
Power Domination in Circular-arc Graphs∗†

Chung-Shou Liao‡ D. T. Lee§

Department of Industrial Engineering and Engineering Management,
National Tsing Hua University, Hsinchu 300, Taiwan‡

Department of Computer Science and Engineering
National Chung Hsing University, Taichung 402, Taiwan§

Abstract

A set S ⊆ V is a power dominating set (PDS) of a graph G = (V, E) if every vertex and
every edge in G can be observed based on the observation rules of power system monitoring.
The power domination problem involves minimizing the cardinality of a PDS of a graph. We
consider this combinatorial optimization problem and present a linear time algorithm for finding
the minimum PDS of an interval graph if the interval ordering of the graph is provided. In
addition, we show that the algorithm, which runs in Θ(n log n) time, where n is the number of
intervals, is asymptotically optimal if the interval ordering is not given. We also show that the
results hold for the class of circular-arc graphs.

Keywords. domination; power domination; interval graphs; circular-arc graphs; algorithm.

1 Introduction

Continuous monitoring of power systems and observing all the states, such as the voltage magnitude
of loads and the current phase measurements at branches, are important tasks for electric power
companies [4, 28, 30, 34]. Placing phase measurement units (PMUs) at selected bus locations in
a power system is an efficient way to monitor the system; for example, with real-time PMUs, fast
transients can be tracked at high sampling rates. However, because of their high cost, the number
of PMUs must be minimized without compromising their ability to monitor and observe the system.
A power system is said to be observed if all the states can be determined by a set of PMUs according
to the observation rules [4, 28]. A variety of heuristic approaches that approximate the minimum
number of PMUs required have been developed in the last two decades [4, 12, 24, 25, 29].

The power system observation problem can be transformed into a graph-theoretic problem
as follows [16]. Let G = (V,E) be a graph representation of an electric power system, where a
vertex represents an electric node (a substation bus that connects transmission branches, loads,
and generators) and an edge represents a transmission branch that connects two electric nodes.

∗An extended abstract of this paper was published in Proceedings of the 11th International Computing and
Combinatorics Conference (COCOON), pp. 818-828, 2005.

†Supported in part by the National Science Council of Taiwan under Grants NSC100-2221-E-007-108-MY3, NSC99-
2218-E-007-010, NSC98-2221-E-001-008-MY3, and NSC98-2221-E-001-007-MY3.

‡Email: csliao@ie.nthu.edu.tw
§Also with Dept. of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan,

and Institute of Information Science, Academia Sinica, Nankang, Taipei 115, Taiwan. Email: dtlee@iis.sinica.edu.tw

1

The problem of locating the smallest set of PMUs required to observe all the states of the power
system is closely related to the famous vertex cover problem and the domination problem. A set
S ⊆ V is said to be a power dominating set (abbreviated as PDS) if every vertex and edge in G
are observed by S according to the following PMU observation rules:

1. Any vertex where a PMU is placed and its incident edges are observed.

2. If one end vertex of an observed edge is observed, then the other end vertex is observed.

3. Any edge connecting two observed vertices is observed.

4. If a vertex is of degree k > 1, and k− 1 of its incident edges are observed, then all k incident
edges are observed.

The minimum cardinality of a PDS of a graph G is called the power domination number of G,
denoted by γp(G). A set D ⊆ V (G) is said to be a dominating set in a graph G = (V,E) if every
vertex in V \D is adjacent to at least one vertex in D. The cardinality of a minimum dominating
set of a graph G is called the domination number of G, denoted by γ(G). A vertex cover of a
graph G = (V, E) is a set C ⊆ V (G) such that C contains at least one end vertex of every edge in
E(G). The cardinality of a minimum vertex cover of a graph G is denoted as β(G). It is obvious
that 1 ≤ γp(G) ≤ γ(G) ≤ β(G) for any graph G. Figure 1 shows an example that highlights
the differences between the power domination, domination, and vertex cover problems. Haynes et
al. [16] considered the power domination problem as a variation of the domination problem and
studied the relationship between them. They provided NP-completeness proofs for bipartite graphs
and chordal graphs, and proposed a linear time algorithm for the power domination problem in
trees. Guo et al. [15] showed that the power domination problem is also NP-complete for planar
graphs, circle graphs, and split graphs, and it cannot be better approximated than the domination
problem for general graphs. Liao and Lee [23] proposed a different NP-completeness proof for
the power domination problem in split graphs. Subsequently, Aazami and Stilp [2] separated
the approximation hardness of domination and power domination. They proved that, in contrast
to the logarithmic threshold of the domination problem, the power domination problem cannot
be approximated within the ratio 2log1−ε n, unless NP ⊆ DTIME(npoly log(n)). In addition, they
proposed an O(

√
n)-approximation algorithm for the power domination problem in planar graphs.

Some special classes of graphs have also been considered from an algorithmic point of view [3,
5, 10, 11, 19, 26, 27, 36]. Dorfling and Henning [11] and Pai et al. [26] determined the power
domination number in grid graphs. Atkins et al. [3], Hon et al. [19], and Xu et al. [36] proposed
linear time algorithms for the power domination problem in block graphs. A block graph is an
intersection graph in which every maximal connected component (block) without a cut vertex is a
clique. Dorbec et al. [10] considered the power domination number in product graphs, i.e., a variety
of direct products of paths; and Pai et al. [27] investigated the restricted and fault-tolerant power
domination problems and determined the power domination numbers in grid graphs. Moreover,
Brueni and Heath [7, 8], and Zhao et al. [37] independently showed that the power domination
number in a connected graph with n ≥ 3 vertices is no larger than n

3 , and characterized the
extremal graphs that attain the upper bound.

In this paper, we consider the power domination problem in circular-arc graphs, one of the non-
tree-type graph classes. Most works on the power domination problem in special classes of graphs
have focused on tree-type graphs, such as trees and block graphs. Although the power domination
problem in planar graphs has been investigated, the results are based on the tree-width property of
planar graphs. The crucial difference between the power domination problem in tree-type and non-
tree-type graphs is the number of interactions (called the alternating break in this paper) between

2

a

b

c d

Figure 1: An instance of a graph G that illustrates the differences between the domination, vertex
cover, and power domination problems. D = {a, b, d} and γ(G) = 3, C = {a, b, c, d} and β(G) = 4,
but S = {a, d} and γp(G) = 2.

the vertices in a PDS. that satisfy the fourth PMU observation rule The number of interactions
among the vertices in a PDS may vary a great deal in a non-tree-type graph, and may be a critical
issue when exploring the power domination problem.

The remainder of this paper is organized as follows. In Section 2 we introduce the notations
and definitions used throughout the paper. In Section 3, we present a linear time algorithm for the
power domination problem in interval graphs, which is a subclass of chordal graphs. In Section 4,
we consider the same problem in proper circular-arc graphs and propose a linear time algorithm to
solve it. In Section 5, we combine these two algorithmic strategies to extend our result to general
circular-arc graphs. Section 6 contains some concluding remarks.

2 Notations and Definitions

A graph H = (VH , EH) is a subgraph of G = (V,E) if VH ⊆ V and EH ⊆ E; and it is an induced
subgraph of G, if for all u, v ∈ VH , uv ∈ EH if and only if uv ∈ E. If VH = {vi, vi+1, . . . , vk},
the induced subgraph H = (VH , EH) is also written as {vi, vi+1, . . . , vk}G. In the following, the
subscript G, which denotes the underlying graph, is omitted without causing confusion. A vertex
w ∈ V is said to be a neighbor of, or adjacent to, a vertex v ∈ V if vw ∈ E. The neighborhood
of a vertex v ∈ V is NG(v) = {w ∈ V | vw ∈ E}; and the closed neighborhood of v ∈ V is
NG[v] = NG(v) ∪ {v}. The closed neighborhood of a vertex set S, N [S] =

⋃
s∈S N [s]. We define

the H-outdegree of v ∈ VH of an induced subgraph H = (VH , EH) of G as the number of vertices
in V \ VH adjacent to v. The edge vw ∈ E connecting a vertex v ∈ VH and w /∈ VH is called an
H-outgoing edge. The observation rules for a vertex set S = V 0 in which PMUs are placed can be
rewritten as follows. Similar arguments are presented in the literature [1, 2, 8, 15, 21, 31].

Induced Observation Rules

1. The sets of vertices and edges in the induced subgraph K1 = (V 1, E1) of G are observed, where
V 1 is the closed neighborhood of V 0. That is, V 1 = N [V 0].

2. The sets of vertices and edges in the induced subgraph Ki = (V i, Ei) of G are observed, where
V i = V i−1 ∪ {w | vw is a V i−1-outgoing edge and v ∈ V i−1 is of V i−1-outdegree 1}, i ≥ 2.

Note that the new edge vw ∈ E, where v ∈ V i−1 is of V i−1-outdegree 1, defined in the Induced
Observation Rule 2, is exactly the same as that specified in the fourth PMU observation rule.
The final graph Ki = Ki−1 for some i > 0 is called the observed graph of V 0, denoted by GV 0 ; and
the size of GV 0 , denoted by |GV 0 |, is defined as the number of the vertices in V i, i.e., |GV 0 |= |V i|.
The set V 0 is a PDS of G if GV 0 = G. The vertex set V 0 of the induced subgraph K0 = (V 0, E0)

3

of G is referred to as the kernel, and the vertices in the kernel are referred to as the kernel vertices.
The subsequent vertex sets V i, i > 0 are derived kernels of the ith generation1. For ease of reference,
the vertices in V i \ V i−1, i > 0 are called the ith generation descendants (i-descendants for short)
of those in V 0. Note that the Induced Observation Rules are equivalent to the original observation
rules [1, 2, 8, 15, 21, 31]. In addition, given a graph G = (V,E), the observed graph of some kernel
V 0 can be computed in O(|V |+ |E|) time by the Induced Observation Rules [8].

Consider two kernels A and B and their respective observed graphs GA and GB. The kernels
are said to be independent if |GA∪B| is equal to |GA ∪ GB|; otherwise, they are dependent, i.e.,
|GA∪B| > |GA ∪ GB|. The properties below follow from the Induced Observation Rules.

Property 2.1 For two vertex sets U , W of a graph G, if N [U] ⊆ N [W], then GU ⊆ GW . That
is, the observed graph of kernel U is contained in the observed graph of kernel W if the closed
neighborhood of U is a subset of that of W .

Property 2.2 Given a graph G = (V,E), two kernels A, B ⊆ V and their respective observed
graphs GA, GB, kernel A and kernel B are dependent; that is, |GA∪B| > |GA ∪ GB| if and only if
there is a vertex v ∈ GA of GA-outdegree k, such that among the k vertices adjacent to v, k − 1 of
them are in GB, or vice versa.

3 Power Dominating Set for Interval Graphs

A graph G is called an interval graph if its vertices are in one-to-one correspondence with a set of
intervals I of a linearly ordered set, such that two vertices are connected by an edge of G if and only
if their corresponding intervals have nonempty intersections. We call I an interval representation of
G. It has been shown that the class of interval graphs is a subclass of chordal graphs [14]. Interval
graphs have been studied extensively in relation to the domination problem [9, 14, 17, 18], and
most variations of the problem are solvable for this class of graphs. In the following discussion, we
assume that an interval representation of the interval graph is available. Suppose G = (V, E) is an
interval graph, and its interval representation {Ii = [ai, bi] : 1 ≤ i ≤ n} is indexed so that the right
endpoints are sorted in order from left to right as follows: b1 ≤ b2 ≤ . . .≤ bn. The sequence of the
corresponding vertices v1, v2, . . . , vn is called an interval ordering of G, and an interval graph can
be recognized by seeking such an ordering in linear time [14]. The following interval ordering (IO)
property is well-known [32]:

Property 3.1 G = (V, E) is an interval graph if and only if there exists an interval ordering
v1, v2, . . . , vn such that the following condition holds.

(IO) If i < j < k and vivk ∈ E, then vjvk ∈ E.

The above-mentioned interval representation, where Ii corresponds to vi, possesses the interval
ordering property. In this section, we present a linear time algorithm that can solve the power
domination problem in an interval graph if an interval ordering of the graph is given. We assume
that all the graphs discussed below are connected. First, we introduce the concept of a gap,
which is used for choosing PMUs. Given an interval graph G = (V,E) with an interval ordering
v1, v2, . . . , vn, the corresponding intervals Ii = [ai, bi] for every i satisfy b1 ≤ b2 ≤ . . .≤ bn. Without
loss of generality, we assume that the left endpoint ordering of all the intervals is also given, i.e.,
a′1 ≤ a′2 ≤ . . . ≤ a′n, where a′i ∈ {a1, . . . , an}. For two successive right endpoints bi and bi+1,

1Aazami and Stilp [1] independently presented a similar extension, called the `-round PDS problem.

4

where i ≥ 1, the pair (bi, bi+1) is called a b-gap if there is no vertex vk 6= vi+1 whose left endpoint
ak satisfies bi < ak ≤ bi+1. Similarly, an a-gap is a pair (a′i, a

′
i+1) of two successive left endpoints

if there is no vertex vk 6= v′i whose right endpoint bk satisfies a′i ≤ bk < a′i+1. Both types of gap
may contain more than two successive endpoints. Thus, for each b-gap, we define the first and
last right endpoints, i.e., bfi and b`i respectively; and for each a-gap, we define the first and last
left endpoints, i.e., a′fi

and a′`i
respectively. The set of all the endpoints on the real line can be

marked with a sequence of labels with a and b representing the left and right endpoints respectively.
When consecutive a’s are grouped together to form an a-gap, we ignore any singleton b that joins
its preceding a’s to define an interval between consecutive a’s. Similarly, when consecutive b’s are
grouped together to form a b-gap, we ignore any singleton a that joins its succeeding b’s to define
an interval between consecutive b’s. As a result, we obtain a sequence of a-gaps and b-gaps that
may be interleaved with singleton a’s and b’s. Figure 2 shows an example of a mixed sequence of
a-gaps and b-gaps.

ag1 -¾

bg1
-¾ bg2

-¾

ag2 -¾

bg3
-¾

ag3-¾

bg4
-¾

Figure 2: An example of a mixed sequence of a-gaps and b-gaps

Note that there may be an overlap of successive a-gaps and b-gaps. For instance, consider
the subsequence a′i, bj , a′i+1, bj+1, where a′i = aj and bj define interval vj , and a′i+1 = aj+1 and
bj+1 define interval vj+1. By our definition, a′i, bj , a′i+1 form an a-gap, and bj , a′i+1, bj+1 form a
b-gap. Similarly, there may also be an overlap of successive b-gaps and a-gaps (e.g., bg3 and ag3

in Figure 2). To form the above sequence of a-gaps and b-gaps interleaved with a’s and b’s, by
pre-processing, we find all the a- and b-gaps, ag1, ag2, . . . , agp and bg1, bg2, . . . , bgr respectively,
where agi = (a′fi

, a′`i
) and bgj = (bfj

, b`j
). In addition, the size of an a-gap agi (resp. a b-gap bgj),

denoted by |agi| (resp. |bgj |), is defined as the number of vertices that comprise the a-gap (resp.
the b-gap), i.e., |{v′fi

, v′fi+1, . . . , v′`i−1, v′`i
}| (resp. |{vfj , vfj+1, . . . , v`j−1, v`j}|). Obviously, |agi|,

|bgj | ≥ 2 for each 1 ≤ i ≤ p, 1 ≤ j ≤ r. The notion of gaps plays an important role in the proposed
algorithm, as we will show later.

Definition 3.2 The b-gap bgj = (bfj , b`j), 1 ≤ j ≤ r is a blocking b-gap of any vertex vk, where
the left endpoint of the interval corresponding to vk lies to the right of b`j , i.e., ak > b`j . Similarly,
the a-gap agi = (a′fi

, a′`i
), 1 ≤ i ≤ p, is a blocking a-gap of any vertex vk, where the right endpoint

of the interval corresponding to vk lies to the left of a′fi
, i.e., bk < a′fi

.

For ease of reference, we say that the b-gap bgj = (bfj , b`j), 1 ≤ j ≤ r is a left blocking gap
of any vertex vk that lies to the right of b`j , i.e., ak > b`j ; and that the a-gap agi = (a′fi

, a′`i
),

5

1 ≤ i ≤ p, is a right blocking gap of any vertex vk that lies to the left of a′fi
, i.e., bk < a′fi

.

Lemma 3.3 (blocking gap lemma) Let bgj = (bfj
, b`j

), 1 ≤ j ≤ r be a left blocking b-gap
of vertex vk, and let agi = (a′fi

, a′`i
), 1 ≤ i ≤ p, be a right blocking a-gap of vertex vk. Then,

each vertex vu with bu ≤ b`j
cannot belong to the observed graph of {vk}, and each vertex vu with

au ≥ a′fi
cannot belong to the observed graph of {vk}.

Proof. Let vertices vfj
, vfj+1, . . . , v`j−1, v`j

be the successive vertices that define the b-gap
bgj = (bfj , b`j), 1 ≤ j ≤ r. That is, there is no vertex vw 6= vfj , vfj+1, . . . , v`j−1, v`j such that
bfj < aw ≤ b`j . Since vk, whose ak > b`j , is not adjacent to vertices that define bgj , if there were a
vertex vu with bu ≤ b`j that belonged to G{vk}, it would be included in G{vk} because of the Induced
Observation Rule 2. Let V 0 be {vk} and let Kt = (V t, Et) be the tth generation induced subgraph
of the observed graph GV 0 for some t. Clearly, the right endpoint of each vertex vw ∈ N [vk] = V 1,
ak > b`j , must lie to the right of ak. Since the b-gap, bgj , is defined as the successive vertices
vfj , vfj+1, . . . , v`j−1, v`j , each vertex vw ∈ V t, where t ≥ 1, adjacent to some vertex vu with
bu ≤ b`j must be adjacent to all of the successive vertices that define bgj . That is, there are at least
two V t-outgoing edges from vw ∈ V t, namely, vwvfj , and vwv`j . Thus, vu with bu ≤ b`j cannot be
included in the observed graph G{vk} by the Induced Observation Rule 2. Similarly, we can prove
the latter statement that each vertex vu with au ≥ a′fi

cannot belong to G{vk} whose kernel vertex
vk satisfies bk < a′fi

. 2

For each vertex vk among all left blocking b-gaps bgj = (bfj , b`j) for some j, 1 ≤ j ≤ r, the one
with the largest b`j that is smaller than ak is referred to as the left blocking b-gap of vk. Similarly,
for each vertex vk among all right blocking a-gaps agi = (a′fi

, a′`i
) for some i, 1 ≤ i ≤ p, the one

with the smallest a′fi
that is greater than bk is referred to as the right blocking a-gap of vk.

Associated with a b-gap bgi = (bfi , b`i), 1 ≤ i ≤ r, we have a PMU candidate (candidate for
short), vci , which is the vertex adjacent to vfi

and whose corresponding interval has the maximum
right endpoint bci among those with this property. Recall that the vertex vci corresponds to an
interval [aci , bci] and all the vertices vfi , vfi+1, . . . , v`i−1, v`i that define bgi are in N [vci]. Therefore,
the vertices vfi , vfi+1, . . . , v`i−1, v`i that define the b-gap bgi are all contained in G{vci}. We assume
that the PMU candidate vcr associated with the last b-gap bgr = (bfr , b`r), where b`r = bn, is vn.
The next two lemmas follow immediately.

Lemma 3.4 (backward observation lemma) Let the b-gap bgk = (bfk
, b`k

) be the left blocking
gap of a candidate vci for some i, 1 ≤ i ≤ r. The induced subgraph {v`k+1, . . . , vfi, . . . , v`i, . . . ,
vci} is contained in the observed graph G{vci} of the kernel {vci}. We call this generation of observed
vertices and edges a backward observation from the kernel {vci}. The backward observation from
{vci} stops at the left blocking gap bgk of vci.

Proof. Let V 0 = {vci} and consider the vertices v`k+1, . . . , vfi , . . . , v`i , . . . , vci . The vertices in
N [vci] = V 1, which definitely includes vfi , . . . , v`i , . . . , vci , are 1-descendants of V 0. Excluding the
vertices in V 1, we consider the rest of the vertices in descending order of their right endpoints. Let
vu be the first vertex (of the maximum right endpoint) that is not one of the vertices that define
bgi. If vu = v`k

, we are done. Otherwise, there must be a vertex vw, vw 6= vu, in V 1 such that
bu−1 < aw ≤ bu (where vu−1 may be v`k

). This is because there may be a sequence of interleaving
singleton a’s and b’s between two consecutive b-gaps. We know that vuvw is a V 1-outgoing edge
and vw is of V 1-outdegree 1. Therefore, vu is the 2-descendant of V 0. By repeating this argument,
we can show that the vertex vu−t is the (t + 2)-descendant of V 0, where 0 ≤ t < u− `k. Thus, the
induced subgraph {v`k+1, . . . , vfi , . . . , v`i , . . . , vci} is contained in G{vci}. Finally, similar to the

6

proof of Lemma 3.3, vfk
, . . . , v`k

are not adjacent to vci ; hence, they are not in N [vci]. Since the
vertices define a b-gap, they are not t-descendant vertices of the kernel {vci} for any t > 0. The
left blocking b-gap bgk stops the backward observation from {vci}. 2.

Lemma 3.5 (forward observation lemma) Suppose that the a-gap agj = (a′fj
, a′`j

) is the right
blocking gap of a candidate vci for some i, 1 ≤ i ≤ r. Let v′u be the vertex to the immediate right
of aci, i.e., a′u > aci and let there be no other left endpoint between them. The induced subgraph
{vci, v′u, v′u+1, . . . , v′fj−1} is contained in the observed graph G{vci} of the kernel {vci}. We call this
generation of observed vertices and edges a forward observation from the kernel {vci}. The forward
observation from {vci} stops at the right blocking gap agj of vci.

Proof. The proof is similar to that of Lemma 3.4 and is therefore omitted. 2.

The following lemma illustrates the role of PMU candidates on which we base our algorithm.

Lemma 3.6 Given an interval graph G = (V,E), there exists an optimal PDS S for G consisting
exclusively of PMU candidates associated with b-gaps, i.e., S ⊆ {vc1, vc2, . . . , vcr}.

Proof. Suppose there is an optimal PDS S for G in which not all vertices are PMU candidates.
Let vc1 , vc2 , . . . , vcr be the sequence of all PMU candidates of G in ascending order, and consider
a vertex vu ∈ S \{vc1 , vc2 , . . . , vcr}. We select the first b-gap bgk whose associated PMU candidate
vck

= [ack
, bck

] satisfies the condition that bck
is greater than bu. Then, we consider the induced

subgraph G′ ⊆ G of vertices whose right endpoints are bigger than bck
. We have NG′ [vu] ⊆ NG′ [vck

]
and G{vu} ∩ G′ ⊆ G{vck

} ∩ G′ by Properties 2.1 and 3.1. Now, suppose bgj = (bfj , b`j) is the left
blocking gap of vck

. Then, vu cannot be adjacent to any of the vertices that define bgj because
bcj < bu by our selection. Thus, by Lemma 3.3, the b-gap bgj is the left blocking gap of both vu

and vck
. In addition, by Lemma 3.4, the induced subgraph {v`j+1, . . . , vck

} is contained in the
observed graph G{vck

}. This implies that G{vu} ⊆ G{vck
}. If, on the other hand, the left blocking

b-gap bgj does not exist, that is, vck
= vc1 , then, by Lemma 3.4, the induced subgraph {v1, v2,

. . . , vck
= vc1} is contained in the observed graph G{vck

}. This also implies that G{vu} ⊆ G{vck
}.

Then, vu ∈ S can be replaced by vck
to obtain a new S = S \ {vu} ∪ {vck

}. By repeating this re-
placement argument, we can derive an optimal PDS S consisting exclusively of PMU candidates. 2

We explain the key concept behind our solution to the power domination problem in connected
interval graphs. The PMU candidate vc1 associated with the first b-gap bg1 must be chosen first
because of Lemmas 3.3 and 3.6. If we were to choose vcj 6= vc1 with j > 1, then bg1 would be the
left blocking gap of vcj and v1, in particular, would not belong to G{vcj }. Thus, vc1 must be chosen
and the forward observation from {vc1} will proceed until the right blocking gap of vc1 is reached.
We consider the choice of the next PMU candidate vci in a greedy manner such that all the vertices
between vc1 and vci belong to G{vc1 ,vci} and the index i is as large as possible. If we can choose the
next candidate vci correctly, then, by repeating the same strategy we claim that we will find the
optimal PDS. To choose the candidate, we need to consider the necessary and sufficient conditions
for the kernels {vci} and {vck

} to be complete. We say that two kernels {vci} and {vck
}, ci < ck are

complete if all the vertices between vci and vck
belong to G{vci ,vck

}; otherwise, they are incomplete.
In addition, we say {vck

} is maximally complete with respect to {vci} if they are complete and
ck − ci is the maximum, i.e., we cannot find a vertex vcj , cj > ck, such that {vci} and {vcj} are
complete.

Next, we define some terms. The essential spot of an a-gap agi = (a′fi
, a′`i

), denoted by ess(agi),
is the second smallest right endpoint of the vertices v′fi

, v′fi+1, . . . , v′`i
that define the a-gap. In

7

addition, we say a vertex set S breaks a b-gap bgj = (bfj , b`j) (resp. an a-gap agi = (a′fi
, a′`i

)) if
at least |bgj | − 1 vertices among vfj

, . . . , v`j
(resp. at least |agi| − 1 vertices among v′fj

, . . . , v′`j
)

belong to the observed graph GS . Obviously, if the essential spot ess(agi) of some a-gap agi lies to
the immediate right of some b-gap bgk, i.e., ess(agi) > b`k

, then, by Lemma 3.4, the kernel {vck+1
}

breaks the a-gap agi. Similarly, we define the essential spot of a b-gap bgk = (bfk
, b`k

), denoted by
ess(bgk), as the second largest left endpoint of the vertices vfk

, vfk+1
, . . . , v`k

that define the b-gap.
Thus, if the essential spot ess(bgk) of some b-gap bgk lies to the immediate left of an a-gap agi, i.e.,
ess(bgk) < a′fi

, then the b-gap bgk will be broken by the kernel {vc}, where vc lies to the left of a′fi
.

vu vw

bgi
-¾

vci

agi1 -¾

e

bgk1
-¾

vck1

bgk
-¾

vck

Figure 3: An instance in which the kernels {vci} and {vck
} are complete; the right endpoint e is

the essential spot of agi1 .

Figure 3 shows an example in which the kernels {vci} and {vck
} are complete. First, we consider

the observed graph G{vci ,vck
} and explain why the kernels are complete. Note that the forward

observation from the kernel {vci} stops at the a-gap agi1 . However, the backward observation from
the kernel {vck

} breaks the a-gap agi1 because the essential spot ess(agi1) lies to the right of the
b-gap bgk1 , which is the left blocking b-gap of vck

. As a result, the forward observation from {vci}
can continue in ascending order and eventually join the backward observation from {vck

} so that all
the vertices between vci and vck

will be in G{vci ,vck
}. Similarly, the forward observation from {vci}

also breaks the left blocking b-gap bgk1 of vck
such that the backward observation from {vck

} can
continue in descending order. Joining these forward and backward observations ensures that all
the vertices between vci and vck

will be in G{vci ,vck
}. These two scenarios can occur independently

of each other. The kernels {vci} and {vck
} will be complete under either scenario.

Let us re-examine the above example and consider the union of the observed graphs G{vci} and
G{vck

}. Recall that the forward observation from the kernel {vci} stops at the a-gap agi1 and the
backward observation from the kernel {vck

} stops at the b-gap bgk1 . Since there exist vertices vu,
vw that do not belong to G{vci}∪G{vck

}, it is easy to see that kernels {vci} and {vck
} are dependent.

Thus, we say the kernels {vci} and {vck
} are dependent complete. On the other hand, if all the

vertices between vci and vck
belong to G{vci} ∪ G{vck

}, i.e., G{vci} ∪ G{vck
} = G{vci ,vck

}, we say the
kernels {vci} and {vck

} are independent complete.
As shown in Figure 4, the process of an alternating break of the blocking gaps (the formal

definition will be given later) and the propagation of forward or backward observations might not
ensure that all the vertices between vci and vck

are in G{vci ,vck
}; thus, kernels {vci} and {vck

} are
incomplete. The figure shows an example in which {vci} and {vck

} are incomplete.

8

bgi
-¾

vci

agi1 -¾

vu

vw

vx

vy

vz

e1

e2

agi2-¾ bgk1
-¾

vck1

bgk
-¾

vck

Figure 4: An instance that shows {vci} and {vck
} are incomplete, where e1 (resp. e2) is the essential

spot of agi1 (resp. agi2).

Consider the union of the observed graphs G{vci} and G{vck
}. As before, the forward observation

from the kernel {vci} in Figure 4 stops at the a-gap agi1 , and the backward observation from the
kernel {vck

} stops at the b-gap bgk1 . On the other hand, consider the observed graphs G{vci ,vck
}.

Note that the essential spot of agi1 , ess(agi1), lies to the right of the left blocking b-gap bgk1 ,
and the backward observation from {vck

} breaks the a-gap agi1 , thereby allowing the forward
observation from {vci} to continue in ascending order of left endpoints and stop at the a-gap agi2 .
However, since the forward observation from {vci} does not break the left blocking b-gap bgk1 of
vck

, the forward observation and backward observation will stop at the a-gap agi2 and b-gap bgk1

respectively. As a result, the vertices vw, vx, vy, vz do not belong to the observed graph G{vci ,vck
},

so {vci} and {vck
} are incomplete.

Having explained the notion of completeness and incompleteness, we consider the process of an
alternating break of the blocking gaps. An alternating break of the blocking gaps is defined by the
next procedure Alternate Break, which is similar to the previous two examples. To facilitate the
manipulation of broken gaps, we use two doubly-linked lists A[] and B[] to store the respective
a-gap and b-gap sequences. The steps of the procedure Alternate Break are as follows.

The procedure Alternate Break shows the iterative propagation of the forward observation from
{vci} and the backward observation from {vck

} alternately. We call this process an alternating break
executed by two kernels {vci} and {vck

}. Based on this definition, we characterize the notion of
completeness in the following lemma.

Lemma 3.7 Given a connected interval graph G = (V, E), kernels {vci} and {vck
}, ci < ck, are

complete, i.e., all the vertices between vci and vck
belong to the observed graph G{vci ,vck

}, if and only
if no a-gap or a b-gap between vci and vck

remains unbroken by the alternating breaks of the two
kernels {vci} and {vck

}; that is, the procedure Alternate Break returns Success.

Proof. If all the a-gaps and b-gaps between vci and vck
are broken by the alternating breaks of

the two kernels {vci} and {vck
}, then, by Lemmas 3.4 and 3.5, all the vertices between vci and vck

belong to the observed graph G{vci ,vck
}, i.e., {vci} and {vck

} are complete. Conversely, assume the
kernels {vci} and {vck

} with ci < ck are complete, and that there exist a-gaps or b-gaps between
vci and vck

that remain unbroken by the alternating breaks of the two kernels {vci} and {vck
}.

Consider the case where there are only a-gaps between vci and vck
. This is impossible since the

9

Procedure Alternate Break(vci , vck
)

1. Initialize j = 0; /* j is the number of alternating breaks. */

2. do {
2-1. j = j + 1;

2-2. Label each b-gap bg in B[] as “broken” if the forward observation from the kernel
{vci} propagates through ess(bg) and stops at agij ; /* ess(bg) lies to the left of agij .*/

2-3. if (there is no a-gap agij)
return Success;

2-4. Label each a-gap ag in A[] as “broken” if the backward observation from the kernel
{vck

} propagates through ess(ag) and stops at bgkj ; /* ess(ag) lies to the right of bgkj .*/

} while(bgkj exists and the backward observation from {vck
} breaks agij)

3. if(there is a pair of gaps, an a-gap agij and a b-gap bgkj between vci and vck
)

return Failure;
else

return Success;

backward observation from {vck
} breaks all the a-gaps. Similarly, assume that there exist only

b-gaps between vci and vck
. This is also impossible because the forward observation from {vci}

breaks all the b-gaps. Lastly, if there exists a pair consisting of an a-gap and a b-gap between
vci and vck

that remains unbroken by the alternating breaks of the two kernels {vci} and {vck
},

then the a-gap stops the forward observation from {vci} and the backward observation from {vck
}

cannot break it. Meanwhile, the b-gap stops the backward observation from {vck
} and the forward

observation from {vci} cannot break it. It is impossible for {vci} and {vck
} to be complete, which

contradicts our assumption. 2

Corollary 3.8 Given a connected interval graph G = (V,E), the kernels {vci} and {vck
}, ci < ck,

are incomplete if and only if there exists at least one pair consisting of an a-gap and a b-gap between
vci and vck

that are unbroken by the alternating breaks of the kernels {vci} and {vck
}.

Recall that {vci} and {vck
} in Figure 4 are incomplete. This means that the index ck of vck

is too big to cooperate with vci , and all the vertices between them cannot belong to the observed
graph G{vci ,vck

}. The reason is that there exists one pair consisting of an a-gap agi2 stopping the
forward observation from {vci} and a b-gap bgk1 stopping the backward observation from {vck

}.
Another possible choice of a PMU candidate being complete with {vci} is vcj , which is associated
with bgj . This candidate is chosen to break the a-gap, agi2 ; that is, ess(agi2) lies to the immediate
left of, or belongs to, the b-gap bgj . Obviously, j ≤ k1; otherwise, the backward observation from
{vck

} stopped by the b-gap bgk1 could also break the a-gap agi2 , and the alternating break executed
by {vci} and {vck

} would repeat. In Figure 4, vck1
is a new possible choice that is complete

with {vci}. We use Lemma 3.7 to check the completeness condition between {vci} and the new
possible choice of kernel {vcj} again. If {vci} and {vcj} satisfy the completeness condition, vcj is
a feasible choice; otherwise, we choose the next possible candidate of smaller index and check the
completeness condition described above until a feasible choice is found.

10

In order to quickly find a pair of PMU candidates that are maximally complete, for each a-gap
ag, we maintain a forward pointer a2b(ag) to the b-gap, bgk, where ess(ag) lies to the immediate
left of, or belongs to, the b-gap bgk. Similarly, for each b-gap bg, we maintain a back pointer b2a(bg)
to the a-gap, agi, where ess(bg) lies to the immediate right of, or belongs to, the a-gap agi. As part
of the preprocessing step, for each endpoint (ai or bi), we also have a pointer to the next a-gap on
its immediate right, and the previous b-gap on its immediate left. Consider a PMU candidate vci

and suppose the forward observation from {vci} is blocked by an a-gap ag. To break this a-gap,
we need to break the b-gap bgk pointed to by a2b(ag). Thus, vck

, the PMU candidate associated
with bgk, may be a possible candidate that may be complete with {vci}. To determine if {vck

}
is complete with {vci}, we need to consider the backward observation from {vck

} and find its left
blocking b-gap bg. Similarly, if the a-gap agj pointed to by b2a(bg) is broken, then the associated
bg is no longer a b-gap, and the backward observation from {vck

} can propagate and break the
associated a-gaps as well.

Moreover, if some b-gap bgk is broken by a forward observation, then for each of its associated
a-gaps whose forward pointers a2b() point to bgk, say agi, we need to determine the first unbroken
b-gap bgk′ subsequent to bgk, i.e., k′ > k. If the candidate vck′ , which is associated with bgk′ can
be found, then it will break the a-gap agi and may be maximally complete with respect to the
candidates preceding agi. We can consider this pointer-update problem as a disjoint set union-find
problem. Initially every b-gap bg forms a subset consisting of a-gaps whose forward pointers point
to bg; that is, we partition all the a-gaps into r subsets, where r is the number of b-gaps dependent
on a2b(). If some b-gap bgk is broken by the forward observation, the subset bgk will be merged
into the next subset bgk+1. This is called a union operation. If we need to find a possible candidate
vc maximally in order to break some blocking a-gap ag via its forward pointer a2b(ag), then we
have to output the index of the b-gap subset containing ag. This is called a find operation. The
best known algorithm for the general disjoint set union-find problem (m operations on n elements)
runs in O(mα(m + n) + n) time [33], where α is the inverse of Ackermann’s function, which is
slightly more than linear time. However, our pointer-update problem is actually a special case
of the disjoint set union-find problem defined by Gabow and Tarjan [13]. We can use the static
tree set union and table look-up techniques proposed in [13] on a two-level data structure of this
static tree (microsets and macrosets) to solve our pointer-update problem in linear time. The key
point of the static tree set union is that the structure of the union operations represented by a
union tree is known in advance. Accordingly, the static union tree can be constructed by linking
bgk and bgk+1, 1 ≤ k < r, in our case. Since the static union tree is known in advance, the find
operations on smaller microsets can be pre-computed via their associated lookup tables. Thus, our
pointer-update problem can be solved in linear time.

Based on the above discussion, we present a linear time algorithm MPDI to solve the power
domination problem in a given connected interval graph. The high level idea of the MPDI algorithm
can be described as follows. As mentioned earlier, in the initial step, we have to select vc1 as the
first PMU candidate and let vc = vc1 . Then, we choose the next possible PMU candidate that is
maximally complete with respect to {vc}. We claim that each selection of the next PMU candidate
v∗c will be as large as possible, and that the procedure Alternate Break will check if the sufficient
completeness condition between {vc} and {v∗c} holds. If the condition holds, we select the next PMU
candidate that is maximally complete with respect to {v∗c} and repeat the argument; otherwise,
we repeat the maximal selection of a possible PMU candidate until we find the candidate that is
maximally complete with respect to {vc}.

Lemma 3.9 The selection of possible candidates in Algorithm MPDI finds the maximally complete
candidate v∗c with respect to the kernel {vc} after the procedure Alternate Break returns Success.

11

Algorithm 1: MPDI. Find a minimum PDS of a connected interval graph.

Input. A connected interval graph G = (V, E) with an interval ordering v1, v2, . . . , vn. A
global doubly-linked list A[] consisting of all the a-gaps ag1, ag2, . . . , agp and their
essential spots ess(agi), 1 ≤ i ≤ p, and a global doubly-linked list B[] consisting of all
the b-gaps bg1, bg2, . . . , bgr and their PMU candidates vc1 , vc2 , . . . , vcr .

Output. A minimum PDS S of G.

Method.

1. Let S = {vc1} and vc = vc1 ;

2. do {

2-1. Find the right blocking a-gap agi of vc; if there is no a-gap, return S;

2-2. Select a possible candidate v∗c = vck
associated with the b-gap bgk, where bgk

is the first unbroken b-gap lying to the immediate right of ess(agi) so far;

} while(Alternate Break(vc, v∗c) returns Failure)

3. Put the maximally complete candidate v∗c with respect to the kernel {vc} into S;

4. Let vc = v∗c and go to Step 2;

Proof. By Lemma 3.7, if the procedure Alternate Break returns Success, it means that {vc} and
{v∗c} are complete. On the other hand, if the procedure returns Failure, it means that the index of
v∗c is too large to cooperate with vc; hence, the index of the possible candidate v∗c gets smaller in
each iteration of the do-while loop. In addition, as the forward observation, which propagates from
{vc}, breaks some b-gaps, the latter remain broken for the possible candidate v∗c of each subsequent
selection. Similarly, the a-gaps broken by the backward observation from the preceding possible
kernels {v∗c} will also be broken by {v∗c} for each subsequent selection.

Consider the candidate v∗c = vck
selected in Step 2-2, and suppose the forward pointer a2b(agi)

is bgk′ , where agi is the right blocking a-gap of vc. If bgk′ is broken, we need to use the static
tree set union and table look-up method in [13] to find the first unbroken b-gap bgk subsequent to
bgk′ , k ≥ k′. In addition, assume we select a candidate vcw other than v∗c = vck

and w > k. The
b-gap bgk, which is unbroken by the forward observation from the kernel {vc}, is a left blocking
gap of vcw , and vcw cannot break the a-gap agi because ess(agi) ≤ b`k

. That is, {vc} and {vcw} are
incomplete by Corollary 3.8. Therefore, each selection of v∗c in Algorithm MPDI is a maximally
possible candidate with respect to the kernel {vc}. This argument is repeated until the procedure
Alternate Break returns Success and the maximally complete candidate is found. 2

Theorem 3.10 Given a connected interval graph G = (V, E), Algorithm MPDI produces a PDS
S of minimum cardinality for G.

Proof. First, by Lemmas 3.3 and 3.6, vc1 must be in S. Moreover, we know the forward observation
from {vc} (vc = vc1) stops at a-gap agi by Lemma 3.3. We have to choose the next candidate v∗c such
that {v∗c} is maximally complete with respect to {vc}. By Lemma 3.9, the selection of candidates in
Algorithm MPDI finds the maximally complete candidate v∗c with respect to the kernel {vc} after

12

the procedure Alternate Break returns Success. Then, the candidate v∗c is included in S, and will
play the role of vc. The process repeats until there is no right blocking a-gap of the last selected
candidate v∗c , since the forward observation from {v∗c} will observe the rest of the vertices in G.
The correctness of the algorithm follows. 2

Theorem 3.11 Algorithm MPDI takes Θ(n log n) time, which is asymptotically optimal. In addi-
tion, it takes O(n) time provided that the given endpoints of the intervals are sorted.

Proof. We claim that the running time is linear in the total number of a-gaps and b-gaps if the
given endpoints of the intervals are sorted. Assume that the total running time is C = CA + CB,
where CA and CB denote, respectively, the time required to process a-gaps and b-gaps when selecting
PMU candidates. Clearly, the running time for a-gaps, CA, is linear in p, i.e., the number of a-
gaps, since the operations that involve a-gaps associated with the forward observations proceed
in ascending order without backtracking. Consider the running time CB by aggregate analysis.
We know that the b-gaps broken by the forward observation in the preceding iterations remain
broken in the subsequent iterations. Thus, every b-gap is labeled as “broken” and counted at most
once, and the time CB is linear in r, i.e., the number of b-gaps. Meanwhile, the forward pointer
a2b() update operations for the associated essential spots of a-gaps can be solved by the method
in [13]. The running time is also linear in the total number of a-gaps and b-gaps. Thus, Algorithm
MPDI takes linear time if the endpoints of the intervals are sorted. The time bound is due to the
sorting of interval endpoints. The algorithm is optimal because we can reduce the Minimum Gap
Problem, which requires Ω(n log n) time under the algebraic computation tree model of Ben-Or [6],
to the power domination problem in interval graphs. The reduction scheme is similar to the result
reported in [22], and is described as follows.

Minimum Gap Problem: Given x1, x2, . . . , xn ∈ R and ε > 0, determine if |xi − xj | ≥ ε,
for all i 6= j.

We map every number xi into an open interval (xi, xi +ε) and obtain an interval representation
of an interval graph G. If γp(G) is n, we answer YES to the original problem; otherwise, we answer
NO. This transformation only takes O(n) time; therefore, the reduction builds the Ω(n log n) lower
bound for the power domination problem in interval graphs. We remark that the reduction scheme
also holds for the domination problem in interval graphs. That is, it builds the same lower bound
for domination in interval graphs. 2

4 Power Dominating Set for Proper Circular-arc Graphs

We refer to the results reported in [20, 22, 35] and consider the power domination problem in
circular-arc graphs. A graph G is called a circular-arc graph if its vertices can be put into a one-
to-one correspondence with a set of arcs on a circle such that two vertices are adjacent in G if and
only if their corresponding arcs have nonempty intersections. We call this set of arcs on a circle a
circular-arc representation. G is a proper circular-arc graph if no arc is contained in another arc in
G. A circular-arc is denoted by [ai, bi], where bi follows ai in a clockwise direction, and ai and bi are
called the left and right endpoints respectively. Note that arc [bi, ai] denotes the complement of arc
[ai, bi] with respect to the circle. We select a right endpoint arbitrarily and label it b1, and proceed
to label the subsequent right endpoints following b1 in a clockwise direction as b2, b3, . . . , bn; thus,
the corresponding vertices have a circular ordering v1, v2, . . . , vn with b1 ¹ b2 ¹ . . .¹ bn ¹ b1,
where bi ¹ bj means that bj follows bi in a clockwise direction. Note that bi ≺ bj means that bj

follows bi in a clockwise direction and bi 6= bj . In the following discussion, a circular ordering is
given in a clockwise direction, and is omitted if doing so does not cause confusion. Recall that

13

the notions of a-gaps and b-gaps remain the same in a circular-arc graph. It is possible that b1

may lie in the first b-gap bg1, i.e., b1 ∈ {bf1 , . . . , b`1}, and b1 6= bf1 , where bf1 ¹ bn ≺ b1. In
such a case, we re-label bf1 as b1, the beginning of a new circular ordering, and proceed to re-label
the subsequent right endpoints accordingly. Two kernels {vci} and {vck

}, ci ≺ ck, are said to be
complete if all the vertices between vci and vck

belong to G{vci ,vck
}. In addition, {vck

} is said to be
maximally complete with respect to {vci} if they are complete and there exists no other vck′ such
that ci ≺ ck ≺ ck′ , and {vci} and {vck′} are complete.

All the lemmas in Section 3 also hold for circular-arc graphs. Note that we do not consider
the trivial case if an arc intersects all the other arcs; otherwise, we could just select that arc as
a PDS and let γp(G) = 1. First, we present a linear time algorithm for the power domination
problem in a proper circular-arc graph, where no arc is contained in another arc provided that a
circular ordering of the proper circular-arc graph is given. We consider general circular-arc graphs
in Section 5. Next, we apply Step 2 of Algorithm MPDI to find for vc = vci the candidate v∗c = vck

,
ci ≺ ck, such that {v∗c} is maximally complete with respect to {vc}. Clearly, this process works in
circular-arc graphs. We denote this candidate v∗c as NEXT(vc) if {v∗c} is maximally complete with
respect to {vc}. For the candidate vc, if no a-gap is the right blocking a-gap of vc, then all the
vertices following vc clockwise belong to G{vc} and we let NEXT(vc)= null. We present the following
lemma to illustrate the interleaving property of the relationship between vc and NEXT(vc).

Lemma 4.1 (Interleaving Property) Given a circular-arc graph G with a circular ordering
v1, v2, . . . , vn, for any two distinct PMU candidates vci and vcj , ci ≺ cj, we have NEXT(vci) ¹
NEXT(vcj).

Proof. Assume there exist two distinct PMU candidates vci and vcj , ci ≺ cj , such that NEXT(vcj)
≺ NEXT(vci). Since ci ≺ cj and {vci} and {NEXT(vci)} are complete, {vcj} and {NEXT(vci)}
are complete, which contradicts the fact that {NEXT(vcj)} is maximally complete with respect to
{vcj}. 2

Based on the above key lemma, we use a similar idea to that of Hsu et al. [20] and construct
a directed graph D = (VD, ED), where VD = {vc1 , vc2 , . . . , vcr} and a directed edge −−−→vcivcj ∈ ED

if and only if vcj = NEXT(vci), ci ≺ cj . By assumption, G is a connected circular-arc graph
with a circular ordering v1, . . . , vn. First, we assume that VD 6= ∅; that is, there is at least
one b-gap in G; otherwise, we let {vn} be a PDS. Next, we assume that every vertex vci ∈ VD

has its NEXT(vci); that is, NEXT(vci)6= null for every i; otherwise, if there exists some vci with
NEXT(vci)= null, we select it as a PDS. Consequently, there exists at least one directed cycle in
D because VD is of finite cardinality. Besides, no two directed cycles can share a common vertex,
since every vertex has out-degree exactly one in D. We define PDS(vci) = {v(0)

ci , v
(1)
ci , . . . , v

(m−1)
ci },

where v
(j+1)
ci =NEXT(v(j)

ci), v
(0)
ci = vci , and vci ¹ NEXT(v(m−1)

ci). By definition, PDS(vci) is a PDS
containing vci for a circular-arc graph G. We have the following lemma.

Lemma 4.2 Let S be a PDS of a circular-arc graph G and vci ∈ S for some i. Then, we have
|PDS(vci)| ≤ |S|.

Proof. Let the vertices in S and PDS(vci) be ordered clockwise, and assume that |PDS(vci)| > |S|.
There must exist at least an arc [v(j)

ci , v
(j+1) mod (m)
ci] for some 0 ≤ j ≤ m − 1, where the arc does

not contain any vertex in S. However, this contradicts the definition of NEXT. 2

By Lemma 4.2, we know that PDS(vci) is the minimum PDS containing vci . In addition, a
vertex vci in VD is called a valid candidate if |PDS(vci)| = γp(G). The next lemma follows.

14

Lemma 4.3 There is at least one directed cycle consisting exclusively of valid candidates in D.

Proof. By Lemma 4.2, there is a vertex vci that is a valid candidate for some ci; i.e., |PDS(vci)| =
γp(G). By assumption, vci has its own NEXT(vci) and NEXT(vci) is definitely contained in PDS(vci).
Again, by Lemma 4.2, NEXT(vci) is also a valid candidate because |PDS(NEXT(vci))| ≤ |PDS(vci)| =
γp(G).

We repeat the argument until there are two indices, a and b, such that v
(a)
ci = v

(b)
ci , where a < b,

since each vertex has out-degree exactly one in D and the cardinality of VD is finite. Thus, there
is at least one directed cycle consisting exclusively of valid candidates. 2

By the Interleaving Property and the above lemma, we have the following theorem.

Theorem 4.4 Every directed cycle C in the directed graph D consists exclusively of valid candi-
dates.

Proof. By Lemma 4.3, we select C∗ as the directed cycle consisting exclusively of valid candidates.
For a distinct directed cycle C and an arbitrary vertex vci in C, we pick the vertex vck

in C∗ to the
immediate left of vci such that no vertex in C∗∪C falls in [vck

, vci]. Consider PDS(vci) = {vci = v
(0)
ci ,

. . . , v
(m−1)
ci } and PDS(vck

). By the Interleaving Property, we know there must exist a vertex in
PDS(vck

) that lies in [v(j)
ci , v

(j+1) mod (m)
ci] for each j, 0 ≤ j ≤ m − 1. From the assumption about

vck
, vck

lies in [v(m−1)
ci , v

(0)
ci]. Consequently, |PDS(vci)| ≤ |PDS(vck

)| = γp(G) and vci is a valid
candidate. Similar to the proof of Lemma 4.3, C consists exclusively of valid candidates. 2

Note that the selection of candidate v∗c = vck
associated with the b-gap bgk in Step 2-2 of

Algorithm MPDI is exactly the candidate that is maximally complete with respect to {vc} in
proper circular-arc graphs. The reason is that if v∗c = vck

breaks the a-gap agi, it will also break
all the a-gaps between agi and bgk because their essential spots follow ess(agi) clockwise. The do-
while loop condition in Algorithm MPDI, which checks the completeness condition by the procedure
Alternate Break, is unnecessary for proper circular-arc graphs. Based on the above discussion, we
propose Algorithm MPDPC to solve the power domination problem in proper circular-arc graphs.

Theorem 4.5 Given a connected proper circular-arc graph G = (V, E), Algorithm MPDPC pro-
duces a PDS of minimum cardinality for G in linear time if the circular-arc endpoints are sorted.

Proof. If there are no b-gaps in G, then {vn} is a PDS by Lemma 3.4. Similarly, if there are no
right blocking a-gaps of vc for some PMU candidate vc, then {vc} is a PDS by Lemma 3.5. The
main step, Step 3, which performs the same operation as Step 2 in MPDI to find NEXT(vc) for
vc, except for checking the completeness condition by the procedure Alternate Break, also works
clockwise in proper circular-arc graphs. As there is a candidate vc that is visited twice, there exists
a directed cycle from vc to vc. By Theorem 4.4, vc is a valid candidate and PDS(vc) is a PDS of
cardinality γp(G).

For the time complexity analysis, we only need to consider the time cost of Step 3 in Algorithm
MPDPC. Since each iteration of finding NEXT(vc) for vc takes constant time and the number of
iterations in the while loop is at most O(n), the time complexity is linear in the size of the vertex
set of G. 2

15

Algorithm 2: MPDPC. Find a minimum PDS of a connected proper circular-arc graph.

Input. A connected proper circular-arc graph G = (V, E) with a circular ordering
v1, v2, . . . , vn. A global doubly-linked list A[] consisting of all the a-gaps ag1, ag2, . . . , agp

and their essential spots ess(agi), 1 ≤ i ≤ p, and a global doubly-linked list B[] consisting
of all the b-gaps bg1, bg2, . . . , bgr and their PMU candidates vc1 , vc2 , . . . , vcr .

Output. A minimum PDS S of G.

Method.

1. if(there is no b-gap)
{ Let S = {vn} and return S; }

2. Let all PMU candidates be labeled “unvisited” and let vc = vc1 ;

3. while(vc is “unvisited”)
{ Label vc as “visited” and run Step 2-1 in MPDI clockwise;

if(there is no right blocking a-gap of vc)
{ Let S = {vc} and return S; }

Run Step 2-2 in MPDI clockwise to find v∗c =NEXT(vc);
Let vc = v∗c ; }

4. Let S = PDS(vc) and return S;

5 Power Dominating Set for Circular-arc Graphs

In this section, we combine the MPDI and MPDPC strategies to extend our result to general
circular-arc graphs. To use Algorithm MPDPC in general circular-arc graphs, we must first obtain
NEXT(vci) for every vci , 1 ≤ i ≤ r. Since the do-while loop in Step 2 of Algorithm MPDI is
necessary for general circular-arc graphs, the time cost of checking the completeness condition in
the procedure Alternate Break may not be constant in each iteration in the worst case. Hence, we
cannot process each of the PMU candidates vc1 , vc2 , . . . , vcr separately.

Based on the Interleaving Property, we partition the PMU candidates vc1 , vc2 , . . . , vcr sequen-
tially into q subsets Q1, Q2, . . . , Qq, 1 ≤ q ≤ r, such that each subset Qk consists of vcj ’s that have
the same NEXT(vcj). We denote the candidate v∗cj

as NEXT(Qk), 1 ≤ k ≤ q if for every vcj in Qk,
v∗cj

= NEXT(vcj). That is, {v∗cj
} is maximally complete with respect to {vcj} for every vcj in Qk.

We have the following properties.

Property 5.1

1. If two PMU candidates have the same right blocking a-gap, they obviously belong to the same
subset Qk.

2. For any two distinct PMU candidates vci and vcj , ci ≺ cj, if their right blocking a-gaps are
respectively agi′ and agj′ (i′ ≺ j′) such that a2b(agi′) and a2b(agj′) point respectively to the
b-gaps bgi′′ and bgj′′ associated with PMU candidates vci′′ and vcj′′ (cj′′ ¹ ci′′), then by the
Interleaving Property, they belong to the same subset Qk.

Based on the above properties, when the forward observation propagates through some PMU

16

candidate vc, that is, when we process some PMU candidate vc, the essential spot of the right block-
ing a-gap ag of vc determines the possible PMU candidate NEXT(vc), and also classifies it into some
subset Qk. More specifically, as the forward observation propagates through vcj following vci clock-
wise and ess(agj′) lies to the left of ess(agi′) clockwise, we let vcj belong to the subset Qk containing
vci and determine the latest possible PMU candidate NEXT(Qk) (=NEXT(vcj) =NEXT(vci)) for
Qk. Note that the possible NEXT(Qk) is associated with the first unbroken b-gap subsequent to
bgj′′ if the latter is broken by a forward observation. Furthermore, for any vc preceding vcj (c ≺ cj),
if cj′′ ¹ c∗, where vc∗ is the latest possible PMU candidate NEXT(vc), we merge all the subsets
containing any vc into the subset Qk containing vcj .

To obtain NEXT(Qk) for every Qk, we must use the procedure Alternate Break to check the
completeness condition. However, in each single iteration i, we avoid executing the entire procedure
Alternate Break for vci so that the completeness condition is not checked repeatedly. The procedure
Alternate Break is divided into several parts and executed in multiple iterations instead. More
precisely, consider the alternating break executed by {vci} and {vci′′}, where vci′′ is associated
with b-gap bgi′′ pointed to by a2b(agi′), and agi′ is the right blocking a-gap of vci . The forward
observation from vci stops at the a-gap agi′ , and the backward observation from vci′′ stops at the
first unbroken b-gap. The observations only propagate alternately once, after which we consider
the next PMU candidate vci+1 and repeat this argument. To check the completeness condition
between a forward observation and a backward observation, we define a cross point for each subset
Qk, denoted by Qc

k. Consider vci in some subset Qk and its corresponding possible NEXT(Qk).
After the backward observation from the possible {NEXT(Qk)} stops at the first unbroken b-gap bg
and if bg lies to the immediate left of the a-gap agj , we let the cross point Qc

k = j. The cross point
Qc

k of Qk has the property that if the forward observation from {vci} for every vci ∈ Qk propagates
and stops at the a-gap in which the cross point Qc

k lies, then the completeness condition between
each PMU candidate vci in the subset Qk and NEXT(Qk) holds; that is, {NEXT(Qk)} is maximally
complete with respect to {vci} for each vci in Qk.

We split the procedure Alternate Break into multiple iterations and modify Algorithm MPDI,
as a preprocessing step of Algorithm MPDC to compute NEXT(vci) for every vci , 1 ≤ i ≤ r.
Similarly, we label each b-gap bg as “broken” if a forward observation propagates through ess(bg);
however, we avoid deleting a-gaps broken by the backward observation from the possible PMU
candidate NEXT(vci). Note that, in interval graphs, a forward observation propagates through
each bg as well as its ess(bg), but it is not a certainty in circular-arc graphs. Since we need to find
NEXT(vc) for each candidate vc, i.e., a pair of candidates with the maximally complete property, we
only consider the alternating break between vc and NEXT(vc); thus, ess(bg) is considered instead
of bg as a forward observation propagates in circular-arc graphs. As a result, we label every b-
gap bg as “broken” when a forward observation propagates through ess(bg); and we recover bg
“unbroken” in order to find possible candidates in a circular fashion when a forward observation
passes through bg. Similarly, we use two doubly-linked lists A[], B[] to store all the a-gaps and b-
gaps respectively, and maintain a forward pointer a2b(ag) for each a-gap ag, a back pointer b2a(bg)
for each b-gap bg, and pointers to the next a-gap and the previous b-gap for each endpoint (ai or
bi), as described in Section 3. Without loss of generality, we assume there is no PMU candidate vc

whose NEXT(vc) = null, i.e., there is no right blocking a-gap for vc.

Lemma 5.2 Given a connected circular-arc graph G = (V,E), Algorithm MPDC-Preprocessing
finds NEXT(vci) for each PMU candidate vci, 1 ≤ i ≤ r.

Proof. Lemma 3.9 shows that Step 2 in Algorithm MPDI, i.e., the iterative procedure Alternate
Break, finds NEXT(vc) for vc correctly. We modify this step to consider several PMU candidates
together. Steps 2-1 and 2-4 are the same as those in Algorithm MPDI. In Step 2-2, if the forward

17

Algorithm 3 : MPDC-Preprocessing. Find NEXT(vc) for each candidate vc in a connected
circular-arc graph.

Input. A connected circular-arc graph G = (V, E) with a circular ordering v1, v2, . . . , vn.
A global doubly-linked list A[] consisting of all the a-gaps ag1, ag2, . . . , agp and their
essential spots ess(agi), 1 ≤ i ≤ p, and a global doubly-linked list B[] consisting of all
the b-gaps bg1, bg2, . . . , bgr and their PMU candidates vc1 , vc2 , . . . , vcr . A linked list
Qlink: Q1 ← Q2 ← . . . ← Qr.

Output. NEXT(vc) for each PMU candidate vc.

Method.

1. Let Q1, Q2, . . . , Qr be empty sets, each of which is associated with cross point Qc
k

and NEXT(Qk), ∀1 ≤ k ≤ r, and initialize m = 0, where m = max{k | Qk 6= ∅};
2. for i = 1 to r

2-1. Find the right blocking a-gap agj′′ of vci ;

2-2. if(j′′ = Qc
k with some Qk 6= ∅)

NEXT(Qk) is a feasible candidate for every Qk with cross point Qc
k;

2-3. Label each b-gap bg as “broken” and recover each b-gap bg∗ “unbroken” if the
forward observation from the kernel {vci} propagates through ess(bg) and bg∗

respectively;

2-4. Select a possible PMU candidate vcj associated with the b-gap bgj , where bgj

is the first unbroken b-gap lying to the immediate right of ess(agj′′) so far;

2-5. Find the left blocking b-gap bg of vcj , which lies to the immediate left of the
a-gap agj′ , and let Qc

i = j′;

2-6. Qi = Qi ∪{vci} and NEXT(Qi) = vcj ; /* Create a subset Qi; */
while(m ≥ 1 and vcj ¹ NEXT(Qm)) /* Merge the subsets; */
{ Qi = Qi ∪Qm and let Qm = ∅;

Remove Qm from Qlink and let m = m′, where Qm′ ← Qm in Qlink;
}
Let m = i;

End for

18

observation propagates and stops at the a-gap agQc
k

with some Qk 6= ∅, there will not be any pairs
of unbroken a-gaps and b-gaps between vc ∈ Qk and NEXT(Qk). The reason is that the b-gaps
between the cross point Qc

k and NEXT(Qk) were broken by the preceding forward observation.
Therefore, {NEXT(Qk)} is maximally complete with respect to all the candidates in Qk, for each
Qk with the same cross point Qc

k. Step 2-3 is similar except for the case where the forward obser-
vation propagates through such bg∗’s. Because we only consider the a-gaps and b-gaps between vci

and the possible NEXT(vci), recovering each b-gap bg∗ that lies to the left of agj′′ has no influence
on the alternating break between vci and the possible NEXT(vci). We run Step 2-5 to determine
the location of the cross point Qc

i . Step 2-6 is divided into two cases.
Case 1. NEXT(Qm) ≺ vcj .
If there is an unbroken b-gap between NEXT(Qm) and vcj , then vci clearly belongs to a new subset
Qi. On the other hand, suppose the preceding forward observation breaks all the b-gaps between
NEXT(Qm) and vcj before we consider vci . Then, the preceding forward observation must occur
after we process vcm ; otherwise, it would render NEXT(Qm) = vcj , which would be a contradiction.
Thus, vci belongs to a new subset Qi.
Case 2. vcj ¹ NEXT(Qm).
First, note that the preceding forward observation breaks all the b-gaps between Qc

m and NEXT(Qm).
If vcj = NEXT(Qm), then the forward observation breaks all the b-gaps between ess(agj′′) and
NEXT(Qm). Therefore, every vc ∈ Qm belongs to the subset Qi containing vci . On the other hand,
the case vcj ≺ NEXT(Qm) is equivalent to the condition whereby the procedure Alternate Break
returns Failure in Section 3; that is, there is a pair consisting of an unbroken a-gap agj′′ and an
unbroken b-gap bgj between vc and NEXT(Qm), where vc ∈ Qm. More precisely, the b-gap bgj

lies to the left of Qc
m. NEXT(Qm) is too big to cooperate with vc ∈ Qm and must be replaced by

vcj because of the Interleaving Property. We use the while loop to merge every subset Qm whose
NEXT(Qm) is too big, or whose NEXT(Qm) is equal to vcj . Note that the merge-operation can be
performed sequentially based on the Interleaving Property. 2

Theorem 5.3 Algorithm MPDC-Preprocessing takes linear time if the given circular-arc endpoints
are sorted.

Proof. The proof is similar to that of Theorem 3.11. We claim that the running time is also
linear in the total number of a-gaps and b-gaps. Assume that the total running time is C =
CA+CB, where CA and CB denote, respectively, the time required to process a-gaps and b-gaps when
selecting next candidates. Clearly, CA is linear in p, i.e., the number of a-gaps, since the operations
that involve a-gaps associated with the forward observation proceed in ascending order without
backtracking. Consider the running time CB in aggregate analysis. Note that the b-gaps broken
in the preceding iterations remain broken in the subsequent iterations if the forward observations
have not propagated through the right endpoints that define the broken b-gaps. Besides, each b-gap
is recovered at most once because the forward observation passes through every arc at most once
in a circular fashion. Based on the above discussion, the running time CB for labeling b-gaps as
“broken” and recovering b-gaps “unbroken” is linear in r, i.e., the number of b-gaps, as we use
doubly-linked lists A[] and B[]. Meanwhile, the update operations of the forward pointer a2b()
for the associated essential spots of a-gaps in Step 2-4 can be performed in a similar way by using
the method presented in [13]. We can handle the operations for recovering b-gaps “unbroken” via
another identical static union tree, since the b-gaps are recovered sequentially in ascending order.
Thus, the running time is also linear in the total number of a-gaps and b-gaps.

We also need to consider the operations for subsets Q1, Q2, . . . , Qr in amortized counting. For
each PMU candidate vc, we insert vc into an empty subset Q and perform set-union manipulation
sequentially in the while loop at most once (i.e., we only count every vc in the first move). The

19

linked list Qlink prevents the while loop from traversing the subsets we have merged already.
Hence, Algorithm MPDC-Preprocessing takes linear time if the circular-arc endpoints are sorted.
2

After executing Algorithm MPDC-Preprocessing in a given connected circular-arc graph G =
(V,E), we can apply Algorithm MPDPC to produce a PDS of minimum cardinality for G in linear
time, since the operation for finding v∗c =NEXT(vc) in Step 3 of MPDPC now only takes constant
time. The next theorem follows immediately.

Theorem 5.4 Given a connected circular-arc graph G = (V, E), a PDS of minimum cardinality
for G can be obtained by Algorithm MPDC (MPDC-Preprocessing and MPDPC) in linear time if
the given circular-arc endpoints are sorted.

6 Concluding Remarks

We have considered the power domination problem, which is related to the domination problem in
graph theory [16], and presented linear time algorithms to solve the power domination problem for
both interval graphs and circular-arc graphs, provided that the given endpoints of the corresponding
interval representation and circular-arc representation have been sorted. The problem is relevant
to many fields. Studying them would be worthwhile because of their applications in real power
systems. We conclude the paper with two questions about the power domination problem: What
are the complexities of the power domination problem for other classes of intersection graphs?
How can the relationship, if any, between the power domination number and other variations of
domination numbers be characterized? We will address these questions in our future research.

Acknowledgements. We wish to thank Hengchin Yeh, Ching-Chi Lin, G. J. Chang, and the
anonymous reviewers for many valuable comments and suggestions, which helped us improve the
quality of the presentation of the paper. The final publication is available at www.springerlink.com.

References

[1] A. Aazami. Domination in graphs with bounded propagation: algorithms, formulations and
hardness results, J. Comb. Optim. 19(4) (2010) pp. 429–456.

[2] A. Aazami and M. D. Stilp. Approximation algorithms and hardness for domination with
propagation, SIAM J. Discrete Math. 23(3) (2009) pp. 1382–1399.

[3] D. Atkins, T. W. Haynes, and M. A. Henning. Placing monitoring devices in electric power
networks modelled by block graphs, Ars Comb. 79 (2006) pp. 129–143.

[4] T. L. Baldwin, L. Mili, M. B. Boisen, Jr., and R. Adapa. Power system observability with
minimal phasor measurement placement, IEEE Trans. Power System 8(2) (1993) pp. 707–
715.

[5] R. Barrera. On the power domination problem in graphs, M.S. Thesis, Texas State University,
San Marcos, USA, 2009.

[6] M. Ben-Or. Lower bounds for algebraic computation trees, in Proc. 15th Annual Symposium
on Theory of Computing (1983) pp. 80–86.

20

[7] D. J. Brueni. Minimal PMU placement for graph observability: a decomposition approach,
M.S. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, USA, 1993.

[8] D. J. Brueni and L. S. Heath. The PMU placement problem, SIAM J. Discrete Math. 19(3)
(2005) pp. 744–761.

[9] G. J. Chang. Algorithmic aspects of domination in graphs, in Handbook of Combinatorial
Optimization (D.-Z. Du and P. M. Pardalos eds.) 3 (1998) pp. 339–405.

[10] P. Dorbec, M. Mollard, S. Klavžar, and S. Špacapan. Power domination in product graphs,
SIAM J. Discrete Math. 22(2) (2008) pp. 554–567.

[11] M. Dorfling and M. A. Henning. A note on power domination in grid graphs, Discrete Applied
Math. 154(6) (2006) pp. 1023–1027.

[12] R. Emami and A. Abur. Robust measurement design by placing synchronized phasor measure-
ments on network branches, IEEE Trans. Power Systems 25(1) (2010) pp. 38–43.

[13] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set union,
Journal of Computer and System Sciences 30(2) (1985) pp. 209–221.

[14] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs, Academic Press, Inc. (1980).

[15] J. Guo, R. Niedermeier, and D. Raible. Improved algorithms and complexity results for power
domination in graphs, Algorithmica 52(2) (2008) pp. 177-202.

[16] T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, and M. A. Henning. Domination in graphs
applied to electric power networks, SIAM J. Discrete Math. 15(4) (2002) pp. 519–529.

[17] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. Domination in Graphs: The Theory, Marcel
Dekker, Inc. New York (1998).

[18] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. Domination in Graphs: Advanced Topics,
Marcel Dekker, Inc. New York (1998).

[19] W.-K. Hon, C.-S. Liu, S.-L. Peng, and C. Y. Tang. Power domination on block-cactus graphs,
in Proc. the 24th Workshop Combin. Math. and Comput. Theory (2007) pp. 280–284.

[20] W.-L. Hsu, and K.-H. Tsai. Linear time algorithms on circular-arc graphs, Inform. Process.
Letters 40(3) (1991) pp. 123–129.

[21] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith. Parameterized power domination complex-
ity, Inform. Process. Letters 98(4) (2006) pp. 145–149.

[22] D. T. Lee, M. Sarrafzadeh, and Y. F. Wu. Minimum cuts for circular-arc graphs, SIAM J.
Computing 19(6) (1990) pp. 1041–1050.

[23] C.-S. Liao and D. T. Lee. Power domination problem in graphs, in Proc. the 11th International
Comput. and Combin. Conference (2005) pp. 818–828.

[24] K.-P. Lien, C.-W. Liu, C.-S. Yu, and J.-A. Jiang. Transimission network fault location observ-
ability with minimal PMU placement, IEEE Trans. Power Delivery 21(3) (2006) pp. 1128–
1136.

21

[25] R. F. Nuqui and A. G. Phadke. Phasor measurement unit placement techniques for complete
and incomplete observability, IEEE Trans. Power Delivery 20(4) (2005) pp. 2381–2388.

[26] K.-J. Pai, J.-M. Chang, and Y.-L. Wang. A simple algorithm for solving the power domination
problem on grid graphs, in Proc. the 24th Workshop Combin. Math. and Comput. Theory
(2007) pp. 256–260.

[27] K.-J. Pai, J.-M. Chang, and Y.-L. Wang. Restricted power domination and fault-tolerant power
domination on grids, Discrete Applied Math. 158(10) (2010) pp. 1079–1089.

[28] A. G. Phadke. Synchronized phasor measurements in power systems, IEEE Computer Appli-
cations in Power 6(2) (1993) pp. 10–15.

[29] J. Peng, Y. Sun, and H. F. Wang. Optimal PMU placement for full network observability using
Tabu search algorithm, Electrical Power and Energy Systems, 28 (2006) pp. 223–231.

[30] A. G. Phadke, J. S. Thorp, R. F. Nuqui, and M. Zhou. Recent developments in state estimation
with phasor measurements, in Proc. the IEEE Power Systems Conference and Exposition
(2009) pp. 1–7.

[31] D. Raible and H. Fernau. Power domination in O∗(1.7548n) using reference search trees, in
Proc. the 19th International Symposium Algorithms and Computation (2008) pp. 136–147.

[32] G. Ramalingam and C. Pandu Rangan. A unified approach to domination problems in interval
graphs, Inform. Process. Letters 27(5) (1988) pp. 271–274.

[33] R. E. Tarjan. Efficiency of a good but not linear set union algorithm, J. ACM 22(2) (1975)
pp. 215–225.

[34] V. Terzija, G. Valverde, D. Cai, P. Regulski, V. Madani, J. Fitch, S. Skok, M. M. Begovic,
and A. G. Phadke. Wide-area monitoring, protection, and control of future electric power
networks, in Proc. the IEEE 99(1) (2011) pp. 80–93.

[35] K.-H. Tsai and D. T. Lee. k-Best Cuts for Circular-Arc Graphs, Algorithmica 18(2) (1997)
pp. 198–216.

[36] G. Xu, L. Kang, E. Shan, and M. Zhao. Power domination in block graphs, Theoret. Comput.
Science 359 (2006) pp. 299–305.

[37] M. Zhao, L. Kang, and G. J. Chang. Power domination in graphs, Discrete Math. 306(15)
(2006) pp. 1812–1816.

22

