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Abstract. The edit distance problem is a classical fundamental problem in computer science in general,
and in combinatorial pattern matching in particular. The standard dynamic programming solution for
this problem computes the edit-distance between a pair of strings of total length O(N) in O(N2) time.
To this date, this quadratic upper-bound has never been substantially improved for general strings.
However, there are known techniques for breaking this bound in case the strings are known to compress
well under a particular compression scheme. The basic idea is to first compress the strings, and then
to compute the edit distance between the compressed strings.

As it turns out, practically all known o(N2) edit-distance algorithms work, in some sense, under the
same paradigm described above. It is therefore natural to ask whether there is a single edit-distance
algorithm that works for strings which are compressed under any compression scheme. A rephrasing of
this question is to ask whether a single algorithm can exploit the compressibility properties of strings
under any compression method, even if each string is compressed using a different compression. In
this paper we set out to answer this question by using straight line programs. These provide a generic
platform for representing many popular compression schemes including the LZ-family, Run-Length
Encoding, Byte-Pair Encoding, and dictionary methods.

For two strings of total length N having straight-line program representations of total size n, we
present an algorithm running in O(nN log(N/n)) time for computing the edit-distance of these two
strings under any rational scoring function, and an O(n2/3N4/3) time algorithm for arbitrary scoring
functions. Our new result, while providing a significant speed up for highly compressible strings, does
not surpass the quadratic time bound even in the worst case scenario.
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1 Introduction

Text compression is traditionally applied in order to reduce the use of resources such as storage
and bandwidth. However, in the algorithmic community, there has also been a trend to exploit
the properties of compressed data for accelerating the solutions to classical problems on strings.
The basic idea is to first compress the input strings, and then solve the problem on the resulting
compressed strings. The compression process in these algorithms is merely a tool, and is used
as an intermediate step in the complete algorithm. It is therefore possible that these algorithms
may choose to decompress the compressed data after the properties of the compression process
have been put to use. Various compression schemes, such as LZ77 [36], LZW-LZ78 [35], Huffman
coding, Byte-Pair Encoding (BPE) [30], and Run-Length Encoding (RLE), were thus employed to
accelerate exact string matching [3, 14, 20, 23, 31], subsequence matching [9], approximate pattern
matching [2, 13, 14, 27], and more [26].

Determining the edit-distance between a pair of strings is a fundamental problem in computer
science in general, and in combinatorial pattern matching in particular, with applications rang-
ing from database indexing and word processing, to bioinformatics [11]. It asks to determine the
minimum cost of transforming one string into the other via a sequence of character deletion, inser-
tion, and replacement operations. Ever since the classical O(N2) dynamic programming algorithm
by Wagner and Fisher in 1974 for two input strings of length N [34], there have been numerous
papers that used compression to accelerate edit-distance computation. The first paper to break
the quadratic time barrier of edit-distance computation was the seminal paper of Masek and Pa-
terson [24], who applied the ”Four Russians technique” to obtain a running time of O(N2/lgN)
for any pair of strings, and of O(N2/lg2 N) assuming a unit cost RAM model. Their algorithm
essentially exploits repetitions in the strings to obtain the speed up, and so in many ways it can
also be viewed as compression based. In fact, one can say that their algorithm works on the “naive
compression” that all strings over constant sized alphabets have.

Apart from its near quadratic runtime, a drawback of the Masek and Paterson algorithm is
that it can only be applied when the given scoring function is a rational number. That is, when
the cost of every elementary character operation is rational. Note that this restriction is indeed a
limitation in computational biology, where PAM and evolutionary distance similarity matrices are
used for scoring [10, 24]. The Masek and Paterson algorithm was later extended to general alphabets
by Bille and Farach-Colton [7]. Bunke and Csirik presented a simple algorithm for computing the
edit-distance of strings that compress well under RLE [8]. This algorithm was later improved in a
sequence of papers [5, 6, 10, 22] to an algorithm running in time O(nN), for strings of total length
N that encode into run-length strings of total length n. In [10], an algorithm with the same time
complexity was given for strings that are compressed under LZW-LZ78. It is interesting to note
that all known techniques for improving on the O(N2) time bound of edit-distance computation,
essentially apply the acceleration via compression paradigm.

There are two important things to observe from the above: First, all known techniques for im-
proving on the O(N2) time bound of edit-distance computation, essentially apply acceleration via
compression. Second, apart from RLE, LZW-LZ78, and the naive compression of the Four Rus-
sians technique, we do not know how to efficiently compute edit-distance under other compression
schemes. For example, no algorithm is known which substantially improves O(N2) on strings which
compress well under LZ77. Such an algorithm would be interesting since there are various types of
strings that compress much better under LZ77 than under RLE or LZW-LZ78. In light of this, and
due to the practical and theoretical importance of substantially improving on the quadratic lower
bound of string edit-distance computation, we set out to answer the following question:
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“Is there a general compression based edit-distance algorithm that can exploit the compress-
ibility of two strings under any compression scheme?”

We propose a unified algorithm for accelerating edit-distance computation via acceleration. The
key idea is to use straight-line programs (SLPs), which as shown by Rytter [28], can be used to
model many traditional compression schemes including the LZ-family, RLE, Byte-Pair Encoding,
and dictionary methods. These can be transformed to straight-line programs quickly and without
large expansion1. Thus, devising a fast edit-distance algorithm for strings that have small SLP
representations, would give a fast algorithm for strings which compress well under the compression
schemes generalized by SLPs. This has two main advantages:

1. It allows the algorithm designer to ignore technical details of various compression schemes and
their associated edit-distance algorithms.

2. One can accelerate edit-distance computation between two strings that compress well under
different compression schemes.

In addition, we believe that a fast SLP edit-distance algorithm might lead to an O(N2−ε) algorithm
for general edit-distance computation, a major open problem in computer science.

Tiskin [32] also studied, independently of the authors, the use of SLPs for edit-distance compu-
tation. He gave an O(nN1.5) algorithm for computing the edit-distance between two SLPs under
rational scoring functions. Here, and throughout the paper, we use N to denote the total length
of the input strings, and n as the total size of their SLP representations. Recently, Tiskin [33] was
able to speed up his rational scoring function algorithm of [32] to an O(nN logN) algorithm.

1.1 Our results

Initial results for these problems were shown by the authors in [12]. Here, we refine our techniques,
allowing us to improve on all edit-distance computation bounds discussed above. Our first result of
this paper is for the case of rational scoring functions:

Theorem 1. Let A and B be two SLPs of total size n that respectively generate two strings A and

B of total length N . Then, given A and B, one can compute the edit-distance between A and B in

O(nN log(N/n)) time for any rational scoring function.

As arbitrary scoring functions are especially important for biological applications, we obtain
the following result for arbitrary scoring functions:

Theorem 2. Let A and B be two SLPs of total size n that respectively generate two strings A and

B of total length N . Then, given A and B, one can compute the edit-distance between A and B in

O(n2/3N4/3) time for any arbitrary scoring function.

The reader should compare Theorem 1 to the O(nN logN) algorithm of Tiskin [33], and The-
orem 2 to the O(n1.34N1.34) algorithm of [12]. In both cases, our algorithms do not surpass the
quadratic bound of O(N2), even in the worst case when n = Θ(N). There are two main ingredients
which we make use of in this paper to obtain the improvements discussed above:

1. The recent improvements on DIST merges presented by Tiskin [33].

2. A refined partitioning of the input strings into repeated patterns.

1 Important exceptions of this list are statistical compressors such as Huffman or arithmetic coding, as well as
compressions that are applied after a Burrows-Wheeler transformation.
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The second ingredient is obtained by much lesser stringent requirements of the desired partitioning.
This has the advantage that such a partitioning always exists, yet it adds other technical difficulties
which make the version presented in this sequel more complex. In particular, the construction of
the repository of DIST tables as shown in [12] requires a more careful and detailed analysis.

1.2 Related Work

Rytter et al. [15] were the first to consider SLPs in the context of pattern matching, and other
subsequent papers also followed this line [16, 25]. In [28] and [20] Rytter and Lifshits took this
work one step further by proposing SLPs as a general framework for dealing with pattern matching
algorithms that are accelerated via compression. However, the focus of Lifshits was on determining
whether or not these problems are polynomial in n or not. In particular, he gave an O(n3)-time
algorithm to determine equality of SLPs [20], and he established hardness for the edit distance [21],
and even for the hamming distance problems [20]. Nevertheless, Lifshits posed as an open problem
the question of whether or not there is an O(nN) edit-distance algorithm for SLPs. Here, we attain
a bound which is only log(N/n) away from this.

1.3 Paper Organization

The rest of the paper is organized as follows: In the following section we present some notation
and terminology, and give a brief discussion of edit-distance computation and SLPs. Section 3 then
gives an overview of the block edit-distance algorithm which is the framework on which both our
algorithms are developed. The two preceding sections, Sections 4 and 5, are devoted to explaining
how to take advantage of the SLP representations in the block edit-distance algorithm. In particular,
Section 4 explains how to construct a partitioning of the two input strings that has a very convenient
structure, and Section 5 explains how to exploit this structure in order to efficiently construct a
repository of DIST tables to be used in the block edit-distance algorithm. Finally, in Section 6, we
complete all necessary details for proving Theorems 1 and 2.

2 Preliminaries

We next present some terminology and notation that will be used throughout the paper. In par-
ticular, we discuss basic concepts regarding edit-distance computation and straight-line programs.

Edit Distance: The edit distance between two strings over a fixed alphabet Σ is the minimum
cost of transforming one string into the other via a sequence of character deletion, insertion, and
replacement operations [34]. The cost of these elementary editing operations is given by some
scoring function which induces a metric on strings over Σ. The simplest and most common scoring
function is the Levenshtein distance [19] which assigns a uniform cost of 1 for every operation.

The standard dynamic programming solution for computing the edit distance between a pair
of strings A = a1a2 · · · aN and B = b1b2 · · · bN involves filling in an (N + 1) × (N + 1) table
T , with T [i, j] storing the edit distance between a1a2 · · · ai and b1b2 · · · bj . The computation is
done according to the base case rules given by T [0, 0] = 0, T [i, 0] = T [i − 1, 0] + the cost of
deleting ai, and T [0, j] = T [0, j − 1] + the cost of inserting bj, and according to the following
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dynamic programming step2:

T [i, j] = min











T [i− 1, j] + the cost of deleting ai

T [i, j − 1] + the cost of inserting bj

T [i− 1, j − 1] + the cost of replacing ai with bj

(1)

Note that as T has (N + 1)2 entries, the time complexity of the algorithm above is O(N2).

Straight-line programs: A straight-line program (SLP) is a context free grammar generating
exactly one string. Moreover, only two types of productions are allowed: Xi → a where a is a
unique terminal, and Xi → XpXq with i > p, q where X1, . . . ,Xn are the grammar variables. Each
variable appears exactly once on the left hand side of a production. In this way, the production rules
induce a rooted ordered tree over the variables of the SLPs, and we can borrow tree terminology
(e.g. left-child, ancestor,...) when speaking about the variables of the SLP. The string represented
by a given SLP is a unique string that is derived by the last nonterminal Xn. We define the size of
an SLP to be n, the number of variables it has (which is linear in the number of productions). The
length of the strings that is generated by the SLP is denoted by N . It is important to observe that
SLPs can be exponentially smaller than the string they generate.

Example 1. Consider the string abaababaabaab. It could be generated by the following SLP:

X1 → b
X2 → a
X3 → X2X1

X4 → X3X2

X5 → X4X3

X6 → X5X4

X7 → X6X5

Rytter [28] proved that the resulting encoding of most compression schemes can be trans-
formed to straight-line programs quickly and without large expansion. In particular, consider an
LZ77 encoding [18] with n′ blocks for a string of length N . Rytter’s algorithm produces an SLP-
representation with size n = O(n′ logN) of the same string, in O(n) time. Moreover, n lies within
a logN factor from the size of a minimal SLP describing the same string. This gives us an efficient
logarithmic approximation of minimal SLPs, since computing the LZ77 encoding of a string can be
done in linear time. Note also that any string compressed by the LZ78-LZW encoding [17] can be
transformed directly into a straight-line program within a constant factor.

3 The Block Edit-Distance Algorithm

In the following section we describe a generic framework for compression based acceleration of edit
distance computation between two strings called the block edit-distance algorithm. This framework
generalizes many compression based algorithms including the Masek and Paterson algorithm [24],
and the algorithms in [6, 10], and it will be used for explaining our algorithms in Theorem 1 and
Theorem 2.

2 We note that in most cases, including the Levenshtein distance [19], when ai = bj , the cost of replacing ai with bj
is zero.



5

Consider the standard dynamic programming formulation (1) for computing the edit-distance
between two strings A = a1a2 · · · aN and B = b1b2 · · · bN . The dynamic programming grid associated
with this program, is an acyclic directed graph which has a vertex for each entry of T (see Fig. 1).
The vertex corresponding to T [i, j] is associated with ai and bj, and has incoming edges according
to (1) – an edge from T [i − 1, j] whose weight is the cost of deleting ai, an edge from T [i, j − 1]
whose weight is the cost of inserting bj , and an edge from T [i− 1, j − 1] whose weight is the cost of
replacing ai with bj. The value at the vertex corresponding to T [i, j] is the value stored in T [i, j],
i.e. the edit-distance between the length i prefix of A and the length j prefix of B. Using the
dynamic programming grid G, we reduce the problem of computing the edit-distance between A
and B to the problem of computing the weight of the lightest path from the upper-left corner to
bottom-right corner in G.

A   B  C  C B  C  A  B  C  D 
A   
B  
B  
D 
D  
C  
A  
B  
C

I[6] 

I[5]

I[4]

I[3]

I[2]

I[1]

I[7] 

O[2] O[3] 

O[5] 

O[6] 

O[7] 

O[8] 

O[9] 

I[8] I[9] 

O[1] O[4] 

Fig. 1. A graphical depiction of the Levenshtein distance dynamic programming grid. On the left, an x-partition of the
grid. The boundaries of blocks are shaded in gray. On the right, the DIST table corresponding to the upper-rightmost
block in the partition. The substrings corresponding to this block are “ABCD” in A, and “ABBD” in B.

We will work with sub-grids of the dynamic programming grid that will be referred to as blocks.
The input vertices of a block are all vertices in the first row and column of the block, while its
output vertices are all vertices in the last row and column. Together, the input and output vertices
are referred to as the boundary of the block. The substrings of A and B associated with a block are
defined in the straightforward manner according to its first row and column. Also, for convenience
purposes, we will order the input and output vertices, with both orderings starting from the vertex
in bottom-leftmost corner of the block, and ending at the vertex in the upper-rightmost corner. The
ith input vertex and jth output vertex are the ith and jth vertices in these orderings as depicted
in Fig. 1.

Definition 1 (x-partition). Given a positive integer x ≤ N , an x-partition of G is a partitioning

of G into disjoint blocks such that every block has boundary of size O(x), and there are O(N/x)
blocks in each row and column.

The central dynamic programming tool used by the block edit-distance algorithm is the DIST
table, an elegant and handy data structure which was originally introduced by Apostolico et al. [4],
and then further developed by others in [10, 29] (see Fig. 1).

Definition 2 (DIST [4]). Let G′ be a block in G with x input vertices and x output vertices. The

O(x2) DIST table corresponding to G′ is an x×x matrix, with DIST [i, j] storing the weight of the

minimum weight path from the ith input to the jth output in G, and ∞ if no such paths exists.
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In the case of rational scoring functions, Schmidt [29] was the first to identify that the DIST
table can be succinctly represented using O(x) space, at a small cost to query access time. In [29]
the author took advantage of the fact that the number of relevant changes from one column to the
next in the DIST matrix is constant. Therefore, the DIST matrix can be fully represented using
only the O(x) relevant points, which requires only O(x) space.

Definition 3 (Succinct DIST [29]). A succinct representation of an x × x DIST table is a

data structure requiring O(x) space, where the value DIST [i, j], given any i, j ∈ {1, . . . , x}, can be

queried in O(log2 x) time.

It is important to notice that the values at the output vertices of a block are completely deter-
mined by the values at its input and its corresponding DIST table. In particular, if I[i] and O[j]
are the values at the ith input vertex and jth output vertex of a block G′ of G, then

O[j] = min
1≤i≤x

(I[i] +DIST [i, j]). (2)

By (2), the values at the output vertices of G′ are given by the column minima of the matrix
I+DIST . Furthermore, by a simple modification of all∞ values in I+DIST , we get what is known
as a totally monotone matrix [10]. Aggarwal et al. [1] gave an elegant recursive algorithm, nicknamed
SMAWK in the literature, that computes all column minima of an x× x totally monotone matrix
by querying only O(x) elements of the matrix. It follows that using SMAWK we can compute the
output values of G′ in O(x) time. We will be using this mechanism for the arbitrary scoring function.
However, for the case of rational scoring functions, using SMAWK on the succinct representation of
DIST requires O(x log2 x) time. Tiskin [33] showed how to reduce this to O(x log x) using a simple
divide-and-conquer approach.

In addition, let us now discuss how to efficiently construct the DIST table corresponding to a
block in G. Observe that this can be done quite easily in O(x3) time, for blocks with boundary size
O(x), by computing the standard dynamic programming table between every prefix of A against
B and every prefix of B against A. Each of these dynamic programming tables contains all values
of a particular row in the DIST table. In [4], Apostolico et al. show an elegant way to reduce the
time complexity of this construction to O(x2 lg x). In the case of rational scoring functions, the
complexity can be further reduced to O(x2) as shown by Schmidt [29].

Block Edit Distance

1. Construct an x-partition of the dynamic programming grid of A and B, with some x ≤ N to
be chosen later.

2. Construct a repository with the DIST tables corresponding to each block in the x-partition.
3. Fill in the first row and column of G using the standard base case rules.
4. In top-to-bottom and left-to-right manner, identify the next block in the partition of G and

use its input and the repository to compute its output using (2). Use the outputs in order to
compute the inputs of the next block using (1).

5. The value in the bottom-rightmost cell is the edit distance of A and B.

The first two steps of the block edit-distance algorithm are where we actually exploit the repet-
itive structure of the input strings induced by their SLP representations. These will be explained in
further detail in Sections 4 and 5. Apart from these two steps, all details necessary for implementing
the block edit-distance algorithm should by now be clear. Indeed, steps 3 and 5 are trivial, and step
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The key-vertices vi and vi+1 both derive strings of length Θ(x), and their least com-
mon ancestor is ui. The white vertices “hanging” off the vi-to-vi+1 path are variables
that together derive the substrings yet to be covered. Notice that the white vertices
derive strings of length shorter than x. In the final partition, v3i is associated with an
actual substring in the partition. v2i is associated with a prefix of this substring.

Fig. 2. A closer look on the parse tree of an SLP A.

4 is computed differently for rational scoring schemes and arbitrary scoring schemes according to
the above discussion. Since there are O(N2/x2) blocks induced by an x-partition, this step requires
O(N2/x) time for arbitrary scoring functions, and O(N2 lg x/x) time when dealing with succinct
DIST tables in the case of rational scoring functions.

4 Constructing the x-partition

In this section we explain how to construct an x-partition of the dynamic programming grid G.
Each block in this partition, in addition to being associated with a substring A′ of A and a substring
B′ of B, is also associated with unique grammar variables v ∈ A and u ∈ B. It is possible that
A′ is only a prefix or a suffix of the string that is derived from v. Similarly, it is possible that B′

is only a prefix or a suffix of the string that is derived from u. However, every pair of grammar
variables (v ∈ A, u ∈ B) is only associated with one pair of substrings (A′, B′). Notice that in the
x-partition, it is possible that more than one block is associated with substrings (A′, B′). This is
due to the inherent repetitions in the parse tree that are crucial for the efficiency of our algorithm.

To describe the x-partition procedure, we explain how A is partitioned into substrings, B is
partitioned similarly. We show that for every SLP A generating a string A and every x ≤ N , one
can partition A into O(N/x) disjoint substrings, each of length O(x), such that every substring is
the complete or partial generation of some variable in A. The outline of the partition process is as
follows:

1. We first identify the grammar variables in A which generate a disjoint substring of length
between x and 2x. There are at most O(N/x) such variables.

2. We then show that the substrings of A that are still not associated with a variable can each
be generated by O(N/x) additional variables. Furthermore, while, these additional O(N/x)
variables may generate a string of length greater than x, we will show how to extract only the
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desired substring from the string that they generate. We add all such variables to our partition
of A for a total of O(N/x) variables.

To clarify, lets look at the example depicted in Fig. 2. In step 1 described above, the vertexes
vi and vi+1 are selected. In step 2, vertices v3i and v4i are selected. For the latter, we will use only
a portion of the strings generated by these variables as needed by the algorithm.

We now give a detailed description of the partition process. To partition A, consider the parse
tree of A as depicted in Fig. 2. We begin by assigning every grammar variable (vertex) that derives
a string shorter than x with the exact string that it derives. We continue by marking every vertex v
that derives a string of length greater than x as a key-vertex iff both children of v derive strings of
length smaller than x. This gives us O(N/x) key-vertices, such that each derives a string of length
Θ(x). We then partition A according to these vertices. In particular, we associate each key-vertex
with the exact string that it derives. But we are still not guaranteed that the key-vertices cover A
entirely.

To fix this, we take a look at two key-vertices vi, vi+1 selected in the above process as seen in
Fig. 2. Assume vi derives the string Ai and vi+1 derives the string Ai+1, and that A′

i is the “missing”
substring of A that lies between Ai and Ai+1. Note that both Ai and Ai+1 are of length Θ(x), A′

i

however, can be either longer than Θ(x) or shorter. We now go on to show how to partition A′
i into

O(|A′
i|/x) substrings of length O(x) each.

Let ui be the lowest common ancestor of vi and vi+1, and let v1i , . . . , v
s
i (resp. vs+1

i , . . . , vti) be
the vertices, not including ui, on the unique vi-to-ui (resp. ui-to-vi+1) path whose right (resp. left)
child is also on the path. We focus on partitioning the substring of A′

i corresponding to the vi-to-ui
path (partitioning the ui-to-vi+1 part is done symmetrically). The following procedure partitions
this part of A′

i and associates every one of v1i , v
2
i , . . . , v

s
i with a substring.

1. initialize j = 1
2. while j ≤ s
3. associate vji with the string derived by its right child, and initialize S to be this substring
4. while |S| < x and j 6= s
5. concatenate the string derived by vj+1

i ’s right child to S

6. associate the new S with vj+1

i
7. j ← j + 1
8. set S as a string in the x-partition

It is easy to verify that the above procedure partitions A′
i into O(|A′

i|/x) substrings, where one
substring can be shorter than x and all the others are of length between x and 2x. Therefore, after
applying this procedure to all A′

is, A is partitioned into O(N/x) substrings each of length O(x). It

is also easy to see that we can identify the key-vertices, as well as the vji vertices in O(N) time.
An important observation that we point out is that the basic structure of an SLP grammar

constitutes that every internal node in the tree represents a variable in the grammar and a grammar
variable of the form vji is always associated with the same substring S (and |S| ≤ 2x). Due to the
bottom-up nature of the above process, the same respective key-vertices in the subtree of a given
variable, will be chosen for any appearance of that variable in the tree. This is because in every
place in the parse tree where vji appears, the subtree rooted at vji is exactly the same, so the above
(bottom-up) procedure would behave the same.

5 Constructing the DIST Repository

In the previous section, we have seen how to construct an x-partition of the dynamic programming
grid G. Once this partition has been built, the first step of the block edit-distance procedure is to
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construct a repository of DIST tables corresponding to each block of the partition. In this section
we discuss how to construct this repository of DIST tables efficiently.

We will be building the DIST tables by utilizing the process of merging two DIST tables.
That is, if D1 and D2 are two DIST tables, one between a pair of substrings A′ and B′ and
the other between A′ and B′′, then we refer to the DIST table between A′ and B′B′′ as the
product of merging D1 and D2. For an arbitrary scoring function, merging two x× x DIST tables
requires O(x2) time using x iterations of the SMAWK algorithm discussed in Section 3. For the
rational scoring function, a recent important result of Tiskin [33] shows how using the succinct
representation of DIST tables, two DIST tables can be merged in O(x lg x) time.

Recall that the x-partitioning step described in Section 4 associates SLP variables with sub-
strings in A and B. Each substring which is associated with a variable is of length O(x). There
are two types of associated substrings: Those whose associated SLP variable derives them exactly,
and those whose associated variable derives a superstring of them. As a first step, we construct the
DIST tables between any pair of substrings A′ and B′ in A and B that are associated with a pair
of SLP variables, and are of the first type. This is done in a recursive manner. We first construct
the four DIST tables that correspond to the pairs (A′

1, B
′
1), (A

′
1, B

′
2), (A

′
2, B

′
1), and (A′

2, B
′
1), where

A′
1 and A′

2 (resp. B′
1 and B′

2) are the strings derived by the left and right children of A′’s (resp.
B′’s) associated variable. We then merge these four DIST s together to obtain a DIST between A′

and B′.

Now assume A′ is a substring in A of the second type, and we want to construct the DIST
between A′ and a substring B′ in B. For simplicity assume that B′ is a substring of the first type.
Then, the variable associated with A′ is a variable of the form vji on a path between some two key
vertices vi and vi+1. For each k ≤ j, let Ak

i denote the substring associated with vki . Notice that

A′ is the concatenation of Aj−1

i and the substring A′′ that is derived from vji ’s right child. The
DIST between A′ and B′ is thus constructed by first recursively constructing the DIST between
Aj−1

i and B′, and then merging this with the DIST between A′′ and B′. The latter already being
available since the variables associated with A′′ and B′ are of the first type.

Lemma 1. Building the DIST repository under a rational scoring function can be done in

O(n2x lg x) time.

Proof. Recall that for rational scoring functions, merging two succinct DIST s of size O(x) each
requires O(x lg x) time [33]. We perform exactly one merge per each distinct pair of substrings in A
and B induced by the x-partition. Since each substring is associated with a unique SLP variable,
there can only be O(n2) distinct substring pairs. Thus, we get that only O(n2) merges of succinct
DIST s need to be performed to create our repository, hence we achieve the required bound. ⊓⊔

Lemma 2. Building the DIST repository under an arbitrary scoring function can be done in

O(n2x2) time.

Proof. In the case of arbitrary scoring functions, merging two x × x DIST tables requires O(x2)
time. The same upper bound shown above of O(n2) merges may be performed in this case as well,
and therefore we achieve the required bound. ⊓⊔

6 Putting It All Together

As the major components of our algorithms have now been explained, we go on to summarize our
main results. In particular, we complete the proof of Theorem 1 and 2.
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Lemma 3. The block edit distance algorithm runs in O(n2x lg x + N2 lg x/x) time in case the

underlying scoring function is rational.

Proof. The time required by the block edit-distance algorithm is dominated by computing the
repository of DIST tables in step 2, and the cost of computing the output values of each block
in step 4. Steps 1,3 and 5 all take linear time or less. As we have shown in Section 5, in case the
underlying scoring function is rational, the DIST table repository can be built in O(n2x lg x) time,
accounting for the first component of our bound. As explained in Section 3, step 4 of the algorithm
requires O(N2 lg x/x) time, accounting for the second component in the above bound. ⊓⊔

To conclude, constructing an x-partition with x = N/n, we get a time complexity of
O(nN lg(N/n)), proving Theorem 1.

Lemma 4. The block edit distance algorithm runs in O(n2x2 +N2/x) time in case the underlying

scoring function is arbitrary.

Proof. As described above, the time required by our algorithm is dominated by computing the
repository of DIST tables in step 2, and the cost of propagating the dynamic programming values
through block boundaries in step 4. As we have shown in Section 5, in case the underlying scoring
function is arbitrary, the repository of DIST tables can be built in O(n2x2) time, accounting for the
first component of our bound. As explained in Section 3, step 3 requires O(N2/x) time, therefore
completing the proof of the above bound. ⊓⊔

To conclude, constructing an x-partition with x = (N/n)2/3, we get a time complexity of
O(n2/3N4/3), proving Theorem 2.
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