated with pi. Therefore, it follows from the
commit validity property of adopt-commit objects that simy` cannot decide (commit, suspect)
for each process in the set C\{y`+1, . . . , yx}, from which we obtain that C\{y`+1, . . . , yx} ⊆
RECry` . Hence, |RECry` | ≥ |C| − (x− `) = |Π| − |S[r− 1]| ≥ n− f − (x− `) and py` ∈ RECry` ,
as desired. ut

3.4 Lower Bound on Set Agreement in ESn,t

We now show how to use the simulation technique to prove a lower bound on set agreement
in ESn,t. We begin, for the sake of contradiction, by assuming that algorithm A solves k-set
agreement in ESn,t in any window of synchrony of size bt/kc + 1. The simulation uses k + 1
phases, each of length bt/kc+ 1, i.e., Rρ = (ρ− 1)(bt/kc+ 1) + 1. We show that the resulting
simulation ofA solves k-set agreement in ASn,k, which is known to be impossible, implying that
no such algorithm A exists. Therefore, any k-set agreement protocol requires at least bt/kc + 2
synchronous rounds to decide.

In Section 3.3, we showed that the simulation is consistent with an execution of ESn,t. The
crux of the proof is to establish that at least one simulated process has a synchronous view of the
rounds of each phase. Since each phase is of length bt/kc+1, and since A guarantees a decision
in a window of synchrony of size bt/kc + 1, either such a process decides by the end the phase,
having seen the entire phase as synchronous, or its dedicated simulator fails.

Informally, Lemma 4 indicates that whenever RECri is the set of messages delivered to pi
in round r, pi has a synchronous view of the first r − Rρ + 1 rounds of the phase and sees
f = n−|RECri | failures. That is, at the end of round r, the simulated execution is indistinguishable
for pi from an execution in which rounds Rρ, . . . , r are synchronous and no more than f failures
occur. As at most t processes may fail in model ESn,t, we want to show that there exists simulator
simi such that pi ∈ RECRi and |RECRi | ≥ n−t, whereR is the last round of the phase. By the code,
the sets of messages received by the simulated process pi is then RECRi , and thus per Lemma 4,
pi has a synchronous view of the entire phase. The desired property is derived from Lemma 6 and
Lemma 7. From Lemma 6, we obtain an upper bound on the number of suspected processes at
the end of round R − 1, namely at most t, as well as an upper bound, k, on the number of newly
suspected processes in round R. Recall that each suspected processes pj may not be included in

7 Here, the size of a snapshot in the number of non-⊥ entries in the vector view.



sets RECRi . This, however, may not hold for every simulator: by part (2) of Lemma 7, we have
that, |RECRi | ≥ n− t for at least one simulator simi. Moreover, for such a simulator, pi ∈ RECRi .

Lemma 8. For every phase ρ, if no simulators decide and write their decision to DEC prior to
the end of phase ρ, then at least one simulator that begins phase ρ fails before beginning phase
ρ+ 1.

Proof. Assume for the sake of contradiction that no simulators that begin phase ρ fail prior to the
end of phase ρ, and that no simulators decide by the end of phase ρ.

Let Rρ, . . . , RD be the b tk c + 1 simulated rounds of phase ρ. First, we bound the number
of suspected processes |S[RD − 1]| at the end of round RD − 1: at the beginning of the phase,
S[Rρ] = ∅ since every simulator empties Si at the beginning of the phase (line 13); per Lemma 6,
each round introduces at most k new suspicions; hence, |S[RD−1]| ≤ kbt/kc ≤ t. Consequently,
the precondition of Lemma 7 is satisfied.

Let ∆ = S[RD] \ S[RD − 1]. If ∆ = ∅, there must exist a simulator sim` such that p` ∈
RECRD` and |RECRD` | ≥ n − |S[RD]| ≥ n − t per property (1) of Lemma 7. If ∆ 6= ∅, per
Lemma 7(2), there must also exist a simulator sim` such that |RECRD` | ≥ n− t and p` ∈ RECRD` .

Finally, by Lemma 4, process p` has observed a valid execution of algorithm A in system
ESn,t in which roundsRρ, . . . , RD appear synchronous to p`. Therefore, since there are bt/kc+1
rounds in phase ρ, and since algorithm A guarantees a decision in any window of synchrony of
size bt/kc+1, either process p` outputs a decision at the end of roundRD and its simulator writes
it to DEC or the simulator of p` fails, leading to a contradiction. ut

We conclude that our simulation of algorithm A solves k-set agreement in ASn,k. Agreement
follows from the fact that our simulation is a valid simulation of A in ESn,t (Lemma 2), and
termination follows from Lemma 8, which shows that if there is no decision, then at least one
simulator fails in every phase; since there are only k failures in ASn,k, by the end of phase k+1,
some simulator must decide.

Lemma 9. The algorithm in Figure 1 simulating A solves k-set agreement in ASn,k.

Proof. Termination: Eventually, every correct simulator decides: Assume for the sake of contra-
diction that some correct simulator never decides, which implies that no simulator ever writes
out a decision to DEC . By Lemma 8, we know that in each phase ρ, some simulator must fail.
Moreover, by Lemma 1, simulators continue to complete each phase. Thus, k + 1 simulators fail
by the end of phase k + 1, contradicting the fact that most k simulators can fail.
Agreement: |{v | ∃i : DEC[i] = v ∧ v 6= ⊥}| ≤ k, Validity: ∀i : DEC[i] 6= ⊥ ⇒ DEC[i] = v,
where v is the initial value of some process: From Lemma 2, we know that the sets of messages
produced at each round by the simulation are the sets of messages received by the processes in
some execution of A in system ESn,t. Thus, agreement and validity follows immediately from
the same properties of A. ut

Since k-set agreement is impossible in ASn,k, we conclude:

Theorem 1. There is no algorithm A for ESn,t that decides by round GST + bt/kc + 1, i.e.,
within a window of synchrony of size bt/kc+ 1.

4 The complexity of early deciding synchronous set agreement

We now show that the simulation presented in Section 3 can be used to derive lower bounds on the
round complexity of early deciding synchronous k-set agreement. We say that a k-set agreement
algorithm A is early deciding if in every execution in which at most f failures occur, processes
decide by the end of some early round R+1 < bt/kc+1. We make this more precise as follows.

Let A denote a synchronous k-set agreement algorithm. As our purpose is to establish lower
bounds on the round complexity of set agreement algorithms, we assume without loss of gen-
erality that in every execution of A every process that has not failed sends a message to every



process, including itself, in every round8. Given an execution of an algorithm that satisfies this
property, we say that a process pi sees at most f failures by the end of round r if pi receives at
least n− f messages in round r. That is, at the end of round r, process pi cannot distinguish the
current execution from an execution in which at most f failures occur.

Definition 1. Let d and R be positive integers, and let A be a k-set agreement algorithm in the
Sn,t model. We say that A is in ED(R, d) if in every run of A, for every f such that b fk c ≤ R,
among the x processes that see at most f failures, at least min(x, d) of them decide by the end of
round R+ 1.

The main result of this section shows that every k-set agreement algorithm in ED(R, d) pays
a penalty for deciding early in terms of its worst-case running time.

4.1 Main Result and Corollaries

The following theorem demonstrates an inescapable tradeoff between the number d of processes
that can decide early, the early decision round R + 1, and the worst-case decision round RD =
bt/kc+ 1 + E for deciding under any circumstances.

Theorem 2. Let k, t, R be integers such that 0 < k ≤ t < n and dkde < b
t
k c −R. Then, for any

d > 0, the following hold:

1. If d ≥ k, then there is no algorithm in ED(R, d);
2. If d < k, then any algorithm in ED(R, d) has a run in which some process decides at round

RD = (b tk c+1+E(d, k, t, R)) or later, whereE(d, k, t, R) =
⌊
d(b tk c−R−1)−k+(t mod k)

k−d

⌋
.

We know that every k-set agreement algorithm tolerating t failures requires bt/kc + 1 rounds to
decide in the worst-case [9, 12]. This theorem shows that achieving property ED(R, d) implies
sub-optimal worst case time complexity. We say that E is the price of deciding very early.

Before discussing the proof, we state two corollaries. The first shows a (global) lower bound
on the number of rounds for every process to decide early. It follows from Theorem 2 where
d = n:

Corollary 1. Let k, t, R be integers such that 0 < k ≤ t < n and 1 < b tk c − R. Every k-set
agreement algorithm in Sn,t has a run with f failures, for some f such that bf/kc ≤ R, in which
some process decides after round R+ 1.

Proof. For the sake of contradiction, let B be a k-set agreement algorithm such that for every
f, b fk c ≤ R, in every run with f failures, every process decides by the end of roundR+1. Notice
that in every run of B, each process that observes f failures with b fk c ≤ R must decide by the
end of round R+ 1. Thus B is in ED(R, d) for d ≥ k, which implies that B does not exist. ut

This bound is tight; matching algorithms can be found in [14, 19]. Herlihy et al. prove the same
result in [15] 9. However, their proof is based on combinatorial algebraic topology, whereas we
rely on algorithmic reduction.

The second corollary states a (local) lower bound on the number of rounds needed for even
one process to decide early, and relies on Theorem 2 where d = 1:

Corollary 2. Let k, t, R be integers such that 1 < k ≤ t < n, and 2k − 1 < b tk c − R. Every
k-set agreement algorithm in Sn,t with worst-case round complexity bt/kc + 1 has a run with f
failures, for f such that bf/kc ≤ R, in which no process decides by the end of round R+ 1.

8 If this property does not hold for algorithm A, it is not hard to see that A can be modified to satisfy it
while retaining the same round complexity.

9 Although, for technical reasons, the statements of the results are expressed differently, a careful analysis
of the arguments reveals that the claims are equivalent.



Proof. Suppose for contradiction that there exists an algorithm B with worst-case round com-
plexity bt/kc + 1 such that in any run with f failures, at least one process decides by the end of
round R + 1. Then B is in ED(R, 1). Note that for R ≤ b tk c − 2k and d = 1, E(d, t, k,R) =⌊
(b tk c−R−1)−k+(t mod k)

k−1

⌋
≥ 1. Therefore, the worst-case complexity of any algorithm inED(R, 1)

is at least bt/kc+ 2 by Theorem 2: a contradiction. ut

A complementary local early deciding lower bound is derived in [14], for systems with an un-
bounded number of processes, in which an unbounded number of failures can occur. The two
results are incomparable, since the models considered are distinct. By contrast, our theorem holds
in the standard model in which the number of processes n and the number of failures t are both
bounded and known.

Thus Theorem 2 not only allows us to derive previous lower bounds on local and global early
decision, but also unifies those results by considering the more general question of the worst-case
round complexity, given d processes that decide early.

4.2 Overview of the Analysis

Fix parameters k, t, R and d,E matching the conditions of Theorem 2. In this section, we focus
on the (interesting) case where d ≤ k + 1 and E ≥ 0. For contradiction, assume that there exists
an early deciding k-set agreement algorithm A in ED(R, d) such that d ≥ k or that has worst
case round complexity RD < b tk c + 1 + E. We show that this implies the existence of a k-set
agreement algorithm in ASn,k by simulating A using the algorithm described in Figure 1 with
only one phase of length RD = bt/kc+ 1 + E.

Assume, without loss of generality, that the compute(·, ·, sFlag) procedure for algorithm A
always returns (⊥,>) if sFlag = false. (In the simulated execution, a process never receives >
as a message since a process “sending” >, i.e., whose simulator writes > to VAL is muted–see
Lemma 10.)

The crux of the proof lies in identifying simulated processes that observe a synchronous exe-
cution with (1) no more than f failures, where bf/kc ≤ R, by the end of round R + 1 or (2) no
more than t failures by the end of round RD < bt/kc + 1 + E. Such a process decides because
A is in the class ED(R, d) and RD is the worst-case round complexity of A. If there are at least
k + 1 such processes, the dedicated simulator of at least one them is correct. This simulator can
write the decision in shared memory, enabling other simulators to decide.

By a careful analysis of the sets of messages delivered to the processes in the first R + 1
rounds of the simulation, we identify a non-empty set D of processes that either see less than f
failures at the end of roundR+1, or whose simulator fails while simulating the firstR+1 rounds
(Lemma 11).

A simulator whose simulated process decides writes this decision to shared memory, allowing
this value to be decided by other simulators (line 17). If this does not occur, the simulation of
rounds r > R+1 proceeds with at most k−|D| failures remaining among the simulators. Thus we
can simulate “more” rounds (Lemma 12). We are then able to identify a set of k+1−|D| processes
that see at most t failures at the end of roundRD, from which we conclude that at least one correct
simulator obtains a decision (Lemma 13 and Lemma 14). Finally, as there exists a single run of
Sn,t executing A in which each process receives the same set of messages (Lemma 15), we
conclude that at most k proposed values are decided.

4.3 Proof of Theorem 2

We proceed by contradiction. We assume the existence of an algorithmA inED(R, d) that solves
k-set agreement in Sn,t such that d ≥ k or with worst-case round complexityRD < b tk c+E+1.
Notice if E < 0,A trivially does not exist since every k-set agreement has a run in which at least
one correct process has not decided by the end of round bt/kc [9, 12]. So, in the following we
suppose that E(d, t, k,R) ≥ 0. Moreover, we consider without loss of generality that 1 ≤ d ≤
k + 1, as each algorithm in ED(R, d) is also in ED(R, d′) for every d′ < d.



Notation. We first fix some notation.

– Let F [r] denote the set of processes pi whose dedicated simulator simi has failed before
starting the simulation of round r + 1.

– LetD[r] denote the set of processes pi whose dedicated simulator has decided before starting
the simulation of round r + 1.

– As in Section 3.3, S[r] =
⋃
pi∈{p1,...,pn} S

r
i is the set of the suspected processes at the end

of the simulation of round r.
Similarly, RECri is the value of the variable reci at simulator simi at line 31 of the instance
simulate(mi, r) (and before the completion steps of line 32 and line 33).

– Let G[r] = {pi : pi ∈ RECri ∧ |RECri | ≥ n − t}. G[r] is the set of processes pi that have
sF lagi = true at the end of round r. For each process pi ∈ G[r], pi receives in round r of
the simulated execution a message from each process pj ∈ RECri . None of the processes in
G[r] have been muted by the end of round r.

– RD is the worst-case decision round for algorithm A.

Notice that Lemma 1, Lemma 3, Lemma 4, Lemma 5 , Lemma 6 and Lemma 7 refer to only
one phase of the simulation. Therefore, they still hold in the context of this proof. First, we use
Lemma 3 to obtain that if a process is not in G[r] for round r, then none of the processes in
G[r+1] will receive its messages in the simulation of round r+1. In other words, G[r] is the set
of alive processes at the end of round r in the simulated execution.

Lemma 10. For every round r ∈ {1, . . . , RD − 1} and process p` ∈ Π , if p` /∈ G[r], for all
processes pi ∈ G[r + 1], p` /∈ RECr+1

i .

Proof. Assume that p` /∈ G[r]. By definition of G[r], p` /∈ RECr` ∨ |RECr` | < n − t. Consider a
process pi ∈ G[r + 1]. By Lemma 3, RECr+1

i ⊆ RECr` . |RECr+1
i | ≥ n − t since pi ∈ G[r + 1].

Therefore, |RECr` | ≥ n− t and thus p` /∈ RECr+1
i . ut

The following lemma is central to the proof. It states that at least min(k, d) simulators decide
or fail before they start simulating round R+ 2.

As algorithm A is in the class ED(R, d), a process that has a synchronous view of the first
R + 1 rounds in which no more than fm = kR + k − 1 failures occur might decide. We notice
that (1) “late” simulators, namely simulators associated with processes that are newly suspected
in round R+1, see at most fm failures (putting together Lemma 7(2) and Lemma 6, which gives
an upper bound on |S[R]|). Moreover, if at most kR + k − 1 suspicions are generated, i.e., (2)
|S[R+ 1]| ≤ kR+ k − 1, each non suspected process observes at most fm failures at the end of
round R + 1 (Lemma 7(1)). By combining (1) and (2), we are able to identify at least min(k, d)
simulators that either decide or fail, which proves the lemma.

Lemma 11. |D[R+ 1] ∪ F [R+ 1]| ≥ min(k, d).

Proof. Let fm = kR + (k − 1). Let pi be a process such that pi ∈ RECR+1
i and |RECR+1

i | ≥
n − fm, i.e., simulator simi simulates the reception of at least n − fm messages including a
message from pi in round R + 1. We know by Lemma 4 that there is a an (R + 1)-rounds
execution α of system Sn,t with f ≤ fm failures in which, for every round r, pi receives exactly
messages recri . Therefore, pi may decide by the end of round R+1 as algorithmA is in the class
ED(R, d). Let CD be the set of processes that may decide in this way by the end of roundR+1.

Next, let ∆ = S[R + 1] \ S[R] be the set of processes that are newly suspected during the
simulation of round R+1. Let pj be a process in ∆. It follows from Lemma 7 that pj ∈ RECR+1

j

and |RECR+1
j | ≥ n− (|S[R]|+ |∆|−1). By Lemma 6 and as no processes are initially suspected,

|S[R]| ≤ kR. Also, the same Lemma implies that |∆| ≤ k. We thus obtain |RECR+1
j | ≥ n−((k+

1)R− 1) = n− fm. Hence, for every process in ∆, the simulated execution is indistinguishable
from a (R+1)-rounds synchronous execution in which at most fm failures occur. Thus,∆ ⊆ CD.

Consider now some process pj ∈ Π \ S[R + 1]. By Lemma 7(1), pj ∈ RECR+1
j and

|RECR+1
j | ≥ n−|S[R+1]| = n−(|S[R]|+ |∆|). If |∆| ≤ k−1, then |RECR+1

j | ≥ n−(kR+k−
1) = n−fm and thusΠ \S[R+1] ⊆ CD. Therefore,∆∪(Π \S[R+1]) ⊆ CD, from which we
obtain that |CD| ≥ |∆∪(Π \S[R+1])| = |Π \S[R]| ≥ n−kR ≥ n−k(b tk c−1) ≥ k+1 ≥ d,



as n − t ≥ 1. Otherwise, we have |∆| = k and thus, as ∆ ⊆ CD, |CD| ≥ k. Therefore in both
cases we have |CD| ≥ min(k, d).

As algorithmA is in the classED(R, d), at least min(|CD|, d) ≥ min(k, d) processes inCD
decide by the end of round R+1. A simulator whose simulated process decides departs from the
simulation and decides (line 17), unless it fails. Hence, we have |F [R+1]∪D[R+1]| ≥ min(d, k).

ut

We now analyze suspicions generated in the simulations of the rounds r ≥ R+ 3.

Lemma 12. For every r ≥ R+ 3, |S[r] \ S[r − 1]| ≤ k −min(k, d).

Proof. Let us first observe that a simulator simi that has decided or failed before starting to
simulate round r does not participate in the simulation of round r. More precisely, for every
r′ ≥ r, simi never writes in VAL[r′][i] and consequently i in is the set Mr′

j for each simulator
simj that participates in round r′. So, in round r′, every simulator proposes (suspect) for pi, and,
by the convergence property of adopt-commit objects, every simulator decides (commit , suspect)
for pi. Hence pi ∈ S[r′]. In particular, this means that for r ≥ R+2, D[R+1]∪F [R+1] ⊆ S[r]
(P1).

Let r ≥ R + 3 and p` ∈ S[r] \ S[r − 1]. This can occur only if a simulator simj misses
the round r message of p`, i.e., ` ∈ Mr

j . Per Lemma 5, we know that sets Mr
j are ordered by

containment. Let M be the largest set. It thus follows that S[r] \ S[r− 1] ⊆M . Notice also that,
by line 23 of the code, we have that |M | ≤ k.

As noted earlier, for each simulator simi that does not participate in round r, we have i ∈Mr
j

where simj is any participating simulator. In particular, this implies that D[R+1]∪F [R+1] ⊆
M . Finally, note that (D[R+1]∪F [R+1])∩ (S[r]\S[r−1]) = ∅ since D[R+1]∪F [R+1] ⊆
S[r−1] by property P1 noted above. Therefore, |S[r]\S[r−1]| ≤ |M |−|D[R+1]∪F [R+1]| =
k − |D[R+ 1] ∪ F [R+ 1]| ≤ k −min(k, d). The last inequality follows from Lemma 11. ut

Next, we establish an upper bound of t on the number of suspected processes at the end of
round RD. If in round r the message from some process pj is not delivered to some other process
by the end of round r, pj must be suspected, i.e., pj ∈ S[r]. This upper bound is then used to
prove that in the last round, some simulated processes receive at least n− t messages.

Lemma 13. |S[RD − 1]| ≤ t− (k −min(k, d)) and |S[RD]| ≤ t.

Proof. It follows from the fact that S[0] = ∅ and from Lemma 6 that S[R + 2] ≤ (R + 2)k. For
the remaining round r = R + 3, . . . , RD − 1, we know by Lemma 12 that |S[r] \ S[r − 1]| ≤
k −min(k, d). Hence,

|S[RD − 1]| ≤ k(R+ 2) + (RD − (R+ 3))(k −min(k, d))

We consider two cases, according to the value min(k, d).

– k ≤ d. In this case min(k, d) = k, and thus |S[RD − 1]| ≤ k(R + 2). Moreover, R, k
and d are such that dkde < b

t
k c − R. Hence, (R + 2) ≤ b tk c from which we conclude that

|S[RD]− 1| ≤ k(R+ 2) ≤ t.
– k > d. In that case we have:

|S[RD − 1]| ≤ k(R+ 2) + (RD − (R+ 3))(k − d)
≤ k(R+ 2)− k(R+ 2) + d(R+ 2) + (RD − 1)(k − d)

≤ d(R+ 2) + (b t
k
c+ E)(k − d)

≤ −d(b t
k
c −R− 2) + t− (t mod k) + E(k − d)

By definition of E, E(k − d) ≤ d(b tk c −R− 1)− k + (t mod k). Therefore,

|S[RD − 1]| ≤ d− k + t = t− (k −min(d, k))



As observed earlier, at most k−min(k, d) new suspicions are generated in roundRD (Lemma 12).
Therefore, |S[RD]| ≤ |S[RD − 1]|+ k −min(k, d) and thus |S[RD]| ≤ t. ut

We can now state the main termination Lemma. It follows from Lemma 11 and from the
analysis of the number of suspicions generated during the simulation of rounds R + 3, . . . , RD
(Lemma 12 and Lemma 13).

Lemma 14. (Termination) Every correct simulator decides.

Proof. Let us assume for contradiction that some correct simulator never decides. As every cor-
rect simulator eventually decides if one simulator writes a decision value in the shared array DEC
(Task T2), it follows that no simulator ever writes a decision value to DEC . Consequently, for all
rounds r, we have thatD[r] = ∅. It follows from Lemma 1 that every correct simulator completes
the simulation of rounds 1, . . . , RD, for a total number of at most b tk c+E+1 simulated rounds.
We know by Lemma 11 that at least min(d, k) simulators must have failed during the simulation
of the first R + 1 rounds. If each of these simulators fails before deciding, we show that one
simulated process has a synchronous view of the RD rounds in which at most t failures occur.
Moreover, the dedicated simulator of this process is correct. Hence, this simulator must decide: a
contradiction.

Consider the last round RD. Let ∆ = S[RD] \ S[RD − 1] and X = ∆ ∪ (Π \ S[RD]). For
every pi ∈ X , it follows from Lemma 7 that pi ∈ RECRDi and |RECRDi | ≥ n − |S[RD]|. Notice
that |S[RD]| ≤ t (Lemma 13). So, by Lemma 4, each process pi ∈ X has a synchronous view
of rounds 1, . . . , RD in which at most t failures occur. Therefore, as in every execution of A,
every non-faulty process has decided by the end of round of RD, each pi ∈ X must decide in
round RD. It remains to show that the dedicated simulator of at least one of the processes in X is
correct.

Observe that X = Π \S[RD−1]. Hence, |X| = n−|S[RD−1]| ≥ n− t+k−min(k, d) ≥
1 + k − min(k, d) by Lemma 13 and the fact that n > t. We then notice that by Lemma 11
and the assumption that no simulator decides, |F [R + 1]| ≥ min(k, d). Recall that F [R + 1] is
the set of simulators that fail before starting the simulation of round R + 2. As in total at most
k simulators may fail, this means that among the simulators that participate in the simulation of
rounds R+2, . . . , RD, at most k−min(k, d) are not correct. As |X| ≥ 1+ k−min(k, d), there
exists pi ∈ X such that the associated simulator simi is a correct simulator. ut

The next lemma establishes that the simulated execution is a valid execution of algorithm A
executing in Sn,t.

Lemma 15. Let r such that G[r] 6= ∅ and |S[r]| ≤ t. There is an execution α of system Sn,t
executing algorithm A such that ∀r′ ≤ r, ∀pi ∈ G[r′], process pi receives exactly the set of
messages returned by simulate( , r′) in round r′ of α.

Proof. Let α be the r-rounds execution defined as follows. ∀r′ ∈ {1, . . . , r} :

1. ∀pi ∈ {p1, . . . , pn}, process pi fails in round r′ if and only if pi has not failed prior to round
r′ and pi /∈

⋂
pj∈G[r′] RECr

′

j .

2. ∀pi ∈ G[r′], process pi receives a message from each process pj ∈ RECr
′

i during round r′.
∀pi /∈ G[r′], process pi receives a message from each process in

⋂
pj∈G[r′] RECr

′

j .

We first verify that α is a valid synchronous execution. Let r′ ∈ {1, . . . , r}. Let pi denote a
process that has not failed by the end of round r′. By definition, pi ∈

⋂
pj∈G[r′] RECr

′

j and it
thus follows from the second condition that every non-failed process receives a message from
pi in round r′. Suppose now that some process does not receive process pi’s message in round
r′. Hence, pi /∈

⋂
pj∈G[r′] RECr

′

j , and there exists a process p` ∈ G[r′] such that pi /∈ RECr
′

` . It

then follows from Lemma 3 that every pj has the property that pi /∈ RECr
′+1
j . In particular, no

processes inG[r′+1] receive pi’s message during round r′+1, and no processes inΠ−G[r′+1]

receive pi’s message since pi /∈
⋂
pj∈G[r′+1] RECr

′+1
j .

Second, we count the number of failures inα. Process pi fails if and only if pi /∈
⋂
pj∈G[r′] RECr

′

j

for some r′ ≤ r. As per Lemma 10, G[r′ + 1] ⊆ G[r′], Π −
⋂
pj∈G[r] RECrj is the set of faulty



processes in α. Thus, pi fails implies that pi /∈ RECrj for some processes pj in G[r]. Hence, by
definition of S[r], pi ∈ S[r]. Therefore, at most t processes fail in execution α, since we assume
that |S[r]| ≤ t.

Finally, by the definition of G[r′], ∀pi ∈ G[r′], simulate( , r′) returns RECr
′

i . Therefore, it
follows from the definition of α that every process in G[r′] receives the same sets of messages in
the simulation of round r′ and in the r′th round of execution α. ut

Together with Lemma 14, the following Lemma establishes that the simulators solve k-set
agreement in model ASn,k by simulating an execution of A in model Sn,t.

Lemma 16. (Agreement) |{v | ∃i : DEC[i] = v ∧ v 6= ⊥}| ≤ k. (Validity) ∀i : DEC[i] 6= ⊥ ⇒
DEC[i] = v where v is the initial value of some process.

Proof. Every decision value v written in the array DEC is computed during the simulation of
some round r ≤ RD and v is the decision of some process pi in the simulated execution. When
simulator simi decides at round r, the simulated process pi has not failed in the simulated run,
i.e, pi ∈ G[r].

Let r′ ≤ RD the last round in the simulated execution in which a decision occurs. S[r′] ⊆
S[RD] and thus |S[RD]| ≤ t by Lemma 13. Therefore, it follows from Lemma 15 that there
exists a r′-rounds execution α of system Sn,t executing A such that, for every r, 1 ≤ r ≤ r′ and
every pi ∈ G[r], simulate( , r) returns the set of messages received by pi in round r of α.

The values written out in DEC are a subset of the values decided in α. The correctness of A
thus implies that decision values written in DEC satisfy validity and agreement. ut

5 A k-Set Agreement Algorithm for ESn,t

In this section, we present an algorithm named K4 which solves k-set agreement in a window of
synchrony of size bt/kc + 4. This is the first algorithm, to the best of our knowledge, for k-set
agreement in ESn,t. The pseudocode can be found in Figure 2.

5.1 Description

K4 is a round-based full-information protocol, and it assumes that t, the number of failures, is
less than n/2. Each process maintains a local estimate est i, representing its preferred decision,
and sets Activei and Failed i, which denote the processes that pi believes to be alive and failed,
respectively. In every round, each process broadcasts its entire state (line 5), and receives all
the messages for the current round (line 6), updating its view of which processes have failed
and which rounds are synchronous (lines 7–10). A process decides if it receives a message from
another process that has already decided (lines 11–13), or if it sees bt/kc + 4 consecutive syn-
chronous rounds (line 16). In case it decides, the algorithm returns the decided value esti to the
caller (lines 14 and 17), and continues to run the protocol by sending messages announcing its
decision. If no decision is reached, then the estimate est i is updated in lines 19–22. There are two
key components to K4: accurately determining whether rounds are synchronous (which is critical
for ensuring liveness), and updating the estimate (which is critical for ensuring agreement).

Detecting Asynchrony. The procedure updateSynchDetector() merges information into the Active
and Failed sets; if a process believes that p` was active in round r (e.g., it receives a message
from p`) , then p` is added to Active[r]; if it believes that p` was failed during round r (e.g.,
it did not receive a message from p`), then p` is added to Failed [r] (see lines 25–28). It then
determines based on Active[r] and Failed [r] sets whether round r seems synchronous (lines 29-
32). A round r is deemed asynchronous if some process p` is believed to have failed in round
r (i.e., p` ∈ Failed [r]), and yet is also believed to be alive at some later round k > r (i.e.,
p` ∈ Active[k]). Finally, process pi sets a flag sF lag to true if it sees the previous bt/kc + 3
rounds as synchronous (line 37). Note that the setsActivei[r] and Failedi[r] need not be disjoint:
this can occur in rounds where process p receives a message from a process q, but another process
does not receive the message from q, either because of q’s failure or because of asynchrony.



Updating the estimate. Each process updates the estimate in every round. Estimates have two
levels of priority: if a process has seen bt/kc + 3 synchronous rounds, i.e., if it is “ready to
decide,” then its estimate is awarded high priority; all other estimates are awarded normal priority.
Process pi stores prioritized estimates in flagProcsi (line 19), and adopts the minimum prioritized
estimate, if one exists (line 21). Otherwise, process pi adopts the minimum estimate received in
the current round (line 22).

procedure propose(vi)i1
esti ← vi; ri ← 1; msgSeti ← ∅; sF lagi ← false2
Activei ← [ ]; Failed i ← [ ]; AsynchRoundi ← [ ]3
while true do4

send( esti, ri, sF lagi, Activei, Failed i, AsynchRoundi, decidedi ) to all5
wait until received messages for round ri from at least n− t processes6
msgSeti[ri]← messages that pi receives in round ri7
Activei[ri]← processes from which pi gets messages in round ri8
Failed i[ri]← Π \Activei[ri]9

updateSynchDetector() % Update the state of pi based on messages received.10

% Has anyone else decided?
if ( ∃ process p such that msgp ∈ msgSet i with msgp.decidedp = true ) then11

decidedi ← true12
esti ← msgp.estp13

return esti14

if (sCount i = bt/kc+ 4) then15
decidedi ← true16
return esti17

if (decidedi = false) then18
% Identify the processes p that have sF lagp set at the previous round
flagProcsi ← { p ∈ Activei[ri] | sF lagp[ri − 1] = true }19
if flagProcsi 6= ∅ then20

esti ← minq∈flagProcsi(estq) % Adopt minimum flagged estimate.21

else esti ← minq∈Activei[ri](estq) % Otherwise, adopt minimum estimate.22

% increment round counter
ri ← ri + 123

procedure updateSynchDetector()24
% Update the Active and Failed sets for each previous round based on messages received
for every msgj ∈ msgSet i[ri] do25

for round r from 1 to ri − 1 do26
Activei[r]← msgj .Activej [r] ∪Activei[r]27

Failed i[r]← msgj .Failed j [r] ∪ Failed i[r]28

% Analyze the current view to detect asynchrony
for round r from 1 to ri − 1 do29

AsynchRoundi[r]← false30
for round k from r + 1 to ri do31

if (Activei[k] ∩ Failed i[r] 6= ∅) then32
AsynchRoundi[r]← true33

% The current round is assumed to be synchronous
AsynchRoundi[ri]← false34
% Compute the number of consecutive synchronous rounds seen
sF lagi ← false35
sCounti ← max`(∀r′ ∈ [ri − `, ri], AsynchRoundi[r′] = false)36
% If the last bt/kc+ 3 are seen as synchronous, then set sFlagi
if sCounti ≥ bt/kc+ 3 then sF lagi ← true37

Fig. 2. The K4 algorithm, at process pi.



5.2 Analysis

We prove that the algorithm K4 solves k-set agreement in ESn,t. Validity and Termination are
straightforward, so we focus on showing Agreement. The proof of agreement is based on the
idea that in order for processes to maintain at least k + 1 distinct estimates, at least k failures
have to occur in each round. This is obvious if the system is synchronous—and yet quite non-
trivial when the system may be asynchronous for certain periods. We identify a trade-off between
the number of processes that have a synchronous view of an execution suffix, and the number of
distinct estimates that these processes can carry. In particular, we prove that processes which have
a synchronous view of bt/kc+3 consecutive rounds may hold at most k distinct estimates, which,
after some consideration, implies that there is no execution of the algorithm in which processes
decide on more than k values. The key lemma, whose proof is presented in full in Section 5.3, is
the following.

Lemma 17 (Elimination). Let rm > 0 be a round and p1, p2, . . . , pk+1 be k+ 1 processes that,
at the end of round rm, perceive the previous bt/kc+3 rounds as synchronous. Then at least two
such processes have the same estimate.

Assuming that Lemma 17 holds, we can prove that the K4 algorithm preserves agreement.

Theorem 3 (Agreement). In every execution, processes decide on a set of at most k distinct
values.

Proof. Consider an arbitrary execution of K4 and let rd be the first round in which a process
decides. Let pd be a process that decides in round rd and let Suppd be the set of processes with
sF lag = true at the beginning of round rd—we say that processes in Suppd support decision in
round rd.

First, notice that, since process pd is the first process to decide, it must necessarily set the
decidedi variable to true on line 16 of the propose procedure. This implies that sCounti =
bt/kc + 4. Therefore, each of the processes whose message pd receives in round rd must have
perceived the previous bt/kc + 3 as synchronous at the end of round rd − 1 (otherwise, pd also
notices an asynchrony at line 32 of updateSynchDetector and cannot decide). Hence, each such
process s ∈ Suppd must have have sFlags = true at the end of round rd − 1. Since pd receives
n− t messages in every round, we obtain that |Suppd| ≥ n− t.

On the other hand, Lemma 17 ensures that processes in Suppd have at most k distinct esti-
mates at the beginning of round rd. Denote the set of these values by Vk. We prove that decisions
in round rd or in later rounds are necessarily made on a value in Vk.

First, if a process decides at the end of round rd (in line 14), then it maintains its previous
estimate. The deciding process supported decision at the end of the previous round, therefore its
estimate is in Vk. Second, if the process does not decide at the end of rd, then, since |Suppd| ≥
n− t > bn/2c, the process necessarily receives a message from a process in Suppd in round rd.
In this case, the process updates its estimate in line 21 of procedure propose(), thereby adopting
the minimum estimate that it receives from a process in Suppd, which is in Vk. This implies that
any decisions made in later rounds also occur on elements of Vk.

Since |Vk| ≤ k, we conclude that all decisions in this execution occur on at most k distinct
values, which is equivalent to k-agreement. ut

5.3 Proof of the Elimination Lemma

In this section, we prove the following result:

Lemma 18 (Elimination). Let rm > 0 be a round and p1, p2, . . . , pk+1 be k+ 1 processes that,
at the end of round rm, perceive the previous bt/kc+3 rounds as synchronous. Then at least two
such processes have the same estimate.



Notation. We proceed by contradiction. Suppose there exists a round rm > 0 and processes
p1, p2, . . . , pk+1 such that est1 < est2 < . . . < estk+1 and all these processes see the previous
bt/kc + 3 rounds as synchronous at the end of round rm (i.e., the processes have sF lag = true
at the end of round rm). For clarity, let rm = r0 + bt/kc + 3, with r0 ≥ 0 and define the set
P = {p1, p2, . . . , pk+1}. Also, we use the notation [1, `] for the set {1, 2, . . . , `}. In the following,
we use a superscript to denote the round from which a local variable is perceived. For example,
Activer0+2

i [r0+1] is the Active set of process pi for round r0+1, as seen from the end of round
r0+2. Unless otherwise stated, we omit the superscript when we consider variables from the end
of round r0 + bt/kc+ 3.

Proof Outline. We begin by establishing some basic properties of the processes’ views, in Propo-
sitions 1–4. We then aim to show that, in order for k + 1 estimates to be maintaned in the system
by the processes in P (i.e., the processes have sF lag = true at the end of round rm), at least
k failures have to occur in each round seen as synchronous by the processes in P . Proposition 5
makes this intuition precise. Next, Proposition 6 establishes that there exists a process q from
which all processes in P received a message in round r0 + bt/kc + 2, and Proposition 7 shows
that this process has to perceive k distinct failures per round in rounds r0 + 1, . . . , r0 + bt/kc.
This implies that process q has already experienced at least t − (t mod k) failures by the end of
round r0 + bt/kc+ 1. Since each process in P receives a message from q, this implies that each
of these processes may see at most k−1 new failures in rounds r0+bt/kc+2 and r0+bt/kc+3.
To conclude, we show that this number of failures is not enough to maintain k+1 distinct values
in the system through the end of round r0 + bt/kc + 3, which contradicts our initial assumption
on the existence of processes p1, . . . , pk+1. We note that throughout the proof we assume the
existence of the k + 1 processes in P .
We first analyze the synchronous views of processes p1, p2, . . . , pk+1.

Proposition 1 (Synchrony). Let r be a round and p be a process such that at the end of round
r, p sees the previous ` > 0 rounds as synchronous, i.e. AsynchRoundr[r′] = false,∀r′ ∈
[r − `+ 1, r]. Then

Activerp[r − `+ 1] ⊇ Activerp[r − `+ 2] ⊇ . . . ⊇ Activerp[r].

Proof. Assume there exists a round r−`+1 ≤ r′ ≤ r−1 such thatActiverp[r
′+1] * Activerp[r

′].
Then there exists a process q ∈ Activerp[r′+1]\Activerp[r′], which implies that q /∈ Activerp[r′],
therefore, by the way the sets Active and Failed are built, q ∈ Failedrp[r

′]. It follows that
q ∈ Failedrp[r′] ∩ Activerp[r′ + 1], therefore r′ is asynchronous from the point of view of p at
round r : contradiction. ut

The second proposition formalizes the intuition that if process p receives process q’s message
sent in some round r (either directly or through a relay), then p has the entire information about
q’s state at the end of round r − 1.

Proposition 2 (Information Gathering). Let pi and pj be two processes inΠ and let rc ≥ r ≥ 2
be two rounds. If pi ∈ Activercj [r], then for any round r′ < r, Activer−1i [r′] ⊆ Activercj [r′] and
Failedr−1i [r′] ⊆ Failedrcj [r′].

Proof. Fix r > 0 and r′ < r. We proceed by induction on rc ≥ r.
Base case: If r = rc, then pj has received pi’s message in round rc, and by lines 25-28 of
the updateSynchDetector() procedure, Activerc−1i [r′] ⊆ Activercj [r′] and Failedrc−1i [r′] ⊆
Failedrcj [r′] for all r′ < r.
Induction step: Let ri be the first round≥ r in which pi ∈ Activerij [r]. If ri = r, then pj receives
a message from pi in round r and the claim is true.

If ri > r, then pj receives a message in round ri from a process pm such that pi ∈ Activeri−1m [r].
Since pi ∈ Activeri−1m [r], we can apply the induction hypothesis with rc := ri − 1 and r := r
to obtain that Activeri [r

′] ⊆ Activeri−1m [r′] and Failedri [r
′] ⊆ Failedri−1m [r′], for all r′ < r.

Since pj receives a message from pm in round ri, the claim follows by the same reasoning as in
the base case above. ut



The idea behind the third proposition is that if an estimate is held by some process at round r,
then there exists at least one process which “carries” it in every previous round.

Proposition 3 (Carriers). Let r > 0 and p ∈ Π . If p has estimate v at the end of round r, then
for all rounds 0 ≤ r′ ≤ r, there exists a process qr

′ ∈ Activerp[r′] such that estr
′−1
qr′

= v.

Proof. Assume that process p has estimate v at the end of round r, yet there exists a round
0 ≤ r0 ≤ r such that no process with estr0−1 = v exists in Activerp[r0]. First, notice that there
has to exist a process s in Activerp[r] such that estr−1s = v — this follows since a process may
only adopt an estimate that has been proposed in the current round.

Let r′ < r be the minimum round such that there exists a process s in Activerp[r
′ + 1] such

that estr
′

s = v—the observation above ensures that such a round exists. As s ∈ Activerp[r′ + 1],
Proposition 2 ensures that Activer

′

s [r
′] ⊆ Activerp[r

′]. Since Activerp[r
′] contains no processes

with estr
′−1 = v, it follows that Activer

′

s [r
′] contains no processes with estr

′−1 = v, and hence
s has adopted estimate v at the end of r′ without receiving any messages with estimate v, which
contradicts the structure of the estimate-update mechanism. ut

The next proposition proves that two processes with synchronous views see the same information,
with a maximum delay of one round.

Proposition 4 (View Consistency). Given processes p and q that see rounds r0+1, . . . , r0+`+1
as synchronous, for all r ∈ [r0 + 1, r0 + `], Activer0+`+1

p [r + 1] ⊆ Activer0+`+1
q [r].

Proof. In order to simplify notation, we omit the superscript for the state variables that are seen
from the end of r0+ `+1, e.g. Activep[r0+ `] = Activer0+`+1

p [r0+ `]. We make the distinction
when necessary.

Assume by contradiction that there exists a round r ∈ [r0 + 1, r0 + `] and a process s ∈
Activep[r+1] \Activeq[r]. Since s /∈ Activeq[r], no process x in Activeq[r0 + `+1] can have
s ∈ Activer0+`x [r]. Therefore, ∀π ∈ Activeq[r0 + ` + 1], s ∈ Failedr0+`π [r]. However, since
|Activep[r0+`+1]| ≥ n− t, |Activeq[r0+`+1]| ≥ n− t and n− t > n

2 , p receives at least one
message from a process inActiveq[r0+`+1] in round r0+`+1. Since Failedp[r] is the union of
all Failed sets pi received, it follows that s ∈ Failedp[r]. At the same time, s ∈ Activep[r+1],
and therefore p notices an asynchrony in round r ∈ {r0 + 1, . . . r0 + `}: contradiction. ut

The next step is to show that in order for k + 1 estimates to be maintained in the system
in a round, at least k failures have to occur in that round (these failures may be either process
crashes, or messages not delivered in a timely manner because of asynchrony). More precisely,
we identify one carrier that does not receive k messages which are received by at least one of the
other carriers.

Proposition 5. Let r be a round and c1, . . . , ck+1 be processes such that estri < estri+1,∀i ∈
[1, k]. Then there exists a process c` ∈ {c1, . . . , ck+1} such that c` does not see k processes that
were active in round r, i.e.

|Failedrc` [r] ∩
⋃

i∈[1,k+1]

Activerci [r]| ≥ k.

Proof. Processes c1, . . . , ck+1 are carriers for values v1, . . . , vk+1, respectively, at the end of
round r. Proposition 3 ensures that there exist processes q1, . . . , qk+1 that are carriers for these
values at the end of the previous round r − 1 and qi ∈ Activeci [r], for all i ∈ [1, k + 1]10. We
prove that there exists an index j such that process cj does not receive messages from any of the
processes qi with i 6= j.

Consider process ck+1. Assuming that ck+1 receives a message from one of the processes qi
with i 6= j, it follows that ck+1 “sees” an estimate less than estk+1 in round r. In this case, the
only possibility for ck+1 to stick to estimate estk+1 at the end of round r is for it to receive estk+1

10 To simplify notation, we omit the superscript for the local variables, assuming that all such variables are
seen from the end of round r



in a message with sF lagi = true. Without loss of generality, assume that the message comes from
process qk+1. At this point, we turn our attention to process ck. Again, there are two possibilities:
process ck adopted estimate estk either because it received it in a message with sF lag = true
(line 21), or adopts it in line 22, which means that it receives no messages with sF lag = true,
and no message with estimate < estk. However, in the latter case we are done, since it means
that ck does not receive messages from any of the processes in {q1, q2, . . . , qk−1, qk+1} which is
enough to prove the claim.

Therefore, we still have to analyze the case when process ck receives estimate vk in a message
with sF lag = true. Again, without loss of generality, we assume that this message comes from
process qk. At this point, we are in the case where qk+1 has sF lag = true and qk has sF lag =
true. Considering process ck−1, we can apply the same rationale to obtain that process qk−1
necessarily has sF lag = true. We proceed in this fashion to obtain that processes qk−2, . . . , q1
must have sF lag = true as well. However, returning to process qk+1, we obtain a contradiction,
since if processes q1, q2, . . . , qk have sF lag = true, process qk+1 cannot receive a message from
any one of them (otherwise it will adopt an estimate < estk+1 in line 21 of propose()).

Therefore, at least one process cj ∈ {c1, c2, . . . , ck+1} has to fail all processes qi with i 6= j
in round r. Since, by definition, qi ∈ Activeci [r], for all i ∈ [1, k + 1], this concludes the proof.

ut

At this point, we have gathered enough information to proceed with the final argument.
We show that the synchrony requirements on the views of p1, p2, . . . , pk+1 imply that there

exists a process q which they all perceive as active in round r0 + bt/kc + 2. In fact, we show
in Proposition 6 that q may be any process in P . This means that process q’s message in round
r0 + bt/kc + 2 reaches all processes p1, p2, . . . , pk+1, either directly or through a relay. This
implies that the view of process q at the end of round r0 + bt/kc + 1 has to be consistent with
that of processes p1, p2, . . . , pk+1, i.e. upon receiving q’s message, no process in P notices an
asynchrony in rounds r0+1, r0+2, . . . , r0+bt/kc+1. Since processes p1, p2, . . . , pk+1 all hold
distinct estimates at the end of r0+bt/kc+3, we show that q’s view has to contain k new failures
in each round r0+1, . . . , r0+bt/kc. This will imply that, in order to maintain a synchronous view,
processes in P have to see k · bt/kc = t− (t mod k) failures in rounds r0+2, . . . , r0+bt/kc+1,
which means that processes p1, . . . , pk+1 have at most t mod k failures “left” at the end of round
r0 + bt/kc+ 1. Finally, we apply Proposition 5 to obtain that at least one of the processes pi has
to see k new failures in round r0 + bt/kc + 3, which leads to a contradiction, since the model
ensures that all processes in P receive at least n− t messages in every round.

We first show that there exists a process from which all processes pi receive a message in
round r0 + bt/kc+ 2, either directly or though a relay.

Proposition 6 (The common process). Given processes p1, p2, . . . , pk+1 as above, there exists
a process q such that

q ∈
k+1⋂
i=1

Activei[r0 + bt/kc+ 2].

Proof. Fix a process q ∈ {p1, . . . , pk+1}. For all processes pi ∈ {p1, . . . , pk+1}, Proposition 4
implies thatActiveq[r0+bt/kc+3] ⊆ Activei[r0+bt/kc+2]. Since q ∈ Activeq[r0+bt/kc+3]

(a process always receives messages from itself), we obtain that q ∈
⋂k+1
i=1 Activei[r0+bt/kc+2].

ut

Note that in the following, we omit the subscript when denoting q’s view and assume the
Activeq and Failedq sets are always seen from the end of round r0 + bt/kc+ 1. In other words,
we are analyzing the view that process q broadcasts to processes in P at the beginning of round
r0 + bt/kc+ 2.

The next proposition shows that process q defined above has to receive k less messages in
each round r0 + 2, . . . , r0 + bt/kc+ 1.

Proposition 7. Given the process q as defined in Lemma 6, for all rounds r ∈ {r0 + 1, . . . , r0 +
bt/kc},

|Activeq[r] \Activeq[r + 1]| ≥ k.



Proof. Proposition 3 ensures that at the beginning of round r+1 there exist carriers c1, c2, . . . , ck+1

for values v1, v2, . . . , vk+1 respectively, where estri = vi and ci ∈ Activermpi [r + 1]. (Recall that
the round rm has been defined as r0 + bt/kc+ 3.)

The key to proving the claim is to look at which of these carriers process q receives a message
from in round r + 1. If process q receives no message from these carriers in r + 1, then we are
done, since there are k+1 carriers. Otherwise, we show that if process q receives a message from
m such carriers (for m ≥ 1), then it has to perceive at least m− 1 failures in round r just because
it sees m distinct values propagated in the following round. Next, we show that q has to perceive
a failure in round r for each of the other k + 1 −m values whose carriers did not successfully
send q a message in round r+1. The final argument shows that the two sets of failures (the m−1
corresponding to the “seen” carriers and the k + 1−m corresponding to the “unseen” ones) are
necessarily distinct.

We start the formal argument by noting that processes c1, c2, . . . , ck+1 are necessarily in
Activeq[r]: if ci /∈ Activeq[r], since pi receives q’s message in r0 + bt/kc + 2, process pi
perceives an asynchrony in round r. Next, denote by M the set of processes in the intersection
{c1, . . . , ck+1} ∩Activeq[r + 1]. Let m = |M |, the cardinal of M , and let {s1, . . . , sm} =M .

If m = 0, we have identified a set of at least k + 1 processes {c1, . . . , ck+1} that are in
Activeq[r], but not in Activeq[r + 1] and we are done.

Ifm > 0, we can apply Proposition 5 to the processes (or the process) inM to obtain that there
exists a process s ∈M such that |Failedrs[r]∩

⋃m
j=1Active

r
sj [r]| ≥ m− 1. Let F denote the set

Failedrs[r]∩
⋃m
j=1Active

r
sj [r], that is the set of processes that carrier s missed in round r. Since

s ∈ Activeq[r + 1], by Proposition 2, Failedrs[r] ⊆ Failedq[r]. Also, F ∩ Activeq[r + 1] =
∅ (otherwise, q notices an asynchrony in round r, which propagates to the processes pi). On
the other hand, since sj ∈ Activeq[r + 1] for all sj ∈ M , by applying Proposition 2 again
we obtain that F ⊂ Activeq[r]. Therefore, the set F has at least m − 1 processes and is in
Activeq[r] \Activeq[r + 1].

In order to find more processes inActiveq[r]\Activeq[r+1], we analyze the set of processes
G = {c1, c2, . . . , ck+1} \ Activeq[r + 1], that is the set of carriers whose message process q did
not receive. By similar considerations as above, these processes are elements of Activeq[r] \
Activeq[r + 1], and the cardinal of G is k + 1−m. We show that G ∩ F = ∅.

Assume for the sake of contradiction that there exists a process ci ∈ F ∩G. Since ci ∈ F , it
follows that ci ∈ Failedq[r]. On the other hand, since ci ∈ G, there exists a process pi ∈ P such
that c ∈ Activermi [r + 1], by the definition of ci. However, since pi receives a message from q in
round r0+bt/kc+2 > r+1, it follows by Proposition 2 that ci ∈ Activermi [r+1]∩Failedrmi [r],
so pi perceives an asynchrony in round r ∈ {r0 + 1, . . . , r0 + bt/kc}, which contradicts the
definition of process pi.

Therefore G ∩ F = ∅. The processes in G ∪ F have the property that they are in Activeq[r],
but not in Activeq[r + 1]. The above claim ensures that |G ∪ F | ≥ (k + 1 −m +m − 1) = k,
therefore |Activeq[r] \Activeq[r + 1]| ≥ k.

ut

The last result implies that |Activeq[r0 + bt/kc + 1]| ≤ n − k · bt/kc = n − t + t mod k,
therefore |Failedq[r0 + bt/kc+ 1]| ≥ t− (t mod k). Note that since every process pi receives a
message from q in round r0+bt/kc+2, no process pi can receive a message in round r0+bt/kc+2
from a process that q has failed in round r0+bt/kc+1. More precisely, for all i ∈ {1, . . . , k+1},
Active

r0+bt/kc+3
i [r0 + bt/kc+ 2] ⊆ Activer0+bt/kc+1

q [r0 + bt/kc+ 1].
This relation implies the following bound on the number of messages that processes in P may

receive in round r0 + bt/kc+ 2:

|
k+1⋃
i=1

Activei[r0 + bt/kc+ 2]| ≤ n− t+ t mod k.

Next, we show that this number of active processes is not enough to maintain k + 1 distinct
values in the system in the remaining rounds r0 + bt/kc + 2 and r0 + bt/kc + 3. One way to
see this is to first notice that the total number of messages received by processes in P may only
decrease or remain the same, i.e.

⋃k+1
i=1 Activei[r0+ bt/kc+2] ⊇

⋃k+1
i=1 Activei[r0+ bt/kc+3]



by Proposition 1. Then |
⋃k+1
i=1 Activei[r0 + bt/kc+ 3]| ≤ n− t+ t mod k. On the other hand,

processes p1, p2, . . . , pk+1 have k + 1 distinct estimates at the end of round r0 + bt/kc + 3,
therefore we can apply Proposition 5 to obtain that there exists a process pj ∈ {p1, . . . , pk+1}
such that |Failedj [r0 + bt/kc+ 3] ∩

⋃k+1
i=1 Activei[r0 + bt/kc+ 3]| ≥ k.

Then |Activej [r0+bt/kc+3]| ≤ |
⋃k+1
i=1 Activei[r0+bt/kc+3]\Failedj [r0+bt/kc+3]| ≤

(n−t+t mod k)−k < n−t, so process pj receives less than n−tmessages in round r0+bt/kc+3,
a contradiction with the assumption that each process receives at least n − t messages in every
round.

The contradiction arises from the initial assumption that there exist k + 1 processes with
distinct estimates and synchronous views of rounds r0+1, . . . , r0+bt/kc+3 at the end of round
r0 + bt/kc+ 3. We conclude that the Elimination Lemma holds.

5.4 Improving the Algorithm

In fact, in some cases, processes can decide after seeing only bt/kc+ 3 consecutive synchronous
rounds: in brief, a process sets sF lag = true after seeing bt/kc + 2 synchronous rounds, and
decides one round later under the same conditions as K4. In this case, however, the proof argument
from the previous section works only if bn−t+1

k+1 c ≥ 3k, which translates approximately into
t ≥ 3k2. In order to improve further, for example, to decide in bt/kc + 2 rounds, some new
technique is needed. We believe that an approach similar to that of [2] in which estimates are
sometimes de-prioritized can be used to obtain a matching algorithm.

6 Conclusion

We have presented a novel technique for simulating synchronous and partially synchronous exe-
cutions in asynchronous shared memory. Our technique allows us to characterize the complexity
of set agreement in partially synchronous systems, as well as to refine earlier lower bounds for
early-deciding synchronous set agreement by determining the cost of early decision in terms of
worst-case round complexity. More generally, our simulation technique is applicable to any deci-
sion task, i.e. one in which a process can safely copy its decision from others. We believe that our
technique can also be expressed in terms of the standard BG simulation [5]. In particular, instead
of employing n simulators that agree through adopt-commit objects, we can use k+1 simulators
that utilize BG-agreements to agree on the messages received in every round. Thus, one direction
of future work is to extend our lower bound results to other families of tasks by encapsulating the
Extended BG simulation [13]. Another direction is to fill the gap between the lower bound and
the upper bound in eventually synchronous systems.

Proving distributed impossibility results and lower bounds often requires analysis of dis-
tributed executions, which has proven quite challenging (e.g., techniques involving algebraic
topology). Moreover, there are a plethora of different models, multiplying the number of times
each result needs to be re-proved. By contrast, distributed simulations offer the hope of deriving
these results by direct reduction, thus basing the edifice of distributed computing on a few fun-
damental results. We believe that our results are one step toward developing just such a unified
framework for distributed computation.
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