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Abstract Given an undirected graph G = (V,E) with positive edge lengths
and two vertices s and t, the next-to-shortest path problem is to find an st-
path which length is minimum amongst all st-paths strictly longer than the
shortest path length. In this paper we show that the problem can be solved
in linear time if the distances from s and t to all other vertices are given.
Particularly our new algorithm runs in O(|V | log |V | + |E|) time for general
graphs, which improves the previous result of O(|V |2) time for sparse graphs,
and takes only linear time for unweighted graphs, planar graphs, and graphs
with positive integer edge lengths.

Keywords algorithm · shortest path · time complexity · next-to-shortest
path

1 Introduction

Let G = (V,E,w) be an undirected graph, in which w is a positive edge
length function. For s, t ∈ V , an st-path is a simple path from s to t, in which
“simple” means there is no repeated vertex in the path. In this paper, a path
always means a simple path. The length of a path is the total length of all
edges in the path. An st-path is a shortest st-path if its length is minimum
amongst all possible st-paths. The shortest path length from s to t is denoted
by d(s, t) which is the length of their shortest path. A next-to-shortest st-
path is an st-path which length is minimum amongst those the path lengths
strictly larger than d(s, t). And the next-to-shortest path problem is to find a
next-to-shortest st-path for given G, s and t.

While the shortest path problem has been widely studied and efficient
algorithms have been proposed, the next-to-shortest path problem attracts

National Chung Cheng University, ChiaYi, Taiwan 621, R.O.C.
E-mail: bangye@cs.ccu.edu.tw

http://arxiv.org/abs/1105.0608v1


2 Bang Ye Wu

researchers just in the last decade. The problem was first studied by Lalgudi
and Papaefthymiou in the directed version with no restriction to positive edge
weight [7]. They showed that the problem is intractable for path and can
be efficiently solved for walk (allowing repeated vertices). Algorithms for the
problem on special graphs were also studied [2,9]. The first polynomial algo-
rithm for undirected positive version, i.e., the next-to-shortest path defined in
this paper, was developed by Krasikov and Noble, and their algorithm takes
O(n3m) time [6], in which n and m are the number of vertices and edges,
respectively. The time complexity was then reduced to O(n3) by Li et al. [8].
Recently, Kao et al. further improved the time complexity to O(n2) [10]. In this
paper, we show that the problem can be solved in linear time if the distances
from s and t to all other vertices are given.

Let D be the union of all shortest st-paths. For convenience let D+ be the
digraph obtained from D by orientating all edges toward t. Apparently s and
t are in V (D+) and, for any x, y ∈ V (D+), any (directed) xy-path in D+ is
a shortest xy-path (undirected) in G. An outward subpath of an st-path is a
path consisting of edges in E − E(D) and the both endpoints are in V (D);
and a backward subpath is a maximal subpath using edges in E(D+) but
with reverse direction. Since a next-to-shortest path either contains an edge in
E−E(D) or not, we divide the problem into two subproblems, and the better of
the solutions of the two subproblems is the optimal path. The first subproblem
looks for a shortest path using at least one edge not in E(D), and the second
subproblem looks for a shortest path consisting of only edges in E(D) but with
length larger than d(s, t). Following the previous names in [10], we name the
optimal paths of the first and the second subproblems as “optimal outward
path” (optimal path with an outward subpath) and “optimal backward path”
(optimal path with a backward subpath), respectively. Since any st-path in
D+ has length d(s, t), the optimal backward path uses at least one edge with
reverse direction. By the optimality the following result was shown in [10] and
it is the basis of the algorithms in the previous and this papers.

Lemma 1 The optimal outward path contains exactly one outward subpath

and no backward subpath. The optimal backward path contains exactly one

backward subpath.

The reason for the two observations is the same: If there are two non-
consecutive backward or outward subpaths, we can replace one of them with a
subpath in D+ to obtain a better one. Due to [10], the optimal outward path
subproblem can be solved in O(m + n logn) time. But, for the optimal back-
ward subproblem, they only gave an O(n2) time algorithm. The contribution
of this paper is as follows.

– We give an O(m + n logn) time algorithm for the optimal backward sub-
problem, which also reduces the total time complexity of the whole algo-
rithm for sparse graphs.

– We give an algorithm for finding an optimal outward path. The time com-
plexity is the same as Kao’s algorithm for general graphs but the new
algorithm is simpler and avoids the sorting step in Kao’s algorithm.
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– More precisely, if the distances from s and t to all other vertices are given,
both our new algorithms take only linear time. That is, for graphs on which
the single source shortest paths (SSSP) problem can be solved in t(m,n)
time, the next-to-shortest path problem can be solved in O(t(m,n)+m+n)
time. Consequently the next-to-shortest path problem can be solved in
linear time for undirected unweighted graph, for undirected planar graph
with positive edge weights, and for undirected graph with positive integral
edge weights.

The remaining sections are organized as follows. We introduce notations
and derive some basic properties in Section 2. The algorithm for the optimal
backward path is shown in Section 3, and in Section 4, we give a simpler
algorithm for the outward path problem. Finally concluding remarks are given
in Section 5.

2 Preliminaries

Throughout this paper, we shall assume that (G, s, t) is the instance of the
problem, in which G = (V,E,w) is the input graph with vertex set V , edge
set E and edge length w. s and t are two vertices in V . The graph G is simple,
connected and undirected, and the edge lengths are all positive. We shall use
n = |V | and m = |E|.

For a graph H , V (H) and E(H) denote the vertex and edge sets, respec-
tively. For two vertices x and y on a path P , let P [x, y] denote the subpath from
x to y and w(P ) =

∑
e∈E(P ) w(e) denote the length of the path. Let d(x, y)

denote the shortest path length from x to y in G, which is also called as the
distance from x to y. For convenience, let ds(v) = d(s, v) and dt(v) = d(v, t).

To show the time complexities more precisely, we shall assume the dis-
tances from s and t to all other vertices are given. These distances can be
found by solving the single source shortest paths (SSSP) problem. For general
undirected and positive weight graphs (the most general setting of the problem
discussed in this paper), the SSSP problem can be solved in O(m + n logn)
time [3,4], and more efficient algorithms exist for special graphs or graphs with
restrictions on edge lengths.

As defined in the introduction, let D be the union of all shortest st-paths
and D+ is obtained from D by orientating all edges toward t. Constructing
D and D+ can be done in linear time as follows. A vertex v is in V (D)
iff ds(v) + dt(v) = d(s, t), and, for both u and v in V (D), a directed edge
(u, v) ∈ E(D+) iff ds(v) = ds(u) + w(u, v). Similarly a shortest path tree
rooted at s can also be constructed in linear time if the distances from s to all
others are given.

Since all edge lengths are positive, D+ is a directed acyclic graph (dag)
and we may use the terms such as parent, child, ancestor and descendant
as in a rooted tree. Also, for convenience, we abuse the notation d(x, y) for
the distance from x to y in D and D+ as long as x is an ancestor of y. We
shall use immediate dominators in our algorithm. A vertex v ∈ V (D+) is an
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s-dominator of another vertex x iff all paths from s to x contain v. An s-
dominator v is an s-immediate-dominator of x, denoted by Is(x), if it is the
one closest to x, i.e., any other s-dominator of x is an s-dominator of v. We
remind that, for any vertex x ∈ V (D+), there exist a path from s to x and also
a path from x to t. Apparently any vertex has a unique s-immediate-dominator
and all s-dominators, as well as the s-immediate-dominator, are ancestors of
the vertex. Similarly we define the t-dominator, i.e., v is a t-dominator of x iff
any xt-path contains v, and It(x) is the t-dominator closest to x. Note that s
is an s-dominator and t is a t-dominator for any other vertex in V (D).

Finding immediate dominator is one of the most fundamental problems in
the area of global flow analysis and program optimization. The first algorithm
for the problem was proposed in 1969, and then had been improved several
times. A linear time algorithm for finding the immediate dominator for each
vertex was given in [1].

We define a binary relation on V (D+): x ≺ y iff x is an ancestor of y. In
our definition, a vertex is not an ancestor of itself. Also define x � y iff x is
an ancestor of y or x = y. We derive some properties used in this paper.

Lemma 2 For any vertices x and y in D+ and y ≺ x, either Is(x) � y or

y ≺ Is(x). Similarly either It(y) � x or x ≺ It(y).

Proof We show the first statement and the second statement is similar. If
neither of the two conditions holds, there is an sx-path passing through y and
avoiding Is(x), which contradicts the definition of dominator. ⊓⊔

The following corollary comes from Lemma 2.

Corollary 1 If y ≺ x and ds(Is(x)) < ds(y), then Is(x) ≺ y. Similarly, if

y ≺ x and ds(It(y)) > ds(x), then x ≺ It(y).

3 Optimal backward path

In this section we show an efficient algorithm for finding an optimal backward
path. For this problem, only vertices and edges in D+ need considering and
any vertex is assumed in D+ in this section. Since the numbers of vertices
and edges of D+ are also bounded by n and m respectively, we shall neither
distinguish |V | and |V (D+)|, nor |E| and |E(D+)|.

3.1 The objective function and the constraints

By the previous result shown in the introduction, an optimal backward path
has the form Q1 ◦Q

−1
2 ◦Q3, in which “◦” means concatenation, Qi are paths in

D+ and Q−1
2 means the reverse path of Q2. Since the optimal path is required

to be simple, the three subpaths must be simple and internally disjoint, in



A simpler and more efficient algorithm for the next-to-shortest path problem 5

which two paths are internally disjoint if they have no common vertex except
for their endpoints. Therefore our goal is to find x, y ∈ V (D) minimizing

d(s, x) + d(x, y) + d(y, t) (1)

subject to that there are an sx-path, a yx-path and a yt-path in D+ which
are mutually internally disjoint. If x and y satisfy the constraint, we say (x, y)
is valid.

Since all paths in D+ are shortest, we have d(y, t) = d(y, x) + d(x, t)
and d(s, x) + d(x, t) = d(s, t), and the objective function can be simplified
to d(s, t) + 2d(x, y) and also equivalent to d(x, y) since d(s, t) is independent
on x and y.

For any vertex x, let C(x) = {v|Is(x) ≺ v ≺ x}. The vertices in C(x) form
a closed region in the sense that no path can enter this region without passing
through Is(x), and it is easy to see that, for any vertex x 6= s, C(x) = ∅ iff
x has only one parent. The most important thing is that, as shown later, the
vertices which are valid for x must be in C(x).

Lemma 3 For any y ∈ C(x), Is(x) � Is(y).

Proof Since Is(x) ≺ y, we have Is(x) � Is(y) or Is(y) ≺ Is(x) by Lemma 2. By
the definition of Is(x), the in-neighbors of C(x) are contained in C(x)∪{Is(x)}.
Therefore it is impossible that Is(y) ≺ Is(x). ⊓⊔

Lemma 4 If y ∈ C(x), there are two internally disjoint paths from Is(x), and
y respectively, to x.

Proof Let p = Is(x). By the definition of immediate dominator, no vertex in
C(x) is a px-cut and therefore there are two internally disjoint px-paths, said
P1 and P2. If y is on one of them, we have done. Otherwise, let P3 be any
yx-path and q be the first vertex on P3 and also in V (P1) ∪ V (P2). W.l.o.g.
let q ∈ V (P1). Then, the path P3[y, q] ◦ P1[q, x] is a yx-path disjoint to P2.

⊓⊔

Next we derive the objective function and its constraints.

Lemma 5 If the pair (x, y) is valid, then y ∈ C(x) and x ≺ It(y).

Proof By definition, y ≺ x. By Lemma 2, either Is(x) ≺ y or y � Is(x). If
y � Is(x), by the definition of immediate dominator, any sx-path and yx-
path contain Is(x) simultaneously and cannot be disjoint. Therefore we have
Is(x) ≺ y. The relation x ≺ It(y) can be shown similarly. ⊓⊔

Define

g(x, y) =

{
d(y, x) if y ∈ C(x) and x ≺ It(y)
∞ otherwise

(2)

and let g∗(x) = miny g(x, y).
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Fig. 1 (a). For Lemma 6: P1 is the solid line and P2 is the dash line. (b). For Corollary 2:
The dash line illustrates a feasible backward path.

Lemma 6 If g∗(x) 6=∞ and y∗ = argminy g(x, y), then (x, y∗) is valid.

Proof By Lemma 4, since y∗ ∈ C(x), there are two disjoint paths from Is(x),
and y∗ respectively, to x. Therefore we have a simple path, said P1, from s,
passing through Is(x) to x, and then from x to y∗ by backward edges. Since
x ≺ It(y

∗), there must be a path, said P2, from y∗ to t and avoiding x. We
shall show that P1 and P2 are disjoint, which completes the proof. Suppose
to the contrary that p 6= y∗ is the last common vertex of P1 and P2, i.e., any
other common vertex precedes p in P2 (Figure 1.(a)). Since p ∈ V (P2), we
have y∗ ≺ p, and p ≺ x because p ∈ V (P1). So, we have p ∈ C(x). Since
P2[p, It(y)] is a path avoiding x and p ≺ x ≺ It(y

∗), we have x ≺ It(p).
Therefore g(x, p) = d(p, x) 6=∞ and d(p, x) < d(y∗, x) since y∗ is an ancestor
of p, a contradiction to the optimality of y∗. That is, P1 and P2 must be
disjoint. ⊓⊔

The proof of Lemma 6 is constructive, and it implies an algorithm for finding
a corresponding backward path for given x and y∗. Furthermore the time
complexity is apparently linear. For the simplicity, in the following, we only
focus on finding the length of the optimal backward path. By Lemmas 5 and
6, our goal is to find x and y minimizing g, i.e.,

OPT = min
x

min
y∈C(x)

{ds(x)− ds(y)|x ≺ It(y)} (3)

Or, by Corollary 1, it can be also written as

OPT = min
x

min
y∈C(x)

{ds(x) − ds(y)|ds(x) < ds(It(y))} (4)

The convenience of the latter form is that we can easily determine the ancestor
relation by simply comparing their ds values. The above formula provides us a
way to find the optimal backward path: for each vertex x, checking each vertex
y ∈ C(x). But the naive method takes at least Θ(n2) time in worst case since
|C(x)| may be linear in n.
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3.2 An efficient algorithm

We say “the pair (x, y) is feasible” or “y is feasible for x” if g(x, y) 6=∞. We also
say “x is feasible” if there exists y which is feasible for x. Note that a feasible
(x, y) may be not valid. However, our algorithm find the (x, y) minimizing
function g, and by Lemma 6 it must be valid.

Let A(x) be the set of parents of x. Our algorithm basically finds g∗(x) for
each x according to the following formula:

g∗(x) = min
p∈A(x)

min
y�p

g(x, y), (5)

and OPT = minx{g∗(x)}. We denote by F the set of all the feasible vertices,
i.e.,

F = {x|g∗(x) 6=∞}

To make the algorithm efficient, we derive some properties to avoid non-
necessary searches.

Lemma 7 If y ≺ x and y ∈ F , then g(x, u) > g∗(y) for any u ≺ y.

Proof If y � Is(x), minu≺y{g(x, u)} = ∞ and the result holds since y ∈ F .
We only need to consider the remaining case that Is(x) ≺ y. Let u ≺ y and
g(x, u) 6= ∞. By definition, u ∈ C(x) and x ≺ It(u). Since y ∈ C(x), by
Lemma 3, Is(x) � Is(y). If Is(y) ≺ u, u is also feasible for y and d(u, y) <
d(u, x) = d(u, y) + d(y, x). Otherwise d(u, x) > d(Is(y), y). Since y ∈ F , by
definition g∗(y) < d(Is(y), y). ⊓⊔

Lemma 8 If y ≺ x and y /∈ F , then g(x, u) =∞ for any u ∈ C(y).

Proof Since y /∈ F , for any vertex u ∈ C(y), i.e., Is(y) ≺ u ≺ y, we have
It(u) � y. Since y ≺ x, It(u) ≺ x and u cannot be feasible for x. ⊓⊔

Lemma 9 Let vj and vi be two descendants of y and ds(vj) ≤ ds(vi). If

g∗(vj) 6=∞, minu≺y{g(vi, u)} ≥ g∗(vj).

Proof If there exists u such that Is(vj) ≺ u ≺ y and g(vi, u) 6= ∞, then
ds(It(u)) > ds(vi) ≥ ds(vj). Since u is also an ancestor of vj , vj ≺ It(u) by
Corollary 1. Therefore g(vi, u) = ds(vi) − ds(u) ≥ ds(vj) − ds(u) ≥ g∗(vj).
For otherwise there is no such u, and we have minx≺y{g(vi, x)} ≥ ds(vi) −
ds(Is(vj)) ≥ ds(vj)− ds(Is(vj)) > g∗(vj). ⊓⊔

Corollary 2 Let vj and vi be two vertices and ds(vj) ≤ ds(vi). If y ∈ C(vj)∩
C(vi) and vj is not an ancestor of vi, then g∗(vj) 6=∞ and minu≺y{g(vi, u)} ≥
g∗(vj).

Proof Since y ∈ C(vj)∩C(vi), y is a common ancestor of vj and vi. Let y
′ be

a lowest common ancestor of them and y � y′. Since vj is not an ancestor of
vi, we have y

′ 6= vj and there is a path from y′ to vi avoiding vj . By definition
vj ≺ It(y

′) and g∗(vj) 6= ∞ (Figure 1.(b)). The inequality follows directly
from Lemma 9. ⊓⊔
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Our algorithm for the optimal backward path is as follows.

Algorithm Bk N2SP
Input: The digraph D+.
Output: The length of the optimal backward path.
1: find a topological order of D+ and label the vertices such that

if (vi, vj) ∈ E(D+), i < j;
2: find Is(v) and It(v) for each v;
3: β ←∞;

color(v)← white, ∀v ∈ V (D+);
color(s)← black;

4: for i← 2 to n− 1 do
5: for each parent p of vi do
6: y ← p;
7: while Is(vi) ≺ y and g(vi, y) =∞ and color(y) = white do
8: color(y)← black; y ← Is(y);
9: if g(vi, y) 6=∞ then
10: β ← min{β, ds(vi)− ds(y)};

color(vi)← black; color(y)← black;
11: end for next parent;
12: end for next i;
13: output d(s, t) + 2β

In the algorithm, each vertex v is associated with a color, which is white
initially and may be set to black as the algorithm runs. The algorithm begins
with a preprocessing stage at Steps 1–3. We first arrange the vertices according
to a topological order in D+. Note that s = v1 and t = vn. Then we find the
s- and t-immediate dominators for each vertex. All vertices are assigned white
color except that s is colored black. The variable β is used to keep the objective
value of the best solution found so far. In the main loop from Steps 4 to 12, we
deal with all the vertices one by one except for s and t. In the i-th iteration,
we try to find any feasible y ∈ C(vi) for vi from each parent of vi (Steps 5–11).

3.3 Correctness and time complexity

We shall show the correctness of the algorithm by examining the feasibility
and the optimality.

Feasibility.

The algorithm finds solutions only at Step 10. By Lemma 6, the final solution
is feasible as long as its minimality can be ensured.
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Optimality.

Apparently neither s nor t can be a feasible vertex. By Eq. (5) what we need
to show is that the solutions we skipped are really not better. By Eq. (3), we
should check all y ∈ C(vi) for each vi. There are two kinds of solutions skipped
by the algorithm.

– Type 1: The first kind of possible solutions ignored by the algorithm is
at Step 8 where we look for feasible solution g(vi, y) for any y � p but
do not try all such y. Instead, we jump to Is(y) after checking y and skip
the vertices in C(y). If y is feasible, by Lemma 7, we do not need to check
g(vi, u) for any ancestor u of y; and if y is not feasible, by Lemma 8,
ignoring (vi, u) for any u ∈ C(y) does not affect the optimality.

– Type 2: The second kind of skipped solutions is due to the conditions of the
while-loop at Step 7. The while-loop stops when y � Is(vi) or g(vi, y) 6=∞
or color(y) = black. Except for the first condition, the loop may termi-
nate before reaching Is(vi). For the second condition, if g(vi, y) 6= ∞,
the optimality is ensured by Lemma 7; and we divide the third condition
color(y) = black into two sub-cases according to when it turns black.
– If y is colored black in this iteration, y must have been checked at

this iteration from another parent of vi. Therefore, if there exists any
ancestor of y we need checking, it must have already been checked from
that parent.

– Otherwise y is colored black before the i-th iteration, and this im-
plies that y ∈ C(vj) for some j < i or y is feasible (marked black at
Step 10 in the iteration checking y with its ancestor). If y is feasible,
we can safely skip any ancestor of y by Lemma 7. Otherwise, if vj
is not an ancestor of vi, we have that vi or vj must be feasible and
minu≺y{g(vi, u)} ≥ min{g∗(vi), g∗(vj)} by Corollary 2. Note that we
still need to and do check g(vi, y) at Step 9 because ds(Is(vi)) may be
smaller than ds(Is(vj)).
The remaining case is that vj ≺ vi and y ∈ C(vj). Let (y1, y2, . . . , yk =
y) be the sequence of vertices checked at the while-loop. Since yq+1 =
Is(yq) for 1 ≤ q ≤ k− 1 and Is(vj) ≺ yk ≺ vj , we have that vj does not
appear in the sequence. Hence, there exists yq which is in C(vj) and
has a path to vi avoiding vj . Therefore vj is feasible, and then similar
to Corollary 2, it is not necessary to check any ancestor of y for vi.

By the above explanation, we conclude the correctness of the algorithm.

Lemma 10 Algorithm Bk N2SP computes the optimal backward path length

correctly.

Time complexity.

We show that the time complexity of our algorithm is O(n+m). Step 1 takes
linear time for finding a topological order and Step 2 takes O(m) time [1].
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Step 3 takes O(n) time. The inner loop (Steps 6–10) is entered O(m) times
since the total number of parents of all vertices is bounded by the number
of edges. Since y is always an ancestor of vi, the conditions “Is(vi) ≺ y” and
“g(vi, y) =∞”, as well as to compute g(vi, y), can all be done in constant time
by checking the ds values. The remaining question is how many times Step
8 is executed. By the condition of the while loop, only white vertices will be
colored black at Step 8, and therefore it is executed at most n times in total.

The algorithm assumes that D+ is the input. It does not matter since D+

can be constructed in linear time if the distances ds(v) and dt(v) are given for
all v.

Lemma 11 The time complexity of the algorithm Bk N2SP is O(m+ n).

By Lemmas 10 and 11, we have the next result.

Theorem 1 The optimal backward path problem on undirected graphs with

positive edge lengths can be solved in linear time if the distances from s and t
to all the others are given.

For general undirected graph with positive edge weights, the SSSP problem
can be solved in O(n log n +m) time by the Dijkstra’s algorithm using a Fi-
bonacci Heap [4]. Therefore the next corollary directly comes from Theorem 1
and the result of the outward path in [10].

Corollary 3 The next-to-shortest path problem on undirected graphs with pos-

itive edge lengths can be solved in O(n log n+m) time.

4 Optimal outward path

In this section we show an efficient algorithm for finding an optimal outward
path. As described in the introduction, an optimal outward path contains ex-
actly one outward subpath and has no backward subpath, in which an outward
subpath is a path P such that E(P ) ⊂ E − E(D) and both endpoints of P
are in V (D). An outward path must be strictly longer than a shortest path
between its endpoints. Otherwise it should be entirely in D. Therefore the
length of an outward st-path must be strictly larger than d(s, t). Our goal is
to find an minimum length st-path with an outward subpath.

Let T be any shortest-path tree of G rooted at s and R = T −E(D) denote
the graph obtained by removing edges in E(T )∩E(D) from T . Apparently R
is a forest consisting of subtrees of T and V (R) = V (T ) = V . By the definition
of D, any shortest path between two vertices in D must be included in E(D).
For any v ∈ V (D), the path from s to v on T must be entirely within E(D)
and therefore v must be a root of a subtree of R. Furthermore, the root of
any subtree of R must be in V (D) because the edge between it and its parent

is removed and we only remove edges between two vertices in V (D). Let Ẽ
denote the set of edges (x, y) such that (x, y) ∈ E − E(T ) ∪ E(D) and x and
y are in different subtrees of R. We show the next lemma.
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Fig. 2 The existence of a simple path with length f(x, y). (a): Two cases of P2; the dot
line is impossible. (b): The case of P3 intersecting P2[q, t].

Lemma 12 An optimal outward path P contains one edge in Ẽ.

Proof By definition P contains an outward subpath. Since the both endpoints
of this outward subpath are in V (D), they must be in different subtrees of R,

and P must have an edge in Ẽ. ⊓⊔

Define

f(x, y) =

{
ds(x) + w(x, y) + dt(y) if (x, y) ∈ Ẽ
∞ otherwise

(6)

Note that, since G is undirected, both (x, y) and (y, x) denote the same edge.
But f(x, y) 6= f(y, x) in general. The following lemma is crucial for our result.

Lemma 13 If (x, y) minimizes function f and f(x, y) 6=∞, then there exists

a simple st-path of length f(x, y) and with one edge in Ẽ. Such a path is an

optimal outward path.

Proof We shall show the existence of such a simple path, and then it is an
optimal outward path by Lemma 12.

Let P1 be the shortest path from s to x on T and P2 any shortest path from
y to t. If P1 and P2 are disjoint, P1 ◦ (x, y) ◦P2 is a desired path since (x, y) is

an edge in Ẽ. Otherwise let q ∈ V (P1) ∩ V (P2). By the triangle inequalities,
seeing Figure 2.(a), we have

f(y, x) = ds(y) + w(y, x) + dt(x)

≤ w(P1[s, q] ◦ P2[q, y]) + w(x, y) + w(P1[x, q] ◦ P2[q, t])

= w(P1) + w(x, y) + w(P2) = f(x, y)

and the equality holds when

ds(y) = w(P1[s, q] ◦ P2[q, y]) (7)



12 Bang Ye Wu

and

dt(x) = w(P1[x, q] ◦ P2[q, t]) (8)

Let r be the root of the subtree which x belongs to. If q is an internal node
of P1[s, r], i.e., q is a ancestor of r on T , since r ∈ V (D), we have

dt(x) ≤ w(P1[x, r]) + dt(r)

= w(P1[x, r]) + dt(q)− d(q, r)

= w(P1[x, q] ◦ P2[q, t])− 2d(q, r)

< w(P1[x, q] ◦ P2[q, t]).

That is, the equality of Eq. (8) cannot hold and we have f(y, x) < f(x, y),
which contradicts to the minimality of f(x, y). Therefore q is on P1[r, x]. In
the following we assume that q is the last vertex of P2 which is also in P1 if
P2 intersects P1 at more than one vertices, i.e., P2[q, t] intersects P1 only at q.
Let P3 be the path from s to y on T . Since x and y are at different subtrees of
R, the path P3 is disjoint with the path P1[r, x]. If P3 is disjoint to P2[q, t], the
path P3 ◦ (y, x) ◦P1[x, q] ◦P2[q, t] is a simple path and its length is f(y, x) and
also equals to f(x, y) by Eq. (8), seeing Figure 2.(a). Otherwise, let v be the
vertex in V (P3)∩V (P2[q, t]) and closest to y. We shall show that P1 is disjoint
to P3[y, v], and then P1◦(x, y)◦P3[y, v]◦P2[v, t] is a simple path (Figure 2.(b))
and its length is

ds(x) + w(x, y) + w(P3[y, v]) + w(P2[v, t]),

which is at most f(x, y) since w(P3[y, v]) = d(y, v) ≤ w(P2[y, v]).
To see P1 must be disjoint to P3[y, v], we first note that P3[y, v] is disjoint

to P1[r, x] or otherwise y and x would be in the same subtree of R. Next,
similar to that q cannot be an ancestor of r, since v is also a vertex on P2, we
have that v cannot be an ancestor of r on T . That is, v must be below the
lowest common ancestor of x and y on T , and therefore P3[y, v] is disjoint to
P1. ⊓⊔

Theorem 2 For an undirected graph with positive edge lengths, the optimal

outward path problem can be solved in O(m + n) time if ds(v) and dt(v) are

given for all v.

Proof By Lemma 13, the length of the optimal outward st-path is the mini-
mum value of function f . To compute (x, y) minimizing f , we first construct D

and a shortest path tree T , and then find the edge set Ẽ. The minimum can be
found by checking both f(x, y) and f(y, x) for all edges (x, y) ∈ Ẽ. The time
complexity is linear if the distances ds(v) and dt(v) for all v are given. Once
(x, y) is found, by the method in the proof of Lemma 13, the corresponding
path can be constructed in linear time. ⊓⊔

By Theorems 1 and 2, we have the next result.
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Corollary 4 For undirected graphs with positive edge lengths, if the single

source shortest path problem can be solved in O(t(m,n)) time, the next-to-

shortest path problem can be solved in O(t(m,n) +m+ n) time.

Important graph classes for which the single source shortest path problem can
be solved in linear time include unweighted graphs (by BFS [3]), planar graphs
[5], and integral edge length graphs [11].

5 Concluding remarks

It is easy to show that the next-to-shortest path problem is at least as hard
as the shortest path problem. Given an instance of the shortest path problem,
we add a dummy edge between s and t with sufficient small weight. Then
if there is an algorithm for the next-to-shortest path problem, we can solve
the shortest path problem with the same time complexity since the above
reduction is linear time.

In this paper, we show that the next-to-shortest path problem can be solved
with the same time complexity as the single source shortest paths problem.
Interesting future works include the directed version and the undirected case
with nonnegative edge weights. Allowing zero-length edges makes the next-to-
shortest path problem more involved. Particularly, Lemma 6 no more holds,
and there seems no obvious modification to generalize the lemma to the non-
negative case. Another open problem is if we can find the single source all
destinations next-to-shortest paths in the same time complexity.
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