
Multiplicative Drift Analysis

Benjamin Doerr Daniel Johannsen
Carola Winzen∗

Max-Planck-Institut für Informatik
Campus E1 4

66123 Saarbrücken, Germany

Submitted January 2011

Abstract

In this work, we introduce multiplicative drift analysis as a suitable
way to analyze the runtime of randomized search heuristics such as
evolutionary algorithms.

We give a multiplicative version of the classical drift theorem. This
allows easier analyses in those settings where the optimization progress
is roughly proportional to the current distance to the optimum.

To display the strength of this tool, we regard the classical problem
how the (1+1) Evolutionary Algorithm optimizes an arbitrary linear
pseudo-Boolean function. Here, we first give a relatively simple proof
for the fact that any linear function is optimized in expected time
O(n log n), where n is the length of the bit string. Afterwards, we
show that in fact any such function is optimized in expected time at
most (1 + o(1))1.39en ln(n), again using multiplicative drift analysis.
We also prove a corresponding lower bound of (1− o(1))en ln(n) which
actually holds for all functions with a unique global optimum.

We further demonstrate how our drift theorem immediately gives
natural proofs (with better constants) for the best known runtime
bounds for the (1+1) Evolutionary Algorithm on combinatorial prob-
lems like finding minimum spanning trees, shortest paths, or Euler
tours.

∗Carola Winzen is a recipient of the Google Europe Fellowship in Randomized Algo-
rithms, and this work is supported in part by this Google Fellowship.

1

ar
X

iv
:1

10
1.

07
76

v1
 [

cs
.N

E
]

 4
 J

an
 2

01
1

1 Introduction

An innocent looking problem is the question how long the (1+1) Evolu-
tionary Algorithm ((1+1) EA) needs to find the optimum of a given linear
function. However, this is in fact one of the problems that was most influ-
ential for the theory of evolutionary algorithms.

While particular linear functions like the functions OneMax and Bin-
Val were easily analyzed, it took a major effort by Droste, Jansen and
Wegener [DJW02] to solve the problem in full generality. Their proof, how-
ever, is highly technical.

A major breakthrough spurred by this problem is the work by He and
Yao [HY01, HY04], who introduced drift analysis to the field of evolu-
tionary computation. This allowed a significantly simpler proof for the
linear functions problem. Even more important, it quickly became one
of the most powerful tools for both proving upper and lower bounds on
the expected optimization times of evolutionary algorithms. For example,
see [HY04,GW03,GL06,HJKN08,NOW09,OW].

Another great progress was made by Jägersküpper [Jäg08], who com-
bined drift analysis with a clever averaging argument to determine reason-
able values for the usually not explicitly given constants. More precisely,
Jägersküpper showed that the expected optimization time of the (1+1) EA
for any linear function defined on bit strings of length n is bounded from
above by (1 + o(1))2.02en ln(n).

1.1 Classical Drift Analysis

The following method was introduced to the analysis of randomized search
heuristics by He and Yao [HY04] and builds on a result of Hajek [Haj82].
When analyzing the optimization behavior of a randomized search heuristic
over a search space, instead of tracking how the objective function improves,
one uses an auxiliary potential function and tracks its behavior.

For example, consider the search space {0, 1}n of bitstrings of length
n ∈ N.1 Suppose we want to analyze the (1+1) EA (which is introduced as
Algorithm 1 in Section 3) minimizing a linear function f : {0, 1}n → R with

f(x) =

n∑
i=1

wixi

and arbitrary positive weights 0 < w1 ≤ · · · ≤ wn. (Note that we differ from
previous works by always considering minimization problems. See Section 3
for a discussion why this does not influence the runtime analysis.) Then this

1By N := {0, 1, 2, . . . } we denote the set of integers including zero and by R we denote
the set of real numbers.

2

potential function h : {0, 1}n → R can be chosen as

h(x) = ln
(

1 +

bn
2
c∑

j=1

xj +

n∑
j=bn

2
c+1

2xj

)
. (1)

Though still needing some calculations, one can show the following (see,
e.g., [HY04] where a variant of Algorithm 1 is analyzed). Let x ∈ {0, 1}n.
Let y ∈ {0, 1}n be the result of one iteration (mutation and selection) of the
(1+1) EA started in x. Then there exists a δ > 0 such that

E[h(y)] ≤ h(x)− δ/n. (2)

Now, classical drift analysis tells us that in expectation after a number of
h(x)/(δ/n) = O(n log n) iterations, the potential value is reduced to zero.
But h(x) = 0 implies f(x) = 0, that is, the (1+1) EA has found the desired
optimum.

Using drift analysis to analyze a randomized search heuristic usually
bears two difficulties. The first is guessing a suitable potential function h.
The second, related to the first, is proving that during the search, f and h
behave sufficiently similar, that is, we can prove some statement like in-
equality (2). Note that this inequality contains information about f as well,
namely implicitly in the fact that y has an at least as good f–value as x.

A main difficulty in showing that h in (1) is a suitable potential function
is the logarithm around the simple linear function giving weights one and two
to the bits. However, since the optimization progress for linear functions is
faster if we are further away from the optimum, that is, have more one-bits,
this seems difficult to avoid.

1.2 Multiplicative Drift Analysis

We present a way to ease to use of drift analysis in such settings. Informally,
our method applies if we have a potential function g satisfying

E[g(y)] ≤ (1− δ)g(x) (3)

in the notation above. That is, we require a progress which multiplicatively
depends on the current potential value. For this reason we call the method
multiplicative drift analysis. We will see that for a number of problems such
potential functions are a natural choice.

This new method allows us to largely separate the structural analysis
of an optimization process from the actual calculation of a bound on the
expected optimization time. Moreover, the runtime bounds obtained by
multiplicative drift analysis are often sharper than those resulting from pre-
viously used techniques.

3

1.3 Our Results

We apply this new tool, multiplicative drift analysis, to the already men-
tioned problem of optimizing linear functions over {0, 1}n. This yields a
simplified proof of the O(n log n) bound on the optimization time of the
(1+1) EA. Similar to the proof using the classical drift theorem, we make
use of the simple linear function g : {0, 1}n → R, chosen as

g(x) =
n∑

i=1

(
1 +

i

n

)
xi.

This function g serves us as a potential function for all linear functions
f : {0, 1}n → R with

f(x) =
n∑

i=1

wixi

and monotone weights 0 < w1 ≤ · · · ≤ wn.
Using parts of Jägersküpper’s analysis [Jäg08], we then improve his up-

per bound on the expected optimization time of the (1+1) EA on linear
functions to (1 + o(1))1.39en ln(n).

We also give lower bounds for this problem. We show that, in the class of
all functions with a unique global optimum, the function OneMax (see (8))
has the smallest expected optimization time. This extends the lower bound
of (1 − o(1))en ln(n) for the expected optimization time of the (1+1) EA
on OneMax [DFW10] to all functions in that class (including all linear
functions with non-zero coefficients).

Together with our upper bound, we thus obtain the remarkable result
that all linear functions have roughly (within a 39% range) the same opti-
mization time.

To further demonstrate the strength of multiplicative drift analysis, we
give straight-forward analyses for three prominent combinatorial problems.
We consider the problems of computing minimum spanning trees (MST),
single-source shortest paths (SSSP), and Euler tours. Here, we reproduce the
results obtained in [NW07] (cf. Theorem 15), in [BBD+09] (cf. Theorem 17),
and in [DJ07] (cf. Theorem 19), respectively. In doing so, we improve the
leading constants of the asymptotic bounds.

2 Multiplicative Drift Analysis

Drift analysis can be used to track the optimization behavior of a random-
ized search heuristic over a search space by measuring the progress of the
algorithm with respect to a potential function. Such a function maps each
search point to a non-negative real number, where a potential of zero indi-
cates that the search point is optimal.

4

Theorem 1 (Additive Drift [HY04]). Let S ⊆ R be a finite set of positive
numbers and let {X(t)}t∈N be a sequence of random variables over S ∪ {0}.
Let T be the random variable that denotes the first point in time t ∈ N for
which X(t) = 0.

Suppose that there exists a constant δ > 0 such that

E
[
X(t) −X(t+1)

∣∣T > t
]
≥ δ (4)

holds. Then

E
[
T
∣∣X(0)

]
≤ X(0)

δ
.

This theorem tells us how to link the expected time at which the potential
reaches zero to the first time the expected value of the potential reaches zero.
If in expectation the potential decreases in each step by δ then after X(0)/δ
steps the expected potential is zero. Thus, one might expect the expected
number of steps until the (random) potential reaches zero to be X(0)/δ, too.
This is indeed the case in the setting of the previous theorem.

In order to apply the previous theorem to the analysis of randomized
search heuristics over a (finite) search space S, we define a potential func-
tion h : S → R which maps all optimal search points to zero and all non-
optimal search points to values strictly larger than zero. We choose the
random variable X(t) as the potential h(x(t)) of the search point (or popu-
lation) in the t-th iteration of the algorithm. Then the random variable T
becomes the optimization time of the algorithm, that is, the number of
iterations until the algorithm finds an optimum.

When applying Theorem 1, we call the expected difference between
h(x(t)) and h(x(t+1)) the drift of the random process {x(t)}t∈N with respect
to h. We say this drift is additive if condition (4) holds.

2.1 Ideal Potential Functions for Additive Drift Analysis

The application of additive drift analysis (Theorem 1) to the runtime anal-
ysis of randomized search heuristics requires a suitable potential function.
The following lemma (Lemma 3 in [HY04]) tells us that if the random search
points x(0), x(1), x(2), . . . generated by a search heuristic form a homogeneous
absorbing Markov chain, then there always exists a potential function such
that condition (4) in Theorem 1 holds with equality; namely the function
that attributes to each search point the expected optimization time of the
algorithm starting in that point.

Lemma 2 ([HY04]). Let S be a finite search space and {x(t)}t∈N the search
points generated by a homogeneous absorbing Markov chain on S. Let T be
the random variable that denotes the fist point in time t ∈ N such that x(t)

is optimal.

5

Then the drift on the potential function g : S → R with

g(x) := E[T | x(0) = x]

satisfies
E
[
g(x(t))− g(x(t+1))

∣∣T > t
]

= 1.

In a way, E[T | x(0) = x] is an “ideal” potential function for Theorem 1.
It satisfies the additive drift condition (4) with equality and results in pre-
cise upper bound on E[T | x(0) = x]. However, the previous theorem is not
directly helpful in the runtime analysis of randomized search heuristics. In
order to apply the previous theorem, we need to know the exact expected op-
timization time of a algorithm starting from every point in the search point.
But with all this known, Theorem 1 does not provide new information.

Still, the previous theorem indicates that potential functions which ap-
proximate the expected optimization time in the respective point are good
candidates likely to satisfy the additive drift condition. In the next section,
we will see such a potential function suitable for the analysis of the opti-
mization behavior of the (1+1) Evolutionary Algorithm on linear functions.

2.2 A Multiplicative Drift Theorem

The drift theorem presented in this subsection can be considered as the
multiplicative version of the classical additive result. Since we derive it
from the original result, it is clear that the multiplicative version cannot be
stronger than the original theorem.

Theorem 3 (Multiplicative Drift). Let S ⊆ R be a finite set of positive
numbers with minimum smin. Let {X(t)}t∈N be a sequence of random vari-
ables over S ∪{0}. Let T be the random variable that denotes the first point
in time t ∈ N for which X(t) = 0.

Suppose that there exists a constant δ > 0 such that

E
[
X(t) −X(t+1)

∣∣X(t) = s
]
≥ δs (5)

holds for all s ∈ S with Pr[X(t) = s] > 0. Then for all s0 ∈ S with Pr[X(0) =
s0] > 0,

E
[
T
∣∣X(0) = s0

]
≤ 1 + ln(s0/smin)

δ
.

Like for the notion of additive drift, we say that the drift of a random
process {x(t)}t∈N with respect to a potential function g is multiplicative if
condition (5) holds for the associated random variables x(t) := g(x(t)).

The advantage of the multiplicative approach is that it allows to use
potential functions which are more natural. The most natural potential
function, obviously, is the distance of the objective value of the current

6

solution to the optimum. This often is a good choice in the analysis of
combinatorial optimization problems. For example, in Section 4 we see
that the runtimes of the (1+1) EA on finding a minimum spanning tree,
a shortest path tree, or an Euler tour can be bounded by analyzing this
potential function.

Another potential function for which drift analysis has been successfully
applied is the distance in the search space between the current search points
and a (global) optimum.

The typical example for this is the drift analysis for linear functions in
Section 3, where we use the (weighted) Hamming distance to the optimum
as potential for all functions of this class. While being more difficult to
analyze, this approach often gives tighter bounds which are independent of
range of potential fitness values.

Note that multiplicative drift analysis applies to all situations where
previously the so-called method of expected weight decrease was used. This
method also builds on the observation that if the drift is multiplicative (that
is, condition (5) holds), then at time t = (1+ln(s0/smin))/δ the expected po-
tential X(t) is at most s0/e. Afterwards, various methods (variants of Wald’s
identity in [DJW02,Jäg08] and Markov’s inequality in [NW07,BBD+09]) are
used to show that the expected stopping time E[T] is indeed in this regime.
However, the bounds obtained in this way are not best possible. This is
demonstrated in Section 3.3 where we replace for the proofs in [Jäg08] the
method of expected weight decrease by the above multiplicative drift theo-
rem. This results in an immediate improvement of the leading constant in
the main runtime bound of [Jäg08].

Proof of Theorem 3. Let g : S → R be the function defined by

g(s) := 1 + ln
s

smin
.

Let R := g(S) be the image of g and let {Z(t)}t∈N be the sequence of
random variables over R ∪ {0} given by

Z(t) :=

{
0 if X(t) = 0,

g(X(t)) otherwise.

Then T is also the first point in time t ∈ N such that Z(t) = 0. Sup-
pose T > t. Then we have Z(t) = g(X(t)) > 0. If X(t+1) = 0, then
also Z(t+1) = 0 and

Z(t) − Z(t+1) = 1 + ln
(X(t)

smin

)
≥ 1 =

X(t) −X(t+1)

X(t)
. (6)

Otherwise, Z(t+1) = g(X(t+1)) and again

Z(t) − Z(t+1) = ln
(X(t)

X(t+1)

)
≥ X(t) −X(t+1)

X(t)
, (7)

7

where the last inequality follows from

u

w
= 1 +

u− w
w

≤ e
u−w
w

which implies

ln
(u
w

)
≤ u− w

w

and thus

ln
(w
u

)
≥ w − u

w
.

for all u,w ∈ R.
Hence, by (6) and (7), independent of whether Z(t+1) = 0 or Z(t+1) 6= 0,

we have

Z(t) − Z(t+1) ≥ X(t) −X(t+1)

X(t)
.

Let r ∈ R. Since g is bijective, there exist a unique s ∈ S such that
r = g(s). Moreover, the events Z(t) = r and X(t) = s coincide. Hence, we
have by condition (5) that

E[Z(t) − Z(t+1) | Z(t) = r] ≥ E[X(t) −X(t+1) | X(t) = s]

s
≥ δ.

Finally, we apply Theorem 1 for additive drift and obtain for s ∈ S
with Pr[X(0) = s] > 0 that

E[T | X(0) = s] = E[T | Z(0) = g(s)] ≤ g(s)

δ
≤ 1 + ln(s/smin)

δ

which concludes the proof of the theorem.

In Section 3 and Section 4, we demonstrate the strength of this new
tool by applying it to four well-known problems: the problem of minimizing
linear pseudo-Boolean functions, the minimum spanning tree problem, the
single-source shortest path problem, and the problem of finding Euler tours.

3 The Runtime of the (1+1) Evolutionary Algo-
rithm on Pseudo-Boolean Functions

Many optimization problems can be phrased as the problem of maximizing or
minimizing a pseudo-Boolean function f : {0, 1}n → R where n is a positive
integer. In the setting of randomized search heuristics, such a function f is
considered to be a black-box, that is, the optimization process can access f
only by evaluating it at limited number of points in {0, 1}n.

In this section, we analyze the (1+1) Evolutionary Algorithm ((1+1) EA)
for pseudo-Boolean functions (Algorithm 1). This algorithm follows the

8

Algorithmus 1: The (1+1) Evolutionary Algorithm ((1+1) EA) with
mutation rate 1/n for minimizing f : {0, 1}n → R.

1 choose x(0) ∈ {0, 1}n uniformly at random;
2 for t = 0 to ∞ do

3 sample y(t) ∈ {0, 1}n by flipping each bit in x(t) with
probability 1/n;

4 if f(y(t)) ≤ f(x(t)) then

5 x(t+1) := y(t)

6 else

7 x(t+1) := x(t)

neighborhood structure imposed by the hypercube on {0, 1}n where two
points are adjacent if they differ by exactly one bit, that is, if their Hamming
distance is one. The (1+1) EA successively attempts to improve the so-far
best search point by randomly sampling candidates over {0, 1}n according
to probabilities decreasing with the distance to the current optimum.

The optimization time of the (1+1) EA on a function f is the random
variable T that denotes the first point in time t ∈ N such that f(x(t)) is
minimal.

One elementary linear pseudo-Boolean function for which the optimiza-
tion time (1+1) EA has been analyzed (e.g., in [Müh92] and [DJW02]) is the
function OneMax : {0, 1}n → N. This function simply counts the number
of one-bits in x, that is,

OneMax(x) := |x|1 =
n∑

i=1

xi. (8)

Unlike indicated by the name of this function, we are interested in the time
the (1+1) EA needs to find its minimum. Thus, in the selection step (Step 4)
of each iteration, the (1+1) EA accepts the candidate solution y(t) if and
only if the number of bits equal to 1 does not increase.

Consider the progress ∆(t) := OneMax(x(t))−OneMax(x(t+1)) of the
(1+1) EA in the t-th iteration. By construction of the (1+1) EA, ∆(t) cannot
be negative. By definition, the number of one-bits x(t) is OneMax(x(t)).
For each of these one-bits, there is a (1/n)(1 − 1/n)n−1 ≥ 1/(en) chance
that only this one-bit is flipped when sampling y(t), thus increasing the
value of OneMax(x(t)) by one. Hence,

E
[
∆(t)

∣∣x(t)] ≥ OneMax(x(t))

en
.

Thus, multiplicative drift analysis (Theorem 3) immediately gives us the

9

well-known result

E[TOneMax] ≤ en
(

1 + ln E
[
OneMax(x(0))

])
= en

(
1 + ln

(n
2

))
.

Another elementary linear pseudo-Boolean function is BinVal. This
function maps a bitstring to the binary value it represents (where x1 repre-
sents the lowest and xn the highest bit).

BinVal(x) =
n∑

i=1

2i−1xi. (9)

Again, for ∆(t) := BinVal(x(t))−BinVal(x(t+1)), we have

E
[
∆(t)

∣∣x(t)] ≥ BinVal(x(t))

en

and thus

E[TBinVal] ≤ en
(

1 + ln E
[
BinVal(x(0))

])
= en

(
1 + ln

(2n − 1

2

))
.

Note, that the previous inequality gives us only a quadratic upper bound
of O(n2) for the expected optimization time of the (1+1) EA on BinVal.
However, it is known that for all linear functions — including BinVal— the
expected optimization time of the (1+1) EA is O(n lnn). We discuss this
in the following subsections and give a simplified proof using multiplicative
drift analysis.

3.1 Linear Functions

A classical test problem for the runtime analysis of randomized search heuris-
tics is the minimization of linear functions.

Let n ∈ N be a positive integer. A function f : {0, 1}n → R on n bits is
linear, if there exists weights w1, . . . wn ∈ R such that

f(x) =
n∑

i=1

wixi

for all x ∈ {0, 1}n. In [DJW02] it has been argued and it is easily seen that
in the analysis of upper bounds of the expected optimization time of the
(1+1) EA on linear functions we may assume without loss of generality that
the weights wi are all positive and sorted, that is,

0 < w1 ≤ w2 ≤ · · · ≤ wn. (10)

We simply call such weights monotone. Moreover, for the runtime bounds we
consider in this work it does not matter whether the (1+1) EA minimizes or

10

maximizes the linear function. This is true since maximizing a function f is
equivalent to minimizing −f and vice versa (for −f we again have to invoke
above argument which allows us to assume monotonicity of the weights).

Thus, from now on, we suppose that every linear function satisfies con-
dition (10). Furthermore, we formulate all results for the minimization
problem, even if the referenced results originally considered the problem
of maximizing linear functions.

We have already seen two prominent examples of linear functions, namely
the functions OneMax and BinVal. When minimizing OneMax, the
(1+1) EA accepts a new bit string in the selection step (Step 4) if the
number of one-bits did not increase. In contrast, when minimizing BinVal,
the inequality 2k >

∑k−1
i=1 2i−1 implies that the (1+1) EA accepts a new bit

string if and only if the highest-index bit that is touched in the mutation
step (Step 3) is flipped from one to zero.

In spite of this difference in behavior, Droste, Jansen and Wegener
showed in their seminal paper [DJW02] that for all linear functions the
expected optimization time of the (1+1) EA is Θ(n log n).

Theorem 4 ([DJW02]). For all positive integers n ∈ N, the expected run-
ning time of the (1+1) EA on the class of linear functions with non-zero
weights is Θ(n log n).

The proof of Droste, Jansen and Wegener applies a level based argument
to the potential function (called artificial fitness function) g : {0, 1}n → R
such that for all x ∈ {0, 1}n

g(x) =

bn
2
c∑

i=1

xi +
n∑

i=bn
2
c+1

2xi. (11)

A much easier proof avoiding partitioning arguments and instead work-
ing completely in the framework of drift analysis, was given by He and Yao
in [HY04]. There, additive drift analysis is applied to the potential function
g̃ : {0, 1}n → R such that

g̃(x) = ln
(

1 +

bn
2
c∑

i=1

xi +
n∑

i=bn
2
c+1

cxi

)
(12)

for all x ∈ {0, 1}n. For this function, with 1 < c ≤ 2 chosen arbitrarily, they
show that for all x ∈ {0, 1}n \ {(0, . . . , 0)}

E
[
g̃(x(t))− g̃(x(t+1))

∣∣x(t) = x
]

= Ω(1/n).

Afterwards, they apply Theorem 1 to show Theorem 4. However, while
this approach strongly reduced the complexity of the proof in [DJW02],
introducing the natural logarithm into the potential function still resulted
in unnecessary case distinctions and even inconsistencies in an early version
of the proof [HY01,HY02].

11

3.2 The Drift for Linear Functions is Multiplicative

In this subsection, we give a simple proof of the fact that the (1+1) EA
optimizes any linear function in expected time O(n log n). Our proof is
based on the theorem of multiplicative drift (Theorem 3). Although proofs
for Theorem 4 are known [DJW02,HY04,Jäg08], we present this alternative
approach to demonstrate the strength of the multiplicative version of the
classical drift theorem.

In order to apply Theorem 3 we need a suitable potential function. For
this, we choose the function g : {0, 1}n → R such that2

g(x) =
n∑

i=1

(
1 +

i

n

)
xi

for all x ∈ {0, 1}n. This function defines the potential as the weighted
distance of the current search point to the optimum (the all-zero string) in
the search space. More precisely, it counts the number of one-bits, where
each bit is assigned a weight between one and two, such that bits which have
higher weight in the objective function f also have higher weight in g.

We show that the drift of the (1+1) EA with respect to g is multiplica-
tive, that is, that condition (5) holds.

Lemma 5. Let n ∈ N be a positive integer. Let f : {0, 1}n → R be a linear
function with monotone weights and let g : {0, 1}n → R be the potential
function with g(x) =

∑n
i=1(1 + i/n)xi for all x ∈ {0, 1}n.

Let x ∈ {0, 1}n and let y ∈ {0, 1}n be randomly chosen by flipping each
bit in x with probability 1/n. Let ∆(x) := g(x) − g(y) if f(y) ≤ f(x) and
∆(x) = 0 otherwise. Then

E[∆(x)] ≥ g(x)

4en
.

This lemma implies that at every point in the search space the drift is
at least linear in the current potential value. Thus, the multiplicative drift
condition (5) holds and Theorem 4 follows directly by applying Theorem 3.

Proof of Lemma 5. Since E[∆(x) | f(y) > f(x)] = 0, we have by the law of
total expectation that

E[∆(x)] = E[g(x)− g(y) | f(y) ≤ f(x)] Pr[f(y) ≤ f(x)]. (13)

Let I = {i ∈ {1, . . . , n} : xi = 1}. We may distinguish three events
(cases).

2We might as well perform our analysis of g as defined in (11). However, our choice
of g does not make the somewhat artificial binary distinction between bits with high and
low indices and, thus, seems to be more natural.

12

(C1) There is no index i ∈ I such that yi = 0 and f(y) ≤ f(x) holds, that
is, x = y.

(C2) There is exactly one index i ∈ I such that yi = 0 and f(y) ≤ f(x)
holds.

(C3) There are at least two different indices j, ` ∈ I such that yj = 0 and
y` = 0 and f(y) ≤ f(x) holds.

The only possibility for the event (C1) to hold is if x = y. Therefore,

E[g(x)− g(y) | (C1)] = 0. (14)

Next, suppose the event (C3) holds. By linearity of expectation, we have

E[g(x)− g(y) | (C3)] =
n∑

i=1

E[g(xi)− g(yi) | (C3)].

On the one hand, the event (C3) implies that there are (at least) two
indices j and ` in {1, . . . , n} for which xj = x` = 1 and yj = y` = 1.
Since gj ≥ 1 and g` ≥ 1, we have∑

i∈I
E[g(xi)− g(yi) | (C3)] ≥ 2.

On the other hand, if i ∈ {1, . . . , n} \ I then

E[g(xi)− g(yi) | (C3)] = −giPr[y1 = 0 | (C3)] ≥ −
gi
n
,

since the condition (C3) does not increase the probability of 1/n that the
yi = 0. Therefore, since the gi’s are at most two, we have

E[g(x)− g(y) | (C3)] ≥ 2− 1

n

∑
i/∈I

gi ≥ 0. (15)

Therefore, by the law of total expectation and by (13), (14) and (15),
we have

E[∆(x)] ≥ E[g(x)− g(y) | (C2)] Pr[(C2)] (16)

and can focus on the event (C2).
Suppose that (C2) holds. For every i ∈ I, we distinguish two events:

(Ai) The i-th bit is the only one-bit in x that flips, none of the zero-bits at
the positions larger than i flips, and f(y) ≤ f(x) holds.

(Bi) The i-th bit is the only one-bit in x that flips, at least one of the
zero-bits at the positions larger than i that flips, and f(y) ≤ f(x)
holds.

13

We substitute the right side in (16) and obtain

E[∆(x)] ≥
∑
i∈I

E[∆(x) | (Ai)] Pr[(Ai)] + E[∆(x) | (Bi)] Pr[(Bi)] (17)

Let i ∈ I and suppose that the condition (Ai) holds. Then we have
yi = 0 and yj = xj for all j > i. For a lower bound on E[∆(x) | (Ai)],
we may suppose that xj = 0 for all j < i and that every flip of a bit with
index j < i is accepted. Therefore, since i ≤ n

E[∆(x) | (Ai)] ≥ 1 +
i

n
−

i−1∑
j=1

1

n

(
1 +

j

n

)
= 1 +

1

n
− i(i− 1)

2n2
≥ 1− i− 3

2n
.

and thus E[∆(x) | (Ai)] is positive. Furthermore, Pr[(Ai)] ≥ 1
n

(
1 − 1

n

)n−1
which is the probability that only the i-th bit flips. Hence,

E[∆(x) | (Ai)] Pr[(Ai)] ≥
1

n

(
1− 1

n

)n−1(
1− i− 3

2n

)
. (18)

Next, suppose that condition (Bi) holds. Then we have yi = 0 and y` = 1
for all ` ∈ I \ {i}, and there exists a j > i with j /∈ I such that yj = 1. In
order to satisfy f(y) ≤ f(x), wj = wi has to hold. This implies x` = y` for
all ` ∈ {1, . . . , n} \ {i, j}. To see this, recall that the wi’s are monotone and
we condition on the event that the i-th bit is the only bit that flips from one
to zero.

Let J(i) = {j ∈ {i + 1, . . . , n} : xj = 0 and wj = wi}. For j ∈ J(i)
let Bi,j be the event that yi = 0, yj = 1, and y` = x` for ` not i or j. Then

E[∆(x) | (Bi)] Pr[(Bi)] =
∑

j∈J(i)

E[∆(x) | Bi,j] Pr[Bi,j].

We substitute E[∆(x) | Bi,j] = − j−i
n and Pr[Bi,j] = 1

n2

(
1 − 1

n

)n−2
in the

previous equation. Since these conditional expectations are always negative,
we may pessimistically assume that J(i) = {i+ 1, . . . , n} and get∑

j∈J(i)

E[∆(x) | Bi,j] = −(n− i)
n

(n+ 1− i)
2

≥ −
(

1− 1

n

)(n+ 1− i)
2

and therefore

E[∆(x) | (Bi)] Pr[(Bi)] ≥ −
1

n

(
1− 1

n

)n−1n+ 1− i
2n

. (19)

Finally, we substitute (18) and (19) in (17) and derive

E[∆(x)] ≥ 1

n

(
1− 1

n

)n−1∑
i∈I

1− i− 3

2n
−n+ 1− i

2n
=

1

n

(
1− 1

n

)n−1n+ 2

4n

∑
i∈I

2.

14

Since gi = 1 + i/n ≤ 2 for all i ∈ I, we have
∑

i∈I 2 ≥ g(x) and therefore

E[∆(x)] ≥ g(x)

4en

which concludes the proof of the lemma.

3.3 Distribution-based Versus Point-wise Drift

In this subsection we show an almost tight upper bound on the expected
optimization time of the (1+1) EA on linear functions.

If we take a closer look at Lemma 5, we see that it holds point-wise, that
is, it guarantees

E
[
g(x(t))− g(xt+1)

∣∣x(t) = x
]
≥ g(x)

4en
(20)

for all x ∈ {0, 1}n\{(0, . . . , 0)}. This is far stronger than the positive average
drift condition (5) which only requires

E
[
g(x(t))− g(xt+1)

∣∣ g(x(t)) = s, T > t
]
≥ δs (21)

for all s ∈ R such that Pr[g(x(t)) = s, T > t] > 0.
The advantage of the stronger point-wise drift assumption is that it

immediately guarantees that the result of Theorem 4 holds for all initial
individuals.

The main reason, however, for not using the weaker condition (21) is that
this requires a deeper understanding of the probability distribution of x(t).

Let us stress that finding a potential function satisfying the stronger
point-wise drift condition is usually very tricky. For example, one may
ask why not take OneMax(x) as potential function to bound the expected
optimization time of the (1+1) EA for minimizing linear functions.

However, an easy observation reveals that there is an objective function f
and a search point x such that g yields to small a drift with respect to f .
To see this, let x = (x1, . . . , xn) := (0, . . . , 0, 1) and let f := BinVal be the
function to be minimized. Then the point-wise drift (20) with respect to
OneMax is only 1/n2. This example shows that finding a potential function
yielding point-wise drift for all x and all f may be difficult. This observation
is not to be confused with that in the discussion following (9). There, we
determined the drift using the function BinVal itself as potential. Here, we
use OneMax, that is, the 1-norm as potential function.

Jägersküpper [Jäg08] was the first to overcome the difficulties of point-
wise drift. While he still avoids completely analyzing the actual distribution
of x(t), he does show the following property of this distribution which in
turn allows him to use an average drift approach. In this way, he omits the

15

need for point-wise drift. Jägersküpper’s simple observation is that at any
time step t, the more valuable bits are more likely to be in the right setting
(cf. Theorem 1 in [Jäg08]).

Theorem 6 ([Jäg08]). Let n ∈ N be a positive integer and let x(t) denote
the random individual (distributed over {0, 1}n) after t ∈ N iterations of the
(1+1) EA minimizing a linear function f : {0, 1}n → R. Then

Pr[x
(t)
1 = 0] ≤ · · · ≤ Pr[x(t)n = 0].

Moreover, for all k ∈ {0, . . . , n}, this statement remains true if we condition
on OneMax(x) = k.

Using this theorem, he was able to show a lower bound of Ω(1/n) for the
drift of OneMax as potential function for any linear function.

Lemma 7 ([Jäg08]). Let n ∈ N be a positive integer and let f : {0, 1}n → N
be a linear function. Let x(t) be the individual in the t-th iteration of the
(1+1) EA minimizing f . Then

E[OneMax(x(t))−OneMax(x(t+1)) | OneMax(x(t)) = k] ≥ (e− 2)k

en
.

holds for all k ∈ {0, . . . , n} and t ∈ N.

In addition to a more natural proof of the O(n ln(n)) bound for ex-
pected optimization time of the (1+1) EA minimizing a linear function,
Jägersküpper was able to give a meaningful upper bound on the leading
constant (cf. Theorem 2 in [Jäg08]).

Theorem 8 ([Jäg08]). For all positive integers n ∈ N, the expected opti-
mization time of the (1+1) EA minimizing a linear function on n bits is at
most of order (1 + o(1))2.02en ln(n).

Using multiplicative drift analysis (Theorem 3) on the result of Lemma 7
and thus replacing the halving argument employed by Jägersküpper for the
proof of Theorem 8, the constant of 2.02e in the upper bound of the previous
theorem instantly improves to 1.39e. In the light of our lower bound of 1.00e,
to be proven in the next subsection, this is a considerable progress.

Theorem 9. For all positive integers n ∈ N, the expected optimization time
of the (1+1) EA minimizing a linear function on n bits is at most of order
(1 + o(1)) e

e−2n ln(n) ≈ (1 + o(1))1.39en ln(n).

16

3.4 The (1+1) EA Optimizes OneMax Faster than any Func-
tion with a Unique Global Optimum

In this section, we show that the expected optimization time of (1+1) EA
on any pseudo-Boolean function with a unique global optimum is at least as
large as its expected optimization time on the basic function OneMax. In
particular, this is true for every linear function with non-zero coefficients.

In other words, if a function is easier to optimize than OneMax, then
this can only be due to the fact that it has more than one global optimum.
The general lower bound then follows from the following theorem by Doerr,
Fouz and Witt [DFW10], which provides a lower bound for OneMax.

Theorem 10 ([DFW10]). For all positive integers n ∈ N, the expected
optimization time of the (1+1) EA minimizing OneMax on n bits is at
least (1− o(1))en ln(n).

Thus, it remains to show that OneMax is optimized fastest. The result
itself was announced by Scheder and Welzl [SW08]. Their idea to prove this
statement, however, differs from the one given below.

Theorem 11. Let n ∈ N be a positive integer. The expected optimiza-
tion time of the (1+1) EA on any function f : {0, 1}n → R that has a
unique global optimum is as least as large as its expected optimization time
on OneMax.

The theorem can be formalized as follows: Let f be a function with a
unique global optimum. Let {x(t)}t∈N be the search points generated by
the (1+1) EA minimizing f . Let Tf := min{t ∈ N | f(x(t)) = 0} be the
optimization time of the (1+1) EA on f . Then E[Tf] ≥ E[TOneMax].

Theorems 10 and 11 immediately yield the following.

Corollary 12. For all positive integers n ∈ N, the expected optimization
time of the (1+1) EA minimizing a function with a unique global optimum
on n bits is at least (1− o(1))en ln(n).

For the proof of Theorem 11 we first show a preliminary lemma. It
formalizes the following intuition. Let x and x̃ be two search points such
that |x|1 ≤ |x̃|1. Then the probability that the (1+1) EA samples a new
search point with exactly j < |x|1 one-bits from x is at least as big as from x̃.

Lemma 13. Let n ∈ N with n ≥ 1. Let x, x̃ ∈ {0, 1}n with |x|1 ≤ |x̃|1. Let y
and ỹ two random points in {0, 1}n obtained from x and x̃ by independently
flipping with probability 1/n each bit of x and x̃, respectively.

Then for every j ∈ {0, . . . , |x|1 − 1},

Pr
[
|y|1 = j

]
≥ Pr

[
|ỹ|1 = j

]
.

17

Proof. Let k := |x|1. The lemma holds trivially if |x̃|1 = k.
Suppose that |x̃|1 = k + 1. Then

Pr
[
|y|1 = j

]
=

min{j,n−k}∑
i=0

(
k

j − i

)(
n− k
i

)(1/n

1− 1/n

)k−j+2i(
1− 1/n

)n
and

Pr
[
|ỹ|1 = j

]
=

min{j,n−k−1}∑
i=0

(
k + 1

j − i

)(
n− k − 1

i

)(1/n

1− 1/n

)k+1−j+2i(
1− 1/n

)n
.

As all summands in the previous two equations are positive, it suffices to
see that the quotient(

k
j−i
)(

n−k
i

)(1/n
1−1/n

)k−j+2i(
k+1
j−i
)(

n−k−1
i

)(1/n
1−1/n

)k+1−j+2i
=

(k + 1− j + i)(n− k)(n− 1)

(k + 1)(n− k − i)

is minimal for i = 0 and j = k − 1 and therefore at least 1 for all values
0 ≤ i ≤ min{j, n− k − 1}.

Thus, for |x̃|1 = k + 1 the lemma also holds. Finally, for |x̃|1 > k + 1,
the lemma follows by induction based on the case |x̃|1 = k + 1.

To prove the main result of this section, Theorem 11, we need some
additional notation. Let f be a function with a unique global optimum x∗.
Without loss of generality, we may assume that x∗ := (0, . . . , 0) is the unique
minimum of f . This is justified by the observation that the (1+1) EA treats
the bit-values 0 and 1 symmetrically, that is, we might reinterpret one-bits
in x∗ as zero-bits without changing the behavior of the algorithm.

Let µ(x) := E[TOneMax | x(0) = x] and µ̃(x) := E[Tf | x(0) = x] be the
expected optimization times of the (1+1) EA starting in the point x and
minimizing OneMax and f , respectively.

For every k ∈ {0 . . . , n} let

µk := min{µ(x) | x ∈ {0, 1}n, |x|1 = k}

be the optimization time of the (1+1) EA optimizing OneMax starting in
a point with exactly k one-bits.

Furthermore, let

µ̃k := min{µ̃(x) | x ∈ {0, 1}n, |x|1 ≥ k}

be the minimum optimization time of the (1+1) EA minimizing f and start-
ing in a point x with at least k one-bits (note the difference to µk).

Note that, due to the symmetry of the function OneMax, µk = µ(x)
for every x ∈ {0, 1}n with exactly k one-bits.

18

Proof of Theorem 11. We inductively show for all k that µk ≤ µ̃k. Clearly
µ0 = 0 = µ̃0. Therefore, let k ∈ {0, . . . , n− 1} and suppose that µi ≤ µ̃i for
all i ≤ k.

Let x ∈ {0, 1}n with |x|1 = k + 1 be arbitrary and let y ∈ {0, 1}n
be a random point generated by flipping each bit in x independently with
probability 1/n.

The (1+1) EA minimizing OneMax and starting in x accepts y in the
selection step (Step 4) if and only if |y|1 ≤ |x|1. Furthermore, we have
µ(x) = µ(y) if |y|1 = |x|1 = k + 1. Thus,

µ(x) = 1 + µ(x)Pr
[
|y|1 ≥ k + 1

]
+

k∑
j=0

E
[
µ(y)

∣∣ |y|1 = j
]

Pr
[
|y|1 = j

]
and therefore

µk+1 = 1 + µk+1Pr
[
|y|1 ≥ k + 1

]
+

k∑
j=0

µjPr
[
|y|1 = j

]
. (22)

Next, let x̃ ∈ {0, 1}n be chosen arbitrarily such that |x̃|1 ≥ k + 1 and
µ̃k+1 = µ̃(x̃). Furthermore, let ỹ ∈ {0, 1}n be a random point generated
by flipping each bit in x̃ independently with probability 1/n. Let z̃ = ỹ
if f(ỹ) ≤ f(x̃) and z̃ = x̃ otherwise.

Then

µ̃(x̃) = 1 + E
[
µ̃(z̃)

∣∣ |z̃|1 ≥ k + 1
]

Pr
[
|z̃|1 ≥ k + 1

]
+

k∑
j=0

E
[
µ̃(z̃)

∣∣ |z̃|1 = j
]

Pr
[
|z̃|1 = j

]
and therefore, by definition of µ̃j ,

µ̃k+1 ≥ 1 + µ̃k+1Pr
[
|z̃|1 ≥ k + 1

]
+

k∑
j=0

µ̃jPr
[
|z̃|1 = j

]
. (23)

Now, for all 0 ≤ j ≤ k, we have

Pr
[
|z̃|1 = j

]
≤ Pr

[
|ỹ|1 = j

]
≤ Pr

[
|y|1 = j

]
.

The first inequality holds, since the event |z̃|1 = j implies the event |ỹ|1 = j.
The second inequality follows from Lemma 13, since |x|1 = k + 1 ≤ |x̃|1.

Considering this relation and the fact that the µ̃i are monotonically
increasing in i, we obtain from (23) that

µ̃k+1 ≥ 1 + µ̃k+1Pr
[
|y|1 ≥ k + 1

]
+

k∑
j=0

µ̃jPr
[
|y|1 = j

]
.

19

Therefore, the induction hypothesis yields that

µ̃k+1 ≥ 1 + µ̃k+1Pr
[
|y|1 ≥ k + 1

]
+

k∑
j=0

µjPr
[
|y|1 = j

]
.

We subtract both sides of equation (22) from the previous inequality and
immediately get µ̃k+1 ≥ µk+1 which concludes the induction.

Thus, for all x ∈ {0, 1}n, we have

µ(x) = µ|x|1 ≤ µ̃|x|1 ≤ µ̃(x).

Consequently, E[TOneMax] ≤ E[Tf] holds.

4 Multiplicative Drift on Combinatorial Problems

So far, we have seen that multiplicative drift analysis can be used to simplify
the runtime analysis of the (1+1) EA on linear pseudo-Boolean functions
while producing sharper bounds. In this section, we see that optimization
processes with multiplicative drift occur quite naturally in combinatorial
optimization, too. We demonstrate this claim on two prominent examples,
the minimum spanning tree problem and the single source shortest path
problem.

4.1 The Minimum Spanning Tree Problem

In this subsection, we consider the minimum spanning tree (MST) problem
analyzed in [NW07]. Let G = (V,E) be a connected graph with n vertices, m
edges e1, . . . , em, and positive integer edge weights w1, . . . , wm. In [NW07], a
spanning tree is represented by a bit string x ∈ {0, 1}m with xi = 1 marking
the presence of the edge ei in the tree.

The fitness value of such a tree is defined by w(x) =
∑m

i=1wixi + p(x),
with p(x) being a penalty term ensuring that once the (1+1) EA has found
a spanning tree it does no longer accept bit strings that do not represent
spanning trees (a new bit-strings is accepted if the fitness value decreases).
The minimum weight of a spanning tree is denoted by wopt and the maximal
edge weight by wmax.

In Lemma 1 of [NW07], Neumann and Wegener derive from [Kan87] the
following statement.

Lemma 14 ([NW07]). Let x ∈ {0, 1}m be a search point describing a non-
minimum spanning tree. Then there exist a k ∈ {1, . . . , n−1} and k different
accepted 2-bit flips such that the average weight decrease of these flips is at
least (w(x)− wopt)/k.

20

Multiplicative drift analysis now gives us a reasonably small constant in
the upper bound of the expected optimization time of the (1+1) EA on the
MST problem.

Theorem 15. The expected optimization time of the (1+1) EA on the MST
problem starting with an arbitrary spanning tree of a non-empty graph is at
most 2em2(1 + lnm+ lnwmax).

Proof. For all t ∈ N, let x(t) be the search point of the (1+1) EA for the
MST problem at time t and let X(t) = w(x(t))− wopt. Then

X(t) −X(t+1) = w(x(t))− w(x(t+1)).

Now, let t ∈ N and x ∈ {0, 1}n \ {(0, . . . , 0)} be fixed. Let the points
y(1), . . . , y(k) with k ∈ {0, . . . , n−1} be the k distinct search points in {0, 1}m
generated from x by the k different 2-bit flips according to Lemma 14. That
is, we have w(y(i)) ≤ w(x) for all i ∈ {1, . . . , k} and

k∑
i=1

(
f(x)− f(yi)

)
≥ w(x)− wopt. (24)

Since the y(i)’s are each generated from x by a 2-bit flip, we have

Pr
[
x(t+1) = y(i)

∣∣x(t) = x
]

=
(

1− 1

m

)m−2(1

m

)2
(25)

for all i ∈ {1, . . . , k}. Furthermore

E
[
X(t) −X(t+1)

∣∣x(t) = x, x(t+1) = y(i)
]

= w(x)− w(y(i)) (26)

holds for all i ∈ {1, . . . , k}.
The (1+1) EA never increases the current w-value of a search point, that

is, X(t) −X(t+1) is non-negative. Thus, we have by (25) and (26) that

E
[
X(t) −X(t+1)

∣∣x(t) = x
]
≥

k∑
i=1

(
w(x)− w(y(i))

)(
1− 1

m

)m−2(1

m

)2
and therefore, by inequality (24), we have for all x ∈ {0, 1}m that

E
[
X(t) −X(t+1)

∣∣x(t) = x
]
≥ w(x)− wopt

em2
.

In other words,

E[X(t) −X(t+1) | X(t)] ≥ X(t)

em2

and the theorem follows from the Theorem 3 with 1 ≤ X(t) ≤ mwmax.

21

4.2 The Single-source Shortest Path Problem

In [BBD+09], Baswana, Biswas, Doerr, Friedrich, Kurur, and Neumann
study an evolutionary algorithm that solves the single-source shortest path
(SSSP) problem on a directed graph with n vertices via evolving a shortest-
path tree. In the analysis of the upper bound for the expected optimization
time, the authors introduce the gap gi in iteration i as the difference in
fitness between the current shortest-path tree candidate and an optimal
shortest-path tree.

For every vertex in the tree, its weight in the tree is defined as the sum
over the weights of edges in the paths leading to the root vertex, or as the
penalty term nwmax if the vertex is not connected to the root. The fitness of
a shortest-path tree candidate is then the sum over the weights of all vertices
in the tree. Thus the maximal gap is n2wmax. In Lemma 1 of [BBD+09],
the authors then provide the following statement.

Lemma 16 ([BBD+09]). Let gi denote the gap after i mutations. Then it
holds for the conditional expectation E[gi+1 | gi = g] that

E[gi+1 | gi = g] ≤ g
(

1− 1

3 · n3
)
.

To this, we can directly apply Theorem 3, taking the gap as a potential.
We obtain the following result with a precise constant for the upper bound.

Theorem 17. The expected optimization time of the (1+1) EA in [BBD+09]
on the SSSP problem starting with an arbitrary shortest-path tree candidate
is at most 6n3(1 + 2 lnn+ lnwmax).

4.3 The Euler Tour Problem

The Euler tour problem is to find a Euler tour (a closed walk that visits
every edge exactly once) in an input graph which permits such a tour.

In [DJ07], possible variants of the (1+1) EA for the Euler tour problem
are analyzed. For the variant using the so-called edge-based distribution on
cycle covers, the search space is given by adjacency list matchings, where
each matching represents a cover of the input graph with edge-disjoint cycles.
The fitness of a matching is given by the total number of cycles in the cover.
Thus, a fitness of one implies that the graph is covered by a single cycle —
an Euler tour.

Finding such a tour is then a minimization problem over this search
space. For this setup, the following statement is implicitly shown in the
proof of Theorem 3.

Lemma 18. In a single iteration of the (1+1) EA in [DJ07] for the Euler
tour problem using the edge-based distribution and starting with an arbitrary
cycle cover, the probability to decrease the fitness f(x) of the current search

22

point x by one (provided it was not minimal before) is at least f(x)/em
where m is the number of edges of the input graph.

If we set the fitness minus one as potential, this lemma immediately
implies that the expected drift is at least f(x)/em. Moreover, the starting
potential is at most m/3 (each tour has hat least three edges). Again, we can
apply Theorem 3 and reproduce the upper bound the expected optimization
time, specifying the leading constant in the process.

Theorem 19. The expected optimization time of the (1+1) EA in [DJ07]
for the Euler tour problem using the edge-based distribution and starting with
an arbitrary cycle cover is at most em lnm, where m is the number of edges
in the input graph.

5 Discussion and Outlook

In this work, we showed that the multiplicative drift condition (5) occurs
naturally in the runtime analysis of the (1+1) EA for number of prominent
optimization problems (linear functions, minimum spanning trees, shortest
paths, and Euler tours). In such situations our multiplicative drift theorem
(Theorem 5) yields good runtime bounds.

We applied this new tool to various settings. First, we used it to gain
new insight in the classical problem of how the (1+1) EA optimizes linear
functions.

We presented a simplified proof of the, by now, well-known fact that
the (1+1) EA with mutation probability 1/n optimizes any linear function
in time O(n log n). Moreover, we applied our result to the distribution-
based drift analysis of Jägersküpper and obtained a new upper bound of
(1 + o(1))1.39en ln(n) for the expected optimization time of the (1+1) EA
for arbitrary linear functions.

We complement this upper bound by a lower bound of (1−o(1))en ln(n).
To do so, we showed that OneMax is the function easiest optimized by the
(1+1) EA. By this we extended a recent lower bound of (1 − o(1))en ln(n)
for the expected optimization time on OneMax to all functions having a
unique global optimum.

Our upper and lower bounds for the expected optimization times of the
(1+1) EA on arbitrary linear functions are relatively close. This raises the
question if possibly all linear functions have the same expected optimization
time of (1 + o(1))en ln(n).

Finally, we reviewed previous runtime analyses of the (1+1) EA on the
combinatorial problems of finding a minimum spanning tree, shortest path
tree, or Euler tour in a graph. For all three cases, we exhibited the ap-
pearance of multiplicative drift and determined the leading constants in the
bounds of the expected optimization times.

23

In the light of these natural occurrences of multiplicative drift, we are
optimistic to see applications of multiplicative drift analysis in the near
future.

Acknowledgments

We like to thank Dirk Sudholt for pointing out that Theorem 11 holds for
all pseudo-Boolean function with a unique global optimum rather than only
for all linear functions.

Note Added in Proof

Recently, Doerr and Goldberg [DG10] have shown that in Theorem 3, the
stopping time T is with high probability at most of the same order as the
upper bound on its expectation given in inequality (5), if X(0) is at least
Ω(n). Thus, the implicit upper bound given in Theorem 9 and the bounds
in Theorem 15 and Theorem 17 also hold with high probability, if we allow
a slightly larger leading constant.

References

[BBD+09] Surender Baswana, Somenath Biswas, Benjamin Doerr, Tobias
Friedrich, Piyush P. Kurur, and Frank Neumann. Computing
single source shortest paths using single-objective fitness. In
FOGA ’09: Proceedings of the 10th ACM Workshop on Foun-
dations of Genetic Algorithms, pages 59–66. ACM, 2009.

[DFW10] Benjamin Doerr, Mahmound Fouz, and Carsten Witt. Quasiran-
dom evolutionary algorithms. In GECCO ’10: Proceedings of the
12th Annual Genetic and Evolutionary Computation Conference,
pages 1457–1464. ACM, 2010.

[DG10] Benjamin Doerr and Leslie A. Goldberg. Drift analysis with
tail bounds. In PPSN ’10: Proceedings of the 11th International
Conference on Parallel Problem Solving from Nature, pages 174–
183. Springer, 2010.

[DJ07] Benjamin Doerr and Daniel Johannsen. Adjacency list matchings
— an ideal genotype for cycle covers. In GECCO ’07: Proceed-
ings of the 9th Annual Genetic and Evolutionary Computation
Conference, pages 1203–1210. ACM, 2007.

[DJW02] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the anal-
ysis of the (1+1) evolutionary algorithm. Theoretical Computer
Science, 276(1–2):51–81, 2002.

24

[GL06] Oliver Giel and Per Kristian Lehre. On the effect of populations
in evolutionary multi-objective optimization. In GECCO ’06:
Proceedings of the 8th Annual Genetic and Evolutionary Com-
putation Conference, pages 651–658. ACM, 2006.

[GW03] Oliver Giel and Ingo Wegener. Evolutionary algorithms and the
maximum matching problem. In STACS ’03: Proceedings of the
20th Annual Symposium on Theoretical Aspects of Computer Sci-
ence, volume 2607 of Lecture Notes in Computer Science, pages
415–426. Springer, 2003.

[Haj82] Bruce Hajek. Hitting-time and occupation-time bounds implied
by drift analysis with applications. Advances in Applied Proba-
bility, 14(3):387–403, 1982.

[HJKN08] Edda Happ, Daniel Johannsen, Christian Klein, and Frank Neu-
mann. Rigorous analyses of fitness-proportional selection for
optimizing linear functions. In GECCO ’08: Proceedings of the
10th Annual Genetic and Evolutionary Computation Conference,
pages 953–960. ACM, 2008.

[HY01] Jun He and Xin Yao. Drift analysis and average time complex-
ity of evolutionary algorithms. Acta Informatica, 127(1):51–81,
2001.

[HY02] Jun He and Xin Yao. Erratum to: drift analysis and average time
complexity of evolutionary algorithms [Artificial Intelligence 127
(2001) 57–85]. Acta Informatica, 140(1–2):245–248, 2002.

[HY04] Jun He and Xin Yao. A study of drift analysis for estimating
computation time of evolutionary algorithms. Natural Comput-
ing, 3(1):21–35, 2004.

[Jäg08] Jens Jägersküpper. A blend of Markov-chain and drift analysis.
In PPSN ’08: Proceedings of the 10th International Conference
on Parallel Problem Solving from Nature, pages 41–51. Springer,
2008.

[Kan87] Mikio Kano. Maximum and k-th maximal spanning trees of a
weighted graph. Combinatorica, 7(2):205–214, 1987.

[Müh92] Heinz Mühlenbein. How genetic algorithms really work. muta-
tion and hill-climbing. In PPSN ’92: Proceedings of the 2nd In-
ternational Conference on Parallel Problem Solving from Nature,
pages 15–25, 1992.

25

[NOW09] Frank Neumann, Pietro S. Oliveto, and Carsten Witt. Theo-
retical analysis of fitness-proportional selection: landscapes and
efficiency. In GECCO ’09: Proceedings of the 11th Annual Ge-
netic and Evolutionary Computation Conference, pages 835–842.
ACM, 2009.

[NW07] Frank Neumann and Ingo Wegener. Randomized local search,
evolutionary algorithms, and the minimum spanning tree prob-
lem. Theoretical Computer Science, 378(1):32–40, 2007.

[OW] Pietro S. Oliveto and Carsten Witt. Simplified drift analysis for
proving lower bounds in evolutionary computation. Algorithmica.
In press.

[SW08] Dominik Scheder and Emo Welzl. Private communications, 2008.

26

	1 Introduction
	1.1 Classical Drift Analysis
	1.2 Multiplicative Drift Analysis
	1.3 Our Results

	2 Multiplicative Drift Analysis
	2.1 Ideal Potential Functions for Additive Drift Analysis
	2.2 A Multiplicative Drift Theorem

	3 The Runtime of the (1+1) Evolutionary Algorithm on Pseudo-Boolean Functions
	3.1 Linear Functions
	3.2 The Drift for Linear Functions is Multiplicative
	3.3 Distribution-based Versus Point-wise Drift
	3.4 The (1+1) EA Optimizes OneMax Faster than any Function with a Unique Global Optimum

	4 Multiplicative Drift on Combinatorial Problems
	4.1 The Minimum Spanning Tree Problem
	4.2 The Single-source Shortest Path Problem
	4.3 The Euler Tour Problem

	5 Discussion and Outlook

