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Abstract

Given a graph G = (V,E) and an integer k, an edge modification problem for a
graph property Π consists in deciding whether there exists a set of edges F of size
at most k such that the graph H = (V,E M F ) satisfies the property Π. In the Π
edge-completion problem, the set F of edges is constrained to be disjoint from E; in
the Π edge-deletion problem, F is a subset of E; no constraint is imposed on F in
the Π edge-edition problem. A number of optimization problems can be expressed
in terms of graph modification problems which have been extensively studied in
the context of parameterized complexity. When parameterized by the size k of the
edge set F , it has been proved that if Π is an hereditary property characterized
by a finite set of forbidden induced subgraphs, then the three Π edge-modification
problems are FPT [4]. It was then natural to ask [4] whether these problems also
admit a polynomial size kernel. Using recent lower bound techniques, Kratsch and
Wahlström answered this question negatively [15]. However, the problem remains
open on many natural graph classes characterized by forbidden induced subgraphs.
Kratsch and Wahlström asked whether the result holds when the forbidden sub-
graphs are paths or cycles and pointed out that the problem is already open in the
case of P4-free graphs (i.e. cographs). This paper provides positive and negative
results in that line of research. We prove that parameterized cograph edge modifi-
cation problems have cubic vertex kernels whereas polynomial kernels are unlikely
to exist for the Pl-free and Cl-free edge-deletion problems for large enough l.

1 Introduction

An edge modification problem aims at changing the edge set of an input graph G =
(V,E) in order to get a certain property Π satisfied (see [16] for a recent study).
Edge modification problems cover a broad range of graph optimization problems among
which completion problems (e.g. minimum fill-in, a.k.a chordal graph comple-
tion [19, 21]), edition problems (e.g. cluster editing [20]) and edge deletion problems
(e.g. maximum planar subgraph [10]). In a completion problem, the set F of mod-
ified edges is constrained to be disjoint from E; in an edge deletion problem, F has
to be a subset of E; and in an edition problem, no restriction applies to F . These
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problems are fundamental in graph theory and play an important role in computational
complexity theory (indeed they represent a large number of the earliest NP-Complete
problems [10]). Edge modification problems are also relevant in the context of appli-
cations as graphs are often used to model data sets which may contain errors. Adding
or deleting an edge thereby corresponds to fixing some false negatives or false positives
(see e.g. [20] in the context of cluster editing). Different variants of edge modifica-
tion problems have been studied in the literature such as graph sandwich problems [11].
Most of the edge modification problems turns out to be NP-Complete [16] and approx-
imation algorithms exist for some known graph properties (see e.g. [14, 22]). But for
those who want to compute an exact solution, fixed parameter algorithms [5, 8, 17] are
a good alternative to cope with such hard problems. In the last decades, edge modi-
fication problems have been extensively studied in the context of fixed parameterized
complexity (see [4, 7, 13]).

A parameterized problem Q is fixed parameter tractable (FPT for short) with respect
to parameter k whenever it can be solved in time f(k).nO(1), where f(k) is an arbitrary
computable function [5, 17]. In the context of edge modification problems, the size k
of the set F of modified edges is a natural parameterization. The generic question is
thereby whether a given edge modification problem is FPT for this parameterization.
More formally:

Parameterized Π edge–modification Problem
Input: An undirected graph G = (V,E).
Parameter: An integer k > 0.
Question: Is there a subset F ⊆ V ×V with |F | 6 k such that the graph H = (V,E M
F ) satisfies Π.

A classical result of parameterized complexity states that a parameterized problem
Q is FPT if and only if it admits a kernelization. A kernelization of a parameterized
problem Q is a polynomial time algorithm K that given an instance (x, k) computes
an equivalent instance K(x, k) = (x′, k′) such that the size of x′ and k′ are bounded by
a computable function h() depending only on the parameter k. The reduced instance
(x′, k′) is called a kernel and we say that Q admits a polynomial kernel if the function
h() is a polynomial. The equivalence between the existence of an FPT algorithm and
the existence of a kernelization only yields kernels of (at least) exponential size. Deter-
mining whether an FPT problem has a polynomial (or even linear) size kernel is thus
an important challenge. Indeed, the existence of such polynomial time reduction algo-
rithm (or pre-processing algorithm or reduction rules) really speed-up the resolution of
the problem, especially if it is interleaved with other techniques [18]. However, recent
results proved that not every fixed parameter tractable problem admits a polynomial
kernel [1].

Cai [4] proved that if Π is an hereditary graph property characterized by a finite set
of forbidden subgraphs, then the parameterized Π modification problems (edge-
completion, edge-deletion and edge-edition) are FPT. It was then natural to ask [4]
whether these Π edge-modification problems also admit a polynomial size kernel. Us-
ing recent lower bound techniques, Kratsch and Wahlström answered negatively this
question [15]. However, the problem remains open on many natural graph classes char-
acterized by forbidden induced subgraphs. Kratsch and Wahlström asked whether the
result holds when the forbidden subgraphs are paths or cycles and pointed out that the
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problem is already open in the case of P4-free graphs (i.e. cographs). In this paper, we
prove that parameterized cograph edge modification problems have cubic ver-
tex kernels whereas polynomial kernels are unlikely to exist for Pl-free and Cl-free
edge deletion problems for large enough l. The NP-Completeness of the cograph
edge-deletion and edge-completion problems have been proved in [6].

Outline of the paper. We first establish structural properties of optimal edge-
modification sets with respect to modules of the input graph (Section 2). These prop-
erties allow us to design general reduction rules (Section 3.1). We then establish cubic
kernels using an extra sunflower rule (Section 3.2 and 3.3). Finally, we show it is un-
likely that the Cl-free and the Pl-free edge-deletion problems have polynomial
kernels (Section 4).

2 Preliminaries

2.1 Notations

We only consider finite undirected graphs without loops nor multiple edges. Given a
graph G = (V,E), we denote by xy the edge of E between the vertices x and y of V .
We set n = |V | and m = |E| (subscripts will be used to avoid possible confusion). The
neighbourhood of a vertex x is denoted by N(x). If S is a subset of vertices, then G[S]
is the subgraph induced by S (i.e. any edge xy ∈ E between vertices x, y ∈ S belongs
to EG[S]). Given a set of pairs of vertices F and a subset S ⊆ V , F [S] denotes the
pairs of F with both vertices in S. Given two sets S and S′, we denote by S M S′ their
symmetric difference.

2.2 Fixed parameter complexity and kernelization

We let Σ denote a finite alphabet and N the set of natural numbers. A (classical)
problem Q is a subset of Σ∗, and a string x ∈ Σ∗ is an input of Q. A parameterized
problem Q over Σ is a subset of Σ∗ × N. The second component of an input (x, k) of a
parameterized problem is called the parameter. Given a parameterized problem Q, one
can derive its unparameterized (or classical) version Q̃ by Q̃ = {x#1k : (x, k) ∈ Q},
where # is a symbol that does not belong to Σ.

A parameterized problem Q is fixed parameter tractable (FPT for short) if there
is an algorithm which given an instance (x, k) ∈ Σ∗ × N decides whether (x, k) ∈ Q
in time f(k).nO(1) where f(k) is an arbitrary computable function (see [5, 8, 17]). A
kernelization of a parameterized problem Q is a polynomial time algorithm K : Σ∗×N→
Σ∗ × N which given an instance (x, k) ∈ Σ∗ × N outputs an instance (x′, k′) ∈ Σ∗ × N
such that

1. (x, k) ∈ Q⇔ (x′, k′) ∈ Q and

2. |x′|, k′ 6 h(k) for some computable function h : N→ N.

The reduced instance (x′, k′) is called a kernel and we say that Q admits a polynomial
kernel if the function h() is a polynomial. It is well known that a parameterized problem
Q is FPT if and only if it has a kernelization [17]. But this equivalence only yields (at
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least) exponential size kernels. Recent results proved that it is unlikely that every fixed
parameter tractable problem admits a polynomial kernel [1]. These results rely on the
notion of (or-)composition algorithms for parameterized problems, which together with
a polynomial kernel would imply a collapse on the polynomial hierarchy [1]. An or-
composition algorithm for a parameterized problem Q is an algorithm that receives as
input a sequence of instances (x1, k) . . . (xt, k) with (xi, k) ∈ Σ∗ × N for 1 6 i 6 t, runs
in time polynomial in

∑t
i=1 |xi|+ k and outputs an instance (y, k′) of Q such that:

1. (y, k′) ∈ Q⇔ (xi, k) ∈ Q for some 1 6 i 6 t and

2. k′ is polynomial in k.

A parameterized problem admitting an or-composition algorithm is said to be or-
compositional.

Theorem 2.1 [1, 9] Let Q be an or-compositional parameterized problem whose un-
parameterized version Q̃ is NP-complete. The problem Q does not admit a polynomial
kernel unless NP ⊆ coNP/Poly.

Let P and Q be parameterized problems. A polynomial time and parameter trans-
formation from P to Q is a polynomial time computable function T : Σ∗×N→ Σ∗×N
which given an instance (x, k) ∈ Σ∗×N outputs an instance (x′, k′) ∈ Σ∗×N such that

1. (x, k) ∈ P ⇔ (x′, k′) ∈ Q and

2. k′ 6 p(k) for some polynomial p.

Theorem 2.2 [2] Let P and Q be parameterized problems and let P̃ and Q̃ be their
unparameterized versions. Suppose that P̃ is NP-complete and Q̃ belongs to NP. If
there is a polynomial time and parameter transformation from P to Q and if Q admits
a polynomial kernel, then P also admits a polynomial kernel.

2.3 Modular decomposition and cographs

A module in a graph G = (V,E) is a set of vertices M ⊆ V such that for any x /∈ M
either M ⊆ N(x) or M ∩N(x) = ∅. Clearly if M = V or |M | = 1, then M is a trivial
module. A graph without any non-trivial module is called prime. For two disjoint
modules M and M ′, either all the vertices of M are adjacent to all the vertices of M ′ or
none of the vertices of M is adjacent to any vertex of M ′. A partition P = {M1, . . .Mk}
of the vertex set V (G) whose parts are modules is a modular partition. A quotient graph
G/P is associated with any modular partition P: its vertices are the parts of P and there
is an edge between Mi and Mj iff Mi and Mj are adjacent in G.

A module M is strong if for any module M ′ distinct from M , either M ∩M ′ = ∅ or
M ⊂ M ′ or M ′ ⊂ M . It is clear from definition that the family of strong modules ar-
ranges in an inclusion tree, called the modular decomposition tree and denoted MD(G).
Each node N of MD(G) is associated with a quotient graph GN whose vertices corre-
spond to the children N1, . . . Nk of N . (see Figure 1 for an example). We say that a
node N of MD(G) is parallel if GN has no edge, series if GN is complete, and prime
otherwise. For a survey on modular decomposition theory, refer to [12].
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Figure 1: A graph G and its modular decomposition tree MD(G). The root of MD(G)
is prime and its quotient graph is the 5 vertex graph depicted eside. Every other node
is either parallel or series.

Definition 2.3 Let G1 = (V1, E1) and G2 = (V2, E2) be two vertex disjoint graphs. The
series composition of G1 and G2 is the graph G1 ⊗ G2 = (V1 ∪ V2, E1 ∪ E2 ∪ V1 × V2).
The parallel composition of G1 and G2 is the graph G1 ⊕G2 = (V1 ∪ V2, E1 ∪ E2)

Parallel and series nodes in the modular decomposition tree respectively correspond
to a parallel and series composition of their children.

Cographs are commonly known as P4-free graphs (a P4 is an induced path on four
vertices). However, they were originally defined as follows:

Definition 2.4 ([3]) A graph is a cograph if it can be constructed from single vertex
graphs by a sequence of parallel and series composition.

In particular, this means that the modular decomposition tree of a cograph does
not contain any prime node. It follows that cographs are also known as the totally
decomposable graphs for the modular decomposition.

3 Polynomial kernels for cograph modification problems

3.1 Modular decomposition based reduction rules

Since cographs correspond to P4-free graphs, cograph edge-modification problems con-
sist in adding or deleting at most k edges to the input graph in order to make it P4-free.
The use of the modular decomposition tree in our algorithms follows from the following
observation:

Observation 3.1 [Folklore] Let M be a module of a graph G = (V,E) and {a, b, c, d}
be four vertices inducing a P4 of G, then |M ∩ {a, b, c, d}| 6 1 or {a, b, c, d} ⊆M .

This means that given a modular partition P of a graph G, any induced P4 of G is
either contained in a part of P or intersects the parts of P in at most one vertex. This
observation allows us to show that a cograph edge-modification problem can be solved
independently on modules of the partition P and on the quotient graph G/P , as stated
by the following results:
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Observation 3.2 Let M be a non-trivial module of a graph G = (V,E). Let FM be an
optimal edge-deletion (resp. edge-completion, edge-edition) set of G[M ] and let Fopt be
an optimal edge-deletion (resp. edge-completion, edge-edition) set of G. Then

F = (Fopt \ Fopt[M ]) ∪ FM

is an optimal edge-deletion (resp. edge-completion, edge-edition) set of G.

Proof: By Observation 3.1, it follows that H = (V,E M F ) is P4-free, thereby F is
an edge-deletion set. As being a cograph is an hereditary property, Fopt[M ] is an edge-
deletion set of G[M ]. Now observe that |F | = |Fopt| since otherwise |FM | > |Fopt[M ]|,
which would contradict the optimality of FM . The same argument holds for edge-
completion and edge-edition sets. �

Lemma 3.3 Let M be a module of a graph G = (V,E). There exists an optimal edge-
deletion (resp. edge-completion, edge-edition) set F such that M is a module of the
cograph H = (V,E M F ).

Proof: Let Fopt be an optimal edge-deletion set and denote Hopt = (V,E M Fopt). Let
x be a vertex of M such that |{xy ∈ F : y /∈ M}| is minimum. We argue that the
following set of edges is an optimal edge-deletion set:

F = Fopt[M ] ∪ Fopt[V \M ] ∪ {zy : z ∈M,y /∈M,xy ∈ Fopt}

First observe that by construction M is a module in the graph H = (V,E M F ) and
that by the choice of x, |F | 6 |Fopt|. Let us prove that H is P4-free. As H[M ] and
H[V \M ] are respectively isomorphic to Hopt[M ] and Hopt[V \M ], they are P4-free.
So if H contains an induced P4, its vertices {a, b, c, d} intersect M and V \ M . As
M is a module of H it follows by Observation 3.1 that |M ∩ {a, b, c, d}| = 1 (say
a ∈ M ∩ {a, b, c, d}). It follows by construction of F , that {x, b, c, d} also induces a P4

in Hopt, contradicting the assumption that Fopt is an edge-deletion set. So we proved
that F is an edge-deletion set of G which preserves the module M and is not larger
than Fopt. The same proof holds for edge-completion and edge-edition sets. �

Lemma 3.4 Let G = (V,E) be an arbitrary graph. There exists an optimal edge-
deletion (resp. edge-completion, edge-edition) set F such that every module M of G is
module of the cograph H = (V,E M F ).

Proof: We prove the statement for edge-deletion sets by induction on the number of
modules of a graph. The same proof applies for edge-completion and edge-edition sets.
Observe that the result trivially holds if G is a prime graph and follows from Lemma 3.3
if G contains a unique non-trivial module.

Let us now assume that the property holds for every graph with at most t non-trivial
modules. Let G be a graph with t + 1 non-trivial modules and let M be a non-trivial
module of G which is minimal for inclusion. By induction hypothesis, the statement
holds on G[M ] (since it is prime) and on the graph GM→x where M has been contracted
to a single vertex x (since it contains at most t non-trivial modules). The conclusion
follows from Observation 3.2. �
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We now present three reduction rules which apply to the three cograph edge-
modification problems we consider. The second reduction rule is not required to obtain
a polynomial kernel for each of these problems. However, it will ease the analysis of the
structure of a reduced graph.

Rule 1 Remove the connected components of G which are cographs.

Rule 2 If C = G1 ⊗G2 is a connected component of G, then replace C by G1 ⊕G2.

Rule 3 If M is a non-trivial module of G which is strictly contained in a connected
component and is not an independent set of size at most k + 1, then return the graph
G′ ⊕G[M ] where G′ is obtained from G by replacing M by an independent set module
of size min{|M |, k + 1}.

Observe that if G[M ] is a cograph, adding a disjoint copy to the graph is useless
since it will then be removed by Rule 1.

Lemma 3.5 The reduction rules 1, 2 and 3 are safe and can be carried out in linear
time.

Proof: The three rules can be computed in linear time using any linear time modular
decomposition algorithm [12]. The first rule is trivially safe. The second rule is safe by
Lemma 3.4. The safeness of Rule 3 also follows from Lemma 3.4: there always exists
an optimal solution that updates all or none of the edges between any two disjoint
modules. Thereby if a module M has size larger than k + 1, none of the edges (or
non-edges) xy with x ∈ M , y /∈ M can be changed in such a solution. Shrinking M
into an independent set of size k + 1 and adding a disjoint copy of G[M ] (to keep track
of the edge modification inside the module) is thereby safe. �

The analysis of the size of the kernel relies on the following structural property of
the modular decomposition tree of an instance reduced under Rule 1, Rule 2 and Rule 3.

Observation 3.6 Let G be a graph reduced under Rule 1, Rule 2 and Rule 3. If C is
a non prime connected component of G, then the modules of C are independent sets of
size at most k + 1.

Proof: By Rule 2, none of the connected components of G results from a series com-
position. By Rule 3, a module which is not the union of some connected components of
G has size at most k + 1 and is an independent set. �

Observe that these three reduction rules preserve the parameter. However, Rule 3
increases the number of vertices of the instance. Nevertheless, we will be able to bound
the number of vertices of a reduced instance.

It remains to show that computing a reduced graph requires polynomial time. Let
us mention that it is safe to apply Rule 2 and Rule 3 only on strong modules (in Rule 2,
G1 can be chosen as a strong module).
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Lemma 3.7 Given a graph G = (V,E), computing a graph reduced under Rule 1,
Rule 2 and Rule 3 requires polynomial time.

Proof: Let us say that a module M of G is reduced if it is an independent set of
size at most k + 1 or the disjoint union of some connected components of G (observe
that connected components of G are also modules of G). By Observation 3.6, if G is
reduced under Rule 1, Rule 2 and Rule 3, then every module of G is reduced. Notice
that if every strong module of G is reduced, then every module of G is reduced. So to
prove the statement, we count the number of strong modules (i.e. nodes of the modular
decomposition tree MD(G)) which are not reduced.

Let us also remark that if a connected component C is a cograph with at least
two vertices, then a series of applications of Rule 2 eventually transforms C in a set
of isolated vertices. This means that we can assume that the applications of Rule 1 is
postponed to the end of the reduction process. This will ease the argument below.

When Rule 3 is applied, then by definition the number of non-reduced strong mod-
ules decreases by one. When Rule 2 is applied, unless G1 is an independent set of size
at most k + 1, then the number of non-reduced strong modules also decreases by one.
But observe that if G1 is an independent set of size at most k + 1, then its vertices will
be removed by Rule 1 as they will become isolated vertices. As the number of strong
modules of a graph is bounded by the number of vertices, this proves that a series of at
most n applications of Rule 2 and Rule 3 is enough to compute a reduced graph. �

3.2 Cograph edge-deletion (and edge-completion)

In addition to the previous reduction rules, we need the classical sunflower rule to
obtain a polynomial kernel for the parameterized cograph edge-deletion problem.

Rule 4 If e is an edge of G that belongs to a set P of at least k + 1 P4’s such that e is
the only common edge of any two distinct P4’s of P, then remove e and decrease k by
one.

Observation 3.8 The reduction rule 4 is safe and can be carried out in polynomial
time.

Proof: It is clear that the edge e has to be deleted as otherwise at least k + 1 edge
deletions would be required to break all the P4’s of the set P. Such an edge, if it exists,
can be found in polynomial time if one computes the set of all P4’s of the input graph
(which can be done in O(n4) time). �

To analyse the size of a reduced graph G = (V,E), we study the structure of the
cograph H = (V,E M F ) resulting from the removal of an optimal (of size at most k)
edge-deletion set F . The modular decomposition tree (or cotree) is the appropriate tool
for this analysis.
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Theorem 3.9 The parameterized cograph edge-deletion problem admits a cubic vertex
kernel.

Proof: Let G = (V,E) be a graph reduced under Rule 1, Rule 2, Rule 3 and Rule 4
that can be turned into a cograph by deleting at most k edges. Let F be an optimal
edge-deletion set and denote by H = (V,E M F ) the cograph resulting from the deletion
of F and by T its cotree. We will count the number of leaves of T (or equivalently of
vertices of G and H).

Observe that since a set of k edges covers at most 2k vertices, T contains at most 2k
affected leaves (i.e. leaves corresponding to a vertex incident to a removed edge). We
say that an internal node of the cotree T is affected if it is the least common ancestor
of two affected leaves. Notice that there are at most 2k affected nodes.

We first argue that the root of T is a parallel node and is affected. Assume that the
root of T is a series node: since no edges are added to G, this would imply that G is not
reduced under Rule 2, a contradiction. Moreover, since G is reduced under Rule 1, none
of its connected components is a cograph. It follows that every connected component of
G contains a vertex incident to a removed edge, and thus that every subtree attached
to the root contains an affected leaf as a descendant. Hence the root of T is an affected
node.

Claim 3.10 Let p be an affected leaf or an affected node different from the root, and q
be the least affected ancestor of p. The path between p and q has length at most 2k + 3.

Proof. Observe first that the result trivially holds if q is the root of T and p one of
its children. In all other cases, let M be the set of leaves descendant of p in T . We claim
that M contains a leaf x which is incident to a removed edge xy, with y /∈M . If p is an
affected leaf then this is true by definition. Otherwise, if p is an affected node different
from the root, assume by contradiction that all the removed edges in M are of the form
uv with u, v ∈M . In particular, this implies that M is a module of G strictly contained
in a connected component. By Observation 3.6, it follows that M is an independent
set and hence contains no edges, a contradiction. Let t be the least common ancestor
of x and y. The node t is a parallel node which is an ancestor of p and q (observe
that we may have t = q). Assume by contradiction that the path between x and t
in T contains a sequence of 2k + 3 consecutive non-affected nodes. The type of these
nodes is alternatively series and parallel. So we can find a sequence s1, p1 . . . sk+1, pk+1

of consecutive non-affected nodes with si (resp. pi) being the father of pi (resp. si+1)
and with si’s being series nodes and the pi’s being parallel node. Now each of the si’s
(resp. pi) has a non-affected leaf ai (resp. bi) which is not a descendant of pi (resp.
si+1). Observe that for every i ∈ [1, k + 1] the vertex set {bi, ai, x, y} induces a P4 in
G. Thereby we found a set of k + 1 P4’s in G pairwise intersecting on the edge xy. It
follows that G is not reduced by the Rule 4: contradiction. This implies that the path
between p and q contains at most 2k + 3 non-affected nodes. �

Since there are at most 2k affected nodes and 2k affected leaves, T contains at most
(4k−1)(2k+3)+2k internal nodes. As G is reduced, Observation 3.6 implies that each
of these O(k2) nodes is attached to a set of at most k + 1 leaves or a parallel node with
k + 1 children. It follows that T contains at most 2k + (k + 1)[(4k− 1)(2k + 3) + 2k] 6
8k3 + 20k2 + 11k leaves, which correspond to the number of vertices of G.
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We now conclude with the time complexity needed to compute the kernel. Since the
application of Rule 4 decreases the value of the parameter (which is not changed by the
other rules), Rule 4 is applied at most k 6 n2 times. It then follows from Lemma 3.7
that a reduced instance can be computed in polynomial time. �

The following corollary simply follows from the observation that the family of
cographs is closed under complementation (since the complement of a P4 is a P4).

Corollary 3.11 The parameterized cograph edge-completion problem admits a cubic
vertex kernel.

3.3 Cograph edge-edition

The lines of the proof for the cubic kernel of the edge-edition problem are essentially the
same as for the edge-deletion problem. But since edges can be added and deleted, the
reduction Rule 4 has to be refined in order to avoid that a single edge addition breaks
an arbitrary large set of P4’s.

Rule 5 If {x, y} is a pair of vertices of G that belongs to a set S of t > k+1 quadruples
Pi = {x, y, ai, bi} such that for 1 6 i 6 t, every Pi induces a P4 and for any 1 6 i <
j 6 t, Pi ∩ Pj = {x, y}, then change E into E M {xy} and decrease k by one.

As for reduction Rule 4, it is clear that reduction Rule 5 is safe and can be applied
in polynomial time. The kernelization algorithm of cograph edge-edition consists of an
exhaustive application of Rules 1, 2, 3 and 5.

Theorem 3.12 The parameterized cograph edge-edition problem has a cubic vertex ker-
nel.

Proof: Let G = (V,E) be a graph reduced under Rule 1, Rule 2, Rule 3 and Rule 5
that can be turned into a cograph by editing at most k edges. Let H be the cograph
obtained by an optimal edge-edition. The cotree of H is denoted by T . Unlike in the
edge-deletion problem, the root of T is not necessary a parallel node. However it is still
true that the root of T is affected. Indeed, assume first that the root of T is a series
node. Then it is affected since otherwise G would not be reduced under Rule 2. Now,
assume that the root is a non affected parallel node. This means that at most one of its
children contains an affected leaf as descendant, and hence that G is not reduced under
Rule 1: contradiction.

In the following we assume w.l.o.g. that the root of T is a parallel node. We prove
that Claim 3.10 still holds in this case. Let p be an affected leaf or an affected node
different from the root, and q be the least affected ancestor of p. Observe that the result
is trivially true if q is the root of T and p one of its children. In all other cases, let M be
the set of leaves descendant of p in T . As in the proof of Theorem 3.9, there must exist
an edited edge xy with x ∈ M,y /∈ M (otherwise M would be a module of G, i.e. an
independent set by Observation 3.6 and would thus not be edited by Observation 3.2).

Now the proof follows the arguments of the proof of Theorem 3.9, if one can find
in T a path of 2k + 3 consecutive non-affected nodes between p and q, then G is not
reduced under Rule 5. Proving that T contains O(k2) nodes and thereby O(k3) leaves.
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The fact that a reduced instance can be computed in polynomial time follows from
Lemma 3.7 and the observation that Rule 5 decreases the value of the parameter and
requires polynomial time. �

For the deletion (resp. edition) problem there exists a graph reduced under Rule 1,
Rule 2, Rule 3 and Rule 4 (resp. Rule 5) that achieves the cubic bound (see Figure 2).
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Figure 2: A reduced graph G with k(k + 1)2 + k vertices for which k edge deletions,
namely the xiyi’s for i ∈ [1, k], are required to obtain a cograph H. The cotree T of H
is represented. Each parallel node of T which is not the root has k + 2 children, k + 1
of which are leaves. The root of T has 2k children.

4 Kernel lower bounds for Pl-free edge-deletion problems

In [15], Kratsch and Wahlström show that the Not-1-in-3-sat problem has no poly-
nomial kernelization under a complexity-theoretic assumption (NP * coNP/poly). We
observe that their argument still applies to a graph restriction of Not-1-in-3-sat where
the constraints arise from the triangles of an input graph.

4.1 A graphic version of the Not-1-in-3-sat problem

For a graph G = (V,E), an edge-bicoloring is a function B : E → {0, 1}. A partial
edge-bicoloring of G is an edge-bicoloring of a subset of edges of E. An edge colored 1
(resp. 0) is called a 1-edge (resp. 0-edge). We say that the edge-bicoloring B′ extends
a partial edge-bicoloring B if for every e ∈ E colored by B, then B(e) = B′(e). The
weight of an edge-bicoloring is the number ω(B) of 1-edges. An edge-bicoloring is valid if
every triangle of G contains either zero, two or three 1-edges. We consider the following
problem:
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Not-1-in-3-edge-triangle
Input: An undirected graph G = (V,E) and a partial edge-bicoloring B : E → {0, 1}.
Parameter: An integer k ∈ N.
Question: Can we extend B to a valid edge-bicoloring B′ of weight at most k?

Proposition 4.1 Not-1-in-3-edge-triangle is NP-complete and or-compositional.

Proof: The NP-hardness follows from a reduction from Vertex Cover. Let (G, k)
be an instance of Vertex Cover [10], where G = (V,E). We create an instance
(G′, B, k′) of Not-1-in-3-edge-triangle as follows. The graph G′ is obtained from
G by adding a dominating vertex q, the partial edge-bicoloring B is such that B(e) = 1
for every e ∈ E, and we let k′ = |E|+ k. As the triangles of G are monochromatic, the
constraints to obtain a valid extension of B are carried by the triangles of the form quv
with uv ∈ E. It is easy to observe that (G′, B, k′) has a valid edge-bicoloring extension
of weight k′ iff G has a vertex cover of size k. As Not-1-in-3-edge-triangle clearly
belongs to NP, the NP-completeness follows.

We now show that Not-1-in-3-edge-triangle is or-compositional. The proof
closely follows the proof of [15] for Not-1-in-3-sat. We first need the following result:

Claim 4.2 Given an instance (G,B, k) of Not-1-in-3-edge-triangle, and two pos-
itive integers r and k′ such that k′ ≥ k+r, we can compute in polynomial time an equiv-
alent instance (G′, B′, k′) of Not-1-in-3-edge-triangle such that ω(B′) = ω(B) + r.

Proof. To build G′, we first add to G a set F of r new isolated edges e1 . . . er such
that B′(ei) = 1 for all i ∈ [r]. Then we add to the resulting graph k′ − (k + r) gadgets
as follows: let ej = ujvj (with j ∈ [k′ − (k + r)]) be an arbitrary 1-edge of G; add the
triangles ujvjxj , vjxjyj with B′(vjyj) = B′(xjyj) = 0. The edges ej ’s are not necessar-
ily distinct. Observe that in any valid edge-bicoloring of G′ extending B′, the edge vjxj
(for every j ∈ [k′ − (k + r)]) is a 0-edge while the edge ujxj is a 1-edge. It follows that
(G,B, k) is a positive instance if and only if (G′, B′, k′) is a positive instance as the set
F increases the weight by r and the added triangles by k′ − (k + r). �

Consider a sequence (G1, B1, k) . . . (Gt, Bt, k) of instances of Not-1-in-3-edge-
triangle. We denote by E1(j) the set of 1-edges of (Gj , Bj , k). By Claim 4.2, we
can assume w.l.o.g. that |E1(j)| = s 6 k, for 1 6 j 6 t. We can also assume that t 6 3k

since otherwise an exact branching algorithm could solve the problem. Moreover, for
the sake of the construction, we assume t = 2l (duplicating some instance (Gi, Bi, k) if
necessary).

Intuitively, the graph G of the composed instance (G,B, k′) is built on the disjoint
union of the Gj ’s, 1 6 j 6 t. Then, as a selection gadget, we add a ”tree-like graph” T
connecting a ”root edge” r to edges ej for j = 1, ..., t. Finally, for every 1 6 j 6 t, the
1-edges of the graph Gj are connected via a propagation gadget to the edge ej in T .
The root edge is the unique 1-edge of G. The copies of the Gj ’s inherit the 0-edges of
the Gj ’s. The idea is that the selection gadget guarantees that at least one of the ej ’s
edge gets colored 1. Then the propagation gadgets attached to that edge ej transmit
color 1 to the copies of every 1-edge of Gj .
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Formally, we do the following: (i) we start with a complete binary tree T0 with
t leaves; (ii) to each node u of T0, we associate an edge eu in T as follows: if u is
associated to the edge xy and if u has two children v, v′, we create a new vertex z
and we let ev = xz, ev′ = yz. The leaves of T0 are then associated to edges e1, ..., et.
Now, for every 1 6 j 6 t, the propagation gadget Sj consists of vertex-disjoint graphs
Sj,e for every edge e of E1(j). If e = uv and ej = xy, then Sj,e consists of four
triangles uva, vab, abx, bxy, with edges ua, vb, ax, by colored 0 by B (the other edges
remain uncolored). Again the unique 1-edge of B is the root edge of T , in particular
the edges of the E1(j) are uncolored by B. However, the 0-edge sets of the Gj ’s are
inherited by B. (see Figure 3)
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Figure 3: The instance (G,B, k′) built from a sequence (G1, B1, k), . . . , (Gt, Bt, k) with
t = 23. The unique 1-edge is r. Every ”leaf edge” ej of T is linked to the copies of the
1-edges of (Gj , Bj , k) via the propagation gadget. The 0-edges are depicted as dotted
lines: they either belong to a propagation gadget or correspond to a 0-edge of some
(Gj , Bj , k).

Observe first that every valid edge-bicoloring extending B has to assign color 1 to at
least one edge ej , for 1 6 j 6 t. Then the edges of E1(j) and the 3s non 0-edges of Sj

are also assigned color 1. It follows that if we choose k′ = k+ 3s+ l, then (G,B, k′) is a
positive instance if and only if there exists 1 6 j 6 t such that (Gj , Bj , k) is a positive
instance. �

The following corollary follows from Theorem 2.1:

Corollary 4.3 The Not-1-in-3-edge-triangle problem does not admit a polynomial
kernel unless NP ⊆ coNP/poly.

The problem Tripartite-Not-1-in-3-edge-triangle is the restriction of Not-
1-in-3-edge-triangle where the input graph G is 3-colorable. The hardness results
obtained for Not-1-in-3-edge-triangle carry over to this restriction:
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Lemma 4.4 The Tripartite-Not-1-in-3-edge-triangle problem does not admit a
polynomial kernel unless NP ⊆ coNP/poly.

Proof: The proof uses Theorem 2.2, that is we provide a polynomial parameter-
preserving transformation from Not-1-in-3-edge-triangle to Tripartite-Not-1-
in-3-edge-triangle. By Proposition 4.1, Not-1-in-3-edge-triangle is NP-complete.
Observe that Tripartite-Not-1-in-3-edge-triangle clearly belongs to NP.

Let (G,B, k) be an instance of Not-1-in-3-edge-triangle. We build an instance
(G′, B′, 6k) of Tripartite-Not-1-in-3-edge-triangle in the following way. Suppose
that G = (V,E), then G′ has vertex set V ′ = {v1, v2, v3 : v ∈ V }, and has edge set
E′ = {u1v2, u1v3, u2v3 : u = v or uv ∈ E}. The partial edge-bicoloring B′ is defined
as follows: B′(uiuj) = 0 for 1 6 i < j 6 3; if the edge uv of G is colored, then
B′(uivj) = B(uv) for 1 6 i, j 6 3; the other edges of G′ are uncolored.

Observe that every valid edge-bicoloring extending B′ assigns the same color to the
six edges of G′ associated with an edge uv of G: indeed, given uivj , ukvl 1 6 i, j, k, l 6 3,
if i = j this holds since B′(vkvl) = 0, if k = l this holds since B′(uiuj) = 0, and otherwise
this follows by transitivity. It is then easy to see that solutions of (G,B, k) and solutions
of (G′, B′, 6k) are in one-to-one correspondence. �

4.2 Negative results for Γ-free edge deletion problems

In this section, we show that unless NP ⊆ coNP/poly, the Cl-free edge-deletion
and the Pl-free edge-deletion problems have no polynomial kernel for large enough
l ∈ N. To that aim, we provide polynomial time and parameter transformations
from Tripartite-Not-1-in-3-edge-triangle to the Annotated Cl-free edge-
deletion problem and to the Annotated Pl-free edge-deletion problem. For
a graph Γ, the Annotated Γ-free edge-deletion problem is defined as follows:

Annotated Γ-free edge-deletion
Input: An undirected graph G = (V,E) and a subset S of vertices.
Parameter: An integer k ∈ N.
Question: Is there a subset F ⊆ E ∩ (S × S) such that H = (V,E \ F ) is Γ-free?

Observe that the Annotated Γ-free edge-deletion problem reduces to the
(unannotated) Γ-free edge-deletion problem whenever Γ is closed under twin addi-
tion: it suffices to add for every vertex v ∈ V \ S a set of k + 1 twin vertices. Clearly
this transformation also preserves the parameter.

Observe also that we can restrict the Tripartite-Not-1-in-3-edge-triangle
problem to instances (G,B, k) not containing any 0-edge (i.e. B(e) = 1 whenever
it is defined). The reason is that any uncolored edge e = uw of G can be forced to
be assigned color 0 in every valid edge-bicoloring extending B by adding to G k + 1
new vertices v1, . . . , vk such that uviw, 1 6 i 6 k, is an uncolored triangle. Clearly if
e is a 1-edge of an edge-bicoloring B′ extending B, B′ needs at least k + 1 1-edges to
be valid: e plus one edge per triangle. The same argument was used in [15] for the
Not-1-in-3-sat problem.
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Theorem 4.5 The Cl-free edge-deletion problem has no polynomial kernel for any
l > 12, unless NP ⊆ coNP/poly.

Proof: We describe a polynomial time and parameter transformation from the re-
striction of Tripartite-Not-1-in-3-edge-triangle without 0-edges to Annotated
Cl-free edge-deletion. The statement then follows from Theorem 2.2 and the fact
that Annotated Cl-free edge-deletion reduces to Cl-free edge-deletion.

Let (G,B, k) be an instance of the Tripartite-Not-1-in-3-edge-triangle prob-
lem, where V1, V2, V3 are disjoint independent sets of G = (V,E). The construction of
the instance (H,S, k′) of Annotated Cl-free edge-deletion works as follows. First
the sets V1, V2 and V3 are turned into cliques and the 1-edges of G are removed. In ad-
dition to V , the graph H contains a set U of new vertices. For each pair t = (e, v) with
e = uw an edge of G and v a vertex of G, such that {u, v, w} induces a triangle in G,
we create a path Pt of length l−1 between u and w in H (the internal vertices of Pt are
added to U). Notice that each triangle of G generates three such paths in H. It remains
to add some safety edges incident to the vertices of U . Every two vertices x and y of
U that do not belong to the same path are made adjacent. In every path Pt, we select
an internal vertex ct, called its centre, at distance (l− 1)/2 from u. Every centre vertex
ct is made adjacent to V \ {u, v, w}. We denote by H = (VH , EH) the resulting graph.
To complete the description of (H,S, k′) we set S = V and the parameter k′ = k − k1
where k1 is the number of 1-edges of (G,B, k).
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Pt ct

P Pt’ t"
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11

V

V

V
2

1

Figure 4: The graph H = (VH , EH) built from an instance (G,B, k) of the Tripartite-
Not-1-in-3-edge-triangle problem for l = 12. The white and the square vertices
form the set U of new vertices. The independent sets V1, V2 and V3 of G are turned into
cliques. The thick dotted edges are the removed 1-edges of (G,B, k). The non 1-edges
of (G,B, k) are preserved in H.

Claim 4.6 A subset of vertices C ∈ VH induces a cycle of length l iff G contains a
triangle uvw, with e = uw a 1-edge and uv, vw uncolored edges, such that C = Pt∪{v}
with t = (e, v).
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Proof. By construction, if G contains a triangle uvw with a unique 1-edge e = uw,
then C = Pt ∪ {v} (with t = (e, v)) induces a cycle of length l in H (keep in mind that
the 1-edges of G are removed from H). Let C be an induced Cl in H. Observe that as
V1, V2 and V3 are turned into cliques, |C ∩ V | 6 6. Thereby C intersects the vertex set
U . We now argue that there exists a path Pt, with t = (e, v) and e = uw, containing
the vertices of C ∩ U . Otherwise, since every pair of vertices of U belonging to two
distinct paths Pt and Pt′ (with t 6= t′) are adjacent, we would have |C ∩U | 6 4 and thus
|C| 6 4 + 6 < l. It follows that u or w belongs to C. We prove that they both belong
to C. Assume w /∈ C, then C uses a safety edge incident to the centre vertex ct and
half of the internal vertices of Pt does not belong to C. Thereby |C| 6 6 + (l− 3)/2 + 1:
contradiction with the hypothesis l > 12. Finally as Pt contains l − 1 vertices, C con-
tains an extra vertex and uw are not adjacent. As ct is adjacent to every vertex of V
except u, v and w, we have that C = Pt ∩ {v} as announced and uv,wv ∈ EH . Now
the existence of Pt witnesses the existence of the triangle uvw in G. As uv,wv ∈ EH

and uw /∈ EH , uw is the only 1-edge of the triangle uvw. �

We now argue for the correctness of the transformation. Suppose that there exists a
set F of allowed edges of size at most k′ such that H ′ = (VH , EH \F ) is Cl-free. Define
the edge-bicoloring B′ of E as follows: B′(e) = 1 if e ∈ F , B′(e) = 0 otherwise. As
by assumption B does not assign color 0 to any edge, B′ extends B and has weight at
most |F |+ k1 6 k′ + k1 = k. Besides, B′ is a valid edge-bicoloring of G. Let t = (e, v)
with e = uw be a pair such that {u, v, w} induces a triangle in G. If we had B(uw) = 1,
B′(uv) = B′(vw) = 0, we would obtain that Pt ∪ {v} induces a Cl in H ′, impossible.
Conversely, suppose that B′ is valid edge-bicoloring of weight at most k of G which
extends B. Let F ⊆ E be the set of edges such that B′(e) = 1 but are uncolored
by B. By construction F is a set of allowed edges of H of size at most k − k1. Since
B′ is a valid edge-bicoloring of G, Claim 4.6 implies that H ′ = (VH , EH \F ) is Cl-free. �

A slight modification of the above construction yields the following:

Theorem 4.7 The Pl-free edge-deletion problem has no polynomial kernel for any
l > 13, unless NP ⊆ coNP/poly.

Proof: Let (G,B, k) be an instance of the Tripartite-Not-1-in-3-edge-triangle
problem not containing any 0-edge and such that V1, V2, V3 are disjoint independent sets
of G = (V,E). We modify the construction given in Theorem 4.5 to obtain an instance
(H,S, k′) of Annotated Pl-free edge-deletion problem. The vertex set VH of H
consists of the union of V and a set U of new vertices. The sets V1, V2 and V3 are
again turned into cliques and the 1-edges of E are not duplicated in EH . But for each
pair t = (e, v), with e = uw ∈ E and v ∈ V such that {u, v, w} is a triangle of G, the
associated gadget Qt is no longer a path. Instead, Qt consist of two paths Qu

t and Qw
t :

Qu
t is a path of length (l − 1)/3 containing u as extremity and Qw

t is a path of length
2(l − 1)/3 containing w as extremity. The vertices of Qt \ {u,w} are added to U . As
before for every t 6= t′ we add all the edges between vertices of Qt and Qt′ . The centre
vertex ct of Qt is the vertex of Qw

t at distance (l − 1)/3 from w. The centre vertex is
made adjacent to every vertex of V except u, v and w. To complete the description of
(H,S, k′) we set S = V and k′ = k − k1 where k1 is the number of 1-edges of (G,B, k).
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The correctness proof of the construction follows the same lines than the proof of
Proposition 4.5. It now relies on the following claim that characterizes the possible
induced Pl’s.

Claim 4.8 A subset of vertices Q ∈ VH induces a path of length l iff G contains a
triangle uvw, with e = uw a 1-edge and uv, vw uncolored edges, such that Q = Qt∪{v}
with t = (e, v).

Proof. By construction, if G contains a triangle uvw with a unique 1-edge e = uw,
then Q = Qt ∪ {v} (with t = (e, v)) induces a path of length l in H (keep in mind that
the 1-edges of G are removed from H). Let Q be an induced Pl in H. As in the proof
of Claim 4.6, observe that |Q ∩ V | 6 6 and thereby Q intersects the vertex set U and
that there exists a unique pair t = (e, v) with e = uw such that Qt contains Q ∩ U . By
the choice of the length of Qu

t and Qw
t , Q ∩ U intersects both Qu

t and Qw
t . It follows

that u and w belongs to Q. Assume that Q uses an edge xct such that x /∈ Qt. Then
half of the vertices of Qw

t does not belong to Q, which would contradict the hypothesis
l > 13. Finally as by construction Qt contains l− 1 vertices, we need at least one extra
vertex from V . Since ct is adjacent to all vertices of V except u, v and v, that extra
vertex can only be v. Moreover the chord uw cannot exist in H, meaning that uw is a
1-edge of (G,B, k). �

5 Conclusion

In this paper we have shown that the parameterized cograph edge modification
problems admit vertex cubic kernels. Moreover, we provide evidence that the Cl-free
edge-deletion and the Pl-free edge-deletion problems do not admit polynomial
kernels for large enough l (under a complexity-theoretic assumption [1]). These problems
were left open by Kratsch and Wahlström in [15]. The value of l being respectively (at
least) 12 and 13, one remaining question is thus to determine whether the Cp-free
edge-deletion and the Pp-free edge-deletion problems admit polynomial kernels
for 4 6 p < 12 in the former case, and 4 < p < 13 in the latter.

References

[1] H. Bodlaender, R. Downey, M. Fellows, and D. Hermelin. On problems without
polynomial kernels. In ICALP, number 5125 in LNCS, pages 563–574, 2008.
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