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Abstract. We investigate a special case of the Induced Subgraph Iso-

morphism problem, where both input graphs are interval graphs. We
show the NP-hardness of this problem, and we prove fixed-parameter
tractability of the problem with non-standard parameterization, where
the parameter is the difference |V (G)| − |V (H)|, with G and H being
the larger and the smaller input graph, respectively. Intuitively, we can
interpret this problem as “cleaning” the graph G, regarded as a pattern
containing extra vertices indicating errors, in order to obtain the graph
H representing the original pattern. We also prove W[1]-hardness for the
standard parameterization where the parameter is |V (H)|.

1 Introduction

Problems related to graph isomorphisms play a significant role in algorithmic
graph theory. The Induced Subgraph Isomorphism problem is one of the ba-
sic problems of this area: given two graphs H and G, find an induced subgraph
of G isomorphic to H , if this is possible. In this general form, Induced Sub-

graph Isomorphism is NP-hard, since it contains several well-known NP-hard
problems, such as Independent Set or Induced Path. As shown in Sect.3,
the special case of Induced Subgraph Isomorphism when both input graphs
are interval graphs is NP-hard as well.

As Induced Subgraph Isomorphism has a wide range of important appli-
cations, polynomial time algorithms have been given for numerous special cases,
such as the case when both input graphs are trees [15] or 2-connected outerpla-
nar graphs [12]. However, Induced Subgraph Isomorphism remains NP-hard
even if H is a forest and G is a tree, or if H is a path and G is a cubic planar
graph [9]. In many fields where researchers face hard problems, parameterized
complexity theory (see e.g. [6], [16] or [8]) has proved to be successful in the
analysis and design of algorithms that have a tractable running time in many
applications. In parameterized complexity, a parameter k is introduced besides
the input I of the problem, and the aim is to find an algorithm with running time
O(f(k)|I|c) where f is an arbitrary function and c is a constant, independent
of k. A parameterized problem is fixed-parameter tractable (FPT), if it admits
such an algorithm.

Note that Induced Subgraph Isomorphism is trivially solvable in time
O(|V (G)||V (H)||E(H)|) on input graphsH and G. AsH is typically much smaller
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than G in many applications related to pattern matching, the usual parameter-
ization of Induced Subgraph Isomorphism is to define the parameter to be
|V (H)|. FPT algorithms are known if G is planar [7], has bounded degree [2], or
if H is a log-bounded fragmentation graph and G has bounded treewidth [11].
In Sect. 3, we show that the case when both input graphs are interval graphs is
W[1]-hard with this parameterization.

Our main objective is to consider another parameterization of Induced Sub-

graph Isomorphism, where the parameter is the difference |V (G)| − |V (H)|.
Considering the presence of extra vertices as some kind of error or noise, the
problem of finding the original graph H in the “dirty” graph G containing er-
rors is clearly meaningful. In other words, the task is to “clean” the graph G
containing errors in order to obtain H . For two graph classes H and G we define
the Cleaning(H,G) problem: given a pair of graphs (H,G) with H ∈ H and
G ∈ G, find a set of vertices S in G such that G − S is isomorphic to H . The
parameter associated with the input (H,G) is |V (G)| − |V (H)|. For the case
when G or H is the class of all graphs, we will use the notation Cleaning(H,−)
or Cleaning(−,G), respectively.

In the special case when the parameter is 0, the problem is equivalent to the
Graph Isomorphism problem, so we cannot hope to give an FPT algorithm for
the general problem Cleaning(−,−). Several special cases have already been
studied. FPT algorithms were given for the problems Cleaning(Tree,−) [14],
Cleaning(3-Connected-Planar, Planar) [14] and Cleaning(Grid,−) [4], where
Tree, Planar, 3-Connected-Planar and Grid denote the class of trees, planar
graphs, 3-connected planar graphs, and rectangular grids, respectively. Without
parameterization, all of these problems are NP-hard.

Here we consider the special case where the input graphs are from Interval,
denoting the class of interval graphs. In Sect. 4, we present an FPT algorithm
for Cleaning(Interval, Interval).

2 Notation and preliminaries

We denote {1, . . . , n} by [n]. We denote the neighbors of a vertex x ∈ V (G) in G
byNG(x). For someX ⊆ V (G), letNG(X) denote those vertices in V (G)\X that
are adjacent to a vertex in X in G, and let NG[X ] = NG(X) ∪X . If X ⊆ V (G)
then G−X is obtained from G by deleting X , and G[X ] = G− (V (G) \X). For
some vertex x, sometimes we will use only x instead of {x}, but this will not
cause any confusion. We say that two subsets of V (G) are independent in G, if
no edge of G runs between them. Otherwise, they are neighboring.

Let G be an interval graph, meaning that G can be regarded as the inter-
section graph of a set of intervals. Formally, an interval representation of G is
a set {Ii | i ∈ [n]} of intervals, where Ii and Ij intersect each other if and only
if vi and vj are adjacent. We say that two intervals properly intersect, if they
intersect, but none of them contains the other.

Let C(G) be the set of all maximal cliques in G, and let C(v) = {C | v ∈
C,C ∈ C(G)} for some v ∈ V (G). It is known that a graph is an interval graph
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if and only if its maximal cliques can be ordered consecutively, i.e. there is an
ordering of C(G) such that the cliques in C(v) form a consecutive subsequence
[10]. Note that any interval representation gives rise to a natural ordering of
C(G), which is always a consecutive ordering. The set of all consecutive orderings
of C(G) are usually represented by PQ-trees, a data structure introduced by
Booth and Lueker [1].

A PQ-tree of G is a rooted tree T with ordered edges with the following
properties: every non-leaf node is either a Q-node or a P-node, each P-node has
at least 2 children, each Q-node has at least 3 children, and the leaves of T
are bijectively associated with the elements of C(G). The frontier F (T ) of the
PQ-tree T is the permutation of C(G) that is obtained by ordering the cliques
associated with the leaves of T simply from left to right. Two PQ-trees T1 and
T2 are equivalent, if one can be obtained from the other by applying a sequence
of the following transformations: permuting the children of a P-node arbitrarily,
or reversing the children of a Q-node. The consecutive orderings of the maximal
cliques of a graph can be represented by a PQ-tree in the following sense: for
each interval graph G there exists a PQ-tree T , such that {F (T ′) | T ′ is a PQ-
tree equivalent to T } yields the set of all consecutive orderings of C(G). Such a
PQ-tree represents G. For any interval graph G a PQ-tree representing it can
be constructed in linear time [1].

This property of PQ-trees can be used in the recognition of interval graphs.
However, to examine isomorphism of interval graphs, the information stored in
a PQ-tree is not sufficient. For this purpose, a new data structure, the labeled
PQ-tree has been defined [13, 3]. For a PQ-tree T and some node s ∈ V (T ),
let Ts denote the subtree of T rooted at s. For each vertex v in G, let the
characteristic node R(v) of v in a PQ-tree T representing G be the deepest node
s in T such that the frontier of Ts contains C(v). For a node s ∈ V (T ), we will
also write R−1(s) = {x ∈ V (G) | R(x) = s}, and if T ′ is a subtree of T , then
R−1(T ′) = {x ∈ V (G) | R(x) ∈ V (T ′)}. Observe that if R(v) is a P-node, then
every clique in the frontier of TR(v) contains v. It is also true that if R(v) is a
Q-node with children x1, x2, . . . , xm, then those children of R(v) whose frontier
contains v form a consecutive subseries of x1, . . . xm. Formally, there must exist
two indices i < j such that C(v) = {C | C ∈ F (Txh

) for some i ≤ h ≤ j}.

A labeled PQ-tree of G is a labeled version of a PQ-tree T of G where the
labels store the following information. If x is a P-node or a leaf, then its label
is simply |R−1(x)|. If q is a Q-node with children x1, x2, . . . , xm (from left to
right), then for each v ∈ R−1(Tq) we define Qq(v) to be the pair [a, b] such
that xa and xb are the leftmost and rightmost children of q whose frontier in T
contains C(v). Also, if Qq(v) = [a, b] for some vertex v, then we let Qleft

q (v) = a

and Qright
q (v) = b. For some 1 ≤ a ≤ b ≤ m, the pair [a, b] is a block of q.

Considering blocks of a Q-node, we will use a terminology that treats them like
intervals, so two blocks can be disjoint, intersecting, they contain indices, etc.
The label L(q) of q encodes the values |Lq(a, b)| for each a < b in [m], where
Lq(a, b) is the set {v ∈ R−1(q) | Qq(v) = [a, b]}.
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Fig. 1. An interval representation of an interval graph G and a labeled PQ-tree T
representing G. Squares, white and black circles represent Q-nodes, P-nodes and leaves,
resp. For each node x in T , we listed the vertices in R−1(x), together with the values
Qx(v) for each v ∈ R−1(x) where x is a Q-node. As an example, the frontier of p2 is
({b1, b2, f, g}, {b3, f, g}).

Note that a PQ-tree can be labeled in linear time. Two labeled PQ-trees are
identical, if they are isomorphic as rooted trees and the corresponding vertices
have the same labels. Two labeled PQ-trees are equivalent, if they can be made
identical by applying a sequence of transformations as above, with the modifica-
tion that when reversing the children of a Q-node, its label must also be adjusted
correctly. The key theorem that yields a way to handle isomorphism questions
on interval graphs is the following:

Theorem 1 ([13]). Let G1 and G2 be two interval graphs, and let TL(G1) and
TL(G2) be the labeled version of a PQ-tree representing G1 and G2, respectively.
Then G1 is isomorphic to G2 if and only if TL(G1) is equivalent to TL(G2).

Given a Q-node q in a PQ-tree T , let x1, . . . , xm denote its children from
left to right. For a given child xi of q, we define Mq(i) to be the set of vertices
v ∈ R−1(q) for which Qq(v) contains i, i.e. Mq(i) is the union of those sets
Lq(a, b) for which [a, b] contains i. Clearly, Mq(i) 6= Mq(j) if i 6= j, since this
would imply the interchangeability of the nodes xi and xj . We say that some
w ∈ R−1(q) starts or ends at i if Qleft

q (v) = i or Qright
q (v) = i, respectively.

We also denote by M+
q (i) and M−

q (i) the set of vertices that start or end at
i, respectively. The maximality of the cliques in F (Txi

) implies the following
observation.

Proposition 2. If q is a Q-node in a PQ-tree T and xi is the i-th child of q,
then neither R−1(Txi

) ∪M+
q (i) nor R−1(Txi

) ∪M−
q (i) can be empty.
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Fig. 2. Illustration of the construction of the graph G. (The picture assumes vivj ∈ E.)

Given some interval representation ρ for an interval graph G, we denote by
vleftρ and vrightρ the left and right endpoints of the interval representing v ∈ V (G).
If no confusion arises, then we may drop the subscript ρ.

3 Hardness results

In this section, we prove the NP-hardness of Induced Subgraph Isomorphism

for the case of interval graphs, and we also show the parameterized hardness of
this problem, where the parameter is the size of the smaller graph.

Theorem 3. (1) The Induced Subgraph Isomorphism problem is W[1]-hard
if both input graphs are interval graphs, and the parameter is the number of
vertices in the smaller input graph.
(2) The Induced Subgraph Isomorphism problem is NP-complete, if both
input graphs are interval graphs.

Proof. To prove (1), we give an FPT reduction from the parameterized Clique

problem. Let F = (V,E) and k be the input graph and the parameter given
for Clique. We assume w.l.o.g. that F is simple and V = {vi | i ∈ [n]}. We
construct two interval graphs G and H with |V (H)| = O(k2) such that H is an
induced subgraph of G if and only if F has a k-clique.

The vertex set of G consist of the vertices asi , b
s
i , c

s
i , d

s
i , fi,i for each i ∈ [n] and

s ∈ {−,+}, vertices fi,j, fj,i for each vivj ∈ E, and two vertices g− and g+. Note
that |V (G)| = 9n+ 2|E| + 2, which is polynomial in n. We define the edge set
of G by giving an interval representation for G. The intervals I(x) representing
a vertex x ∈ V (F ) are defined below. See also the illustration of Fig. 2.

I(a+i ) = [10i− 8, 10i− 5] I(a−i ) = [−10i+ 5,−10i+ 8] if i ∈ [n]
I(b+i ) = [10i− 6, 10i− 3] I(b−i ) = [−10i+ 3,−10i+ 6] if i ∈ [n]
I(c+i ) = [10i− 4, 10i− 1] I(c−i ) = [−10i+ 1,−10i+ 4] if i ∈ [n]
I(d+i ) = [10i− 2, 10i] I(d−i ) = [−10i,−10i+ 2] if i ∈ [n]
I(fi,i) = [−10i+ 5, 10i− 5] if i ∈ [n]
I(fi,j) = [−10i+ 7, 10j − 7] I(fj,i) = [−10j + 7, 10i− 7] if vivj ∈ E
I(g−) = [−10n,−1] I(g−) = [1, 10n]
Note that this construction is symmetric in the sense that for any interval

[x1, x2] in this interval representation, the interval [−x2,−x1] is also present.
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Also, we define the graph H , having k2 + 8k+ 2 vertices, as follows. Let the
vertex set ofH consist of the vertices ãsi , b̃

s
i , c̃

s
i , d̃

s
i for each i ∈ [k] and s ∈ {−,+},

the vertices f̃i,j for each (i, j) ∈ [k]2, and two vertices g̃− and g̃+. Again, we
define the edge set of H by giving an interval representation for H as follows.

I(ã+i ) = [10i− 8, 10i− 5] I(ã−i ) = [−10i+ 5,−10i+ 8] if i ∈ [k]

I (̃b+i ) = [10i− 6, 10i− 3] I (̃b−i ) = [−10i+ 3,−10i+ 6] if i ∈ [k]
I(c̃+i ) = [10i− 4, 10i− 1] I(c̃−i ) = [−10i+ 1,−10i+ 4] if i ∈ [k]

I(d̃+i ) = [10i− 2, 10i] I(d̃−i ) = [−10i,−10i+ 2] if i ∈ [k]

I(f̃i,i) = [−10i+ 5, 10− 5] if i ∈ [k]

I(f̃i,j) = [−10i+ 7, 10j − 7] I(f̃j,i) = [−10j + 7, 10i− 7] if i, j ∈ [k], i 6= j
I(g̃−) = [−10k,−1] I(g̃−) = [1, 10k]

First, if C is a set of k vertices in F that form a clique, then H is isomorphic
to the subgraph of G induced by the vertices asi , b

s
i , c

s
i , d

s
i , fi,i for each vi ∈ C

and s ∈ {−,+}, the vertices fi,j , fj,i for each {vi, vj} ⊆ C, and the two vertices
g− and g+. This can be proven by presenting an isomorphism ϕ from H to the
subgraph of G induced by these vertices. It is easy to verify that the function ϕ
defined below indeed yields an isomorphism. Here, c(i) denotes the index of the
i-th vertex in the clique C, i.e. C = {vc(i) | i ∈ [k]}.

ϕ(x̃s
i ) = xs

c(i) for each x ∈ {a, b, c, d}, s ∈ {−,+}, i ∈ [k]

ϕ(f̃i,j) = f s
c(i),c(j) for each i, j ∈ [k]2

ϕ(g̃s) = gs for each s ∈ {−,+}
For the other direction, suppose that ϕ is an isomorphism from H to an

induced subgraph of G. We set F = {fi,j | i = j or vivj ∈ E}, and we define Z
to contain those vertices of G whose interval contains 0.

Claim. If there is a disjoint union of two k-stars in K with centers u1 and u2,
induced by vertices {u1, u2}∪J , then {ϕ(u1), ϕ(u2)} = {g−, g+} and ϕ(J)∩F =
∅. To prove this claim, note that the vertices of J are independent, so there can
be at most one vertex in ϕ(J) whose interval contains 0. Thus, either ϕ(u1)
or ϕ(u2) must not be in Z, and must be adjacent to at least k vertices not
in Z. This implies that ϕ(u1) or ϕ(u2) must indeed be g− or g+. Assuming,
say, ϕ(u1) = g− (the remaining cases are analogous), we obtain that the only
common neighbor of the k vertex of ϕ(J) not adjacent to ϕ(u1) can be g+. This
immediately implies {ϕ(u1), ϕ(u2)} = {g−, g+}. From this, ϕ(J)∩F = ∅ is clear,
since no vertex of J is adjacent to both u1 and u2. Hence, the claim is true.

Now, note that for some x ∈ {a, b, c, d}, the vertex set {x̃s
i | i ∈ [k], s ∈

{−,+}} ∪ {g̃−, g̃+} induces the disjoint union of two k-stars having centers g̃−

and g̃+ in H . Therefore, applying the above claim to each these vertex sets
with x ∈ {a, b, c, d}, we obtain that {ϕ(g̃−), ϕ(g̃+)} = {g−, g+}, and also that

ϕ(X̃) ∩ F = ∅ for the set X̃ containing the vertices of the form x̃s
i where x ∈

{a, b, c, d}, s ∈ {−,+} and i ∈ [k]. By the symmetry of H and G, we can assume
w.l.o.g. that ϕ(g̃−) = g− and ϕ(g̃+) = g+.

From this, we have that exactly 4k vertices of ϕ(X̃) are represented by an

interval whose left endpoint is positive, and the remaining 4k vertices of ϕ(X̃)
are represented by an interval whose right endpoint is negative. Now, observe
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that the vertices of X̃ induce exactly 2k paths of length 4 in H , which leads us
to the fact that their images by ϕ must also induce 4-paths. Using this, it follows
that for each i ∈ [k] we can define c(i,+), c(i,−) ∈ [n] such that

ϕ({ãsi , b̃
s
i , c̃

s
i , d̃

s
i }) = {asc(i,s), b

s
c(i,s), c

s
c(i,s), d

s
c(i,s)}

for each i ∈ [k] and s ∈ {−,+}.

Note also that for both s ∈ {−,+}, the vertex f̃i,i is adjacent to exactly two

vertices from {ãsi , b̃
s
i , c̃

s
i , d̃

s
i }, but the only vertex adjacent to exactly two vertices

from {asc(i,s), b
s
c(i,s), c

s
c(i,s), d

s
c(i,s)} is the vertex fc(i,s),c(i,s). From this, we get that

ϕ(f̃i,i) = fc(i,−),c(i,−) = fc(i,+),c(i,+), implying also c(i,−) = c(i,+).

Finally, note that if i 6= j, then f̃i,j is adjacent to exactly one vertex both

from {ã−i , b̃
−
i , c̃

−
i , d̃

−
i } and from {ã+j , b̃

+
j , c̃

+
j , d̃

+
j }. This implies that ϕ(f̃i,j =

fc(i,−),c(j,+) must hold, but fc(i,−),c(j,+) only exists if vc(i,−) and vc(j,+) are adja-
cent in F . Clearly, this implies that the vertices {vc(i,−) = vc(i,+) | i ∈ [k]} form
a clique in F , hence the second direction of the reduction is correct as well.

Observe that by the size of G and H , this yields an FPT-reduction from
the parameterized Clique problem to the Cleaning(Interval, Interval) prob-
lem (i.e. the Induced Subgraph Isomorphism problem for interval graphs)
parameterized by the number of vertices in the smaller input graph, proving (1).
Also, note that the construction of G and H takes time polynomial in |V (F )| and
k, so by the NP-hardness of the (unparameterized) Maximum Clique problem,
this proves that the (unparameterized) Cleaning(Interval, Interval) problem is
NP-hard as well. Its containment in NP is trivial, finishing the proof of (2). ⊓⊔

4 Cleaning an interval graph

In this section, we present an algorithm that solves the Cleaning(Interval,
Interval) problem. Given an input (G′, G) of this problem, we call a set S ⊆ V (G)
a solution for (G′, G), if G′ is isomorphic to G − S. In this case, let φS denote
an isomorphism from G′ to G− S. Remember that k = |V (G)| − |V (G′)| is the
parameter of the instance (G′, G). We denote by T and T ′ the labeled PQ-tree
representing G and G′, respectively. Let us fix an interval representation of G.
For a subset X of V (G), let X left = min{xleft | x ∈ X} and Xright = max{xright |
x ∈ X}.

Our algorithm for Cleaning(Interval, Interval) is based on an algorithm
denoted by A whose output on an input (G′, G) can be one of the following
three concepts:

– a necessary set. We call a set N ⊆ V (G) a necessary set for (G′, G),
if (G′, G) has a solution if and only if there is a vertex x ∈ N such that
(G′, G− x) has a solution. Given a necessary set for (G′, G), we can branch
on including one of its vertices in the solution.

– a reduced input. For subgraphs H and H ′ of G and G′, respectively, we
say that (H ′, H) is a reduced input for (G′, G), if (G′, G) is solvable if and

7



only if (H ′, H) is solvable, every solution for (H ′, H) is a solution for (G′, G),
and |V (H ′)|+ |V (H)| < |V (G′)|+ |V (G)|. Given a reduced input for (G′, G),
we can clearly solve it instead of solving (G′, G).

– an independent subproblem. For subgraphs H and H ′ of G and G′,
respectively, we say that (H ′, H) is an independent subproblem of (G′, G)
having parameter k, if its parameter is at least 1 but at most k − 1, for any
solution S of (G′, G) the set S∩V (H) is a solution for (H ′, H), and if (G′, G)
admits a solution then any solution S of (H ′, H) can be extended to be a
solution for (G′, G). Note that given an independent subproblem of (G′, G),
we can find a vertex of the solution by solving the independent subproblem
having parameter smaller than k.

Observe that if N is a necessary set for either an independent subproblem or a
reduced input for (G′, G), then N must be a necessary set for (G′, G) as well.

In Section 4.1 we make some useful observations about the structure of an
interval graph. In Sections 4.2 and 5, we describe algorithm A, that, given an
input instance of Cleaning(Interval, Interval) with parameter k, does one of
the followings in linear time:

– either determines a reduced input for (G′, G),

– or branches into at most f1(k) = kO(k) possibilities, in each of the branches
producing a necessary set of size at most 2k+1 or an independent subproblem
of (G′, G).

Note that in the first case no branching is involved. If the second case applies
and A branches, then the collection of outputs returned in the obtained branches
must contain a correct output. In other words, at least one of the branches must
produce an output that is indeed a necessary set of the required size or an
independent subproblem of (G′, G).

Let us show how such an algorithm can be used as a sub-procedure in order
to solve the Cleaning(Interval, Interval) problem. (See Fig. 3 for an outline of
the algorithm.) First, we construct an algorithm called NecessarySet that given
an instance (G′, G) of Cleaning(Interval, Interval) finds a necessary set for
(G′, G) in quadratic time. NecessarySet works by running A repeatedly, starting
with the given input. In the case when A returns a reduced input, NecessarySet
runs A with this reduced input again. In the case when A branches, returning a
necessary set or an independent subproblem in each branch, NecessarySet runs A
on each independent subproblem produced in any of the branches. Applying this
method iteratively (and thus possibly branching again), we will get a necessary
set at the end of each branch. Note that the parameter of the input decreases
whenever a branching happens, and thus the corresponding search tree has at
most f1(k)

k leaves. Since at least one of the branches is correct, by taking the
union of the necessary sets produced in the leaves of the search tree, we get
a necessary set of size f2(k) = (2k + 1)f1(k)

k for (G′, G). As each run of A
takes linear time, and the number of calls of A is also linear in a single chain of
branches, the whole algorithm takes quadratic time.

8



IntervalCleaning(G′, G)

1. If |V (G)| > |V (G′)| then do:
for each s ∈ NecessarySet(G′, G) do:

if IntervalCleaning(G′, G− s) return ’Yes’, then return ’Yes’.
2. Otherwise, if G is isomorphic to H then return ’Yes’.
3. Return ’No’.

NecessarySet(G′, G)

1. Set N = ∅.
2. Call A(G′, G).

If it returns a reduced input (H ′, H), then N := NecessarySet(H ′,H).
If it branches, then

for each necessary set X returned in a branch:
set N := N ∪X,

for each independent subproblem (H ′,H) returned in a branch:
set N := N ∪NecessarySet(H ′,H).

3. Return N .

Fig. 3. Outline of algorithms IntervalCleaning and NecessarySet.

Now, we can solveCleaning(Interval, Interval) by using NecessarySet. First,
given an input (G′, G), we run NecessarySet on it. We branch on choosing a
vertex s from the produced output to put into the solution, and repeat the whole
procedure with input (G′, G− s). This means a total of f2(k) = (2k + 1)f1(k)

k

new inputs to proceed with. We have to repeat this at most k times, so the whole
algorithm has running time O(f2(k)

k|I|2), where |I| is the size of the original
input of the problem. We can state this in the following theorem:

Theorem 4. Cleaning(Interval, Interval) on input (G′, G) can be solved in
time O(f(k)n2) for some function f , where |V (G′)| = n and |V (G)| = n+ k.

4.1 Some structural observations

A nonempty set M ⊆ V (G) is a module of G, if for every x ∈ V (G) \ M ,
NG(x) either includes M or is disjoint from M . A module M in G is com-
plete, if G[M ] is connected and there is no vertex in x ∈ NG(M) such that
NG(x) ⊆ NG[M ]. Lemma 5 gives a characterization of the complete modules of
an interval graph. For an illustration, see Fig. 1. Note that {a1} and {a2, a3}
are modules of G that are not complete. The sets {a1, a2, a3}, {b1, b2} and
{c1, c2, c3, c4, d1, d2, d3, d4, e1, e2} are examples of complete module character-
ized by (a) of Lemma 5, and the set {e1, e2} illustrates the complete modules
characterized by (b) of Lemma 5.

Lemma 5. Given an interval graph G and a labeled PQ-tree T representing G,
some set M ⊆ V (G) is a complete module of G, if and only if one of the following
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statements holds:
(a) M = R−1(Tz) for some z ∈ V (T ), and if z is a P-node then R−1(z) 6= ∅
(b) M = Lq(a, b) for some Q-node q ∈ V (T ) having children x1, . . . , xm and
some pair (a, b) with a < b, such that R−1(Txi

) = ∅ for each i contained in [a, b],
and Lq(a

′, b′) = ∅ for each [a′, b′] properly contained in [a, b].

Proof. First, let M be a complete module in G. Let us choose a vertex v ∈ M
such that R(v) is the closest possible to the root of T . Since G[M ] is connected, v
is unique, and we also get R−1(TR(v)) ⊇ M . First, suppose that R(v) is a P-node
or a leaf. Then v is contained in each clique of F (TR(v)). Thus, if R(x) is in TR(v)

for some vertex x, then NG(x) ⊆ NG(v) ⊆ NG[M ]. By the completeness of M ,
we get x ∈ M . Hence, R−1(TR(v)) ⊆ M implying R−1(TR(v)) = M . Therefore,
(a) holds in this case.

Now, suppose that R(v) is a Q-node q with children x1, . . . , xm, and let Mq =
M ∩R−1(q). Let a = min{Qleft

q (w) | w ∈ Mq} and b = max{Qright
q (w) | w ∈ Mq}

Using the completeness of M , we can argue again that R−1(Txh
) ⊆ M for each h

contained in [a, b] and that w ∈ M holds for each w ∈ R−1(q) such that Qq(w) is
contained in [a, b]. Thus, if [a, b] = [1,m] then M = R−1(Tq), implying that (a)
holds. Otherwise, as q is a Q-node, there must exist a vertex u ∈ R−1(q)\M such
that Qq(u) properly intersects [a, b]. As u must be adjacent to each vertex of M
(as M is a module), we get that R−1(Txh

) = ∅ for every h in [a, b] that is not
contained in Qq(u). In particular, we get that either R−1(Txa

) = ∅ orR−1(Txb
) =

∅. We can assume w.l.o.g. that R−1(Txa
) = ∅ holds. Thus, M−

q (a) 6= ∅, and since
M−

q (a) ∩M 6= ∅, using again that M is a module, we obtain that each w ∈ Mq

must start in a and also that R−1(Txh
) = ∅ for every h in [a, b]. Note that this

implies Mq = M . Now, from R−1(Txb
) = ∅ we get in a similar way that each

w ∈ M must end in b, proving Qq(w) = [a, b] for every v, w ∈ M . Now, using the
completeness of M and putting together these facts, we get that the conditions
of (b) must hold.

For the other direction, it is easy to see that if (a) holds for some M , then M
indeed must be a complete module of G. Second, if M = Lq(a, b) for some q and
[a, b], then M is clearly a module, and the remaining conditions of (b) ensure
that M is complete. ⊓⊔

We will say that a complete module M is simple, if the conditions in (b) hold
for M . Clearly, NG(M) is a clique if and only if M is not simple, and if M is
simple then G[M ] is a clique. In Fig. 1, {e1, e2} is a simple complete module.

For a graph H , some set M ⊆ V (G) is an occurrence of H in G as a complete
module, if M is a complete module for which G[M ] is isomorphic to H . Let
M(H,G) be the set of the occurrences of H in G as a complete module. Using
that each element of M(H,G) is a subset of V (G) having size |V (H)|, we obtain
the following consequence of Lemma 5.

Proposition 6. For a graph H, the elements M(H,G) are pairwise disjoint.

Moreover, if the graph H is not a clique, then none of the occurrences of H
in G as a complete module can be simple, so each set in M(H,G) must be of

10
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Fig. 4. Mi−1, Mi, and Mi+1 illustrate complete modules of G − S. The set Mi is
untouched by s1, s2, and s3, but this is not true for any vertex sj , j ≥ 4.

the form R−1(Tz) for some non-leaf node z of T . This yields that the sets in
M(H,G) are independent (where two vertex sets in a graph are independent if
there is no edge between them). Lemma 7 below states some observations about
what happens to a set of disjoint and independent complete modules in a graph
after adding or deleting a vertex.

Lemma 7. Suppose that s ∈ V (G).
(1) If M1, . . . ,Mℓ are disjoint independent complete modules in G− s, then Mi

is a complete module in G for at least ℓ− 4 indices i ∈ [ℓ].
(2) If M1, . . . ,Mℓ are disjoint independent complete modules in G, then Mi is a
complete module in G− s for at least ℓ− 4 indices i ∈ [ℓ].

Proof. As Mi and Mj are independent if i 6= j, we can assume that M left
1 ≤

M right
1 < · · · < M left

ℓ ≤ M right
ℓ . Recall that eachMi is connected by the definition

of a complete module. We say that Mi is untouched (by s), if either sleft ≤ M right
i−1

and sright ≥ M left
i+1, or sright < M right

i−1 , or sleft > M left
i+1. (See also Fig. 4.) If Ma

and Mb are the first and the last one, respectively, among the sets M1, . . . ,Mℓ

that have a vertex adjacent to s, then each Mi except for Ma−1, Ma, Mb, and
Mb+1 must be untouched by s.

To see (1), we show that if a complete module of G − s is untouched, then
it is a complete module of G. So assume that Mi is untouched. Clearly, s /∈ Mi.
Since either NG(s) ⊇ Mi or NG(s) ∩ Mi = ∅, Mi remains to be a module in
G. Also, if s ∈ NG(Mi), then s must have a neighbor in Mi−1 and Mi+1. Thus,
NG(s) 6⊆ NG[Mi], so the completeness of Mi in G − s implies its completeness
in G as well.

To prove (2), suppose thatMi is an untouched complete module inG. Clearly,
Mi is a module in G − s as well, and since s /∈ Mi, Mi remains connected in
G − s. Let x be a vertex in NG(Mi). By the completeness of Mi, x is adjacent
to some vertex y /∈ NG[Mi]. Suppose that x doesn’t have a neighbor outside
NG−s[Mi] in G− s. This can only happen if y = s. Now, since y /∈ NG[Mi] and
Mi is untouched by s, x must also be adjacent to a vertex of Mi−1 or Mi+1.
Thus, x has a neighbor in V (G−s)\NG−s[Mi], proving the completeness of Mi.
As Mi is untouched for at least ℓ− 4 indices i ∈ [ℓ], the statement follows. ⊓⊔

In the case whenH is a clique andK is an occurrence ofH in G as a complete
module, we get that either K = R−1(ℓ) for some leaf ℓ ∈ V (T ), or K is simple,

11



i.e. K = Lq(a, b) for some Q-node q ∈ V (T ) and some block [a, b]. In the latter
case, Lemma 8 states a useful observation about the block [a, b]. This lemma
uses the following definition: we say that a complete module K of G is h-short,
if either K = R−1(ℓ) for some leaf ℓ ∈ V (T ), or K = Lq(a, b) for some Q-node
q ∈ V (T ) and some block [a, b] with b− a ≤ h. The sets {e1, e2} and {b1, b2} are
2-short complete modules of G in Fig. 1.

Lemma 8. If K is a complete module in G such that G[K] is a clique but K is
not h-short, then |NG(K)| ≥ 2(h+ 1).

Proof. By the conditions of the lemma, we know that K = Lq(a, b) for some Q-
node q ∈ V (T ) with children x1, . . . , xm and some block [a, b] such that b− a ≥
h+1. By the completeness of K, we get that R−1(Txh

) = ∅ for any h contained
in [a, b], so M+(h) and M−(h) cannot be empty. Taking these sets for all h in
[a, b], with the exception of the sets M+(a) and M−(b), we get 2(b−a) ≥ 2(h+1)
nonempty sets that are pairwise disjoint, each containing some vertex of NG(K).
This implies the bound NG(K) ≥ 2(h+ 1). ⊓⊔

Observe that if two different h-short complete modules K1 and K2 in G are
not independent, then K1 = Lq(a, b) and K2 = Lq(c, d) must hold for some Q-
node q in T and some blocks [a, b] and [c, d] that properly intersect each other.
Now, if b−a ≤ h, then there can be at most 2h such blocks [c, d] for which these
conditions hold. This implies that given a h-short complete module K, there
can be at most 2h different h-short complete modules of G neighboring K (but
not equal to K). It is also easy to see that the maximum number of pairwise
neighboring h-short complete modules in a graph is at most h+ 1. Making use
of these facts, Lemma 9 states some results about h-short complete modules of
a graph in a similar fashion as Lemma 7. As opposed to Lemma 7, here we do
not require the complete modules to be independent.

Lemma 9. Suppose that s ∈ V (G).
(1) If M1, . . . ,Mℓ are disjoint h-short complete modules in G − s, then Mi is a
complete module in G for at least ℓ− (3h+ 5) indices i ∈ [ℓ].
(2) If M1, . . . ,Mℓ are disjoint h-short complete modules in G, then Mi is a
complete module in G− s for at least ℓ− (4h+ 3) indices i ∈ [ℓ].

Proof. The proof relies on the observation that there are only a few indices i
such that [M left

i ,M right
i ] contains sleft or sright.

To see (1), suppose that Mi is not a h-short complete module in G for some
i. Clearly, G[Mi] is connected. First, assume that Mi is not a module because
there are some x, y ∈ Mi such that s is adjacent to x but not to y. In this case,
either xleft < sright < yleft or yright < sleft < xright. It is not hard to see that this
implies that there can be at most two such modules Mi. Now, assume that Mi

is a module, but is not complete. This implies that Mi ⊆ NG(s) ⊆ NG[Mi] is
true. Note that if j 6= i then Mj ⊆ NG(s) ⊆ NG[Mj] is only possible if Mi and
Mj are neighboring. Thus, there can be at most h+ 1 such indices i.

Finally, if Mi is complete module in G but it is not h-short, then the number
of maximal cliques containing the vertices of Mi must be more in G than in
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G− s, implying that either M left
i < sleft ≤ M right

i or M left
i ≤ sright ≤ M right

i . As

M left
i < sleft ≤ M right

i and M left
j < sleft ≤ M right

j can only hold simultaneously
if Mi and Mj are neighboring, and such a statement is also true for the latter
condition, we get that there can be at most 2(h + 1) indices i for which Mi is
h-short in G − s but not in G. Summing up these facts, we obtain that there
can be at most 2 + (h + 1) + 2(h + 1) = 3h+ 5 indices i for which Mi is not a
h-short complete module in G.

To prove (2), notice that each Mi remains a module in G−s as well. Observe
also that if s /∈ Mi, then Mi remains connected in G− s. By the disjointness of
the sets M1, . . . ,Mℓ, each of them is connected in G− s except for at most one.
Suppose that Mi1 , Mi2 , and Mi3 are independent, and for each j ∈ {1, 2, 3}, Mij

is a connected module in G − s but it is not complete. This means that there
are vertices x1, x2, and x3 such that xj ∈ NG(Mij ), but NG(xj) ⊆ NG[Mij ] for
each j. By the completeness of these modules in G, this implies that each of x1,
x2, and x3 are adjacent to s, and s /∈ NG[Mij ] for any j. But this can only hold
if some xj is adjacent to each vertex of Mij′ for some j 6= j′, and since Mij and
Mij′ are independent, this contradicts the assumption that NG(xj) ⊆ NG[Mij ].
Thus, there cannot exist such indices i1, i2 and i3, implying that we can fix two
indices j and j′ such that for any Mi that is a connected module in G − s but
not complete, Mi is neighboring either Mj or Mj′ , implying that there can be at
most 2(2h)+ 2 such indices i. To finish, observe that if Mi is a complete module
in G−s, then it must be h-short, as the deletion of s cannot increase the number
of maximal cliques that contain Mi. ⊓⊔

4.2 Reduction rules

In this section, we introduce some reduction rules, each of which can be applied
in linear time, and provides a necessary set, an independent subproblem, or a
reduced input, as described earlier. Our aim is to handle all cases except for the
case when both G and G′ have a PQ-tree with a Q-node root. We always apply
the first possible reduction. From now on, we assume that S is a solution for
(G′, G) and φS is an isomorphism from G′ to G− S.

Rule 1. Isomorphic components. Lemma 10 yields a simple reduction: if
G and G′ have isomorphic components, then algorithm A can output a reduced
input of (G′, G). Note that partitioning a set of interval graphs into isomorphism
equivalence classes can be done in linear time [13] (see also [5, 17, 18]). Hence,
this reduction can also be performed in linear time.

Lemma 10. If K and K ′ are connected components of G and G′, respectively,
and K is isomorphic to K ′, then (G′ −K ′, G−K) is a reduced input of (G′, G).

Proof. Trivially, G′ −K ′ has fewer vertices than G′, and any solution for (G′ −
K ′, G −K) is a solution for (G′, G) as well, by the isomorphism of K ′ and K.
Therefore, we only have to prove that if (G′, G) is solvable then (G′−K ′, G−K)
is also solvable. Clearly, if S ∩ V (K) = ∅, then we can assume w.l.o.g. that
φS(K

′) = K. In this case, S is a solution for (G′ −K ′, G−K).
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On the other hand, if S∩V (K) 6= ∅ thenK and φS(K
′) are disjoint. Moreover,

K and φS(K
′) are disjoint isomorphic connected components of G − S0 where

S0 = S \ V (K). Let κ be an isomorphism from K to φS(K
′). Notice that the

role of K and φS(K
′) can be interchanged, and we can replace S ∩ V (K) with

κ(S ∩ V (K)) in the solution. Thus, S0 ∪ κ(S ∩ V (K)) is a solution for (G′, G)
that is disjoint from K. Since this yields a solution for (G′ −K ′, G−K) as well,
this finishes the proof. ⊓⊔

Rule 2. Many components in G′. This reduction is possible in the case
when G′ has at least 4k + 1 components. Since Rule 1 cannot be applied, none
of the components of G is isomorphic to a component of G′. Our aim is to locate
φS(K

′) in G for one of the components K ′ of G′. If we find φS(K
′) then we

know that NG(φS(K
′)) must be contained in S, so we can produce a necessary

set of size 1 by outputting any of the vertices of NG(φS(K
′)).

Given a graph H , recall that M(H,G) denotes the occurrences of H in G as
a complete module. By Prop. 6, the elements of M(H,G) are disjoint subsets of
V (G). We can find M(H,G) in linear time, using the labeled PQ-tree of G and
the characterization of Lemma 5.

Relying on Lemmas 7 and 9, the algorithm performs the following reduction.
Suppose that K ′

1,K
′
2, . . . ,K

′
k′ are the k′ = 4k+1 largest connected components

of G′, ordered decreasingly by their size, and let S be a solution for (G′, G).
As the vertex sets of the connected components of G′ are complete modules of
G′, the sets Ki = φS(V (K ′

i)) for i ∈ [k′] are complete modules of G − S. By
definition, these sets are also disjoint and independent. As a consequence of (1)
in Lemma 7, we get that for at least k′ − 4k = 1 indices i ∈ [k′] the set Ki will
be a complete module of G. We branch on the choice of i to find such a set Ki,
resulting in at most k′ possibilities. Observe that w.l.o.g. we can assume that
the subgraph G[Ki] is the first one (according to the given representation of G)
among the components of G− S isomorphic to K ′

i.

It remains to describe how we can find Ki in G. To begin, we suppose now
that K ′

i is not a clique. Let us discuss a simplified case first, where we assume
that K ′

i is not contained as an induced subgraph in any of the components K ′
j

if j 6= i. Let M(K ′
i, G) = {A1, A2, . . . }, where the sets in M(K ′

i, G) are ordered
according to their order in the interval representation of G. Let i∗ denote the
index for which Ai∗ is the first element in M(K ′

i, G) that is a complete module
in G − S as well. Since K ′

i is not contained in a component of G′ having more
vertices than |V (K ′

i)|, G[Ai∗ ] must be a connected component of G − S. Also,
G[Ai∗ ] is isomorphic to K ′

i, and by the definition of Ai∗ , it must be the first
such component of G − S. Thus, we can conclude that Ai∗ equals Ki. By (2)
of Lemma 7, there can be at most 4k sets in M(K ′

i, G) that are not complete
modules in G − S, so we get that i∗ ≤ 4k + 1 = k′. Hence, we can find Ki by
guessing i∗ and branching into k′ directions.

Let us consider now the general case, where some of the components K ′
j can

contain K ′
i in G′. (We still suppose that Ki is not a clique.) For each j < i, we

define an indicator variable δ(j) which has value 1 if and only if Kj precedes
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Fig. 5. An illustration of Rule 2. In this example, the small rectangles denote elements
of M(K′

i, G
′) and M(K′

i, G). Rectangles with a skew pattern are elements of M(K′

i, G)
that are not complete modules of G − S. Crossed rectangles with a dashed border
indicate if some set φS(X) is not a complete module of G for some X ∈ M(K′

i, G
′). In

this example, i = 5, δ(1) = 0, δ(2) = δ(3) = δ(4) = 1, |M′| = 4 and i∗ = 6.

Ki in G − S. We guess δ(j) for each j ∈ [i − 1], which means at most 2k
′−1

possibilities.

Again, let M(K ′
i, G) = {A1, A2, . . . }, where the sets Ah are ordered accord-

ing to their order in the interval representation of G.Let i∗ denote the index
for which Ki = Ai∗ , and let M′ stand for

⋃
j<i,δ(j)=1 M(K ′

i,K
′
j), which is a

collection of subsets of V (G′), each inducing a subgraph of G′ isomorphic to K ′
i.

As Ki is not a clique, the elements of M′ in G′ are disjoint and independent,
so by (1) of Lemma 7 we get that for at least |M′| − 4k sets A ∈ M′, the set
φS(A) will be a complete module of G as well. As all these sets precede Ki in G,
we get that φS(A) ∈ {A1, . . . , Ai∗−1} holds for at least |M′| − 4k sets A ∈ M′.
From this, i∗ − 1 ≥ |M′| − 4k follows.

On the other hand, for all those sets A ∈ {A1, . . . , Ai∗−1} which are complete
modules in G−S as well, φ−1

S (A) must be contained in a component of G′ which
is larger than K ′

i. Here we used again the assumption that G[Ki] is the first one
among the components of G − S isomorphic to Ki. Since such an A precedes
Ki, we obtain φ−1

S (A) ∈ M′. By (2) of Lemma 7, there can be at most 4k sets
among A1, . . . , Ai∗−1 that are not complete modules in G − S, so we get that
φ−1
S (A) ∈ M′ for at least i∗ − 1 − 4k sets A in {A1, . . . , Ai∗−1}. This implies

i∗ − 1 ≤ |M′| + 4k. Altogether, we get the bounds |M′| − 4k + 1 ≤ i∗ ≤
|M′|+4k+1. Since |M′| can be determined in linear time, by branching on the
at most 8k + 1 possibilities to choose i∗, we can find the vertex set Ki.

Now, we suppose that K ′
i is a clique. As Ki is a component of G − S,

|NG(Ki)| ≤ k, which by Lemma 8 implies that Ki must be k/2-short. Using
Lemma 9, we can find Ki in a similar manner to the previous case. We denote
by N (H,G) the occurrences of a graph H in G as a k/2-short complete module.
Analogously to the previous case, let N (K ′

i, G) = {B1, B2, . . . }, where the sets
in N (K ′

i, G) are ordered according to their order in the fixed representation of
G. We also let Ki = Bi∗ and N ′ =

⋃
j<i,δ(j)=1 N (K ′

i,K
′
j). Now, using Lemma 9

just as in the reasoning above, we get the bounds |N ′| − k(3k/2+ 5) ≤ i∗ − 1 ≤

15



|N ′|+ k(2k+ 3). Again, |N ′| can be determined in linear time, so by branching
on the at most k(7k/2 + 8) + 1 possibilities to choose i∗, we can find the vertex
set Ki.

Since Rule 1 cannot be applied, none of the components of G can be isomor-
phic to a component of G′, hence Si = NG(Ki) is not empty. Clearly Si ⊆ S, so
we get that {s} is a necessary set for any s ∈ Si. The total number of possible
branches in this reduction is at most (4k + 1)24k(k(7k/2 + 8) + 1) = 2O(k).

Rule 3. Disconnected G. Here we give a reduction for the case when G is
not connected, but the previous reductions cannot be performed. First, observe
that each component of G contains at least one vertex from S, as none of them is
isomorphic to a component of G′. Thus, if G has more than k components then
there cannot exist a solution of size k, so we can reject. Otherwise, let us fix an
arbitrary component K of G. We branch on the choice of those components of
G′ whose vertices are in φ−1

S (K −S), for some fixed solution S. Let the union of
these components be G′

K . Note that guessing G′
K yields at most 24k possibilities,

since G′ has at most 4k components. By our assumptions, 1 ≤ k′ < k holds for
the parameter k′ of the instance (G′

K ,K), so (G′
K ,K) is clearly an independent

subproblem of (G′, G).
Rule 4. Universal vertex in G. A vertex x is universal in G, if NG(x) =

V (G− x). Such vertices imply a simple reduction by Lemma 11 which allows A
to output either a necessary set of size 1 or a reduced input of (G′, G).

Lemma 11. Let x be universal in G. If there is no universal vertex in G′, then
{x} is a necessary set for (G′, G). If x′ is universal in G′, then (G′ − x′, G− x)
is a reduced input of (G′, G).

Proof. Clearly, if x is universal in G and x /∈ S for a solution S, then it remains
universal in G− S. Thus, if no vertex is universal in G′, then x ∈ S must hold.

Suppose x′ is universal in G′, and S is an arbitrary solution. Clearly, if x /∈ S,
then x and y = φS(x

′) are both universal in G−S, so if x 6= y then we can swap
the role of x and y such that φS maps x′ to x. Now, if x ∈ S then S′ = S∪{y}\{x}
is a solution in which the isomorphism from G′ to G− S′ can map x′ to x. This
implies that (G′ − x′, G− x) is a reduced input of (G′, G). ⊓⊔

Rule 5. Disconnected G′. Suppose that none of the previous reductions
can be applied, and G′ is disconnected. This means that G must be connected,
and G′ has at most 4k components. Let S be a solution. For each component K ′

in G′, let I(K ′) be the union of the intervals representing φS(K
′) in the fixed

representation of G, i.e. let I(K ′) = [φS(V (K ′))left, φS(V (K ′))right]. Since the
components of G′ are connected and independent, the intervals I(K ′

1) and I(K ′
2)

are disjoint for two different components K ′
1 and K ′

2 of G′.
Let Q be the component of G′ such that I(Q) is the first among the intervals

{I(K ′) | K ′ is a component of G′}. Clearly, if xright ≤ φS(V (Q))right for some
vertex x ∈ V (G), then either x ∈ S or x ∈ φS(Q), thus the number sQ of such
vertices is at least |V (Q)| but at most |V (Q)|+k. Therefore, we first guess Q, and
then we guess the value of sQ, which yields at most 4k(k+1) possibilities. Now,
ordering the vertices of G such that x precedes y if xright < yright and putting

16



the first sQ vertices in this ordering into a set B, we get φS(Q) ⊆ B ⊆ φS(Q)∪S.
Since G is connected, there must exist an edge e = xy running between B and
V (G) \ B. Clearly, at least one endpoint of e must be in S, thus we can output
the necessary set {x, y}.

Rule 6. Universal vertex in G′. Suppose that some vertex x′ is universal in
G′. Let a and b be vertices of G defined such that aright = min{xright | x ∈ V (G)}
and bleft = max{xleft | x ∈ V (G)}. As there is no universal vertex in G, we know
that xleft > aright or xright < bleft for each x ∈ V (G), i.e. no vertex in G is
adjacent to both a and b. As φS(x

′) is universal in G− S for any fixed solution
S, we get that {a, b} is a necessary set.

5 The Q-Q case

From now on, we assume that none of the reductions given in Sect. 4.2 can
be applied. Thus, G and G′ are connected, and none of them contains universal
vertices, so in particular, none of them can be a clique. This implies that if r and
r′ is the root of T and T ′, respectively, then both r and r′ are Q-nodes. Letm and
m′ denote the number of the children of r and r′, respectively. When indexing
elements of [m] and [m′], we will try to use i and j, respectively, whenever it
makes sense. Let xi and x′

j denote the i-th and j-th child of r and r′, respectively,

and let Xi = R−1(Txi
) and X ′

j = R−1(T ′
x′

j
), for all i ∈ [m] and j ∈ [m′].

Let us call a solution S local, if there is an i ∈ [m] such that S ⊇ V (G) \
NG[Xi], i.e. S contains every vertex of G except for the closed neighborhood of
some Xi. Suppose that S is a solution that is not local, and φS is an isomorphism
from G′ to G−S. The following definitions try to give a bound on those indices
i in [m] which somehow contribute to φS(X

′
j) for some j ∈ [m′]. For an index

j ∈ [m′], let:

αS(j) = min{Qleft
r (φS(v)) | v ∈ X ′

j ∪M+
r′ (j)}

βS(j) = max{Qright
r (φS(v)) | v ∈ X ′

j ∪M−
r′ (j)}.

Observe that by

min{Qleft
r (φS(v)) | v ∈ X ′

j ∪M+
r′ (j)} ≤ min{Qleft

r (φS(v)) | v ∈ X ′
j}

≤ max{Qright
r (φS(v)) | v ∈ X ′

j} ≤ max{Qright
r (φS(v)) | v ∈ X ′

j ∪M−
r′ (j)}

we obtain that αS(j) ≤ βS(j) holds for any j ∈ [m′]. We let IS(j) to be the
block [αS(j), βS(j)].

The following lemma summarizes some useful observations.

Lemma 12. Suppose that S is a solution for (G′, G) that is not local. Then
either all of the following statements hold, or all of them hold after reversing the
children of r′:
(1) Qdir1

r′ (v) < Qdir2
r′ (w) for some v, w ∈ V (G′) and dir1, dir2 ∈ {left, right}

implies that Qdir1
r (φS(v)) < Qdir2

r (φS(w)) holds as well.
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(2) For any j1 < j2 in [m′], the block IS(j1) precedes IS(j2).
(3) If m = m′, then IS(j) = [j, j] for each j ∈ [m′].
(4) If i ∈ [m] then Xi \ S is contained in φS(X

′
j) for some j ∈ [m′].

(5) φS(R
−1(r′)) ⊆ R−1(r).

Proof. Let the sets A1, . . . , As be disjoint subsets of some set {ai|i ∈ [r]}. We say
that the series a1, . . . , ar, respects the series A1, . . . , As if for any p, the elements
of Ap precede the elements of Ap+1 in a1, . . . , ar.

For some j ∈ [m′], let C′
j be the set of maximal cliques of G′ contained in

F (T ′
x′

j
). As T ′ represents G′ and its root is a Q-node, any consecutive ordering of

the maximal cliques of G′ respects either C′
1, C

′
2, . . . , C

′
m′ or C′

m′ , C′
m′−1, . . . , C

′
1.

Let Cj be the set of maximal cliques of G that contain φS(K) for some K ∈
C′

j . Clearly, the sets Cj (j ∈ [m′]) are disjoint by the maximality of the cliques in
F (T ′). The interval representation of G yields an interval representation of G−S
and hence of G′, which implies that any consecutive ordering of the cliques in
F (T ) must respect either C1, . . . , Cm′ or Cm′ , . . . , C1. This implies that if j1 6= j2,
then the deepest node in T whose frontier contains every clique in Cj1 ∪ Cj2

must be some unique Q-node q, the same for each pair (j1, j2). Note also that
if q is contained in Txi

for some i ∈ [m], then every vertex of φs(V (G′)) must
be contained in some element of F (Txi

). This yields that S ⊇ V (G) \ NG[Xi],
contradicting to the assumption that S is not local. Hence q = r. The definition
of q shows that by possibly reversing the children of r in T , we can find disjoint
blocks B1, B2, . . . , Bm′ following each other in this order in [1,m] such that for
each j ∈ [m′] every clique of Cj is contained in

⋃
i∈Bj

F (Txi
).

This observation can be easily seen to imply claim (1), by simply recall-
ing what Qdir1

r′ (v) < Qdir2
r′ (w) means by definition for some v, w ∈ V (G′) and

dir1, dir2 ∈ {left, right}, considering the maximal cliques of G′.
Now, it is easy to prove (2), (3), (4), and (5), using the assumption that

(1) holds (which can indeed be achieved by possibly reversing the children of
r′). To prove (2), observe that for any j ∈ [m′], we have that Qleft

r′ (v) = j

for each v ∈ X ′
j ∪ M+

r′ (j) and Qright
r′ (v) = j for each v ∈ X ′

j ∪ M−
r′ (j). Thus,

for any j1 < j2 in [m′], v ∈ X ′
j1 ∪ M−

r′ (j1), and w ∈ X ′
j2 ∪ M+

r′ (j2) we obtain

Qright
r′ (v) < Qleft

r′ (w), which immediately implies Qright
r (φS(v)) < Qleft

r (φS(w)) by
using the assumption that (1) holds. By definition, this means βS(j1) < αS(j2),
from which (2) follows.

Note that (3) is directly implied by (2).
To see (4), consider an x ∈ Xi \S and let x′ be the vertex in G′ for which x =

φS(x
′). Since Qleft

r (x) = Qright
r (x) = i, by (1) we must have Qleft

r′ (x′) = Qright
r′ (x′)

as well. Thus, x′ ∈ X ′
j for some j ∈ [m′]. Now, assuming that φS(y

′) is also in Xi

but y′ /∈ X ′
j , we obtain that either Qright

r′ (x′) < Qleft
r′ (y′) or Qright

r′ (y′) < Qleft
r′ (x′).

But using (1), these both contradict φS(y
′) ∈ Xi.

Finally, (5) follows immediately from (4). ⊓⊔

Using Lemma 12, we can handle an easy case when no branching is needed,
and a reduced input can be constructed. Let L(r) and L′(r′) denote the labels
of r and r′ in T and T ′, respectively.
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Lemma 13. If m = m′, L(r) = L′(r′) and there is an i ∈ [m] such that G[Xj ]
is isomorphic to G′[X ′

j] for all j 6= i, then (G′[X ′
i], G[Xi]) is a reduced input of

(G′, G).

Proof. First, we show that a solution S for (G′[X ′
i], G[Xi]) is a solution for

(G′, G). Clearly, the conditions of the lemma imply that there is an isomorphism
from G′ −X ′

i to G−Xi mapping NG′(X ′
i) to NG(Xi). This isomorphism can be

extended to map X ′
i to Xi \ S, since S is a solution for (G′[X ′

i], G[Xi]). In the
other direction, suppose that S is a solution for (G′, G). Note that S need not
be a solution for (G′[X ′

i], G[Xi]), as S may contain vertices not in Xi. However,
to prove the lemma it suffices to show that a solution exists for (G′[X ′

i], G[Xi]),
meaning that G′[X ′

i] is isomorphic to an induced subgraph of G[Xi].
Let us assume first that S is not local. Suppose S ∩Xj 6= ∅ for some j 6= i.

Since G[Xj ] is isomorphic to G′[X ′
j ], we have |φS(X

′
j)| = |Xj | > |Xj \ S|. By

Lemma 12, this implies that IS(j) = [j, j] becomes true only after reversing
the children of r′, meaning that IS(h) = [m − h + 1,m − h + 1] for each h ∈
[m] (according to the PQ-tree T ′). In particular, this means that φS(X

′
i) ⊆

Xm−i+1. Hence, G
′[X ′

i] is isomorphic to an induced subgraph of G[Xm−i+1].
Since G[Xm−i+1] is isomorphic to G′[X ′

m−i+1], G
′[X ′

i] is also isomorphic to an
induced subgraph of G′[X ′

m−i+1]. From this, by φS(X
′
m−i+1) ⊆ Xi we get that

G′[X ′
i] is isomorphic to an induced subgraph of G[Xi].

Now, suppose that S is a local solution, and S ⊇ V (G) \ NG[Xh] for some
h ∈ [m]. Since each vertex of R−1(r) \ S must be adjacent to every vertex in
NG[Xh], such vertices would be universal in G − S. Thus, as G′ contains no
universal vertices, S ⊇ R−1(r) follows. Hence, we get φS(V (G′)) ⊆ Xh and thus
|Xh| ≥ |V (G′)| > |X ′

h|, implying h = i. But φS(V (G′)) ⊆ Xi clearly implies
that G′ and therefore also G′[X ′

i] must be isomorphic to an induced subgraph
of G[Xi]. This finishes the proof. ⊓⊔

Observe that it can be tested in linear time whether the conditions of Lemma
13 hold after possibly reversing the children of r′. If this is the case, algorithm
A proceeds with the reduced input guaranteed by Lemma 13. Otherwise it
branches into a few directions as follows. In each of these branches, A will output
either a necessary set of size at most 2k + 1, or an independent subproblem of
(G′, G).

In the first branch, it assumes that the solution S is local. In this case, given
any two vertices a ∈ X1 and b ∈ Xm, a solution must include at least one of a
and b. (Note that X1 and Xm cannot be empty.) Thus, A outputs the necessary
set {a, b}. In all other branches, we assume that S is not local. Algorithm A
branches into two more directions, according to whether the children of r′ have
to be reversed to achieve the properties of Lemma 12. Thus, in the followings
we may assume that these properties hold.

First, observe that Lemma 12 implies that m ≥ m′ must hold, so otherwise
the algorithm can reject. First, we examine the case m = m′, and then we deal
with the case m > m′ in Section 5.1. Observe that Lemma 12 also implies that
φS must map every Lr′(a, b) to a vertex in Lr(a, b), for any block [a, b] in [1,m].
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So, if there is a block [a, b] such that |Lr(a, b)| < |Lr′(a, b)|, then the algorithm
has to reject. If the converse is true, i.e. |Lr(a, b)| > |Lr′(a, b)| for some block
[a, b], then some vertex v ∈ Lr(a, b) must be included in S. Since each vertex in
Lr(a, b) has the same neighborhood, the algorithm can choose v arbitrarily from
Lr(a, b) and output the necessary set {v}.

If none of these cases happen, then L(r) = L′(r′), so as the conditions of
Lemma 13 do not hold, there must exist two indices i1 6= i2 ∈ [m], such that
G[Xi1 ] and G[Xi2 ] is not isomorphic to G′[X ′

i1 ] and G′[X ′
i2 ], respectively. As

L(r) = L′(r′), by Lemma 12 we get φS(R
−1(r′)) = R−1(r) and φS(X

′
h) =

Xh \ S for each h ∈ [m]. Thus, it is easy to see that for each h ∈ [m], the
set S ∩Xh yields a solution for the instance (G′[X ′

h], G[Xh]), and conversely, if
(G′, G) is solvable then any solution for (G′[X ′

h], G[Xh]) can be extended to a
solution for (G′, G). Now, using Xi1 ∩ S 6= ∅ and Xi2 ∩ S 6= ∅, we know that
the parameter of the instance (G′[X ′

i1
], G[Xi1 ]) must be at least 1 but at most

k−1. If this indeed holds, then A outputs (G′[X ′
i1
], G[Xi1 ]) as an independent

subproblem, otherwise it rejects the instance.

5.1 Identifying fragments for the case m > m
′.

The rest of the paper deals with the case where S is not local, andm > m′. In this
case, we will try to determine IS(j) for each j ∈ [m′]. To do this, A will branch
several times on determining IS(j) for some j ∈ [m′]. Proposition 14 helps us to
bound the number of resulting branches. To state this proposition, we use the
following notation: given some block [i1, i2] in [1,m], let Wr(i1, i2) contain those
vertices v for which Qr(v) is contained in [i1, i2]. Let also wr(i1, i2) = |Wr(i1, i2)|.
We define Wr′(j1, j2) and wr′(j1, j2) for some block [j1, j2] in [1,m′] similarly.
Using Lemma 12 and the definition of αS(j) and βS(j), it is easy to prove the
following:

Proposition 14. Suppose that S is a solution that is not local, and the proper-
ties of Lemma 12 hold. This implies the followings.
(1) φS(Wr′(j1, j2)) = Wr(αS(j1), βS(j2)) \ S for every block [j1, j2] in [1,m′].
(2) wr′(1, j) ≤ wr(1, βS(j)) ≤ wr′(1, j) + k and wr′(j,m

′) ≤ wr(αS(j),m) ≤
wr′(j,m

′) + k hold for every j ∈ [m′].

Note that wr(1, i) < wr(1, i+1) for every i ∈ [m− 1], even if Xi+1 = ∅ (as in
this case M−

r (i+1) 6= ∅), and similarly we get wr(i,m) > wr(i+1,m) for every
i ∈ [m−1]. Therefore, the bounds of Prop. 14 yield at most (k+1)2 possibilities
for choosing [αS(j), βS(j)], for some j ∈ [m′].

Since determining IS(j) for each j ∈ [m′] using Prop. 14 would result in
too many branches, we need some other tools. Hence, we introduce a structure
called fragmentation that can be used to “approximate” the sets IS(j) for each
j ∈ [m′]. By iteratively refining the fragmentation, we can get closer and closer to
actually determine these sets. Given a set of disjoint blocks {[a′h, b

′
h] | h ∈ [f ]} in

[1,m′] and a corresponding set of disjoint blocks {[ah, bh] | h ∈ [f ]} in [1,m] with
Fh denoting the pair ([a′h, b

′
h], [ah, bh]), the set {Fh | h ∈ [f ]} is a fragmentation

for (T, T ′, S), if
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Fig. 6. Illustration of a fragmentation containing four fragments. An arrow leading
from j to i indicates i ∈ IS(j). There are three non-trivial fragments: F1, F3, F4. The
indices 1, 4, 5 are left-aligned, 2, 3, 4, 5, 7 are right-aligned, 6 is wide and 8, 9 are skew.

– ah ≤ αS(a
′
h) and βS(b

′
h) ≤ bh for each h ∈ [f ], and

– a′h+1 = b′h + 1 and ah+1 = bh + 1 for each h ∈ [f − 1].

We will call the element Fh for some h ∈ [f ] a fragment. We define σ(Fh) =
(bh − ah)− (b′h − a′h) and δ(Fh) = ah − a′h, which are both clearly non-negative
integers. Note that δ(Fh+1) = δ(Fh) + σ(Fh) holds for each h ∈ [f − 1]. We
say that some j ∈ [m′] is contained in the fragment Fh, if a

′
h ≤ j ≤ b′h. In this

case, we write δ(j) = δ(Fh) and σ(j) = σ(Fh). We will say that a fragment F
is trivial if σ(Fh) = 0, and non-trivial otherwise. We also call an index in [m′]
trivial (or non-trivial) in a fragmentation, if the fragment containing it is trivial
(or non-trivial, respectively). An annotated fragmentation for (T, T ′, S) is a pair
(F , U) formed by a fragmentation F for (T, T ′, S) and a set U ⊆ [m′] such that
each j ∈ U is trivial in F . We say that the trivial indices contained in U are
important. See Fig. 6 for an illustration.

Let us suppose that we are given a fragmentation F for (T, T ′, S), and some
j ∈ [m′] contained in a fragment F ∈ F . We will use the notation jleft = j+δ(F )
and jright = j+δ(F )+σ(F ). Also, we will write B+

r (i) = M+
r (i)∪Xi and B+

r′(j) =
M+

r′ (j) ∪ X ′
j . For some block [i1, i2] in [1,m] let B+

r (i1, i2) =
⋃

h∈[i1,i2]
B+

r (h),

and we define B+
r′(j1, j2) for some block [j1, j2] in [1,m′] analogously. Proposition

15 is easy to prove, using Lemma 12.

Proposition 15. For each j ∈ [m′], the followings hold:
(i) jleft ≤ αS(j) ≤ βS(j) ≤ jright.
(ii) φS(M

+
r′ (j)) ⊆

⋃
h∈IS(j) M

+
r (h) and φS(M

−
r′ (j)) ⊆

⋃
h∈IS(j)

M−
r (h).

(iii) if IS(j) = [i, i], then M+
r (i)\S = φS(M

+
r′ (j)) and M−

r (i)\S = φS(M
−
r′ (j)).

(iv) if j < j′, αS(j) = i and βS(j
′) = i′, then φS(B

+
r′(j, j

′)) = B+
r (i, i

′) \ S.

We will classify the index j as follows:

– If |IS(j)| > 1, then j is wide.
– If IS(j) = [jleft, jleft], then j is left-aligned.
– If IS(j) = [jright, jright], then j is right-aligned.
– If IS(j) = [i, i] such that jleft < i < jright, then j is skew.
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If F is trivial, then by Prop. 15, only αS(j) = βS(j) = jleft = jright is possible.
Thus, each trivial index must be both left- and right-aligned.

Lemma 16 shows that a solvable instance can only contain at most 2k non-
trivial fragments. Thus, if a given fragmentation contains more than 2k non-
trivial fragments, then A can correctly reject, as such a fragmentation does not
correspond to any solution.

Lemma 16. Any fragmentation F for (T, T ′, S) can have at most 2k non-trivial
fragments.

Proof. We will show that every non-trivial fragment of F contains an index j
for which Xj ∪M+

r (j) ∪M−
r (j) contains a vertex of S. Since any s ∈ S can be

contained in at most two sets of this form, this proves that there can be at most
2k non-trivial fragments in F .

Observe that if F = ([a′, b′], [a, b]) is a non-trivial fragment in F , then either
|IS(j)| > 1 must hold for some j in [a′, b′], or some i in [a, b] is not contained in
any of the blocks {IS(h) | a′ ≤ h ≤ b′}. In the latter case we have Xi ∪M+

r (i)∪
M−

r (i) ⊆ S. By Prop. 2, Xi∪M+
r (i)∪M−

r (i) 6= ∅, so it indeed contains a vertex
of S. Now, suppose that the former case holds, and j is wide. Reversing the
children of r between αS(j) and βS(j) cannot result in a PQ-tree representing
G, hence there must be a vertex z ∈ R−1(r) such that Qr(z) properly intersects
IS(j).

Let Qr(z) = [z1, z2]. We assume z1 < αS(j) ≤ z2 < βS(j), as the case
αS(j) < z1 ≤ βS(j) < z2 can be handled analogously. First, if z ∈ S, then
M−

r (z2) contains a vertex of S, so we are done. Otherwise, z /∈ S implies that z
must be contained in φS(M

−
r′ (j)), from which XβS(j) ∪M+

r (βS(j)) ⊆ S follows.
Again, XβS(j) ∪ M+

r (βS(j)) 6= ∅ by Prop. 2, so in this case we obtain ∅ 6=
XβS(j) ∪M+

r (βS(j)) ⊆ S. This proves the lemma. ⊓⊔

Before describing the remaining steps of the algorithm, we need some addi-
tional notation.

Let T rev and T ′rev denote the labeled PQ-trees obtained by reversing the chil-
dren of r and r′, respectively. We write jrev for the index m′−j+1 corresponding
to j in T rev, and we also let Xrev = {jrev | j ∈ X} for any set X ⊆ [m′]. For
a fragment F = ([a′, b′], [a, b]) we let F rev = ([b′rev, a′rev], [brev, arev]), so a frag-
mentation F for (T, T ′, S) clearly yields a fragmentation F rev = {F rev|F ∈ F}
for (T rev, T ′rev, S). Note that if j is left-aligned (right-aligned) in F , then the
index jrev is right-aligned (left-aligned, resp.) in F rev.

Given some i ∈ [m], let us order the vertices v in M+
r (i) increasingly accord-

ing to Qright
r (v). Similarly, we order vertices v in M−

r (i) increasingly according
to Qleft

r (v). In both cases, we break ties arbitrarily. Also, we order vertices of
M+

r′ (j) and M−
r′ (j) in T ′ the same way for some j ∈ [m′]. Now, we construct

the sets P+
left(j) and P−

left(j), both containing pairs of vertices, in the follow-
ing way. We put a pair (v, w) into P+

left(j), if v ∈ M+
r′ (j), w ∈ M+

r (jleft), and
v has the same rank (according to the above ordering) in M+

r′ (j) as the rank
of w in M+

r (jleft). Similarly, we put a pair (v, w) into P−
left(j), if v ∈ M−

r′ (j),
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w ∈ M−
r (jleft), and v has the same rank in M−

r′ (j) as w in M−
r (jleft). In addi-

tion, we define the sets P+
right(j) and P−

right(j) analogously, by substituting jright
for jleft in the definitions. The key properties of these sets are summarized in
the following proposition.

Proposition 17. W.l.o.g. we can assume φS(v) = w in the following cases:
(1) If (v, w) ∈ P+

left(j) and |M+
r′ (j)| = |M+

r (jleft)| for some left-aligned j.
(2) If (v, w) ∈ P−

left(j) and |M−
r′ (j)| = |M−

r (jleft)| for some left-aligned j.
(3) If (v, w) ∈ P+

right(j) and |M+
r′ (j)| = |M+

r (jright)| for some right-aligned j.

(4) If (v, w) ∈ P−
right(j) and |M−

r′ (j)| = |M−
r (jright)| for some right-aligned j.

Proof. We only show (1), as all the other statements are analogous. To see (1),
observe that as j is left-aligned, |M+

r′ (j)| = |M+
r (jleft)| implies that φS must

map M+
r′ (j) to M+

r (jleft) bijectively.
By Lemma 12, if Qright(v) < Qright(v′), then Qright(φS(v)) < Qright(φS(v

′))
holds as well. Note also that the vertices of Lr(j, j

′) for some j′ ∈ [m′] are
equivalent in the sense that they have the same neighborhood. Thus, we can
assume w.l.o.g. that if v precedes v′ in the above defined ordering of M+

r′ (j),
then φS(v) precedes φS(v

′) in the similar ordering of M+
r (jleft). Thus, φS must

indeed map v to w, by the definition of P+
left(j). ⊓⊔

Given two non-trivial fragments F and H of a fragmentation with F pre-
ceding H , we define three disjoint subsets of vertices in R−1(r′) starting in F
and ending in H . These sets will be denoted by L(F,H), R(F,H), and X (F,H),
and we construct them as follows. Suppose that v ∈ Lr′(y, j) for some y and
j contained in F and H , respectively. We put v in exactly one of these three
sets, if (v, w) ∈ P−

left(j) for some vertex w, and yleft ≤ Qleft
r (w) ≤ yright. Now, if

Qleft
r (w) = yleft then we put v into L(F,H), if Qleft

r (w) = yright then we put v
into R(F,H), and if yleft < Qleft

r (w) < yright then we put v into X (F,H). Loosely
speaking, if each vertex in H is left-aligned, and some vertex of R(F,H) starts
at y, then y should be right-aligned. Similarly, if each vertex in H is left-aligned,
and some vertex of X (F,H) starts at y, then y should be either wide or skew.
Since we would like to ensure each index to be left-aligned, we will try to get rid
of vertices of R(F,H) and X (F,H).

We say that two indices y1, y2 ∈ [m′] are conflicting for (F,H), if y1 ≤ y2,
M+

r′ (y1)∩R(F,H) 6= ∅ andM+
r′ (y2)∩L(F,H) 6= ∅. In such a case, we say that any

j ≥ max{j1, j2} contained in H is conflict-inducing for (F,H) (and for the con-
flicting pair (y1, y2)), where j1 denotes the minimal index for which Lr′(y1, j1)∩
R(F,H) 6= ∅, and j2 denotes the minimal index for which Lr′(y2, j2)∩L(F,H) 6=
∅. Informally, if a conflict-inducing index in H is left-aligned, then this shows
that a right-aligned index should precede a left-aligned index in F , which cannot
happen. In addition, if L(F,H) 6= ∅, then let Lmax(F,H) denote the largest in-
dex y in F for which M+

r′ (y)∩L(F,H) 6= ∅. Let the L-critical index for (F,H) be
the smallest index j contained in H for which Lr′(L

max(F,H), j)∩L(F,H) 6= ∅.
Similarly, if R(F,H) 6= ∅, then let Rmin(F,H) denote the smallest index y in F
for which M+

r′ (y)∩R(F,H) 6= ∅. Also, let the R-critical index for (F,H) be the
smallest index j in H for which Lr′(R

min(F,H), j) ∩R(F,H) 6= ∅.
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Now, an index j in H is LR-critical for (F,H), if either j is the R-critical
index for (F,H) and L(F,H) = ∅, or j = max{jL, jR} where jL is the L-
critical and jR is the R-critical index for (F,H). Note that both cases require
R(F,H) 6= ∅. Moreover, H contains an LR-critical index for (F,H), if and only
if R(F,H) 6= ∅. Intuitively, if an LR-critical index in H is left-aligned, then this
implies that some index y in F is right-aligned.

Note that the definitions of the sets L(F,H),R(F,H), and X (F,H) together
with the definitions connected to them as described above depend on the given
fragmentation, so whenever the fragmentation changes, these must be adjusted
appropriately as well. (In particular, vertices in L(F,H),R(F,H), and X (F,H)
must start and end in two different non-trivial fragments.)

Let (F , U) be an annotated fragmentation for (T, T ′, S). Our aim is to en-
sure that the properties given below hold for each index j ∈ [m′]. Intuitively,
these properties mirror the expectation that every index should be left-aligned.
Note that although we cannot decide whether (F , U) is a correct fragmentation
without knowing the solution S, we are able to check whether these properties
hold for some index j in (F , U).

Property 1: G′[X ′
j ] is isomorphic to G[Xjleft ].

Property 2: |M+
r′ (j)| ≤ |M+

r (jleft)| ≤ |M+
r′ (j)|+k and |M−

r′ (j)| ≤ |M−
r (jleft)| ≤

|M−
r′ (j)|+ k.

Property 3: If j is non-trivial, then |M+
r′ (j)| = |M+

r (jleft)| and |M−
r′ (j)| =

|M−
r (jleft)|.

Property 4: If j is non-trivial, then |Lr′(y, j)| = |Lr(yleft, jleft)| for any y < j
contained in the same fragment as j.

Property 5: If j is non-trivial, then for every (v, w) ∈ P+
left(j) such thatQright

r′ (v)
= y is non-trivial, yleft ≤ Qright

r (w) ≤ yright holds. Also, for every (v, w) ∈
P−
left(j) such that Qleft

r′ (v) = y is non-trivial, yleft ≤ Qleft
r (w) ≤ yright holds.

Property 6: If j is non-trivial, then no vertex in X (F,H) (for some F and H)
ends in j.

Property 7: j is not conflict-inducing for any (F,H).
Property 8: j is not LR-critical for any (F,H).

Property 9: If j is non-trivial, then for every (v, w) ∈ P+
left(j) such thatQright

r′ (v)
= y is non-trivial, Qright

r (w) = yleft holds. Also, for every (v, w) ∈ P−
left(j)

such that Qleft
r′ (v) = y is non-trivial, Qleft

r (w) = yleft holds.
Property 10: If j is non-trivial, then for each important trivial index u ∈ U ,

|Lr′(j, u)| = |Lr(jleft, uleft)| holds if u > j, and |Lr′(u, j)| = |Lr(uleft, jleft)|
holds if u < j.

Observe that each of these properties depend on the fragmentation F , and Prop-
erty 10 depends on the set U as well. Also, if some property holds for an index j in
(F , U), then this does not imply that the property holds for jrev in (F rev, U rev),
as most of these properties are not symmetric. For example, jleft and jright both
have a different meaning in the fragmentation F and in F rev. We say that an
index j ∈ [m′] violates Property ℓ (1 ≤ ℓ ≤ 10) in an annotated fragmentation
(F , U), if Property ℓ does not hold for j in (F , U). If the first nine properties
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hold for each index of [m′] both in (F , U) and its reversed version (F rev, U rev),
then we say that (F , U) is 9-proper. We say that (F , U) is proper, if it is 9-proper,
and Property 10 holds hold for each index of [m′] in (F , U). Observe that (F , U)
can be proper even if Property 10 does not hold in (F rev, U rev).

Let us describe our strategy. We start with an annotated fragmentation where
U = ∅ and the fragmentation contains only the unique fragment ([1,m′], [1,m]),
implying that there are no trivial indices. Given an annotated fragmentation
(F , U), we do the following: if one of Properties 1, 2, . . . , 10 does not hold for some
index j in (F , U) for (T, T ′, S), or one of the first nine properties does not hold for
some j in the reversed annotated fragmentation (F rev, U rev) for (T rev, T ′rev, S),
then we either output a necessary set or an independent subproblem, or we
modify the given annotated fragmentation. To do this, we will branch on IS(j),
and handle each possible case according to the type of j. Note that we do not
care whether Property 10 holds for the indices in the reversed instance. If the
given annotated fragmentation is proper, algorithm A will find a solution using
Lemmas 21 and 22.

Observe that we can assume w.l.o.g. that there exists an ℓ (1 ≤ ℓ ≤ 10)
such that Properties 1, . . . , ℓ − 1 hold for each index both in the annotated
fragmentation (F , U) and in its reversed version (F rev, U rev), but Property ℓ is
violated by an index in [m′] in (F , U). Otherwise, we simply reverse the instance.
Let us now remark that we only reverse the instance if this condition is not true.

To begin, the algorithm takes the first index j that violates Property ℓ, and
branches into (k+1)2 directions to choose IS(j), using Prop. 14. Then, A handles
each of the cases in a different manner, according to whether j turns out to be
left-aligned, right-aligned, skew, or wide. We consider these cases in a general
way that is essentially independent from ℓ, and mainly relies on the type of j.
We suppose that j is contained in a fragment F = ([a′, b′], [a, b]), and we say
that j is extremal, if j = a′.

Left-aligned index. We deal with the case when j is left-aligned in Sec-
tion 5.3, whose results are summarized by the following lemma.

Lemma 18. Suppose that Property ℓ (1 ≤ ℓ ≤ 10) does not hold for some
j ∈ [m′] in the annotated fragmentation (F , U), but all the previous properties
hold for each index both in (F , U) and in (F rev, U rev). If j is left-aligned, then
algorithm A can do one of the followings in linear time:

– produce a necessary set of size at most 2k + 1,
– produce an independent subproblem,
– produce an index that is either wide or skew,
– reject correctly.

By Lemma 18, the only case when algorithm A does not reject or produce
an output is the case when it produces an index j′ that is wide or skew. If this
happens, then A branches on those choices of IS(j

′) where j′ is indeed wide or
skew, and handles them according to the cases described below. Note that as
a consequence, the maximum number of branches in a step may increase from
(k + 1)2 to 2(k + 1)2 − 1. (This means that we do not treat the branchings on
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IS(j) and IS(j
′) separately, and rather consider it as a single branching with at

most 2(k + 1)2 − 1 directions.)

Observe that if j is trivial, then it is both left- and right-aligned. We treat
trivial indices as left-aligned.

Wide index. Suppose that j is wide, i.e. |IS(j)| > 1. In this case, we can
construct a necessary set of size 2. Recall that, using the arguments of the
proof of Lemma 16, we can either find a vertex z ∈ R−1(r) such that if z /∈ S
then ∅ 6= XβS(j)∪M+

r (βS(j)) ⊆ S, or we can find a vertex w ∈ R−1(r) such that
if w /∈ S then ∅ 6= XαS(j) ∪M−

r (αS(j)) ⊆ S. Clearly, A can output a necessary
set of size 2 in both cases.

Extremal right-aligned or skew cases. Assume that j = a′ and j is skew
or right-aligned. In these cases, Xi ∪ M+

r (i) ∪ M−
r (i) must be contained in S

for each i in [a, αS(a
′) − 1], so in particular, Xa ∪ M+

r (a) ∪ M−
r (a) ⊆ S. As

Xa ∪M+
r (a)∪M−

r (a) 6= ∅ by Prop. 2, we can construct a necessary set of size
1 by taking an arbitrary vertex from this set, and A can stop by outputting it.

Non-extremal skew case. Suppose that j > a′ and j is skew, meaning
that IS(j) = [i, i] for some i with jleft < i < jright. In this case, we can divide the
fragment F , or more precisely, we can delete F from the fragmentation F and
add the new fragments ([a′, j−1], [a, i−1]) and ([j, b′], [i, b]). Note that the newly
introduced fragments are non-trivial by the bounds on i. We also modify U by
declaring every trivial index of the fragmentation to be important (no matter
whether it was important or not before).

Non-extremal right-aligned case. Suppose that j > a′ and j is right-
aligned. In this case, we replace F by new fragments F1 = ([a′, j−1], [a, jright−1])
and F2 = ([j, b′], [jright, b]). This yields a fragmentation where F1 is non-trivial
and F2 is trivial. We refer to this operation as performing a right split at j. If
this happens because j violated Property ℓ for some ℓ ≤ 9, then we set every
trivial index (including those contained in F2) to be important, by putting them
into U . In the case when ℓ = 10, we do not modify U , so the trivial indices of
F2 will not be important.

The above process either stops by producing an appropriate output, or it
ends by providing an annotated fragmentation that is proper. Thanks to the
observations of Lemma 23, stating that the properties ensured during some step
in this process will not be violated later on (except for a few cases), we will be
able to bound the running time of this process in Section 5.2, by proving that the
height of the explored search tree is bounded by a function of k. In the remaining
steps of the algorithm, the set U will never be modified, and the only possible
modification of the actual fragmentation will be to perform a right split.

The following two lemmas capture some useful properties of an arbitrary
annotated fragmentation (F , U) obtained by the algorithm after this point.
Lemma 19 states facts about an annotated fragmentation obtained from a 9-
proper annotated fragmentation by applying right splits to it. Lemma 20 gives
sufficient conditions for the properties of an annotated fragmentation to remain
true after applying a right split to it.
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Lemma 19. Let (F , U) be a 9-proper annotated fragmentation whose trivial
indices are all important. Suppose that F ′ is obtained by applying an arbitrary
number of right splits to the fragmentation F . Then the followings hold for each
j ∈ [m′] that is either non-trivial or not important in (F ′, U):
(1) |M+

r′ (j)| = |M+
r (jright)| and |M−

r′ (j)| = |M−
r (jright)|.

(2) The following holds for every non-trivial or not important y 6= j and v ∈
Lr′(j, y). If (v, w) ∈ P+

right(j) for some w ∈ M+
r (jright), then Qright

r (w) = yright.

Similarly, if (v, w) ∈ P−
right(j) for some w ∈ M−

r (jright), then Qleft
r (w) = yright.

Proof. First, we show that the statements of the lemma hold for (F , U). To see
this, recall that each trivial index in (F , U) is important, therefore statements
(1) and (2) for (F , U) are equivalent to Properties 3 and 9 for (F rev, U rev),
respectively. Since (F , U) is 9-proper, these properties indeed hold for each index
in (F rev, U rev).

To see that these statements remain true after applying a sequence of right
splits to (F , U), we need two simple observations. First, notice that the value
of jright for an index j ∈ [m′] does not change in a right split. Second, the
set of non-trivial or not important trivial indices does not change either, since
the performed right splits do not modify the set U of important trivial indices.
Thus, statements (1) and (2) for some index j have exactly the same meaning
in (F ′, U) as in (F , U). This proves the lemma. ⊓⊔

Given a fragmentation F for (T, T ′, S), a fragment F ∈ F , and some ℓ
(1 ≤ ℓ ≤ 9), let π(F , F, ℓ) be 1 if Property ℓ holds for each index in F ∈ F , and
0 otherwise.

Lemma 20. Let F ′ be a fragmentation obtained from F by dividing a fragment
F ∈ F into fragments F1 and F2 with a right split (with F1 preceding F2). Let
1 ≤ ℓ ≤ 9.
(1) Suppose j is not contained in F2 and ℓ 6= 8. If Property ℓ holds for j in F
(or in F rev), then Property ℓ holds for j in F ′ (or in F ′rev) as well.
(2) Suppose π(F , H, ℓ) = 1 for a fragment H. If H 6= F then π(F ′, H, ℓ) = 1,
and if H = F then π(F ′, F1, ℓ) = 1.
(3) Suppose π(F rev, Hrev, ℓ) = 1 for a fragment H ∈ F . If H 6= F then
π(F ′rev, Hrev, ℓ) = 1, and if H = F then π(F ′rev, F rev

1 , ℓ) = 1.
(4) If π(F rev, F rev, ℓ) = 1, then π(F ′rev, F rev

2 , ℓ) = π(F ′, F2, ℓ) = 1.
(5) If (F , U) is a proper annotated fragmentation, then so is (F ′, U).

Proof. To see (1), we need some basic observations. First, if j is not contained
in F2, then jleft is the same according to F ′ as it is in F , and this is also true for
jright. Second, the set of non-trivial indices in F ′ is a subset of the non-trivial
indices in F . These conditions directly imply (1) for each case where ℓ /∈ {6, 7, 8},
using only the definitions of these properties.

Now, observe that if a vertex in R−1(r′) is contained in L(H ′
1, H

′
2), for some

H ′
1 and H ′

2 in the fragmentation F ′, then it is contained in L(H1, H2) for some
H1 and H2 in F as well. Clearly, the analogous fact holds also for the sets
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R(H ′
1, H

′
2) and X (H ′

1, H
′
2) for some H ′

1 and H ′
2. Thus, if j violates Property 6

or 7 in F ′, then it also violates it in F , proving (1).
Clearly, (2) and (3) follow directly from (1) in the cases where ℓ 6= 8. For

the case ℓ = 8, observe that π(F , H, 8) = 1 implies R(H0, H) = ∅ for every H0

preceding H . Hence, the requirements of statement (2) follow immediately. The
analogous claim in the reversed instance shows that (3) also holds for ℓ = 8.

To prove (4), let j be contained in F2. Note that Properties 3, 4, . . . , 9 vac-
uously hold for j in F ′, because F2 is trivial. Using that jleft = jright and the
definitions of Properties 1 and 2, we get that if one of these two properties holds
for jrev in F rev, then it holds for j in F ′ as well. Finally, observe that if Property
ℓ holds for some trivial index j in F ′, then it trivially holds for jrev in F ′rev,
proving (4).

To prove (5), assume that (F , U) is proper. By (2), (3), and (4), we imme-
diately obtain that (F ′, U) is 9-proper, so we only have to verify that Property
10 holds. But since the set U of important trivial indices is the same in both
fragmentations, and jleft is the same in (F ′, U) as in (F , U) for each non-trivial
or important trivial index j of F ′, Property 10 also remains true for each index.

⊓⊔

Given a proper annotated fragmentation (F , U), algorithm A makes use of
Lemma 21 below.

To state Lemma 21, we need one more definition: we call an index j right-
constrained, if j is contained in a non-trivial fragment F , and there exists a vertex
v ∈ M+

r′ (j) such that φS(v) ∈ M+
r (jright). Note that this definition depends on

the solution S. Algorithm A maintains a set W to store indices which turn out
to be right-constrained. We will show that if j is right-constrained, then j + 1
must be right-aligned and thus a right split can be performed, except for the
case when j is the last index of the fragment. We will denote by ZF the set of
indices j for which j is the last index of some non-trivial fragment in F . If no
confusion arises, we will drop the subscript F .

Lemma 21 gives sufficient conditions for A to do some of the followings.

– Find out that some non-trivial index j is right-aligned. In this case, A per-
forms a right split at j in the actual fragmentation.

– Find out that some index j is right-constrained, and put it into W .
– Reject, or stop by outputting a necessary set of size 1.

The algorithm applies Lemma 21 repeatedly, until it either stops or it finds that
none of the conditions given in the lemma apply.

Lemma 21. Let (F , U) be a proper annotated fragmentation for (T, T ′, S) ob-
tained by algorithm A, and let a, b ∈ [m′] with a < b.
(i) If a is trivial but not important, b is non-trivial, b /∈ Z and Lr′(a, b) 6= ∅,
then b+ 1 is right-aligned.
(ii) If a is non-trivial, b is trivial but not important, and Lr′(a, b) 6= ∅, then a is
right-constrained. Also, if a /∈ Z then a+ 1 is right-aligned.
(iii) If a is non-trivial, b is right-constrained, and Lr′(a, b) 6= ∅, then a is right-
constrained. Also, if a /∈ Z then a+ 1 is right-aligned.
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PSfrag replacements

∈ U

∈ U

/∈ U

/∈ U

/∈ Z

(i)

(ii) (iii)

(iv)
(v)trivial

trivial non-trivial

non-trivial

∈ Wa
b

Table 1. The cases of Lemma 21, where U denotes important indices, Z denotes the
last indices of non-trivial fragments, and W denotes right-constrained indices.

(iv) If a ∈ U , b is right-constrained, and |Lr′(a, b)| 6= |Lr(aleft, bright)|, then al-
gorithm A can either reject or output a necessary set of size 1.
(v) If a and b are trivial and |Lr′(a, b)| 6= |Lr(aleft, bleft)|, then algorithm A can
either reject or output a necessary set of size 1.

Proof. Let A and B be the fragments in F containing a and b, respectively.
Recall that the conditions of Lemma 19 are true for every proper annotated
fragmentation for (T, T ′, S) obtained by algorithm A, in particular for F .

First, suppose that the conditions of (i) hold. As a is a not important trivial
index in (F , U), claim (1) of Lemma 19 implies |M+

r′ (a)| = |M+
r (aright)|. Let

v ∈ Lr′(a, b) and (v, w) ∈ P+
right(a). As a is trivial, it is right-aligned as well,

so we obtain φS(v) = w by Prop. 17. Using claim (2) of Lemma 19 for a, we
obtain Qright

r (w) = bright. By φS(v) = w, this implies βS(b) ≥ bright. Thus,
αS(b + 1) ≥ bright + 1 = (b + 1)right, showing that b+ 1 is indeed right-aligned.

The proof of (ii) is analogous with the proof of (i). By exchanging the roles
of a and b, we obtain Qr(φS(v)) = [aright, bright] for some v ∈ Lr′(a, b) in a
straightforward way. Observe that this proves a to be right-constrained. If a /∈ Z,
then A contains a + 1 as well. Hence, from βS(a) ≥ aright we get αS(a + 1) ≥
aright + 1 = (a+ 1)right. Thus, a+ 1 is right-aligned.

To see (iii) and (iv), suppose that b is right-constrained and u+ is a vertex in
M+

r′ (b) with φS(u
+) ∈ M+

r (bright). Suppose u− ∈ M−
r′ (b) for some u−. Clearly,

u−u+ is an edge in G′, so φS(u
−) and φS(u

+) must be adjacent in G as well. By
φS(u

+) ∈ M+
r (bright) we get Qright

r (φS(u
−)) ≥ bright. By Prop. 15, this implies

Qright
r (φS(u

−)) = bright. Using claim (1) of Lemma 19 for b, we get M−
r (bright) =

φS(M
−
r′ (b)). Letting v ∈ Lr′(a, b) and (v, w) ∈ P−

right(b) we obtain φS(v) = w as
in Prop. 17.

To prove (iii), assume also that a is non-trivial. By claim (2) of Lemma 19
for b, this implies Qr(w) = [aright, bright]. This means that a is right-constrained.
From a /∈ Z we again obtain that a+ 1 is right-aligned, using the arguments of
the proof of (ii).

To see (iv), assume a ∈ U . Using Prop. 15, IS(a) = [aleft, aleft], and the
above mentioned arguments, we get that φS(Lr′(a, b)) = Lr(aleft, bright) \ S.
Therefore, if |Lr′(a, b)| > |Lr(aleft, bright)| then A can reject, and if |Lr′(a, b)| <
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|Lr(aleft, bright)| then it can output a necessary set of size 1 by outputting {s}
for an arbitrary s ∈ Lr(aleft, bright).

Finally, assume that the conditions of (v) hold for a and b. As both of them
are left-aligned, Prop. 15 implies φS(Lr′(a, b)) = Lr(aleft, bleft)\S. Hence, A can
proceed essentially the same way as in the previous case. ⊓⊔

After applying Lemma 21 repeatedly, algorithm A either stops by outputting
’No’ or a necessary set of size 1, or it finds that none of the conditions (i)-(v)
of Lemma 21 holds. Observe that each w ∈ W must be the last index of the
fragment containing w, since whenever A puts some index j /∈ Z into W , then
it also sets j + 1 right-aligned, resulting in a right split.

Let (F , U) be the final annotated fragmentation obtained. Note that the
algorithm does not modify the set U of important trivial indices when applying
Lemma 21, and it can only modify the actual fragmentation by performing a
right split. Thus, statements (1) and (2) of Lemma 19 remain true for (F , U).
By claim (5) of Lemma 20, we obtain that (F , U) remains proper as well. Making
use of these lemmas, Lemma 22 yields that A can find a solution in linear time.
This finishes the description of algorithm A.

Lemma 22. Let (F , U) be a proper annotated fragmentation for (T, T ′, S) ob-
tained by algorithm A. If none of the conditions (i)-(v) of Lemma 21 holds, then
A can produce a solution in linear time.

Proof. We construct an isomorphism φ from G′ to an induced subgraph of G.
Our basic approach is to treat almost all indices as if they were left-aligned,
except for the vertices of W . Recall that Z denotes the set of indices that are
the last index of some non-trivial fragment, and W ⊆ Z is the set of right-
constrained vertices that A has found using Lemma 21. Let N contain those
non-trivial indices in [m′] that are not in W . Also, let Y denote the set of trivial
indices in [m′] that are not important. Clearly, [m′] = N ∪W ∪ U ∪ Y .

As Property 1 holds for each index both in F and in F rev, we know that there
is an isomorphism φleft

j from G′[X ′
j ] to G[Xjleft ] and an isomorphism φright

j from

G′[X ′
j] to G[Xjright ] for each j ∈ [m′]. By [13], φleft

j and φright
j can be found in

time linear in |X ′
j|. We set φ(x) = φleft

j (x) for each x ∈ X ′
j where j ∈ N ∪U ∪Y ,

and we set φ(x) = φright
j (x) for each x ∈ X ′

j where j ∈ W . Our aim is to extend

φ on vertices of R−1(r′) such that it remains an isomorphism. To this end, we
set a variable ∆(j) for each j ∈ [m′], by letting ∆(j) = jleft if j ∈ N ∪ U ∪ Y ,
and ∆(j) = jright if j ∈ W . Clearly, ∆(j) = jleft = jright if j ∈ U ∪ Y .

The purpose of the notation ∆ is the following. Given some a < b, in
almost every case we will let φ map vertices of Lr′(a, b) bijectively to ver-
tices of Lr(∆(a), ∆(b)). This can be done if a and b match, meaning that
|Lr′(a, b)| = |Lr(∆(a), ∆(b))|. However, there remain cases where a and b do
not match. Each such case will fulfill one of the following conditions:

(A) a ∈ W and |Lr′(a, b)| = |Lr(aleft, ∆(b))|.
In this case, we let φ map Lr′(a, b) bijectively to Lr(aleft, ∆(b)). Clearly, the
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block [aleft, ∆(b)] contains ∆(a) = aright. Thus, vertices of φ(Lr′(a, b)) will
be adjacent to vertices of Mr(∆(a))∪X∆(a). Since either a− 1 ∈ N or a− 1
is not in the same fragment as a, we obtain ∆(a− 1) < aleft. Hence, vertices
of φ(Lr′(a, b)) will not be adjacent to vertices of M−

r (∆(a− 1)) ∪X∆(a−1).
(B) b ∈ Z and |Lr′(a, b)| = |Lr(∆(a), bright)|.

In this case, we will let φ map Lr′(a, b) bijectively to Lr(∆(a), bright). Again,
[∆(a), bright] contains ∆(b) = bleft, so vertices of φ(Lr′(a, b)) will be adjacent
to vertices of Mr(∆(b)) ∪ X∆(b). Also, by b ∈ Z we obtain ∆(b + 1) ≥
(b + 1)left > bright, so the vertices of φ(Lr′(a, b)) will not be adjacent to
vertices of M+

r (∆(b + 1)) ∪X∆(b+1).

It is easy to see that the above construction ensures that vertices of φ(Lr′(a1, b1))
and φ(Lr′(a2, b2)) are neighboring if and only if Lr′(a1, b1) and Lr′(a2, b2) are
neighboring. (In particular, it is not possible that some vertex of φ(M−

r′ (j)) ends
in jleft but some vertex of φ(M+

r′ (j)) starts in jright. )
It remains to show that if a, b ∈ [m′] and a < b, then they either match, or

Lr′(a, b) = ∅, or one of the conditions (A) or (B) hold. First, let us show those
cases where a and b match.

(a) If a, b ∈ N , then |Lr′(a, b)| = |Lr(aleft, bleft)| = |Lr(∆(a), ∆(b))| because
Properties 3 and 9 hold for b in (F , U).

(b) If either a ∈ N and b ∈ U or vice versa, then |Lr′(a, b)| = |Lr(aleft, bleft)| =
|Lr(∆(a), ∆(b))|, since Property 10 holds for a and b in (F , U).

(c) If a, b ∈ W∪Y then Lemma 19 for b guarantees |Lr′(a, b)| = |Lr(aright, bright)|.
Using that aright = ∆(a) and bright = ∆(b) hold if a, b ∈ W ∪ Y , this shows
|Lr′(a, b)| = |Lr(∆(a), ∆(b))|.

(d) If a ∈ U and b ∈ W then |Lr′(a, b)| = |Lr(aleft, bright)|, since the conditions
of (iv) in Lemma 21 do not apply. By aleft = ∆(a) and bright = ∆(b), this
means that |Lr′(a, b)| = |Lr(∆(a), ∆(b))|.

(e) If a, b ∈ U ∪ Y then |Lr′(a, b)| = |Lr(aleft, bleft)| = |Lr(∆(a), ∆(b))|, as the
conditions of (v) in Lemma 21 do not apply.

Next, we show Lr′(a, b) = ∅ for some a and b with a < b. First, if a ∈ Y
and b ∈ N \ Z, then this holds because (i) of Lemma 21 is not applicable. Also,
Lr′(a, b) = ∅ must be true if a ∈ N and b ∈ Y , as otherwise (ii) of Lemma 21
would apply. Third, Lr′(a, b) = ∅ if a ∈ N and b ∈ W , since (iii) of Lemma 21
does not apply.

We complete the proof by showing (A) or (B) for all remaining cases.

(f) If a ∈ W and b ∈ N , then (A) holds, because by Properties 3 and 9 for b in
(F , U), we obtain |Lr′(a, b)| = |Lr(aleft, bleft)|.

(g) If a ∈ W and b ∈ U , then we have |Lr′(a, b)| = |Lr(aleft, bleft)|, since Property
10 holds for a in (F , U). Hence, this case also fulfills (A).

(h) If a ∈ Y and b ∈ Z, then |Lr′(a, b)| = |Lr(aright, bright)| by (1) and (2) of
Lemma 19 for b. By aleft = aright, (B) holds.

Table 2 shows that we considered every case. Thus, φ is an isomorphism from
G′ to an induced subgraph of G, so A can output V (G)\φ(V (G′)) as a solution.
It is also clear that this takes linear time. ⊓⊔

31



PSfrag replacements

a

b

b

c

d
e

f g

h

a
b

N

Y

Y

W

W

U

U

− −

−

N
︷ ︸︸ ︷

N \Z Z

Table 2. The cases of the proof for Lemma 22.

5.2 Running time analysis for algorithm A

Let N(F) denote the set of non-trivial fragments in F . We define the measure
µ(F) of a given fragmentation F for (T, T ′, S) as follows:

µ(F) =
∑

F∈N(F)
1≤ℓ≤9

π(F , F, ℓ) +
∑

F∈N(Frev)
1≤ℓ≤9

π(F rev, F, ℓ).

Note that µ(F) = µ(F rev) is trivial, so reversing a fragmentation does not change
its measure. Recall that F rev is a fragmentation for (T rev, T ′rev, S).

Lemma 23. Let F1, . . . ,Ft,Ft+1 be a series a fragmentations such that for each
i ∈ [t] algorithm A obtains Fi+1 from Fi by applying a right split at an index ji
violating Property ℓi in Fi. Let Hi denote the fragment of Fi containing ji.
(1) µ(Fi+1) ≥ µ(Fi) for each i ∈ [t]. If ℓi 6= 8, then µ(Fi+1) > µ(Fi) also holds.
(2) If µ(F1) = µ(Ft+1), then ℓi = 8 for every i ∈ [t], and Hi contains every
index in Hi+1 for each i ∈ [t].
(3) If µ(F1) = µ(Ft+1), then t ≤ k.

Proof. To prove (1), observe that claims (2) and (3) of Lemma 20 imply directly
that µ(Fi+1) ≥ µ(Fi). Let H ′

i be the non-trivial fragment obtained from Hi

after the right split at ji. Now, by the choice of ji, Property ℓi is violated by ji
in Fi, but is not violated by any index j′ preceding ji in Fi. In all cases where
ℓi 6= 8, claim (1) of Lemma 20 implies that the indices preceding ji cannot violate
Property ℓi in Fi+1, yielding π(Fi, Hi, ℓi) = 0 but π(Fi, H

′
i, ℓi) = 1. Considering

claims (2) and (3) of Lemma 20 again, (1) follows.
Observe that if µ(F1) = µ(Ft), then ℓi = 8 for every i ∈ [t] follows directly

from the above discussion. Suppose that Hi is a counterexample for (2), meaning
that Hi does not contain the indices of Hi+1. Since Fi+1 is obtained from Fi by
a right split, this can only happen if Hi+1 is a non-trivial fragment of Fi different
from Hi. Recall that a fragment B contains some index violating Property 7, if
and only if R(A,B) 6= ∅ holds for some fragment A in the fragmentation. Hence,
π(Fi+1, Hi+1, 8) = 0 implies π(Fi, Hi+1, 8) = 0.

Since the algorithm always chooses the first index violating some property
to branch on, ji must be the smallest index that is LR-critical for some pair of
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fragments in Fi. Therefore, Hi must precede Hi+1. But now, the choice of ji+1

indicates π(Fi+1, H
′
i, 8) = 1, where H ′

i is the non-trivial fragment of Fi+1 ob-
tained by splitting Hi at ji in Fi. Together with π(Fi, Hi, 8) = 0 and statements
(2) and (3) of Lemma 20, this shows µ(Fi+1) > µ(Fi), a contradiction.

To prove (3), note that by the claim proven above, H1 ∈ F1 contains every
ji. Let P denote the set of non-trivial fragments in F1 preceding H . By the con-
struction of the fragmentations Fi, each fragment in P is a non-trivial fragment
of Fi as well, preceding Hi. We denote by PR,i those fragments F in P for which
R(F,Hi) 6= ∅ holds in Fi. Since ji is LR-critical for some pair of fragments in
Fi, we get PR,i 6= ∅ for any i ∈ [t]. Note also PR,i+1 ⊆ PR,i.

For some F ∈ PR,i, then we define di(F ) as follows. If L(F,Hi) = ∅ in
Fi, then let yLi be the first index contained in F minus one, otherwise let yLi
have the value of Lmax(F,Hi) in Fi. Also, let y

R
i be the value of Rmin(F,Hi) in

Fi. We set di(F ) = yRi − yLi . Let A ∈ PR,i+1 ∩ PR,i be a non-trivial fragment
such that ji is LR-critical for (A,Hi). We show di+1(A) > di(A). First note
that neither Lmax(A,Hi+1) > Lmax(A,Hi) nor R

min(A,Hi+1) < Rmin(A,Hi) is
possible, since L(A,Hi+1) ⊆ L(A,Hi) and R(A,Hi+1) ⊆ R(A,Hi) always hold.
This implies yLi+1 ≤ yLi and yRi+1 ≥ yRi .

Clearly, ji is either L-critical or R-critical for (A,Hi). First, let us assume
that ji is L-critical for (A,Hi). Observe that the definition of L-criticality implies
that for any vertex v starting at Lmax(A,Hi) and contained in L(A,Hi) in Fi,

we know Qright
r′ (v) ≥ ji. Since Fi+1 is obtained by performing the right split at

ji, every index ofHi+1 precedes ji, implying that such a v cannot be contained in
L(A,Hi+1) in Fi+1. Thus, L

max(A,Hi+1) 6= Lmax(A,Hi), from which yLi+1 < yLi
follows. Therefore, we have di+1(A) > di(A).

Second, let us assume that ji is R-critical for (A,Hi). By the definition of R-
criticality, for any vertex v starting at Rmin(A,Hi) and contained in R(A,Hi) in

Fi, we know Qright
r′ (v) ≥ ji. Again, we know that every index of Hi+1 precedes ji.

From this, we have that v cannot be contained in R(A,Hi+1) in Fi+1, implying
yRi+1 > yRi . Therefore, we have di+1(A) > di(A) in this case as well.

Now, we claim that 1 ≤ di(A) ≤ σ(A) for any A ∈ PR,i. First, it is clear
that for any ℓ < 8, Property ℓ holds for each index both in Fi and in the
reversed fragmentation F rev

i , as otherwise the algorithm would branch on an
index violating Property ℓ. Thus, Lmax(A,Hi) ≥ Rmin(A,Hi) cannot happen,
as this would mean that there is a conflict-inducing index in Hi for (A,Hi),
violating Property 7. This directly implies 1 ≤ di(A).

On the other hand, assume di(A) = yRi − yLi > σ(A). This implies that
h = yRi − σ(A) is contained in A, but no vertx of L(A,Hi) ∪ R(A,Hi) starts
in h. However, by Properties 3 and 5 for yRi , we know that some vertex in
M+

r ((yRi )left) = M+
r (hright) ends in Hi. Using these properties for hrev in the

reversed instance, we obtain that some arc v in M+
r′ (h) must also end in Hi.

By Property 5 for h, v must be contained in one of the sets L(A,Hi), R(A,Hi),
X (A,Hi). But y

L
i < h < yRi , so we obtain v ∈ X (A,Hi). Therefore, some position

in Hi violates Property 6, a contradiction. This proves 1 ≤ di(A) ≤ σ(A).
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Now, observe that for any i ∈ [t], ji is LR-critical for some (A,Hi) with
A ∈ PR,i. If A ∈ PR,i+1 as well, then di+1(A) > di(A). By our bounds on di(A),
this yields that there can be at most σ(A) indices i where ji is LR-critical for
(A,Hi). (Here we also used that di(A) cannot decrease.) This clearly implies
t ≤

∑
F∈P σ(F ) = δ(H1).

To finish the proof, we show δ(H1) ≤ k. Let b′ be the last index preceding the
indices in H1, and let b = b′ + δ(H1). Recall that φS(B

+
r′(1, b

′)) = B+
r (1, b) \ S

by Prop. 15. Using that Properties 1 and 3 hold for every index in [m′] and that
B+

r (i) 6= ∅ by Prop. 2 for any i ∈ [m], we obtain

|B+
r′(1, b

′)|+ k ≥ |B+
r (1, b)| =

∣∣∣∣
⋃

1≤j≤b′

B+
r (jleft)

∣∣∣∣+
∣∣∣∣

⋃

1≤i≤b,
i/∈{jleft:1≤j≤b′}

B+
r (i)

∣∣∣∣

≥ |B+
r′(1, b

′)|+
∑

F∈P

σ(F ) = |B+
r′(1, b

′)|+ δ(H1).

This shows k ≥ δ(H1), proving the lemma. ⊓⊔

Now, we can state the key properties of algorithmA, which prove Theorem 4.

Lemma 24. Given an input (G′, G) where |V (G′)| = n and |V (G)| = n + k,
algorithm A either produces a reduced input in O(n) time, or branches into at
most f(k) directions for some function f such that in each branch it either cor-
rectly refuses the instance, or outputs an independent subproblem or a necessary
set of size at most 2k + 1. Moreover, each branch takes O(n) time.

Proof. Let us overview the steps of algorithm A. First, it tries to apply the
reduction rules described in Sect. 4.2. In this phase, it either outputs a reduced
input in linear time, or it may branch into at most (4k + 1)24k(k(7k/2 + 8) +
1) = 2O(k) branches. In each branch it either correctly outputs ’No’, outputs a
necessary set of size at most 2, or outputs an independent subproblem having
parameter at most k − 1 but at least 1. These steps can be done in linear time,
as argued in Sect. 4.2.

If none of the reductions in Sect. 4.2 can be applied, then A first checks
whether a reduced input can be output by using Lemma 13. If not, then it
branches into 3 directions, according to whether S is local, and if not, whether
the children of r′ should be reversed to achieve the properties of Lemma 12.
In the first branch, it outputs a necessary set of size at most 2. In the other
two branches, it checks whether the annotated fragmentation AF0 produced in
the beginning is proper. While the annotated fragmentation is not proper, A
chooses the smallest ℓ and the smallest index j violating Property ℓ (maybe in
the reversed instance), and branches into at most 2(k + 1)2 − 1 directions. In
these branches, A either modifies the actual annotated fragmentation or stops
by outputting an independent subproblem, a necessary set of size at most 2k+1,
or rejecting.

Let us consider a sequence of t such branchings performed by A, and let
AF0, AF1, . . . , AFt be the sequence of annotated fragmentations produced in this
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process. (We interpret these as annotated fragmentations for (T, T ′, S) and not
for (T rev, T ′rev, S).) Let us call a continuous subsequence S of AF0, AF1, . . . , AFt

a segment, if each annotated fragmentation in S has the same number of non-
trivial fragments, and S is maximal with respect to this property. By Lemma 16,
the algorithm can reject if there are more than 2k non-trivial fragments in a
fragmentation, so AF0, AF1, . . . , AFt can contain at most 2k segments. Let S =
AFt1 , AFt1+1, . . . , AFt2 be such a segment. Clearly, each AFh (t1 < h ≤ t2) is
obtained from AFh−1 by performing a right split either in the original or in the
reversed instance (the latter meaning that AF rev

h is obtained from AF rev
h−1 by a

right split).

Let AFp be the first 9-proper annotated fragmentation in the segment. Us-
ing Lemma 23, each subsequence of AFt1 , . . . , AFp where the measure does not
increase can have length at most k. (The measure of an annotated fragmen-
tation is the measure of its fragmentation.) By (2) of Lemma 23, AFt1 has a
non-trivial fragment containing each of those indices for which the algorithm
performed a branching (because of Property 8) in some AFh, t1 ≤ h ≤ p. Taking
into account that the number of non-trivial fragments can not exceed 2k, but
branchings can also happen in the reversed instance, we obtain that there can
be at most 4k maximal subsequences in AFt1 , . . . , AFp of length at least 2 where
the measure is constant. Using Lemma 16, we get that µ(AFp) ≤ 36k, implying
p ≤ t1 + 4k2 + 36k.

Clearly, A obtains AFp+1, AFp+2, . . . , AFt2 while trying to ensure Property
10, by performing right splits in the original instance. Observe that if A obtains
AFh (p + 1 ≤ h ≤ t2) by applying a right split at j, then by the choice of j,
Property 10 holds for each index j′ ≤ j in any AFh′ where h′ ≥ h. This, together
with Lemma 16 implies thatA can perform at most 2k such branchings, implying
that t2 ≤ p + 2k ≤ t1 + 4k2 + 38k. Altogether, this implies t ≤ 2k(4k2 + 38k),
proving that the maximum length of a sequence of branchings performed by A in
order to obtain a proper annotated fragmentation can be at most 8k3 + 76k2 =
O(k3).

Essentially, this means that the search tree that A investigates has height at
most O(k3). Since one branching results in at most 2(k + 1)2 − 1 directions, we
obtain that the total number of resulting branches in a run of algorithm A can
be bounded by a function f of k. In each of these branches, if A does not stop,
then it has a proper annotated fragmentation (F , U). After this, algorithm A
does not perform any more branchings. Instead, it applies Lemma 21 repeatedly.
If the algorithm reaches a state where Lemma 21 does not apply, then it outputs
a solution in linear time using Lemma 22.

It is easy to verify that each branch can be performed in linear time. The
only non-trivial task is to show that the repeated application of Lemma 21 can
be implemented in linear time, but this easily follows from the fact that none of
the conditions of Lemma 21 can be applied twice for a block [a, b]. ⊓⊔
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5.3 The proof of Lemma 18

In this section we prove Lemma 18. Suppose that Property ℓ (1 ≤ ℓ ≤ 10)
does not hold for some j ∈ [m′] in the annotated fragmentation (F , U), but all
the previous properties hold for each index both in (F , U) and in (F rev, U rev).
Suppose also that j is left-aligned, i.e. IS(j) = [jleft, jleft]. Below we describe the
detailed steps of algorithm A depending on the property that is violated by j.

Property 1: G′[X ′
j ] is isomorphic to G[Xjleft ].

If j violates Property 1, then G′[X ′
j] is not isomorphic to G[Xjleft ], which implies

S∩Xjleft 6= ∅. From IS(j) = [jleft, jleft] we obtain that S∩Xjleft must be a solution
for (G′[X ′

j ], G[Xjleft ]). Conversely, if (G
′, G) is solvable, then any solution for

(G′[X ′
j ], G[Xjleft ]) can be extended to a solution for (G′, G). Bym > m′,G−Xjleft

can not be isomorphic to G′ − X ′
j, so S ⊆ Xjleft is not possible. Therefore, if

the parameter of (G′[X ′
j ], G[Xjleft ]) is more than k− 1 (or less than 1), then the

algorithm can refuse the instance. Thus, A can either reject, or it can output
the independent subproblem (G′[X ′

j ], G[Xjleft ]).

Property 2: |M+
r′ (j)| ≤ |M+

r (jleft)| ≤ |M+
r′ (j)| + k and |M−

r′ (j)| ≤
|M−

r (jleft)| ≤ |M−
r′ (j)|+ k.

By IS(j) = [jleft, jleft] and Prop. 15, we can observe that M+
r (jleft) \ S =

φS(M
+
r′ (j)) and M−

r (jleft) \ S = φS(M
−
r′ (j)). If j violates Property 2, then this

contradicts to |S| ≤ k, and thus algorithm A can reject.

Lemma 25. If Properties 1 and 2 hold for each index both in (F , U) and in
(F rev, U rev), and there is an index h ∈ [m′] contained in a non-trivial fragment
F such that |M+

r′ (h)| > k or |M−
r′ (h)| > k, then there is no solution for (G′, G).

Proof. As Property 2 holds for each index in F = ([a′, b′], [a, b]), |M+
r′ (j)| ≤

|M+
r (jleft)| holds for each j ∈ [m′]. Similarly, as Property 2 holds for each index

in the reversed instance, we obtain that |M+
r′ (j)| ≤ |M+

r (jright)| must hold for
each j ∈ [m′]. Supposing |M+

r′ (h)| > k, we get
∑

a≤i≤b

|M+
r (i)| =

∑

a′≤j<h

|M+
r (jleft)|+

∑

0≤d<σ(F )

|M+
r (hleft + d)|

+
∑

h≤j≤b′

|M+
r (jright)| ≥ |M+

r′ (h)|+
∑

a′≤j≤b′

|M+
r′ (j)| > k +

∑

a′≤j≤b′

|M+
r′ (j)|.

Observe that we used σ(F ) > 0 in the first inequality.
Proposition 15 yields φS(B

+
r′(a

′, b′)) = B+
r (a, b) \ S, from which |B+

r (a, b)| ≤
|B+

r′(a
′, b′))|+k follows. Using that Property 1 holds for each index, we also have

|X ′
j | = |Xjleft | for each j ∈ [m′], implying

∑
a≤i≤b |Xi| ≥

∑
a′≤j≤b′ |X

′
j|. Hence,

we obtain ∑

a≤i≤b

|M+
r (i)| ≤

∑

a′≤j≤b′

|M+
r′ (j)|+ k,

contradicting the above inequality. The case |M−
r′ (h)| > k can be handled in the

same way. ⊓⊔
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Property 3: If j is non-trivial, then |M+
r′ (j)| = |M+

r (jleft)| and |M−
r′ (j)| =

|M−
r (jleft)|.

By IS(j) = [jleft, jleft] and Prop. 15, we get M+
r (jleft) \ S = φS(M

+
r′ (j)) and

M−
r (jleft) \ S = φS(M

−
r′ (j)). Clearly, if |M

+
r (jleft)| < |M+

r′ (j)| or |M−
r (jleft)| <

|M−
r′ (j)|, then algorithm A can output ’No’. If this is not the case, then S

must contain at least one vertex from M+
r (jleft) or M

−
r (jleft), because j violates

Property 3. If |M+
r′ (j)| > k or |M−

r′ (j)| > k, then A can output ’No’ as well, by
Lemma 25. Thus, if A does not reject, then it can output a necessary set of
size at most k+1 in both cases, by taking |M+

r′ (j)|+1 or |M−
r′ (j)|+1 arbitrary

vertices from M+
r (jleft) or M

−
r (jleft), respectively.

Property 4: If j is non-trivial, then |Lr′(y, j)| = |Lr(yleft, jleft)| for any
y < j contained in the same fragment as j.

Suppose that |Lr′(y, j)| 6= |Lr(yleft, jleft)| for some y < j contained in the same
fragment that contains j. Since j is left-aligned, we get that y must also be
left-aligned as well by y < j, i.e. IS(y) = [yleft, yleft]. By Prop. 15, this implies
Lr(yleft, jleft) \ S = φS(Lr′(y, j)). Thus, if |Lr′(y, j)| > |Lr(yleft, jleft)| then A
can reject. Otherwise, Lr(yleft, jleft) contains at least one vertex from S. Since
each vertex in Lr(yleft, jleft) has the same neighborhood, A can output {s} as a
necessary set for some arbitrarily chosen s in Lr(yleft, jleft).

Property 5: If j is non-trivial, then for every (v, w) ∈ P+
left(j) such

that Qright
r′ (v) = y is non-trivial, yleft ≤ Qright

r (w) ≤ yright holds. Also,
for every (v, w) ∈ P−

left(j) such that Qleft
r′ (v) = y is non-trivial, yleft ≤

Qleft
r (w) ≤ yright holds.

Suppose that j violates Property 5, because (v, w) ∈ P+
left(j) such thatQright

r′ (v) =
y is non-trivial, but yleft ≤ Qright

r (w) ≤ yright does not hold. We show that A
can output ’No’ in this case. As Property 3 holds for j, |M+

r′ (j)| = |M+
r (jleft)|.

As j is left-aligned, φS(v) = w by Prop. 17. But from this, Prop. 15 implies
αS(y) ≤ Qright

r (w) ≤ βS(y). By Prop. 15 we know yleft ≤ αS(y) ≤ βS(y) ≤ yright
as well. Therefore, A can indeed refuse the instance. Supposing that Property
5 does not hold because of the case where some (v, w) ∈ P−

left(j) is considered
leads to the same result, so it is straightforward to verify that A can reject in
both cases.

The observation below, used in the forthcoming three cases, is easy to see:

Proposition 26. Suppose that the first five properties hold for a given (anno-
tated) fragmentation. Let y and j be indices of [m′] contained in non-trivial
fragments F and H, respectively, and suppose that j is left-aligned. Then v ∈
Lr′(y, j) implies the followings.
(1) v ∈ L(F,H) ∪R(F,H) ∪ X (F,H).
(2) If v ∈ L(F,H), then αS(y) = yleft.
(3) If v ∈ R(F,H), then βS(y) = yright.
(4) If v ∈ X (F,H), then y is either wide or skew.
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Property 6: If j is non-trivial, then no vertex in X (F,H) (for some F
and H) ends in j.

Suppose that Property 6 does not hold for j, so there is a vertex in Lr′(y, j) ∩
X (F,H) for some y < j. As j is left-aligned, Prop. 26 implies that y is either
wide or skew.

Property 7: j is not conflict-inducing for any (F,H).

Suppose that j violates Property 7 because it is conflict-inducing for some (F,H)
and for some conflicting pair of indices (y1, y2). Let j1 be the minimal index for
which Lr′(y1, j1) ∩ R(F,H) 6= ∅, and let j2 be the minimal index for which
Lr′(y2, j2) ∩ L(F,H) 6= ∅. Since j ≥ max{j1, j2}, and j is left-aligned, we know
that both j1 and j2 are left-aligned as well. By Prop. 26, this implies βS(y1) =
y1right and αS(y2) = y2left. If y1 < y2, then this yields a contradiction by Prop.
15, so A can reject. In the case where y1 = y2 = y, we get IS(y) = [yleft, yright],
and since y is non-trivial, algorithm A can output y as a wide index.

For the case of Property 8, we need the following simple lemma:

Lemma 27. Suppose that a fragmentation for (T, T ′, S) contains a fragment
F = ([a′, b′], [a, b]) with 0 < b′ − a′ ≤ σ(F ), and the first four properties hold
for each index contained in F both in the given fragmentation and its reversed
version. Then A can produce a necessary set of size at most 2k + 1.

Proof. Since Properties 1 and 3 hold for each index contained in F , we ob-
tain |B+

r′(a
′, b′)| = |B+

r (a
′
left, b

′
left)|. Using Prop. 15 we have B+

r (a, b) \ S =
φS(B

+
r′(a

′, b′)). Proposition 2 yields B+
r′(j) 6= ∅ for any j, so we get |B+

r (a, b)| >
|B+

r′(a
′, b′)|. Hence, fixing an arbitrary set N ⊆ B+

r (a, b) of size |B+
r′(a

′, b′)|+ 1,
we get that N is a nonempty necessary set. We claim |B+

r′(a
′, b′)| ≤ 2k, which

implies |N | ≤ 2k + 1. Thus, A can indeed output N , proving the lemma.
It remains to show |B+

r′(a
′, b′)| ≤ 2k. Recall |B+

r′(a
′, b′)| = |B+

r (a
′
left, b

′
left)|.

As Properties 1 and 3 hold for each index contained in F rev in the reversed
fragmentation, we get |B+

r′(a
′, b′)| = |B+

r (a′right, b
′
right)| as well. Using a′right −

b′left = a′ − b′ + σ(F ) ≥ 0, we obtain that B+
r (a′left, b

′
left)∩B+

r (a
′
right, b

′
right) ⊆

B+
r (b

′
left). Moreover, if b′−a′ < σ(F ) also holds, then actually B+

r (a′left, b
′
left)∩

B+
r (a

′
right, b

′
right) = ∅.

By the above paragraph, b′ − a′ < σ(F ) implies |B+
r (a, b)| ≥ 2|B+

r′(a
′, b′)|, so

we get |B+
r′(a

′, b′)| ≤ k. On the other hand, b′−a′ = σ(F ) yields |B+
r′(a

′, b′)|+k ≥
|B+

r (a, b)| ≥ 2|B+
r′(a

′, b′)| − |B+
r (b′left)|, implying |B+

r′(a
′, b′)| ≤ k + |B+

r (b
′
left)|.

Taking into account that |B+
r′(a

′)| = |B+
r (b

′
left)| = |B+

r′(b
′)| holds by Properties

1 and 3 for b′ and for a′rev, we have |B+
r′(a

′, b′)| ≥ 2|B+
r (b

′
left)|. Summarizing all

these, |B+
r′(a

′, b′)| ≤ 2k follows. ⊓⊔

Property 8: j is not LR-critical for any (F,H).

Suppose that j violates Property 8, so j is LR-critical for some (F,H). In this
case, Rmin(F,H) = yR is an index contained in F . Since j is left-aligned, the
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R-critical index for (F,H) is also left-aligned, hence Prop. 26 yields βS(y
R) =

yRright. Let a
′ be the first index of [m′] contained in F .

First, if yR < a′ + σ(F ), then we apply Lemma 27 as follows. Clearly, by
βS(y

R) = yRright we can perform a right split at yR. The obtained fragmentation

will contain the fragment F ′ = ([a′, yR], [a′left, y
R
right]), so yR − a′ < σ(F ) =

σ(F ′) shows that A can produce a necessary set of size at most 2k+1 by using
Lemma 27.

Now, suppose yR ≥ a′+σ(F ). In this case, there is an index t in F for which
tright = yRleft. By Properties 3 and 5 for yR, we know that there is a vertex in
M+

r (yRleft) that ends in the fragment H . Using Properties 3 and 5 again for trev

in the reversed instance, we know that there must be a vertex v in M+
r′ (t) that

ends in the fragment H . By Prop. 26, v ∈ L(F,H)∪R(F,H)∪X (F,H). Observe
that v /∈ X (F,H), as Property 6 holds for every index in [m′]. Also, v /∈ R(F,H)
by the definition of yR = Rmin(F,H). Thus, we know that v ∈ L(F,H), implying
yL = Lmax(F,H) ≥ t as well. As Property 7 holds for each index, we also have
yL < yR.

To finish the case, observe that since j is left-aligned and LR-critical for
(F,H), Prop. 26 yields αS(y

L) = yLleft. Using βS(y
R) = yRright again, we

can produce a fragmentation for (T, T ′, S) that contains the fragment F ′ =
([yL, yR], [yLleft, y

R
right]). (This can be thought of as performing a right split

at yR, and a right split at (yL)rev in the reversed instance.) Hence, yR − yL ≤
yR − t = σ(F ) = σ(F ′) shows that A can produce a necessary set of size at
most 2k + 1 by using Lemma 27.

Property 9: If j is non-trivial, then for every (v, w) ∈ P+
left(j) such

that Qright
r′ (v) = y is non-trivial, Qright

r (w) = yleft holds. Also, for every
(v, w) ∈ P−

left(j) such that Qleft
r′ (v) = y is non-trivial, Qleft

r (w) = yleft
holds.

Observe that if Property 9 does not hold for an index j, then by Prop. 26,
either M+

r′ (j) or M
−
r′ (j) contains a vertex in R(F,H)∪X (F,H) for some (F,H).

But this means that one of Properties 6 and 8 must be violated, which is a
contradiction. Thus, A can correctly reject.

Property 10: If j is non-trivial, then for each important trivial index
u ∈ U , |Lr′(j, u)| = |Lr(jleft, uleft)| holds if u > j, and |Lr′(u, j)| =
|Lr(uleft, jleft)| holds if u < j.

Suppose that j violates Property 10, because |Lr′(j, u)| 6= |Lr(jleft, uleft)| for
some u > j. (The case when u < j can be handled in the same way.) Since
u is contained in a trivial fragment, IS(u) = [uleft, uleft]. Thus, by IS(j) =
[jleft, jleft] and Prop. 15, we get Lr(jleft, uleft) \S = φS(Lr′(j, u)). If |Lr′(j, u)| >
|Lr(jleft, uleft)|, then A can reject the instance. Otherwise, we can argue as
before that {s} is a necessary set for any s ∈ Lr(jleft, uleft).
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