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Abstract

We show that, for any ¢ > 0, the (1+1) evolutionary algorithm using an arbi-
trary mutation rate p, = ¢/n finds the optimum of a linear objective function over
bit strings of length n in expected time ©(nlogn). Previously, this was only known
for ¢ < 1. Since previous work also shows that universal drift functions cannot
exist for ¢ larger than a certain constant, we instead define drift functions which
depend crucially on the relevant objective functions (and also on c¢ itself). Using
these carefully-constructed drift functions, we prove that the expected optimisation
time is ©(nlogn). By giving an alternative proof of the multiplicative drift theorem,
we also show that our optimisation-time bound holds with high probability.

1 Introduction

Drift analysis is central to the field of evolutionary algorithms. This type of analysis was
implicit in the work of Droste, Jansen and Wegener [9], who analysed the optimisation of
linear functions over bit strings by the classical (1+1) evolutionary algorithm ((1+1) EA)
with mutation rate p, = 1/n. The method was made explicit in the work of He and Yao
who gave a simple, clean analysis. Later fundamental applications of drift analysis in
the theory of evolutionary computation include [11] 12} [15] 20} 22].

Recent work by Johannsen, Winzen and the first author [0, [7] shows that drift anal-
ysis, as it is currently used, relies strongly on the fact that the mutation probabilities p,,
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are relatively small. As He and Yao observed [I17], the analysis in [16] only applies if
the mutation probability p, is strictly smaller than 1/n, where n is the length of the
bit strings of the search space.

This restriction was improved in [18], where a family of drift functions was presented
that works for the most common mutation probability p, = 1 /n However, as Doerr
et al. have observed [7], this family of drift functions still ceases to work for p, > 4/n.
Furthermore [7], if p, > 4/n, then for any universal family of drift functions (from
the class of log-of-linear functions) there is a linear objective function f, and a search
space element x, such that the drift from x is negative (so the proof that the (1+41)
EA converges quickly does not go through). Doerr et al. have also shown [6] that this
problem cannot be fixed by applying the averaging approach of Jégerskiipper [19] —
that approach fails for p, > 7/n. Thus, prior to the work presented here, it was an open
problem whether the (141) EA minimises linear objective functions over bit strings in
O(nlogn) time when the mutation probability is p, = ¢/n for ¢ > 7.

Our main result shows that this is the case. Since it is known that no universal family
of drift functions exists, we instead manage to define a feasible family of drift functions
in such a way that the drift function ®; depends crucially on the objective function f.
Using this idea, we show (see Theorem [7) that, for any constant ¢, the (1+1) EA with
mutation probability p, = ¢/n optimises any family of linear objective functions over
bit strings in expected time O(nlogn). A corresponding lower bound follows easily from
standard arguments, see Theorem [I[9 Thus, our result is as good as possible (up to a
constant factor).

By reproving a multiplicative drift theorem (which was first used to analyse evolu-
tionary algorithms in [7]), we also show that our bound on the optimisation time holds
with high probability. The tail bounds in our drift theorem can also be used to show that
many other known bounds on optimisation times also hold with high probability. This
has been done for the (1+1) EA finding minimum spanning trees, computing shortest
paths or Eulerian cycles in [4].

2 Drift Analysis

In this section, we give a brief description of drift analysis, which is sufficient for our
purposes. For a more general background to drift analysis, we refer to the papers cited
above.

2.1 The (141) evolutionary algorithm

Let F' be a set of objective functions. Each f € F is associated with a problem size
n(f) € N and is a function from the search space Qs to R29. Given f, the goal is to find
an element = € Qy such that f(x) is minimised. Our assumption that the optimisation

'Note, though, that in that paper an EA only accepting strict improvements was analysed; this fact
was exploited in the proof. We have little doubt, though, that their proof can be adapted to work also
for the more common setting that also an offspring with equal fitness is accepted.



problem is minimisation (as opposed to maximisation) is without loss of generality, as
is our assumption that the range of each objective function contains only non-negative
numbers. For each objective function f, let Qqp¢ ¢ C €2 denote the set of optimal search
points — that is, those that minimise the value of f.

Definition 1. We say that F is a family of objective functions over bit strings if, for
every f € F, Qy = {0, 1Y) In this case, an element © € Qy is a string of n(f) bits,
T=Tpp) .- 21

Definition 2. Suppose that F is a family of objective functions over bit strings. We say
that F is linear if each f € F is of the form f(x) = Z?:({) a;x;, where the coefficients
a; are real numbers. Without loss of generality, we assume that a;11 > a; > 0 for all

ie{1,...,n(f)—1}.

Example 1. Suppose, for n € N, that f, : {0,1} — R20 is defined by fn(zy...21) =
S 207 e Then F = {f,} is a linear family of objective functions over bit strings.
The value of fn(z) is the binary value of the bit string x = x,, ... x1.

Example 2. Suppose, for n € N, that f, : {0,1} — R20 is defined by fn(zy...21) =
Yoy xi. Then F = {f,} is a linear family of objective functions over bit strings. The
value of fn(x) is the number of ones in the bit string = x,, ... 1.

The randomised search heuristic that we study is the well-known (1+1) EA. To
emphasize the role of the parameters, we refer to this algorithm as the (1+1) EA for
minimising F. Given an objective function f € F', this algorithm starts with an initial
solution z, chosen uniformly at random from the search space €2y. In each iteration,
from its existing solution z, it generates a new solution x’ by mutation.

Definition 3. Suppose F' is a family of objective functions over bit strings and that p,, €
[0,1] for n € N. In independent bit mutation, each bit x; of = is flipped independently
with probability p,. In other words, for each i € {1,...,n} independently, we have
Pr(z} =1 — ;) = py and Pr(z] = ;) = 1 — p,. Often, p, = 1/n, but we do not make
this assumption.

In the subsequent selection step, if f(z') < f(z), the EA accepts the solution a/,
meaning that the next iteration starts with ey := 2/. Otherwise, the next iteration
starts with Tnew := z. Since we are interested in determining the number of iterations
that are necessary to find an optimal solution, we do not specify a termination criterion
here. A pseudo-code description of the (1+1) EA is given in Algorithm [I]

Note that the (1+1) EA is not typically used to solve difficult optimisation problems
in practice. There are other, more complex, search heuristics which are better for such
problems in practice. However, understanding the optimisation behaviour of the (141)
EA often helps us to predict the optimisation behaviour of more complicated EAs (which
are mostly too complex to allow rigorous theoretical analysis). As such, the (1+1) EA
proved to be an important tool that attracted significant research efforts (see, e.g., [1,[8,9]
for some early works).



Algorithm 1 The (1+1) EA for minimising F' over bit strings with independent bit
mutation

1: Input an objective function f € F .

2: Initialization: Choose z € {0,1}"/) uniformly at random.

3: repeat forever

4: Create 2’ € {0,1}*() by copying .

5

6

Mutation: Flip each bit in 2’ independently with probability Pn(f)-
Selection: if f(z') < f(x) then z := a'.

2.2 A simple drift theorem with tail bounds

The optimisation time of the (1+1) EA for minimising F' is defined to be the number
of times that the objective function is evaluated before the optimum is found. This
is (apart from an additive deviation of one) equal to the number of mutation-selection
iterations. Suppose that c is a positive constant and that F' is a family of linear objective
functions over bit strings. Our main result (Theorem [7]) shows that the (1+1) EA for
minimising F' with independent bit-mutation rate p, = ¢/n has expected optimisation
time O(n(f)logn(f)). It also shows that, with high probability, the optimisation time
is of this order of magnitude.

In order to prove the main result, we introduce the notion of piece-wise polynomial
drift. This will be explained in Section In this section, we prepare the groundwork,
by introducing the basic drift theorems that we will need. We start by defining the
notion of a feasible family of drift functions. When feasible families of drift functions
exist, they allow an elegant analysis yielding upper bounds for the optimisation time of

EAs.

Definition 4. Let v : N — RZ% be monotonically increasing and consider a family F of
objective functions. For each f € I, let @7 be a function from Qf to R20. We say that
O = {®s} is a v-feasible family of drift functions for a (1+1) EA for minimising F', if
there is an ng € N such that, for every f € F with n(f) > ng, the following conditions
are satisfied.

1. ®¢(x) =0 for all x € Qops, f5
2. ®s(x) > 1 for all x € Qp \ Qopt. f5

3. for all x € Qp \ Qopt, f,

E[q)f(xnew)] < <1 - m) q)f(x),

where, as above, we denote by Tnew the solution resulting from executing a single
iteration (consisting of mutation and selection) with initial solution x.

Here is a simple example.



Example 3. Fiz a positive constant c. Let F be a linear family of objective functions
over bit strings and consider the (1+1) EA for minimising F which uses independent bit
mutation with p, = c¢/n. Suppose that, for each f € F, the coefficient a; is at least 1.
Then the trivial family ® with ®; = f is an (n/c)-feasible family of drift functions for
this EA, where ¢ = c¢(1 — (¢/n))" ' ~ ce™¢. However, as we shall see, this not often a
very useful family of drift functions.

The following well-known theorem (Theorem [B below) shows how the optimisation
time can be bounded using a drift function. Similar arguments appear in the context
of coupling proofs. See, for example, [10, Section 5. Much more is known about drift
analysis. See, for example [I4]. Note that Theorem [ gives a probability tail bound in
addition to an upper bound on the expected optimisation time. The tail bound is not
new, but it seems to be unknown in the evolutionary algorithms literature. It can be
applied to improve several previous results (see [4]).

Theorem 5. Consider a family F of objective functions and a v-feasible family ® of drift
functions for a (1+1) EA for minimising F. Let ®nax ¢ denote max{®¢(z) | x € Qs}.
Then there is an ny € N such that, for every f € F with n(f) > ny, the expected
optimisation time of the EA is at most

v(n(f))(In Pmax,f +1).

Also, for any X\ > 0, the probability that the optimisation time exceeds

[v(n(f)) (10 Prnax 7 + A)]

is at most exp(—\)).

Proof. Let ng be the value from Definition @l Definition d rules out the possibility that
max{v(n) | n > ng} < 1. Also, if max{v(n) | n > no} = 1 then, from part (3) of the
definition, E[® ¢(2new)] = 0 so the optimisation time is 1. Suppose then, that there is an
n € N such that v(n) > 1. Let ny be min{n € N | v(n) > 1} (actually, it would suffice
to take n{, to be any member of this set, but, for concreteness, we take the minimum).
Let ny = max(ng, ng). Now consider any f € F with n(f) > n; and note that the first
two conditions in Definition Ml are satisfied.

Let n = n(f). Fix an arbitrary initial solution xz¢ € 2. Consider starting the EA
with this initial solution zy instead of choosing a random one. Denote by ®(; the value of
®(x) after ¢ selection-mutation steps. Denote by Typs. 2, the first time when the current
solution z is optimal. Thus, from Definition [, (I)[Topt,zo] =0, and for t < Topt, 2, We have
@) > 1. From the third condition in Definition 4

E[®p] < (1-1/v(n))' @) < (1 = 1/v(n)) Pruax,f < exp(—1/1/(n)) P,

where, in the last estimate, we used the well-known inequality 1+ z < e?, which is valid
for all z € R.



It is well known (see, for example [I3, Problem 13(a), Section 3.11]) that if X is a
random variable taking values in the non-negative integers, then E[X] =Y 2 Pr(X >
i). Therefore, the expected optimisation time E[Tqpt 4] can be written as

Topt,zo) ZPr opt.zo = 1) Z Pr(®p > 0).

i>1 t>0

So, for any non-negative integer T', E[Topt o) < T + > ;57 Pr(®y > 0). Since, by
Markov’s inequality, Pr(®py > 0) = Pr(®y > 1) < E[®yy],

E[TOpt,:vo] <T+ Z E[q)[t}]-
t>T

Now let T' = [In(Pmax,f)v(n)] = In(Prax, f)v(n) + € for some 0 < € < 1. By our
upper bounds above, we obtain

ElTopte] < T+ (1—1/v(n maxvfz (1—1/v(n))".

Since v(n) > 1, Y>2°(1 —1/v(n))* = v(n). Plugging this in with the definition of T" and
using (1 — 1/y( ) Pmax, () < exp= I Pmaxs) =1 /Dy, 1,

E[Toptzo] < 10(Prmax p)v(n) + &+ (1= 1/v(n))"v(n)
= v(n) (I(Pmax,f) +/v(n) + (1 = 1/v(n))%).

We can now check, for every ¢ € [0,1], that ¢/v(n)+(1—1/v(n))® <1, as required. This
is easiest seen by checking it for ¢ = 0 and ¢ = 1 and noting that the term is convex
in e. Finally, let 77 := [(v(n))(In(Pmax,r) + A)] for A > 0. We compute

Pr(Topt,z0 > T = Pr(CD[Tq >0) < E[CD[T/}] < exp(—T'/y(n))CI)maX,f < exp(—A).
O

The proof above uses the argument E[®] < (1 — 1/v(n))'®pax,s. This had been
used previously in the so-called methods of expected weight decrease [21]. There, however,
it was followed up with a simple Markov inequality argument that led to a bound on
the expected run-time that is weaker (by a constant factor) than what our drift theorem
yields. Hence the main difference between the two approaches is that ours gives a better
transformation of the drift of E[®y] into a bound on E[min{t | &) < 1}]. Note, just
to avoid misunderstandings, that typically E[min{t | @ < 1}] and min{t | E[®y] < 1}
are different quantities.

Theorem [l indicates that a family of drift function is better if the maximum val-
ues @y s are small. In Example 3 taking ®; = f only yields an upper bound
O(n(f)log fmax) for the expected optimisation time, where fia.x = max{f(x) |z € Qy}.
This can be a weak bound. For example, applying it to the family F from Example [I]
yields a bound O(n(f)?) for the expected optimisation time (which, as we shall see, is a
weak bound).



2.3 Drift analysis for linear objective functions over bit strings

The main goal of this paper is to analyse the optimisation time of the (1+1) EA for min-
imising a linear family F' of objective functions over bit strings, assuming independent-bit
mutation with p, = ¢/n (for a fixed constant ¢). The reason for assuming p, = ¢/n is
that results of Droste, Jansen and Wegener (Theorem 13 and 14 in [9]) show that this
is the optimal order of magnitude. Since our objective is an O(n(f)logn(f)) bound on
optimisation time, we ease the language with the following definition.

Definition 6. A feasible family of drift functions is a family of drift functions which is
v-feasible for a function v(n) = O(n).

Finding feasible drift functions is typically quite tricky. Doerr, Johannsen and
Winzen built on earlier ideas of Droste, Jansen and Wegener [9] and He and Yao [I§] in
order to show that, for any linear family F' of objective functions over bit strings, the
family ¢ defined by

[n(f)/2] n(f)
Pr(x) = Z T + % Z T;
=1 i=[n(f)/2]+1

is a feasible family of drift functions for the (14+1) EA for minimising F which uses
independent bit mutation with p, = 1/n. (Thus, this suffices for the case ¢ = 1.)

This family ® = {®} is said to be a universal family of feasible drift functions
because @y depends on n(f), but not otherwise on f. Since ®pax,r = O(n(f)), this gives
an expected optimisation time of O(n(f)logn(f)), which is asymptotically optimal [9].
Proving that this ® is a feasible family, while not trivial, is not overly complicated. This
discovery of a universal family of feasible drift functions gives an elegant analysis of the
EA.

Unfortunately, even if we allow ®y,.y ¢ to grow faster than ©(n(f)), such universal
families of feasible drift functions only exist when ¢ is small (as noted in the introduction
to this paper). For larger values of ¢, the function ®; has to depend upon f. Prior to
this paper, no non-trivial drift functions of this form were known, so it was an open
problem whether the O(n(f)logn(f)) time bound also applies for ¢ > 1. We show that
this is the case.

2.4 Our result
Our main theorem is as follows.

Theorem 7. Let ¢ be a positive constant. Let F' be a family of linear objective functions
over bit strings. The (1+1) EA for minimising F with independent bit-mutation rate
pn = ¢/n has expected optimisation time O(n(f)logn(f)). There is a constant k and
a function v(n) = O(n) such that, for any X\ > 0, the probability that the optimisation
time exceeds this bound by kv(n)\ time steps is at most kexp(—\).

We prove Theorem [1 by constructing a feasible family of drift functions for the EA
that is piece-wise polynomial (a notion that will be defined in Section 2.5]). Lemma



extends Theorem [Bl to piece-wise polynomial feasible families of drift functions, allowing
us to prove Theorem [Tl

Theorem [7is interesting for two reasons. On the methodological side, the proof of the
theorem greatly enlarges our understanding about how to choose good drift functions.
This might enable better solutions for some problems where drift analysis has not yet
been very successful. Examples are the minimum spanning tree problem [2I] and the
single-criteria formulation of the single-source shortest path problem [2]. For both prob-
lems, the known bounds on the expected optimisation time contain a log( fmax)-factor,
stemming from the fact that, at least implicitly, drift analysis with the trivial family of
drift functions with ®; = f is conducted.

Of course, our result is also interesting because it for the first time shows that linear
functions are optimised by the (1+1) EA in time O(n(f)logn(f)), regardless of what
mutation probability p, = ¢/n is used. Note that this is not obvious. In [5], the authors
show that already for monotone functions, a constant factor change in the mutation
probability can change the optimisation time from polynomial to exponential.

2.5 Piece-wise polynomial drift

Let F be a family of linear objective functions over bit strings. Let ® be a feasible family
of drift functions for a (1+1)-EA for minimising F'.

We start with an elementary observation about ®, which is that, in order to obtain
an O(n(f)logn(f)) bound on the expected optimisation time, we do not really need
P max,f to be bounded from above by a polynomial in n(f) — we can afford to have a
constant number of “huge jumps”. The following arguments can be seen as a variation
of the fitness level method [23].

Definition 8. Fiz k € N. Suppose that, for every f € F, Mf = Mg,...,Mkf s a
partition of Q. Let M = {MJ | f € F}. We say M is a family of fitness-based
k-partitions for F' if for all f € F,

1. Mj = {o},
2. foralli<j, x € sz and y € Mjf, we have f(z) < f(y).

We use the notation min <1>f(Mjf) to denote min{®¢(x) | x € Mjf} and the notation
maxfbf(M]f) to denote max{®(z) | x € Mjf}

Lemma 9. Let F be a family of linear objective functions over bit strings. Let ® be a
v-feasible family of drift functions for a (1+1)-EA for minimising F. Let M be a family
of fitness-based k-partitions for F'. Then there is an nq1 € N such that, for every f € F
with n(f) > ny, the expected optimisation time of the EA is at most

k
Z <ln max @ ¢( Mf)) In(min <I>f(M ) + 1)
7=1



Also, for any A > 0, the probability that the optimisation time exceeds

M-

Il
-

{u(n( ) <ln(max (M])) — In(min @ (M]) + )\ﬂ

is at most kexp(—M\).

Proof. Let ny be the quantity in Theorem [ (which is at least as large as the quantity
ng in Definition H). Let f € F with n(f) > ny. For 0 < j <k, let Q; = (JI_, M and
let ps; = min<I>f(M]f). For 1 < j <k, define Uy, : Q¢ ; — R as follows. If ®¢(x) > py;
then ¢ i(x) = ®¢(x)/pys;. Otherwise, Wy ;(x) = 0.

Now for j € {1,...,k}, consider restricting the search space to €f;. Since the
partition M7 is fitness based, we conclude that, if the EA is started with input f, and
an initial solution in €y ;, all new solutions that are accepted by the EA are in 2y ;.

Considering all solutions in €27 ;_1 to be equivalent to the all-zero state 0, we note
that {Uy; | f € F'} satisfies the first two conditions of being a v-feasible family of drift
functions for F'on {§ ;}. Also, if ®¢(x) > puy ; then E[® ¢(Tnew)] < (1-1/v(n(f)))Ps(x)
SO

ELW 1 (o)) < EO p(nen) /1175] < (1= 1/w(n( 1) ¥5(a).

So, by Theorem [, the expected time until a solution in Q ;_; is reached is at most

v(n(f)(A +Inmax{Vs;(z) |z € Qy;}),

maxfbf(Mf)>>
vin(f) [14+In|[ ——2= ] |.
) (14 (e

This gives the desired result, summing from 7 = k down to 7 = 1.
For the high probability statement, again from Theorem Bl we conclude that with

which is at most

probability at least 1 — exp(—2A) ,

max <I>f(MJf)
oo (- () )

iterations suffice to go from a solution in Qy; to one in Q¢ ;_;.
O

Definition 10. Suppose that ® is a family of feasible drift functions for F'. We will say
that ® is piece-wise polynomial (with respect to the (1+1)-FEA), if there is a constant k
and a family M of fitness based k-partitions for F such that for every j € {1,...,k},
In(max <I>f(M]f)) — In(min @f(Mjf)) = O(logn(f)).

If ® is a family of feasible drift functions for a (1+1)-EA for minimising F', and ® is
piece-wise polynomial with respect to the EA, then the optimisation time bound given
by Lemma [@is O(n(f)logn(f)).



3 Construction of the Drift Function

Let F' be a linear family of objective functions over bit strings (see Definition [2). Fix a
constant ¢ and consider the (14+1) EA for minimising F' with independent bit-mutation
rate p, = ¢/n. We aim to construct a family ® of feasible drift functions for the EA
which is piece-wise polynomial with respect to the EA.

3.1 Notation and parameters

Recall from Definition 2 that Q; = {0,1}") and that an element z € Q; is written as
a string of n(f) bits, z = x5y ... 71. In the proof, we shall often use the word “left” to
refer to the most-significant bit (with the largest index, index n(f)) of z and “right” to
refer to the least-significant bit (with the smallest index, index 1).

The proof will use several parameters, which we discuss here. We start by fixing
an arbitrarily-small positive constant e. This is constant will be used to precisely for-
mulate the intermediate results. To define the family ®, we will use a sufficiently large
constant K > 1 (depending on ¢ and ¢) and a sufficiently small positive constant ~y
(depending on ¢, € and K).

3.2 Splitting into blocks

The difficulty in defining a suitable drift function ® is that the optimisation of f via the
EA heavily depends on the coefficients a;. If these are steeply increasing, as in Example[T]
whether a new solution is accepted or not is determined by the value of the leftmost bit
that is flipped. On the other hand, if these are of comparable size, as in Example 2] the
difference between the number of “good” bit-flips (turing a 1 into a 0) and the number
of “bad” bit-flips (turing a 0 into a 1) determines whether a new solution is accepted.
Of course, the precise definitions of “steeply increasing” and “comparable size” depend
on the constant ¢ in the mutation probability. Also, an objective function f can be of
a mixed type, having regions with steeply increasing coefficients and also regions where
coefficients are of comparable size.

Fix an objective function f with n(f) = n. To analyse f and define the corresponding
drift function ® ¢, we split the bit positions {1,...,n} into blocks. The idea is that, within
a block, one of the two behaviours is dominant. The definition of blocks, naturally, has
to allow us to analyse the interaction between different blocks.

We first split the bit positions {1,...,n} into miniblocks. Start with j = 1. A
miniblock starting at bit position j is constructed as follows. If a,/a; < n?, then
{j,...,n} is a single miniblock. Otherwise, let ¢ be the minimum value in {j +1,...,n}
such that a;/a; > n? Then the set {j,...,i} is a miniblock. If i = n, we are finished.
Otherwise, set j = i and repeat to form the next miniblock, starting at bit position j.
Note that consecutive miniblocks overlap by one bit position.

The next thing that we do is merge consecutive pairs of miniblocks into blocks. To
start out with, we just go through the miniblocks from right to left, making a block out
of each pair of miniblocks. Note that this is (intentionally) different from just defining
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blocks analogous to miniblocks with the n? replaced by n*

consecutive blocks overlap in one bit position.

A block is said to be long if it contains at least yn bit positions (recall that the
parameter v is from Section B.1]) and short otherwise. It helps our analysis if any pair
of long blocks has at least three short blocks in between. So if two long blocks are
separated by at most two short blocks, then we combine the whole thing into a single
long block. We repeat this (at most a constant number of times since there are less than
1/~ long blocks initially) until all remaining long blocks are separated by at least three
short blocks.

We will use £5 to denote the leftmost bit position in block B and rp to denote the
rightmost bit position in block B. As long as B is not the leftmost block, we have
gy /ary > 1t

. Note further that again

3.3 Definition of ®;

We will define weights w1, ..., w, € R such that ®¢(z) = > 7" ; wjz;. We call the w;
weights to distinguish them from the coefficients a1,...,a, of f.

We define the weights wy, ..., w, as follows, starting with w; = 1. Suppose that bit
position i is in block B, that ¢ # rp, and that w,, is already defined. If block B is a long
block, or is immediately to the left of a long block, then we define w; by w; = wya;/a,,.
We call this the copy regime since w;/w,, = a;/a,,. Otherwise, we are in the damped
regime and we define w; by

Wi = Wyp min{K(i_rB)c/"7 a;/arg},

where K is the parameter from Section Bl

It will be a major effort in the remainder of the paper to show that this {®f | f € F}
is a feasible family of drift functions for the EA. It is easier to see that {® ¢} is piece-wise
polynomial with respect to the EA, so we do this next.

Lemma 11. Let F be a linear family of objective functions over bit strings. Consider the
(1+1) EA for minimising F with independent bit-mutation rate p, = c¢/n. The family
O = {Oy} of drift functions constructed above is piece-wise polynomial with respect to
the EA.

Proof. Let k = 6[1/v] + 1. We now construct a family of fitness-based k-partitions
for F.

Let f be an objective function in F' and let n = n(f). We now define the partition
M. We call a bit position i € [2..n] a jump (for the objective function f) if

e | is in a copy regime, and
o 2
o w;/wi—1 >n-.

By the construction of the blocks, bit position 7 is the leftmost bit position of a miniblock
contained in either (1) a long block, or (2) a short block immediately to the left of a
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long block. Since there are at most [1/v] long blocks, there are at most £ — 1 jumps.
(The easiest way to see this is to think about the original long blocks, prior to any
merges. Each block contains two miniblocks. Within a long block B, there may be two
jumps, and there may be two in each of the two blocks to the left of B — the block
immediately to the left of B is always in the copy regime, but the block to its left may
also be merged into a long block with B.) Suppose there are k' jumps, and let ./\/lj =0,
for ¥ +1<j<k.

Let i1, ...,ix be an increasing enumeration of the jumps. Set ig = 1 and ixr 11 = n+1
to ease the following definition. For j = 1,...,k" + 1, let N; be {ij_1,...,i; — 1} and
define

ML ={ze{0,1}" | J € Nj:a; =1AVi>ij 2 =0}

Let Mg = {0}. Informally, INV; is the set of bit positions starting at the jump i;_; and
going up to, but not including, the jump i;. So {N; | 1 < j < k' 4+ 1} is a partition of
the bit positions. Then M; is the set of bit strings « which have the leftmost “1”-bit in
N;.

In order to show that M = {M/ | f € F} is a family of fitness-based k-partitions
for F', we need only show that the following condition is satisfied: for all 1 < j, x € M Zf
and y € M ]f , we have f(z) < f(y). The condition follows from the fact that a;/a;—1 =
w;/wi_1 > n? for all jumps 1.

In order to show that ® is piece-wise polynomial with respect to the EA, it remains to
prove that, for every j € {1,...,k}, In(max <I>f(M]f)) — In(min <I>f(M]f)) = O(logn(f)).
Fix any such j. Let ry = max <I>f(M]f)/ min <I>f(Mjf), We show that ry is upper-bounded
by a polynomial in n.

For a set of bit positions I C {1,...,n}, let min I denote the minimum element in I

and let max I denote the maximum element. Since w; < ... < wy, min® (M Jf ) =

. max N
Wmin N; = wj;_,. Similarly, max <1>f(Mjf) =Y i1 Wi < NWpaxN; = nw;; 1. Hence

rf < nwmaxNj /wmian-

We rewrite WmnaxN; H Wmax(BNN;) (1)

- I
Wmin N; BNNj)

B:BAN; £ min(
where B runs over all miniblocks that have a non-empty intersection with N;. Note that
the above is true because adjacent miniblocks intersect in exactly one bit position.

If B is a miniblock in a damped regime, then wmyax(BAN;)/Wnin(BAN;) < Wep /Wy =
KWs=rs)e/n  In consequence, the contribution of all weights in damped regimes to @
is at most a factor K*.

What remains is the contribution of miniblocks in long blocks and in those short
blocks immediately to the left of a long block. Let B be such a miniblock. If BN N; =
{¢p} then wmaX(BmNj)/wmin(BmNj) = 1. Otherwise, note that

Wimax(BON;) _ Wep _ ( Wy, ) <sz1>
Wmin(BNN;)  Wrp Wep—1 Wrp

12




The first factor is at most n?, since £g is not a jump, the second factor is at most
Wy 1/Wrp = agy—1/ar,; < n? by the definition of a miniblock. O

3.4 Auxiliary results concerning the weights w;

Fix an objective function f € F' and let n = n(f). We will assume that n is sufficiently
large with respect to the constants ¢, £, K and ~ since our objective is to construct
a family ® of feasible drift functions for the EA and the definition of such a family
(Definition M) is only concerned with sufficiently large n. The definition of ®; allows us
to prove a number of useful facts. The first of these uses a geometric series to bound
sums of weights in the damped regime.

Lemma 12. Let By,..., By be a consecutive sequence of blocks (left to right) in the
damped regime with £g, = rp, +t. Then

< Kte/n ( n 1) .
, Z Wi = Wra,, cln K +
je€BoU...UB,

Proof. For 0 < h <t we have Wy —h < Ktc/"erkK_hc/". Now

0o
1
. te/n —ch/n __ grte/n
E wj < K Wy, E K =K erkl—K—C/"'
JEBU...UBy, h=0

Now K¢/™ = ¢ K)e/n > 1 4 (In K)e/n, so

1 < 1 _( n +1>
_ — 1 - °

O

The next lemma gives the relationship between the leftmost weight and the rightmost
weight in a block in the damped regime.

Lemma 13. If B is a block in the damped regime with fg = rg +t and B is not the
leftmost block, then wy, = Ktc/"er.

Proof. This follows from the definition of the weights in the damped regime, since

G’ZB Z n4 Z KC Z Ktc/n.
Ay

The second inequality follows from our assumption (at the beginning of Section [3.4]) that
n is sufficiently large with respect to K and c. O

Lemmas [T2] and [I3] give the following corollary.
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Corollary 14. Let By,..., By be a consecutive sequence of blocks (left to right) in the
damped regime with £, = rp, +1t. If By is not the leftmost block then

n
Z W) < We, (can +1>'

jE€BQU...UB;,

Corollary [[4] gives the following upper bound for the sum of all weights contained in,
and to the right of, a short block.

Lemma 15. Let B be a short block that is not the leftmost block. Then

n
ey (4 T ).
Zw]_wgB<can+ +yn+n
J<tp

Proof. 1f there is no long block to the right of B, then B and all of the blocks to its right
are in the damped regime, so the result follows immediately from Corollary I4 Assume
therefore that there is a long block to the right of B. Let L be the long block which is
closest to B on its right. Let S be the short block immediately to the left of L. Note
that S might be the same block as B.
Suppose j € L. Recall that for all h,k € LU S, we have g—: = 1;}—: Thus, since S is
not the leftmost block,
w; = &aj < &n_ﬂ‘ags = 7”L_4U)gs < TL_4UJgB.
aj aj

Since the w;’s increase with j, we conclude that w; < n~%wy, for any j < ¢. Thus,
-3
Sjee, w5 < 0ty
Using the fact that S is short and the monotonicity of w, we deduce }_, gw; <
ynwy,. Combining this with Corollary [I4], we obtain

n

Z wj < Wy (m + 1) + Ynwe, + wanf?’.
J<{p

4 Feasible Drift

Our objective in this section is to prove the following lemma, which is the heart of the
proof of our main result.

Lemma 16. Let F' be a linear family of objective functions over bit strings. Consider
the (1+1) EA for minimising F with independent bit-mutation rate p, = c¢/n. There is
a function v(n) = O(n) such that the family ® = {®¢} of drift functions constructed
above is v-feasible for the FA.
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Consider running the EA with input f with n = n(f). We use the following notation.
The state after ¢ steps is a binary string z[t| = x,[t] ... z1[t]. Recall from Section Bl that
we write bit strings as words from most significant bit (“leftmost bit”) to least significant.
In the (¢t 4+ 1)’st step of the algorithm, the bits of a binary string y[t + 1] = y,[t +
1]...y1[t + 1] encoding the mutation mask are chosen independently. The probability
that y;[t + 1] = 1 is p,, = ¢/n. Then 2'[t 4+ 1] is formed from z[t] by flipping the bits that
are 1 in string y[t+1]. That is, 2}, [t+1] ... 2} [t+1] = (xu[t|Dyn[t+1]) ... (z1[t]Dya[t+1]).
Let A¢yq be the event that >, a;zi[t + 1] < >, a;24[t]. We say that the mutation in
step t + 1 is “accepted” in this case. If A;1; occurs, then z[t + 1] = 2/[t 4+ 1]. Otherwise,
z[t+1] = z[t]. Of course, the coefficients a;, and therefore A;; itself, depends implicitly
on f. Suppose that x[t] is not the all-zero string. For a bit position i with z;[t] = 1, let
I;[t + 1] be the event

vyt +1=1AVje{i+1,...,n}: (z;[t] =1) = (y;[t + 1] = 0).

L[t + 1] is the event that ¢ is the leftmost ‘1’ to be considered for a flip in step ¢ + 1.
Finally, let Ij[t + 1] be the event

Vie{l+1,...,n}: (z;t] = 0) = (y;[t +1] = 0).

Ij[t + 1] is the event that the ‘0’ bits to the left of ¢ are not considered for a flip in
step t + 1. Note that Pr(Ij[t + 1]) > (1 — p,)" and that, given z[t], the event I}t + 1]
is independent of I;[t + 1] for any 4 (the event I;[t + 1] constrains y;[t + 1] for some j
with z;[t] = 1, whereas the event I;[t + 1] constrains y;[t + 1] for j with z;[t] = 0).
However, these events are not independent if we condition on Ay, as the following
simple observation shows.

Lemma 17. Let i be a bit position contained in some block B. Assume that there is a
block L immediately to the left of B. Then I;[t + 1] and A1 implies I [t + 1].

Proof. There is nothing to show if L is the leftmost block. Hence assume that it is not.
Then in particular, a,, > na,, .

Assume that I;[t + 1] occurs and Iy [t + 1] does not. Let k > ¢, be such that
Yx[t+1] = Land zx[t] = 0. Then 3 7, a;(z;[t+1]—2;[t]) > ar—>_, ;a5 > ax—na; > 0,
because aj > ap, > n4a” > na;. Hence this mutation is not accepted, that is, A; 1
does not occur. O

Recall that € € (0,1), K, and ~ are parameters defined in Section BIl We take ¢ to
be “sufficiently small”. Then K > 1 is taken to be “sufficiently large” (depending on ¢
and ¢€) and then vy € (0,1) is taken to be “sufficiently small” (depending on ¢, € and
K). Finally, we take ng > 1 to be any integer which is “sufficiently large” with respect
to all of these parameters. The actual constraints that we use (to determine what is
“sufficiently large” and what is “sufficiently small”) will be spelled out below. Note that
(1 — 7)™ approaches exp(—c) from below as n — oo. We choose ng so that (1 — ;=)™
is “sufficiently close” to exp(—c) (with respect to ¢, ¢ and K). We can conclude from
this that (1 — £)" is “sufficiently close” to exp(—c) for any n > ng. Similarly, (1 — £)3?

<
n n
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approaches exp(—3c) from below as n — oo. We will choose ny to ensure that, for
n > ny, this is “sufficiently close” to exp(—3c).

Proof of Lemma[16. The first two conditions in Definition [l follow from the construction
of @ in Section 3.3l The third condition follows from Lemma [I§ below. O

The following lemma is the main ingredient in the short proof of Lemma [I6] above.
It establishes the third condition in Definition Ml so it allows us to conclude that ® is
v-feasible for the EA. Since by Lemma [IT] ® is also piece-wise polynomial with respect
to the EA, Lemma [ enables us to repeatedly apply Lemma [I§] to bound the expected
optimisation time of the EA.

Lemma 18. Let F be a linear family of objective functions over bit strings. Consider
the (1+1) EA for minimising F with independent bit-mutation rate p, = c/n. Let f be
an objective function in F with n(f) > ng. For all z € {0,1}™)\ {0},

E[®(z[t+ 1) | 2[f] = 2] < (1 — e (1 - 8)2) O 4(x).
Proof. Fix f € F with n(f) > ng. Let n = n(f). Note that, for any fixed x[t],

E[@s(a[t) ~ @s(zlt+ 1)) = Y Pr(Lift+1)E[@y(alt]) — ®p(aft+1]) | Lt +1]], (2)
iz [t]=1

since the events I;[t + 1] for 1 < i < n are disjoint and ®¢(z[t]) = ®f(x[t 4+ 1]) unless
one of them occurs. In each of various cases (see Subsections 1] to £.5]), we will show
that, for all ¢ with =z;[t] = 1,

E(®y(x(t]) = @p(z[t + 1)) | Lt + 1] = (1 - pn)*"wi(1 —¢), 3)

which is greater than or equal to 0 since n > ng > ¢ and € < 1. Using the lower bound
Pr(L;[t+1]) > pp(1—pn)™, which applies for every ¢ with z;[t] = 1, Equations (2] and (3]
give

E[@(a[t]) = @5 (alt + 1)) = pu(l —pa)" Y E[@s(zlt]) — ®s(alt +1]) | Lt +1]]
i:xq[t]=1

> p(1 = pa)" (1= pa) ™ (1 = €) ¢ ([t]),

E[®@ ([t +1])] < (1= pa(1 = pa)™ (1 = €)) @y (a[t]).

Since (1 — p,)3" > e73¢(1 — €) for n > ng, this will complete the proof.

It remains to prove Equation (3]). We do this in Subsection [4.1] to In each case,
B is the block containing bit position i, L is the block to the left of B (if it exists) and R
is the block to the right of B (if it exists). Figure[Ildepicts some blocks (two short blocks
followed by a long block, followed by a short block divided into two miniblocks, followed
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l
Case 1 Case 3 Case 5 Case 4 | Case 2 Case 1
I
1

Figure 1: The cases that are used to proof Equation (3)).

by another short block). For each possible location of the bit position 7, it names the
relevant case. Every long block is covered by Case 5. Blocks to the left of a long block
are covered by Case 3 and blocks immediately to the right of a long block are covered
by Case 4, then Case 2. Everything else is covered by Case 1.

O

For all of the following cases, fix f € F' with n(f) > ng. Let n = n(f). Fix z[t] with
x;[t] = 1 for a bit position i in block B. Recall from the proof of Lemma [I§ that the
goal is to prove ([B]). That is, we must show that

B[ (z[t]) — p(e[t +1]) [ L[t +1]] > (1 = pa)* wi(1 — &)

4.1 Case 1

For this case, assume that B is not long and that blocks adjacent to B are not long
either.

If B is not the leftmost block, then let L be the block to B’s left. The case in which
B is the leftmost block is actually easier, but to avoid repetition, in this case, let L be
the block consisting of the single bit position £g. The following argument now applies
whether L is a real block or just a single bit position.

We will condition on I;[t+1]. By LemmallT], we know that if this mutation is accepted
(s0 Agy1 occurs), then the event I 11 Oceurs. Also, Pr(fy [t+1] | L[t+1]) > (1—pu)",
as we noted earlier. Thus E[®¢(z[t]) — P¢(x[t 4+ 1]) | L[t 4+ 1]] is equal to

Pr(Ly, [t +1] | Lt + 1)) - E[@p(a[t]) — @p(xft + 1)) | Llt+ 1), 1, [+ 1) (4)
Let P = Pr(Auq | Lift+1], I, [t+1]). Note that P > (1 — p,)" (since, for example, A1
occurs if y;[t+1] = 0 for j # 1). Now @y (x[t]) — Pp(xft+1]) = >0, wilw;[t] —z;[t +1]).
If I;[t + 1] and I; [t + 1] occur, then this is > ., wj(z;[t] — z;[t + 1]). If Ay also

occurs, then x;[t] — z;[t + 1] = 1 so this is w; + >,/ 5 wj(z;[t] — 2;[t +1]). Thus, the
quantity in (4) is at least

(L=pn)" (wiP— > wPr(ylt+1] =1[Lt+1], I, [t +1])
<t i

> (1 - pn)n wz(l - pn)n - Z W;Pn,
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Now, by Lemma [I5], we have

Zw]<K2w < +24+n+n" )
<Ly, In &

To see this, apply the lemma directly to L if it is not the leftmost block (and note
that wy, < K*w,,). If L is the leftmost block (and B is not) then apply Lemma
to block B (noting that wy, < K“w,,) and use Lemma [[2] to sum the weights in L.
Finally, if B is the leftmost block then apply Lemma [I5] to the short block to the right
of B and use Lemma [12] to sum the weights in B.

Using this and w,, < w; we have

E®f(xft]) — @p(xft + 1) [ Lift + 1]]

2K 2y c c
> — Moy, _ n __ _ 9 g2y _ 2cy 2cy ]
> (1 = pn)"w; ((1 Pn) m K 2nK veK —n4K

By the choice of the parameters in Section B and since n > ng, each of 21K 21?,

2-K 207 ~eK?Y and < aK 2¢7 is at most (1 —p,)"e/4, so Equation (B) holds, as required.
To see this, recall (from the text just after Lemmal[I7 ) that € is taken to be “sufficiently
small”, then K > 1 is taken to be “sufficiently large” (depending on ¢ and ¢) and then

€ (0,1) is taken to be “sufficiently small” (depending on ¢, € and K). Finally, we
take ng > 1 to be any integer which is “sufficiently large” with respect to all of these
parameters, in particular, guaranteeing that (1 — p,,)" is “sufficiently close” to exp(—c)
for any n > ng. It is easy to see that 5K 27 and 2:K 2¢7 are sufficiently small, since
ng is chosen after the other parameters (so these terms can be made arbitrarily small
as compared to exp(—c)e/4). Similarly, ycK?¢7 is sufficiently small because ~ is chosen
to be sufficiently small with respect to ¢, ¢ and K. Finally, % is sufficiently small
because 7 can be chosen as small as we like with respect to the other parameters. (That
is, first K is made sufficiently large with respect to ¢ and € and then +y is defined.) For

““InK)/(2¢ln K) gives 21[;2[? = e %/8.

example, setting v = In(Fe

4.2 Case 2

For this case, assume that the block L, immediately to the left of B, is long, and that i
is in the rightmost miniblock of block B (which is therefore short).

This is very similar to Case 1. As in Case 1, we will condition on I;[t + 1]. Where
Case 1 uses Lemma [I7] we use exactly the same argument to show that, if this mutation
is accepted (so A1 occurs), then event [ éB[t 1] oceurs. From that point the argument
proceeds exactly as in Case 1, replacing “f;” with “£g”. We use Lemma [[5] to obtain

the upper bound
ijgwgB< n K—i—l—i—’yn—i—n )
J<!p

§Kc'yer( +1+yn+n" )

In K

The rest of the argument is exactly the same as in Case 1.
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4.3 Case 3

For this case, assume that B is immediately to the left of a long block R. Hence both
B and R are in the copy regime.

If B is not the leftmost block, then there is a block L immediately to the left of B.
Block L is short, since any pair of long blocks has at three short blocks between. Thus,
L is in the damped regime. If B is the leftmost block, to keep notation simple, we add
an artificial block L = {{g} = {n}.

Note that

Z wj < nng% = nngaﬁ < n 3w, (5)
J<rr Weg Al

Let Y be the set of n-bit binary strings so that, if y[t + 1] = y, then I;[t + 1] occurs
and Ay occurs (the move in step ¢+ 1 is accepted). We first analyse the effect of such
a mutation. Let y € Y. As in Case 1, A;11 implies IéL [t + 1]. Consequently, we have

y; = 0 for all j that fullfill j > ¢, or both j > 4 and z;[t] = 1. Thus, by the definition
of Aiy1, we have

> a4l ®y5) —lt) <.
J<Lr
We compute
S et Y 4 N asYasmce
JjeLy;=1,x;[t]=0 JEBUR:y;=1,x,[t]=0 JEBUR:y;=1,z;[t]=1 Jj<rr
Dividing through by a;, we have
aj aj aj -3
tll Rt 2 < )
JELy;=1,2;[t]=0 JEBUR:y;=1,z;[t]=0 JEBUR:y;=1,z;[t]=1
Now for j in the copy regime (blocks B and R), aj/a; = w;/w;. Also, for j € L (which
is in the damped regime),
UGy G

: i—rr)c/n
wj = Wy, mm(K( L)e/ saifar, ) < wy, =wy, = w;
Ay, a; Wy

)
a;

so aj/a; > w;/w;. Hence, replacing a;/a; with w;/w; and multiplying through by wj,

we have
Z w; + Z wj — Z w; < n”"tw; (6)

jeLuy;=1,[t]=0 jEBURy,;=1,2,[t]=0 jEBURwy;=1,z,[f]=1
For the mutation being random (but conditioning on I;[t+1] and I; [t+1]), we com-
pute the following. Let By = E [2 seroponw; (it — @l + 1)) | Lt + 10,15, [t +1]].
Then
B(@s(w[t]) — p(aft +1]) | Lilt + 1], I, [t + 1]]

= Bu+ Y wiBlalt) = ali + 1 | Ll + 10,14, [+ 1))
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which is at least F; — n~3w; by (&). Also,

Ev=) Prylt+1]=y | Lit+ 10,1, [t +1]) Y wjialt] — (a5t @ y5).

yey jELUBUR

Each y with y; = 0 for all j # i contributes at least (1 — p,)"w; to the outer sum.
All other strings y contribute at least —n3w; by (B). Now, putting it together, we find
that

E[®p(xft]) — ®p(xft +1]) | L[t +1]]
=Pr(l, [t + 1] | L[t + 1)) E[®p(x[t]) — @p(2[t + 1]) | Lift + 1], 1y, [t + 1]
>Pr(Ily, [t+1] | L[t +1])(Ey —n~ )
> Pr (IZL[t+ | Lit+1)((1 = pr)"w; — n SBw; —n 3wl)
> (1= pa)" (1 = pu)"wi — n™2w; — 0~ %wy).

Now, 2n=3 < e(1 — p,)", so we have established Equation (3], as required.

4.4 Case 4

For this case, assume that the block L, immediately to the left of B, is long, and that 7
is in the leftmost miniblock of block B (which is short).

Let Y be the set of n-bit binary strings so that, if y[t + 1] = y, then I;[t + 1] occurs
and A1 occurs (the move in step ¢+1 is accepted). Asin Case 3, Aty implies Iy [t+1].
Hence for every y € Y we have y; =0if j > {1 orif j > ¢ and z;[t] = 1. Thus,ify €Y,
then, by the definition of A;y1, we have

0< Y ajlx;lt] — (x5t @ yj)- (7)

J<tr

To derive an upper bound in the right-hand side of Equation (7)) we split the summa-
tion into three easily-bounded parts. The summation over j € L — {rp} is equal to

— qugyyj:l a;, the summation over j € B is at most ZjeB:mj[t}:l,yjzl aj, and the

summation over j < rp is at most na,, < a;/n. From (7)) we thus have
Z a; < Z a; + a;/n. (8)
jGL*{TL}:ijI jEB:Z’j[t}Zl, ;=1

Define
T(y) = —(1+ % — KK w; — K¢ Z wj.
J<Lp,j#iy;=1

We will show that, for y € Y,

> wjilalt] = (a5l @) = U(y)-

J€[n]
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Start by breaking up the left-hand side as

= wit Y wim Y wit w5 @y)). (9)

jeL—{rp}y;=1 jeEB:x;[t]=1,y;=1 JEB:x;[t]=0,y;=1 Jj<rm

Recall that for j € L, we have w; = Z}Laj, whereas for j € B, we have
TL

TL

Qp Ay _ (078
aj < ap, = Lw,, < —& U)TBK(TL rB)e/n < = ij'YC,
er er er

where the final inequality uses the fact that B is short, that is, r;, —rp < yn.
Thus, the sum of the first two terms in (J]) is at least

w w _
——k E : aj + KT § : aj,

a a
' jeL—{rp}y;=1 "L jeEB:x;[t]=1,y;=1

and by (8]), this is at least

_ W ey 3 a; | — L

’
a a n
'L jEBx;[t]=1y;=1 L

which is at least

Wy, & Wy

_ w
(1— K )a; — > a;.

ar, na a
'L 'L "L jeB—{i}a;lt]=1y,;=1

Upper-bounding a; with aT—ijKVC in the last term, we find that (@) is at least

’LUTL

Wy, G Wrp

(1 - K "%)a; — K¢ > w;
jGBf{i}::L'j [t]ZI,ijI

Y Y wlll - @l o).

JjEB:x;[t]=0,y;=1 Jj<rm

ar, M Gy

Combining the summations, this is at least

Wy,

Wry
Lo — (1= KLy, — K¢ E .
~a; — (1 — K77 a; — K wj.

J<EB,jF#iyj=1

Ay, Ay,

Upper-bounding a; with a,, , the first two terms are at least —(1+ % — K77 w,,. Then
upper-bounding w,, with K7w;, the whole thing is at least ¥(y).
We have shown that, for y € Y,

> wileglt] = (2t @ 7)) > U(y).

J€[n]
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Suppose that y is an n-bit binary string such that, if y[t + 1] = y, then A;11 does not
occur. In this case, we also have

> wjaslt] — (x5t @ y5) = 0> B(y),
J€[n]

since ¥(y) < 0.

Now let y[t 4+ 1] be random as constructed by the algorithm. Denote by y* the
bit string that contains exactly one one-entry, namely the one on position ¢. Let P be
the probability (conditional on I;[t + 1]) that y[t + 1] = y*. Now

E[®s(x[t]) — @p(xft +1]) [ Lt +1]]
=Y Pr(ylt+ 1 =y | Llt+1]) D wilaslt] — (x(t) @ y5))

yey J€[n]
=Y Pr(ylt+ 1) =y | L[t + 1)T(y)+
yey

S OPrylt+ 1=y | Llt+1]) [ > wix;lt] — (2t ©y5)) — ¥(y)

yey JE€[n]

= E[U(y[t+ 1)) | Lt + 1]+ Y Prylt + 1] =y | Llt+1]) [ D wya;lt] — (@[] @ ;) — U(y)
yey JEN]
> B[U(ylt + 1)) | Lt +1]] + P(=¥(y") + Ps(aft]) — @p(z[t] © y7))
> (141 - KK w; — K Y Cwj+ P((L+ L — KK w; +w;),
J<lB,j#i
where the first inequality comes by ignoring terms y € Y — {y*} (since these are non-
negative).
Consider the first term,

-1+ % — K )K" w; = —(K' -1+ an)wi.

By our choice of 7, K7¢—1 is very small (see the discussion at the end of Case 1). Since
n 2 no,
Ke

Now by the definitions of L[t + 1] and y*, P = (1 — p,,)" ¢!, where ¢ is the number of
bits j > i such that ;[t] = 1. Thus, P > (1 —p,)" so

(e/3)(1 = 2)" < (¢/3)P.
We conclude that the first term is at least —(¢/3)Pw;. Using Lemma [[5] and w,, <

K7%w;, we obtain

K2fyc cK2fyc cKQ'yc
yee . . 2ve
K "j;ZwJSMZ(anJF - + K7 yc + - >
St
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Given the constraints on our parameters (see the discussion at the end of Case 1), each

of the four summands, ﬁ 2;;, CK:W, K*¢yc and dfl 7 is at most (¢/12)P. Thus, the

second term, — K¢ zqu j£i pwj, is also at least —(¢/3)Pw;. In a similar way, we see
that the third term,

P((1+ L = KK w; + w;),
is at least Pw;(1 —¢/3). We conclude that

E[®(z[t]) — ®p(aft +1]) | Lt +1]] = Pwi(l —e),

which establishes Equation (B]), as required.

4.5 Case 5

For this case, assume that B is a long block.

To the right of B, there might be a short block R, otherwise rg = 1 and we define
R = {rp} to ease notation. To the left of B, there might be a short block L, otherwise
¢/p =n and we define L = {{p} to ease notation.

Let Y be the set of n-bit binary strings so that, if y[t + 1] = y, then I;[t + 1] occurs
and A;yq occurs (so the move in step ¢ + 1 is accepted). As in Case 4, A1 implies
IéL [t + 1]. Hence for every y € Y we have y; = 0 for j > ¢;, and for all j > i satisfying
xj[t] = 1. Thus, if y € Y, then, by the definition of A;1;, we have

0< > aj(x;lt] — ([t @ yy))

J<lL

< Y ai(alt) - (gl @) +an
rr<J<LL

< D aalt) - (@ yy) + > aj +amn”’. (10)
rp<j<lL JERy =15z ;5[t]=1

We will use the fact that for j € LU B, we have w; = Z)Qaj since we are in the copy
"B
regime, whereas for j € R, we are in the damped regime, so we have

Qry Ay (rp— a
) _ “rB B—Tr)c/n ~ YTB . pyC
aj < apy = Wrp < wyp K < w; K7°.

B B Wrp

Plugging this into (I0]), we obtain

> wlelf] - @l ey) === 3 el - @l o)

rp<j<lr "B rp<j<tr

w . —
> 2 E a; +am 3| > K E wj — wino.
a
"B \jeRy;=1a;[t]=1 JERy=15z;[t]=1
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Let U(y) = —K Y w; —w;n~3. From the above,

J<lr;y;j=1
S w11 — (250 @ 7))
J<Lg
> (1—- K7 Z wj — Z w; —win~ — Z wj
JERy;=L;a;[t]=1 JER;y;=152;t]=0 J<rriy;j=1
> U(y).

We have shown that, if y € Y (so I [t + 1] occurs), then

> wilaglt] = (2] @ ;) > V(y).

J€[n]

Suppose now that y is an n-bit binary string such that, if y[t + 1] = y, then Az
does not occur. In this case, we also have

> wjlalt] — (250t ® y;) = 0> U(y),

JEn]

since ¥(y) < 0.

Now let y[t + 1] be random as constructed by the algorithm. Denote by y* the
bit string that contains exactly one “1”-entry, namely on position ¢. Let P be the
probability (conditional on I;[t + 1]) that y[t + 1] = y*. Now, as in Case 4,

El@(z[t]) — @[t +1]) | L[t + 1]]
> E[W(y[t +1]) | Lt + 1] + P(=¥(y") + Cr(zft]) — p(z[t] B y"))
—K° Z Swj — n"3w; + Pw;.

J<Lgr

v

Using Lemma [I5] and wy,, < w;, we obtain

K¢ cK7e cK7e
n? > '

C
Kycﬁzwjﬁwi<ﬁ+ - + K7%ye +

J<tr

Since each of the summands, %, df:c, K7ye, % and n~3 is at most (¢/5)P (for
n > ng), we have E[®¢(z[t]) — Pp(x[t + 1]) | L[t + 1]] > Pw;(1 — ¢€), which gives
Equation (3]), as required.

The cases that we have just completed conclude the proof of Lemma [I8] which was

used in the proof of Lemma We are now ready to prove Theorem [l

Proof of Theorem [7. By Lemma [I6, there is a function v(n) = O(n) such that the
family ® = {®} of drift functions that we have constructed is v-feasible for the EA.
By Lemma [I1] this family of drift functions is piece-wise polynomial with respect to the
EA. The result now follows from Lemma [ (using Definition [I0]). O
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5 A Simple Lower Bound

The following theorem complements Theorem [1, showing that it cannot be improved by
more than a constant factor. This extends Lemma 10 in [9] using the same proof idea.

Theorem 19. Let ¢ be a positive constant. Let ¢ = max{l,c}. Let F be a family
of linear objective functions over bit strings. Consider the (1+1) EA for minimising
F with independent bit-mutation rate p, = c/n. There is a constant ng such that,
for any f € F with n(f) > ng, the probability that the optimisation time is at most

n(f)In(n(f))/(2(E + 1)) is at most exp(—n(f)*1).
Proof. Let ng be any integer so that (1— n—i)”o > exp(—(¢+1)). It is easy to see that such

an ng exists, since (1 — n—i)"o converges, from below, to exp(—¢), as n — oo. Consider
an input f € F' with n(f) > ng. Let n = n(f) and let

T=———nlnn.
2(¢+1)
The probability that a particular bit position is not touched by any mutation step
during T iterations is at least

(1= pa)” = (1= &/n)" = exp(—(@+ 1)T/n) = n~Y/2,

By a Chernoff bound, the probability that the initial solution z (which is chosen
uniformly at random from {0,1}") has at least n/3 bit positions that are one is at least
1 — exp(—n/36). The probability that all of these bits are touched in T' mutation steps
is at most (1 —n~1/2)"/3 < exp(—(1/3)n'/?).

Thus, the probability that the optimum is found in T steps is at most exp(—n/36) +
exp(—(1/3)n'/2). O

6 Conclusion

Let ¢ be a positive constant. Let F' be a family of linear objective functions over bit
strings. Theorem [7] shows that the (1+1) EA for minimising F' with independent bit-
mutation rate p, = ¢/n has expected optimisation time O(n(f)logn(f)). The proof of
the theorem constructs a feasible family of drift functions for the EA that is piece-wise
polynomial. The construction of the drift functions depends on the relevant objective
functions. By reproving a classical drift theorem, we also show that our bound on the
expected optimisation time also holds with high probability. This version of the drift
theorem makes it easy to extend a number of other classical bounds stemming from
drift or “expected multiplicative weight decrease” arguments to also hold with high
probability, instead of only with expectation (see [4]). We expect this version of the
drift theorem to become a useful tool in the theory of evolutionary algorithms.
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