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Abstract. A star graph is a tree of diameter at most two. A star forest

is a graph that consists of node-disjoint star graphs. In the spanning star
forest problem, given an unweighted graph G, the objective is to find
a star forest that contains all the vertices of G and has the maximum
number of edges. This problem is the complement of the dominating set
problem in the following sense: On a graph with n vertices, the size of
the maximum spanning star forest is equal to n minus the size of the
minimum dominating set.
We present a 0.71-approximation algorithm for this problem, improving
upon the approximation factor of 0.6 of Nguyen et al. [9]. We also present
a 0.64-approximation algorithm for the problem on node-weighted graphs.
Finally, we present improved hardness of approximation results for the
weighted versions of the problem.

1 Introduction

A star graph is a tree of diameter at most two. Equivalently, a star graph consists

of a vertex designated center along with a set of leaves adjacent to it. In partic-

ular, a singleton vertex is a star as well. Given an undirected graph, a spanning

star forest consists of a set of node-disjoint stars that cover all the nodes in the

graph. In the spanning star forest problem, the objective is to maximize the

number of edges (or equivalently, leaves) present in the forest.

A dominating set of a graph is a subset of the vertices such that every other

vertex is adjacent to a vertex in the dominating set. Observe that in a spanning

star forest solution, each vertex is either a center or adjacent to a center. Hence

the set of centers form a dominating set of the graph. Therefore, the size of the
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maximum spanning star forest is the number of vertices minus the size of the

minimum dominating set. Computing the maximum spanning star forest of a

graph is NP-hard because computing the minimum dominating set is NP-hard.

The spanning star forest problem has found applications in computational bi-

ology. Nguyen et al. [9] use the spanning star forest problem to give an algorithm

for the problem of aligning multiple genomic sequences, which is a basic bioin-

formatics task in comparative genomics. The spanning star forest problem and

its directed version have found applications in the comparison of phylogenetic

trees [3] and the diversity problem in the automobile industry [1].

Surprisingly, even though the maximum spanning star forest is a natural NP-

hard problem, there is not much literature on approximation algorithms for this

problem. In fact, the first approximation algorithms for this problem appeared

recently in the work of Nguyen et al. [9]. They gave a number of approximation

algorithms: the most general one being a 0.6-approximation algorithm on an

unweighted graph. This should be contrasted with the complementary problem

of minimizing the size of the dominating set of the graph which is known to be

hard to approximate within a factor of (1 − ǫ)ln n for any ǫ > 0 unless NP is

in DTIME(nlog log n) [4, 8]. This disparity in approximability of complementary

problems is fairly commonplace (for example the maximum independent set is

not approximable to within any polynomial factor while its complement problem

of minimum vertex cover can be approximated to within a factor of 2). Nguyen et

al. [9] also showed that the spanning star forest problem is hard to approximate

to within a factor of 545
546 + ǫ unless P=NP. The paper also gave algorithms with

better approximation factors for special graphs such as planar graphs and trees

(in fact, for trees the optimal spanning star forest can be computed in linear

time).

There are some natural weighted generalizations of the spanning star forest

problem. The first generalization is when edges have weights and the objective

is to maximize the weights of the edges in the spanning star forest solution.

There is a simple 0.5-approximation algorithm for this case [9]. Note that the

edge-weighted version is no longer the complement of the (weighted) dominat-

ing set problem. Another generalization is the case when nodes have weights.

The objective now is to maximize the weights of nodes that are leaves in the

spanning star forest solution. This problem is the natural complement of the

weighted minimum dominating set problem. To the best of our knowledge, the

approximability of the node-weighted spanning star forest problem has not been

considered before.

1.1 Our Results and Techniques

We prove the following results in this paper. First, we improve the result of [9] by

giving a 0.71-approximation algorithm for the unweighted spanning star forest

problem. Second, we give a 0.64-approximation algorithm for the node-weighted

spanning star forest problem. Finally, we prove better hardness of approximation



results for the weighted versions of the problem. In particular, we show that the

node and edge-weighted spanning star forest problem cannot be approximated

to within a factor of 31
32 + ǫ and 19

20 + ǫ, respectively, for any ǫ > 0 unless P=NP.

Our algorithms are based on an LP relaxation of the spanning star forest

problem and randomized rounding. For each vertex we have a variable xi which

is 1 if xi is a leaf. However, the natural rounding scheme of making vertex i a

leaf with probability xi does not give a good approximation ratio. Instead, we

make vertex i a leaf with probability f(t, xi) = e−t(1−xi), where the value of t is

carefully chosen. Note that for fixed t, the function f(t, xi) is non-linear in xi.

Non-linear rounding schemes used in ([5, 7]) round with probability xc
i , where c

is a fixed constant or is a value that depends on the input3. An interesting point

about the rounding is that the function f(t, xi) is nonzero even for xi = 0, so

with some low probability, the rounding can round a variable xi = 0 to 1.

The nonlinear rounding algorithm, obtains an approximation factor of ln n
OPT

+O(1) for the dominating set problem, where n is the number of vertices in the

graph and OPT is the value of the optimal (fractional) dominating set. This

almost matches the best known approximation factor due to Slav́ık (for the

more general set cover problem) [10].

However, the LP rounding only provides a 0.5 approximation, when the dom-

inating set is large (say 0.5n). To get the claimed factor of 0.71 for unweighted

graphs, we use the LP algorithm in conjunction with another algorithm. The

idea is to divide the input graph G into the union of a subgraph G′ and some

trees, where in G′ the minimum degree is at least 2. Given a spanning star forest

solution for G′, we can “lift” back the solution to the original graph G. Then we

use as a black box the algorithm from [9] that produces a spanning star forest

of size at least 3
5n on a n-vertex graph of minimum degree 2.

We now turn to the node-weighted spanning star forest problem. Our LP

rounding algorithm can be easily generalized to the node-weighted case. As in

the unweighted case, the LP rounding algorithm by itself does not give us the

stated factor of 0.64. To get the claimed approximation factor, we combine our

rounding algorithm with the following trivial factor 0.5 algorithm: Compute any

spanning tree, designate an arbitrary vertex as root. Divide the tree in to levels

based on distance from the root. Make nodes at alternate levels as centers. It is

easy to check that one of the two solutions will have weight at least 1
2 times the

sum of the weights of all nodes.

Finally, we turn to our hardness of approximation results. The hardness re-

sults are obtained by gadget reductions from the result of H̊astad [6] that states

that MAX3SAT is NP-hard to approximate to within a factor of 7
8 + ǫ, for any

ǫ > 0, unless P=NP.

3 For the problem of maximum k-densest subgraph, a randomized rounding using
c = 0.5 appears to be a folklore result that is attributed to Goemans [5].



2 Preliminaries

In this paper, we will consider undirected simple graphs that can be unweighted,

node-weighted (where weights are on the nodes) or edge-weighted (where the

weights are on the edges). Without loss of generality, assume that G is connected,

otherwise we can consider each connected components separately. We say a graph

is a star if there is one vertex (called the center) incident to all edges in the graph

(all other vertices are called leaves). The size of a star is the number of edges in

the star (for weighted case, it is the sum of weights of the edges or the sum of

the weights of the leaves in the star, for edge-weighted and node-weighted stars

respectively). In particular, a singleton vertex is a star of size 0.

A spanning star forest of a graph G is a collection of node disjoint stars that

covers all vertices of G. The problem we are interested in is to find a spanning

star forest that maximizes the sum of the sizes of its constituent stars. The un-

weighted, node-weighted and edge-weighted versions of the problem are denoted

by Unweighted Spanning Star Forest, Node-Weighted Spanning Star

Forest and Edge-Weighted Spanning Star Forest, respectively.

We will now fix some notation. Unless mentioned otherwise, a graph G =

(V,E) will be an unweighted graph. For a node-weighted graph, for any vertex

vi ∈ V , its weight will be denoted by wi ≥ 0. For an edge-weighted graph, for any

edge e ∈ E, its weight will be denoted by we ≥ 0. Further, for a vertex vi ∈ V ,

N(i) will denote the neighbor set of vi in G, that is, N(i) = {vj | (vi, vj) ∈ E}.

We will usually denote |V | by n. By abuse of notation, we will use OPT (G) to

denote the optimal spanning star forest for G as well as its the total size.

Given a maximization problem, we say that an algorithm is an α-approximation

for 0 < α ≤ 1, if for every input instance the algorithm produces a solution whose

objective value is at least α times that of the optimal solution for that instance.

3 An LP-Based Algorithm

In this section we will present a linear programming based algorithm for the

Node-Weighted Spanning Star Forest problem. Towards this, we define

the following linear programming relaxation. For every vertex i, the variable xi

has the following meaning: xi = 1 if vi is a leaf in the spanning star forest and is

0 otherwise. For a vertex vi, it is not possible to have all vertices in N(i) ∪ {vi}

as leaves. These constraints have been included in the linear program.

max
∑

vi∈V

wi · xi

s.t. xi +
∑

vj∈N(i)

xj ≤ |N(i)|, ∀ vi ∈ V

0 ≤ xi ≤ 1, ∀ vi ∈ V



Let LPOPT (G) be the value of the optimal solution of the LP. For the rest

of the section, fix an optimal solution {xi}i∈V . Let W =
∑n

i=1 wi be the sum of

the weights of all the nodes in G. Define

a =

∑n
i=1 wixi

∑n
i=1 wi

=

∑n
i=1 wixi

W
. (1)

Notice that this implies that the optimal objective value is aW . Note that setting

all xi = 1/2 gives a feasible solution with value W/2. Thus, a ≥ 1/2. We will

round the given optimal LP solution using the following rounding algorithm.

Rounding-Alg.

1. Make vertex vi a leaf with probability e−t(a)(1−xi),

where t(a) = 1
a

ln
(

1
1−a

)

. (Note that as 1/2 ≤ a < 1, t(a) ≥ 0.)

2. Let L1 denote the set of vertices declared leaves in the first

step.

3. Let L2 = {vi ∈ V | vi ∪ N(i) ⊆ L1}. Declare all vertices in L1 \ L2

as leaves.

4. Assign every leaf vertex to one of its neighbors that is not

declared a leaf. Ties are broken arbitrarily.

We have the following approximation guarantee for the above rounding al-

gorithm.

Lemma 1. Given an LP solution {xi}i∈V , Rounding-Alg outputs a spanning

star forest with expected size at least aW (1 − a)
1
a
−1

. That is, it is a (1 − a)
1
a
−1

factor approximation algorithm for the spanning star forest problem.

Proof. It is easy to verify that Rounding-Alg does indeed generate a valid

spanning star forest. For notational convenience let t = t(a) where a is as defined

in (1). Now the expected total weight of all leaves after step 2 of Rounding-Alg

is

E(ℓ1) =

n
∑

i=1

wie
−t(1−xi) = e−tW

(∑n
i=1 wie

txi

W

)

≥ e−tW (etaW )
1

W = We−t(1−a)

The inequality above is obtained by the fact that the arithmetic mean is

larger than the geometric mean, and then using
∑n

i=1 wixi = aW . Now after

step 3, a vertex vi can cease to be a leaf with probability exactly

e−t(1−xi)
∏

j∈N(i)

e−t(1−xj).



Thus, if ℓ2 is the total weight of vertices that were leaves after step 2 but ceased

to be leaves after step 3, then its expectation is given by

E(ℓ2) =

n
∑

i=1

wi



e−t(1−xi)
∏

j∈N(i)

e−t(1−xj)





=
n

∑

i=1

wie
−t

(

e−t(|N(i)|−
∑

j∈N(i) xj−xi)
)

≤

n
∑

i=1

wie
−t = We−t

The inequality follows from the fact that the xi’s form a feasible solution.

Now the expected value of the solution produced by Rounding-Alg is the

expected total weight of leaves at the end of step 3. In other words, the expected

value is given by

E(ℓ1) − E(ℓ2) ≥ W

(

eat − 1

et

)

Now substituting the value t = 1
a ln

(

1
1−a

)

completes the proof. �

We have the following remarks concerning Rounding-Alg.

– The integrality gap of the LP is at most 3/4: consider a 4-cycle. Note that

setting all xi = 2/3 is a valid solution, giving an LP optimal value of 8/3.

However, the integral optimum value is 2.

– The randomized rounding algorithm can easily be derandomized using the

method of conditional expectations [2]. In fact, exact formulas for E(ℓ1) and

E(ℓ2) are presented in the proof and the conditional expectations are easy

to compute from these formulas.

– In the worst case where a = 1/2, the approximation ratio of Rounding-Alg

for spanning star forest is rather bad (equal to 0.5). However, as we will see

in the next two sections, we will take advantage of Rounding-Alg to get

good approximation algorithms.

3.1 Application of Rounding-Alg to Dominating Set

Observe that the approximation ratio in Lemma 1 improves as the value of a

increases. In particular, the approximation ratio tends to 1 as a approaches 1.

This suggests that the above rounding scheme yields an approximation algorithm

for the complementary objective of minimizing the dominating set. In fact, by

analyzing the behavior of the function as a approaches 1, we obtain the following

result.



Theorem 1. The Rounding-Alg computes a
(

ln W
OPTf

+ 1 + 2
OPTf

W ln W
OPTf

)

approximation ratio solution for the weighted dominating set problem, where

OPTf is the total weight of the optimal fractional dominating set solution.

Proof. Let the optimal LP value for the spanning star forest be given by aW ,

where W is the sum of all the node weights. This implies that the optimal

(fractional) dominating set has size OPTf = (1 − a)W .

Now, the dominating set returned by Rounding-Alg has size

W − aW (1 − a)
1
a
−1

= OPTf ·
1 − (1 − a)

1
a
−1

a

1 − a

Let a = 1 − ǫ. We have

1 − (1 − a)
1
a
−1

a

1 − a
=

1 − ǫ
1

1−ǫ
−1(1 − ǫ)

ǫ
=

1 − ǫ
ǫ

1−ǫ

ǫ
+ ǫ

ǫ
1−ǫ

As ǫ < 1, ǫ
ǫ

1−ǫ ≤ 1. Thus, the approximation ratio (for the dominating set

problem) is at most:

1 − ǫ
ǫ

1−ǫ

ǫ
+ 1 =

1 − e
ǫ

1−ǫ
ln ǫ

ǫ
+ 1 ≤

1 −
(

1 − ǫ
1−ǫ ln ǫ

)

ǫ
+ 1

=
ǫ

1−ǫ ln 1
ǫ

ǫ
+ 1 ≤ ln

1

ǫ
(1 + 2ǫ) + 1 = ln

1

ǫ
+ 2ǫ ln

1

ǫ
+ 1,

where in the above we have used that since 0 < ǫ ≤ 1, ǫ
1−ǫ ln 1

ǫ < 1. Further, for

any 0 < y < 1 and 0 < x ≤ 1/2, we have the following inequalities: e−y ≥ 1 − y

and 1
1−x ≤ 1 + 2x. Note that for our case we can always find a dominating set

of size at most W/2, that is, ǫ ≤ 1/2. The proof is complete by noting that

ǫ = OPTf/W . �

We remark that ǫ =
OPTf

W ln W
OPTf

in general is at most 1. However, if

OPTf = o(W ), then ǫ = o(1). This result is close to the best known bound

of
(

OPTf − 1
2

)

ln n
OPTf

+ OPTf from the analysis of greedy algorithm for set

cover (and hence, applicable to dominating set too) in [10].

4 An Approximation Algorithm for the Unweighted

Spanning Star Forest Problem

In this section, we will describe a 0.71-approximation algorithm for the Un-

weighted Spanning Star Forest problem. We will use the following two

known results.

Theorem 2 ([9]). For any connected unweighted graph G of minimum degree

at least 2, if the number of vertices n ≥ 8, there is a polynomial time algorithm

(denoted by Oracle-Alg) to compute a spanning star forest of G of size at

least 3n/5.



Theorem 3 ([9]). For any tree T rooted at r, let OPTct(T ) and OPTlf (T )

be the optimal value of spanning star forest of T given the condition that r is

declared a center and leaf, respectively. Then OPTct(T ) and OPTlf (T ) can be

computed in polynomial time.

Starting with the given connected graph G, we will generate a subgraph

from G recursively as follows: Whenever there is a vertex in the current graph of

degree 1, remove the vertex and the edge incident to it from the graph. Denote

the final resulting subgraph to be G′. Note that G′ is connected and every vertex

in it has degree at least 2. Let

S = {vi ∈ G′ | at least one edge incident to vi is dropped in the above process}.

For simplicity, assume S = {v1, . . . , vh} and let (G \G′)∪ S denote the induced

subgraph on the vertex set (V (G) \ V (G′)) ∪ S.

Consider the subgraph (G \ G′) ∪ S: it is easy to verify that (G \ G′) ∪ S

is composed of h disconnected trees rooted at vertices in S. Denote these trees

by T1, . . . , Th, where the root of Tj is vj . Let OPTct(Tj) and OPTlf (Tj) be

the optimal value of spanning star forest for Tj with the condition that vj is

declared a center and leaf, respectively. According to Theorem 3, OPTct(Tj)

and OPTlf (Tj) can be computed in polynomial time. Define

S1 = {vj ∈ S | OPTct(Tj) < OPTlf (Tj)}

S2 = {vj ∈ S | OPTct(Tj) ≥ OPTlf (Tj)}

Let N ′(S2) be the set of neighbors of S2 in G′. Observe that |N ′(S2)| ≥ 2

(otherwise, all vertices in S2 would have been removed earlier). Consider the

subgraph G′ \ S2 and assume that there are k vertices in G′ \ S2. We add two

extra vertices u and v and connect u and v to all vertices in N ′(S2). Let the

resulting graph be G∗ (see Figure 1 for an example). Note that G∗ is a connected

graph of minimum degree at least 2. Thus by Theorem 2, we can compute a

spanning star forest of G∗ of size at least 3
5 · (k + 2) in polynomial time.

Now we are ready to describe our algorithm.

TreeCutting-Alg.

1. For each i ∈ S2, declare i a center.

2. If the number of vertices in G′ \ S2 is smaller than (say) 1000,
3. compute the optimal spanning star forest of G′ given vertices

in S2 are centers.

4. Else,

5. compute spanning star forests of G∗ by Oracle-Alg and

Rounding-Alg.

6. declare each vi ∈ G′ \ S2 either a center of leaf according to

max{Oracle-Alg(G∗),Rounding-Alg(G∗)}.
7. Given the choices made for the vertices in S, compute the best

possible spanning star forest for T1, . . . , Th.
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Fig. 1. Illustration of Graph G (left) and G∗ (right).

Note that all vertices in S2 are declared centers. Thus, in Step 6, the declara-

tion of each vertex vi ∈ G′ \ S2 is feasible (it is either covered by another vertex

in G′ \ S2 or by a vertex in S2). Therefore, the algorithm outputs a feasible

spanning star forest solution.

In the following discussions, let α(G) and β(G) be the value returned by

Oracle-Alg(G) and Rounding-Alg(G), respectively. It can be seen that

TreeCutting-Alg(G)

≥ max {α(G∗), β(G∗)} − 2 +
∑

vi∈S1

OPT (Ti \ vi) +
∑

vj∈S2

OPTct(Tj). (2)

where “−2” is because in the worst case, both u and v are leaves in the output

of Oracle-Alg(G∗) or Rounding-Alg(G∗), but they do not contribute to the

solution of G′ \ S2.

Observe that for any graph G′′ and any vertex w ∈ G′′, given a spanning

star forest solution where w is a leaf, we can easily get a solution where w is a

center by switching the declaration of w from leaf to center. Thus,

OPT (G′′ | w is a center) ≥ OPT (G′′ | w is a leaf) − 1.

For any vj ∈ S2, note that

OPT (G′ | vj is a center) + OPTct(Tj)

≥ OPT (G′ | vj is a leaf) − 1 + OPTct(Tj)

≥ OPT (G′ | vj is a leaf) − 1 + OPTlf (Tj),

where the second inequality follows from the definition of S2. Therefore,

OPT (G) = max { OPT (G′ | vj is a center) + OPTct(Tj),

OPT (G′ | vj is a leaf) + OPTlf (Tj) − 1 }

= OPT (G′ | vj is a center) + OPTct(Tj)



In other words, in the optimal solution of G, we can always assume vertices in

S2 are declared centers.

For any vi ∈ S1, we know essentially OPTct(Ti) = OPTlf (Ti) − 1. Note

that the root vi contributes zero to OPTct(Ti) and one to OPTlf (Ti). That is,

regardless of the contribution of vi, the contribution of vertices in Ti \ {vi} in

OPTct(Ti) and OPTlf (Ti) is the same. In other words, for any declaration of vi

(either center or leaf), we can always get the same optimal value for Ti \ {vi}.

Therefore,

OPT (G) = OPT (G | every vj ∈ S2 is a center)

= OPT (G′ | every vj ∈ S2 is a center)

+
∑

vi∈S1

OPT (Ti \ vi) +
∑

vj∈S2

OPTct(Tj). (3)

Thus, when k is small (i.e., TreeCutting-Alg goes through Step 2,3), where

recall that k is the number of vertices in G′ \ S2, TreeCutting-Alg(G) =

OPT (G). Hence, we can assume that k is large (i.e., TreeCutting-Alg goes

through Step 4,5,6).

Assume that the optimal LP value satisfies LPOPT (G∗) = a · (k + 2), where

recall that G∗ = (G′ \ S2) ∪ {u, v}. Hence,

TreeCutting-Alg(G)

OPT (G)

≥

max{α(G∗), β(G∗)} − 2 +
∑

vi∈S1

OPT (Ti \ vi) +
∑

vj∈S2

OPTct(Tj)

OPT (G′ | vj is a center, vj ∈ S2) +
∑

vi∈S1

OPT (Ti \ vi) +
∑

vj∈S2

OPTct(Tj)

(4)

≥
max{α(G∗), β(G∗)} − 2

OPT (G′ | vj is a center, vj ∈ S2)
(5)

≥
max{α(G∗), β(G∗)} − 2

LPOPT (G∗)
(6)

≥ max

{ 3
5 (k + 2)

a · (k + 2)
,

β(G∗)

LPOPT (G∗)

}

−
2

a · (k + 2)
(7)

= max

{

0.6

a
, (1 − a)

1
a
−1

}

−
2

a · (k + 2)
(8)

> 0.71 (9)

where (4) follows from (2) and (3), (5) follows from the fact that the summations

are non negative, (6) follows from the fact that the LP optimal is larger than the

integral optimal value, (7) follows from Theorem 2, (8) follows from Lemma 1,

and (9) follows by an estimation using a computer aided numerical analysis

(Figure 2).

In conclusion, we have the following result.
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Theorem 4. TreeCutting-Alg gives a 0.71-approximation ratio solution for

the Unweighted Spanning Star Forest problem.

5 An Approximation Algorithm for the Node-Weighted

Spanning Star Forest Problem

In this section, we present a 0.64-approximation algorithm for the node-weighted

spanning star forest problem. Consider the following simple algorithm.

Trivial-Alg

1. Compute a spanning tree T of the graph G, and pick an arbitrary

vertex r as its root. Let h denote the height T rooted at r. For

each integer k, let Nk denote the set of vertices at a distance

of k (in the tree) from the root r.
2. Output the spanning star forest with the higher weight of the

following:

– centers: N0 ∪ N2 ∪ . . ., leaves: N1 ∪ N3 ∪ . . .
– centers: N1 ∪ N3 ∪ . . ., leaves: N0 ∪ N2 ∪ . . .

Essentially, the two spanning star forests are obtained by

picking alternate levels in the spanning tree T.

It is easy to see that the following holds for Trivial-Alg.

Proposition 1 Trivial-Alg always outputs a solution with value at least W/2.



Theorem 5. There exists a polynomial time algorithm that solves the Node-

Weighted Spanning Star Forest problem with an approximation factor of

min
a∈[1/2,1)

max

(

1

2a
, (1 − a)

1
a
−1

)

> 0.64

Proof. Consider the algorithm that runs Trivial-Alg and Rounding-Alg and

picks the better of the two solutions– this algorithm obviously has polynomial

running time. Let aW denote the value of the LP optimum. From Proposition 1,

the Trivial-Alg produces a spanning star forest with weight at least W/2, and

hence an approximation ratio of at least W/2
aW = 1

2a . Clearly this also implies that

a > 1
2 . The claim on the approximation ratio follows from Lemma 1. The lower

bound on the ratio follows by an estimation using a computer aided numerical

analysis (Figure 3). �
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6 Hardness of Approximation

The hardness results are obtained by a reduction from the following strong hard-

ness for MAX3SAT .

Theorem 6 ([6]). For every ǫ > 0, given a 3-CNF formula φ it is NP -hard to

distinguish between the following two cases:

– There exists an assignment satisfying 1 − ǫ fraction of the clauses in φ

– No assignment satisfies more than 7
8 + ǫ fraction of the clauses in φ.



Further, the hardness result holds even if each variable xi is constrained to appear

positively and negatively an equal number of times, i.e the literals xi, x̄i appear

in equal number of clauses.

Theorem 7. For any η > 0, it is NP -hard to approximate the Edge-Weighted

Spanning Star Forest problem within 19
20 + η.

Proof. Let φ be a 3-CNF formula on n variables {x1, x2, . . . , xn}. Further let

C1, C2, . . . , Cm be the set of clauses in φ. From Theorem 6, we can assume that

each literal appears positively and negatively an equal number of times. For each

i, let di denote the number of clauses containing xi (respectively x̄i). Without

loss of generality, we assume that di ≥ 2 for all i. This can be achieved by just

repeating the formula φ three times. A simple counting argument shows that
∑n

i=1 di = 3m
2 .

Create an edge-weighted graph Gφ as follows:

– Introduce one vertex ui for each literal xi and vi for literal x̄i, and one

vertex wj for each clause Cj . Formally V = {u1, . . . , un} ∪ {v1, . . . , vn} ∪

{w1, . . . , wm}.
– Introduce an edge between ui and wj , if clause Cj contains literal xi. Simi-

larly, add an edge (vi, wj) if clause Cj contains literal x̄i. Furthermore, for all

i, introduce an edge between ui and vi. Formally, E = {(ui, wj) | Cj contains

xi} ∪ {(vi, wj) | Cj contains x̄i} ∪ {(u1, v1), . . . , (un, vn)}.
– For all i, the weight on the edge (ui, vi) is equal to di. The rest of the edges

have weight 1.

Completeness: Suppose there is an assignment to the variables {x1, . . . , xn}

that satisfies 1−ǫ fraction of the clauses. Define a spanning star forest as follows:

– Centers : {ui | xi = true} ∪ {vi | xi = false} ∪ {Cj | Cj is not satisfied}.
– Every satisfied clause Cj contains at least one literal which is assigned true.

Thus there is a center adjacent to each of the vertices wj corresponding to a

satisfied clause. Since for each i, one of ui or vi is a center, the other vertex

can be a leaf. Thus the set of leaves is given by: {ui | xi = false}∪{vi | xi =

true} ∪ {wj | Cj is satisfied}.

Therefore, the total edge weight of the spanning star forest is given by

n
∑

i=1

di+|{wj | Cj is satisfied}| =
n

∑

i=1

di+(1−ǫ)m =
3m

2
+(1−ǫ)m =

(

5

2
− ǫ

)

m.

Soundness: Consider the optimal spanning star forest solution OPT of Gφ.

Without loss of generality, we can assume that for each i, exactly one of {ui, vi}

is a center, and the other is a leaf attached to it. This is because:

– If both ui and vi are centers, then modify the spanning star forest by deleting

all the leaves attached to vi, and making vi a leaf of ui. The total weight of

the spanning star forest solution does not decrease, since we delete at most

di edges of weight 1 and introduce an edge of weight di.



– If one of ui and vi is a center (say ui) and the other (i.e. vi) is a leaf but not

attached to ui, then we can disconnect vi from its center and attach it to

ui. This operation increases the weight of the spanning star forest by di − 1,

which contradicts to the optimality of the solution.
– If both ui and vi are leaves, then making ui a center and attaching vi to it

will increase the weight of the solution by di − 2, again a contradiction.

From the spanning star forest solution OPT , obtain an assignment to φ as

follows: xi = true if ui is a center in OPT and xi = false otherwise. If vertex wj

is a leaf in OPT , then there is a center (say ui) adjacent to it, which implies that

clause Cj is satisfied by the assignment of xi. A similar argument applies when

the vertex wj is adjacent to a center vi. Therefore, the total weight of OPT is

given by

n
∑

i=1

di + |{wj | Cj is satisfied}| =
3m

2
+ |{wj | Cj is satisfied}|

In particular, if at most (7
8 + ǫ)-fraction of the clauses in φ can be satisfied,

then the weight of OPT is at most 3m
2 + (7

8 + ǫ)m = (19
8 + ǫ)m.

From the completeness and soundness arguments, it is NP -hard to distin-

guish whether Gφ has a spanning star forest of weight (5
2−ǫ)m or (19

8 +ǫ)m. Thus

it is NP -hard to approximate the Edge-Weighted Spanning Star Forest

problem within a factor of (19
8 + ǫ)/( 5

2 − ǫ). The claim follows by picking a small

enough ǫ. �

The proof of the next theorem is similar to the previous one.

Theorem 8. For any η > 0, it is NP -hard to approximate the Node-Weighted

Spanning Star Forest problem within 31
32 + η.

Proof. Let φ be a 3-CNF formula on n variables {x1, x2, . . . , xn} and m clauses

C1, C2, . . . , Cm. From Theorem 6, we can assume that each literal appears pos-

itively and negatively an equal number of times. For each i, let di denote the

number of clauses containing xi (respectively x̄i).

Create a node-weighted graph Gφ as follows:

– Introduce three vertices ai, ui, vi for each variable xi, and one vertex wj for

each clause Cj . Formally V = {a1, . . . , an} ∪ {u1, . . . , un} ∪ {v1, . . . , vn} ∪

{w1, . . . , wm}.
– Introduce an edge between ui and wj , if clause Cj contains literal xi. Simi-

larly, add an edge (vi, wj) if clause Cj contains the literal x̄i. Furthermore,

for all i, introduce edges (ai, ui), (ui, vi), (vi, ai). Formally, E = {(ui, wj) | Cj

contains xi} ∪ {(vi, wj) | Cj contains x̄i} ∪ {(a1, u1), (u1, v1), (v1, a1), . . . ,

(an, un), (un, vn), (vn, an)}
– For all i, the weight of nodes ai, ui, vi is equal to di. The weight of the rest

of nodes is 1.



Completeness: Suppose there is an assignment to the variables {x1, . . . , xn}

that satisfies 1− ǫ fraction of the clauses. Define a spanning star forest solution

as follows:

– Centers : {ui | xi = true} ∪ {vi | xi = false} ∪ {Cj | Cj is not satisfied}.

– Every satisfied clause Cj contains at least one literal which is assigned true.

Thus there is a center adjacent to each of the vertex wj corresponding to

a satisfied clause. Since for each i, one of ui or vi is a center, the other

remaining two in {ai, ui, vi} can be leaves. Thus the set of leaves is given by

: {ui | xi = false} ∪ {vi | xi = true} ∪ {wj | Cj is satisfied} ∪ {ai}.

The total node weight of the spanning star forest solution is given by

n
∑

i=1

2di+|{wj | Cj is satisfied}| =

n
∑

i=1

2di+(1−ǫ)m = 3m+(1−ǫ)m = (4 − ǫ) m.

The rest of the proof is similar to that of Theorem 7 and is omitted due to

space considerations. �
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