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Abstract

This paper describes a simple greedy ∆-approximation algorithm for any covering problem whose
objective function is submodular and non-decreasing, and whose feasible region can be expressed as
the intersection of arbitrary (closed upwards) covering constraints, each of which constrains at most
∆ variables of the problem. (A simple example is VERTEX COVER, with ∆ = 2.) The algorithm
generalizes previous approximation algorithms for fundamental covering problems and online paging
and caching problems.

1 Introduction and summary

The classification of general techniques is an important research program within the field of approximation
algorithms. What abstractions are useful for capturing a wide variety of problems and analyses? What are
the scopes of, and the relationships between, the various algorithm-design techniques such as the primal-
dual method, the local-ratio method [5], and randomized rounding? Which problems admit optimal and
fast greedy approximation algorithms [26, 11, 12]? What general techniques are useful for designing online
algorithms? What is the role of locality among constraints and variables [53, 46, 5]? We touch on these
topics, exploring a simple greedy algorithm for a general class of covering problems. The algorithm has
approximation ratio ∆ provided each covering constraint in the instance constrains only ∆ variables.

Throughout the paper, R̄≥0 denotes R≥0 ∪ {∞} and Z̄≥0 denotes Z≥0 ∪ {∞}.
The conference version of this paper is [44]. The journal version has been accepted to Algorithmica.

Definition 1 (Submodular-Cost Covering). An instance is a triple (c, C, U), where

• The cost function c : R̄n
≥0 → R̄≥0 is submodular,1 continuous, and non-decreasing.

• The constraint set C ⊆ 2R̄
n
≥0 is a collection of covering constraints, where each constraint S ∈ C is a

subset of R̄n
≥0 that is closed upwards2 and under limit. We stress that each S may be non-convex.

∗Department of Computer Science and Engineering, University of California, Riverside.
1Formally, c(x) + c(y) ≥ c(x ∧ y) + c(x ∨ y), where x ∧ y (and x ∨ y) are the component-wise minimum (and maximum)

of x and y. Intuitively, there is no positive synergy between the variables: let ∂jc(x) denote the rate at which increasing xj would
increase c(x); then, increasing xi (for i 6= j) does not increase ∂jc(x). Any separable function c(x) =

∑
j cj(xj) is submodular,

the product c(x) =
∏

j xj is not. The maximum c(x) = maxj xj is submodular, the minimum c(x) = minj xj is not.
2If y ≥ x and x ∈ S, then y ∈ S, perhaps the minimal requirement for a constraint to be called a “covering” constraint.
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• For each j ∈ [n], the domain Uj (for variable xj) is any subset of R̄≥0 that is closed under limit.

The problem is to find x ∈ R̄n
≥0, minimizing c(x) subject to xj ∈ Uj (∀j ∈ [n]) and x ∈ S (∀S ∈ C).

The definition assumes the objective function c(x) is defined over all x ∈ R̄n
≥0, even though the so-

lution space is constrained to x ∈ U . This is unnatural, but any c that is properly defined on U extends
appropriately3 to R̄n

≥0. In the cases discussed here c extends naturally to R̄n
≥0 and this issue does not arise.

We call this problem SUBMODULAR-COST COVERING.4

For intuition, consider the well-known FACILITY LOCATION problem. An instance is specified by a
collection of customers, a collection of facilities, an opening cost fj ≥ 0 for each facility, and an assignment
cost dij ≥ 0 for each customer i and facility j ∈ N(i). The problem is to open a subset F of the facilities so
as to minimize the cost to open facilities in F (that is,

∑
j∈F fj) plus the cost for each customer to reach its

nearest open, admissible facility (that is,
∑

i min{dij | j ∈ F}). This is equivalent to SUBMODULAR-COST

COVERING instance (c, C, U), with

• a variable xij for each customer i and facility j, with domain Uij = {0, 1},

• for each customer i, (non-convex) constraint maxj∈N(i) xij ≥ 1 (the customer is assigned a facility),

• and (submodular) cost c(x) =
∑

j fj maxi xij +
∑

i,j dijxij (opening cost plus assignment cost).

A greedy algorithm for Submodular-Cost Covering (Section 2). The core contribution of the paper is a
greedy ∆-approximation algorithm for the problem, where ∆ is the maximum number of variables that any
individual covering constraint S in C constrains.

For S ∈ C, let vars(S) contain the indices of variables that S constrains (i.e, j ∈ vars(S) if membership
of x in S depends on xj). The algorithm is roughly as follows.

Start with an all-zero solution x, then repeat the following step until all constraints are satisfied:
Choose any not-yet-satisfied constraint S. To satisfy S, raise each xj for j ∈ vars(S) (i.e., raise
the variables that S constrains), so that each raised variable’s increase contributes the same
amount to the increase in the cost.

Section 2 gives the full algorithm and its analysis.

Fast implementations (Section 7). One important special case of SUBMODULAR-COST COVERING is COV-
ERING INTEGER LINEAR PROGRAMS with upper bounds on the variables (CIP-UB), that is, problems of the
form min{c · x | x ∈ Zn

≥0; Ax ≥ b; x ≤ u} where each cj , bi, and Aij is non-negative. This is a
SUBMODULAR-COST COVERING instance (c, U, C) with variable domain Uj = {0, 1, . . . , uj} for each j and
a covering constraint Aix ≥ bi for each i, and ∆ is the maximum number of non-zeros in any row of A.

Section 7 describes a nearly linear-time implementation for a generalization of this problem: COVERING

MIXED INTEGER LINEAR PROGRAMS with upper bounds on the variables (CMIP-UB). As summarized in the
bottom half of Fig. 1, Section 7 also describes fast implementations for other special cases: VERTEX COVER,
SET COVER, FACILITY LOCATION (linear time); and two-stage probabilistic CMIP-UB (quadratic time).

3One way to extend c from U to R̄≥0: take the cost of x ∈ R̄n
≥0 to be the expected cost of x̃, where x̃j is rounded up or down to

its nearest elements a, b in Uj such that a ≤ xj ≤ b: take x̃j = b with probability b−xj

b−a
, otherwise take x̃j = a. If a or b doesn’t

exist, let x̃j be the one that does. As long as c is non-decreasing, sub-modular, and (where appropriate) continuous over U , this
extension will have these properties over R̄n

≥0.
4Changed from “MONOTONE COVERING” in the conference version [44] due to name conflicts.
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problem approximation ratio method where comment
VERTEX COVER 2− ln ln ∆̂/ ln ∆̂ local ratio [30] see also [34, 7, 50, 28, 29, 31, 24, 40]
SET COVER ∆ LP; greedy [33, 34]; [6] ∆ = maxi |{j | Aij > 0}| ?
CIP-01 w/Aij ∈ Z≥0 maxi

∑
j Aij primal-dual [10, 27] quadratic time ?

CIP-UB ∆ ellipsoid [16, 54, 55] KC-ineq., high-degree-poly time ?

SUBMOD-COST COVER ∆ greedy [our §2] min{c(x) | x ∈ S (∀S ∈ C)} new
SET/VERTEX COVER ∆ greedy [our §7.1] linear time
FACILITY LOCATION ∆ greedy [our §7.1] linear time new
CMIP-UB ∆ greedy [our §7.2] near-linear time new
2-STAGE CMIP-UB ∆ greedy [our §7.3] quadratic time new

Figure 1: Some ∆-approximation algorithms for covering problems. “?” = generalized or strengthened here.

Related work: ∆-approximation algorithms for classical covering problems (top half of Fig. 1). See
e.g. [35, 62] for an introduction to classical covering problems. For VERTEX COVER5 and SET COVER in the
early 1980’s, Hochbaum gave a ∆-approximation algorithm based on rounding an LP relaxation [33]; Bar-
Yehuda and Even gave a linear-time greedy algorithm (a special case of the algorithms here) [6]. A few years
later Hall and Hochbaum gave a quadratic-time primal-dual algorithm for SET MULTICOVER [27]. In the late
1990’s, Bertsimas and Vohra further generalized that result with a quadratic-time primal-dual algorithm for
COVERING INTEGER PROGRAMS with {0, 1}-variables (CIP-01), but restricted to integer constraint matrix A
and with approximation ratio maxi

∑
j Aij ≥ ∆ [10]. In 2000, Carr et al. gave the first ∆-approximation

for CIP-01 [16]. In 2009 (independently of our work), Pritchard extended that result to CIP-UB [54, 55].
Both [16] and [54, 55] use the (exponentially many) Knapsack-Cover (KC) inequalities to obtain integrality
gap6 ∆, and their algorithms use the ellipsoid method, so have high-degree-polynomial running time.

As far as we know, SET COVER is the most general special case of SUBMODULAR-COST COVERING for
which any nearly linear time ∆-approximation algorithm was previously known, while CIP-UB is the most
general special case for which any polynomial-time ∆-approximation algorithm was previously known.

Independently of this paper, Iwata and Nagano give ∆-approximation algorithms for variants of VERTEX

COVER, SET COVER, and EDGE COVER with submodular (and possibly decreasing!) cost [36].

Online covering, paging, and caching (Section 3). In online covering (following, e.g. [13, 14, 2]), the
covering constraints are revealed one at a time in any order. An online algorithm must choose an initial
solution x, then, as each constraint “x ∈ S” is revealed, must increase variables in x to satisfy the constraint,
without knowing future constraints and without decreasing any variable. The algorithm has competitive
ratio ∆ if the cost of its final solution is at most ∆ times the optimal (offline) cost (plus a constant that is
independent of the input sequence). The algorithm is said to be ∆-competitive.

The greedy algorithm here is a ∆-competitive online algorithm for SUBMODULAR-COST COVERING.
As recently observed in [13, 14, 2], many classical online paging and caching problems reduce to online

covering (usually online SET COVER). Via this reduction, the algorithm here generalizes many classical de-
terministic online paging and caching algorithms. These include LRU and FWF for PAGING [59], BALANCE

and GREEDY DUAL for WEIGHTED CACHING [17, 63, 64], LANDLORD [65, 66] (a.k.a. GREEDY DUAL SIZE)
5 SET MULTICOVER is CIP-UB restricted to Aij ∈ {0, 1}; SET COVER is SET MULTICOVER restricted to bi = 1; VERTEX

COVER is SET COVER restricted to ∆ = 2.
6The standard LP relaxation has arbitrarily large gap (e.g. min{x1 | 10x1 + 10x2 ≥ 11;x2 ≤ 1} has gap 10).

[16] states (without details) that their CIP-01 result extends CIP-UP, but it is not clear how (see [54, 55]).
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online problem competitive ratio deterministic online comment
SKI RENTAL 2; e

e−1 det.; random [39, 47] ?

PAGING k = ∆ potential function [59, 56] e.g. LRU, FIFO, FWF, Harmonic ?
CONNECTION CACHING O(k) reduction to paging [20, 1] ?
WEIGHTED CACHING k primal-dual [63, 64, 56] e.g. Harmonic, Greedy-Dual ?
FILE CACHING k primal-dual [65, 66, 15] e.g. Greedy-Dual-Size, Landlord ?
UNW. SET COVER O(log ∆ log n

opt ) primal-dual [13, 14] unweighted
CLP O(log n) fractional [13, 14] min{c · x | Ax ≥ b;x ≤ u},

SUBMOD-COST COVER ∆ potential function [our §2] includes the above, CMIP-UB new
UPGRADABLE CACHING d+ k by reduction [our §3] d components, k files in cache new

Figure 2: ∆-competitive online paging and caching. “?” = generalized or strengthened here.

[15], for FILE CACHING, and algorithms for CONNECTION CACHING [20, 21, 22, 1] (all results marked with
“?” in Fig. 2).

As usual, the competitive ratio ∆ is the cache size, commonly denoted k, or, in the case of FILE CACHING,
the maximum number of files ever held in cache (which is at most the cache size).

Section 3 illustrates this connection using CONNECTION CACHING as an example.
Section 3 also illustrates the generality of online SUBMODULAR-COST COVERING by describing a (d +

k)-competitive algorithm for a new class of upgradable caching problems, in which the online algorithm
chooses not only which pages to evict, but also how to pay to upgrade d hardware parameters (e.g. cache
size, CPU, bus, network speeds, etc.) to reduce later costs and constraints (somewhat like SKI RENTAL [39]
and multi-slope SKI RENTAL [47] — special cases of online SUBMODULAR-COST COVERING with ∆ = 2).

Section 4 describes a natural randomized generalization of the greedy algorithm (Alg. 2), with even
more flexibility in incrementing the variables. This yields a stateless ∆-competitive online algorithm for
SUBMODULAR-COST COVERING, generalizing Pitt’s VERTEX COVER algorithm [4] and the HARMONIC k-
server algorithm as it specializes for PAGING and WEIGHTED CACHING [56].

Related work: randomized online algorithms. For most online problems here, no deterministic online
algorithm can be better than ∆-competitive (where ∆ = k), but better-than-∆-competitive randomized
online algorithms are known. Examples include SKI RENTAL [39, 47], PAGING [25, 49], WEIGHTED CACHING

[2, 15], CONNECTION CACHING [20], and FILE CACHING [3]. Some cases of online SUBMODULAR-COST

COVERING (e.g. VERTEX COVER) are unlikely to have better-than-∆-competitive randomized algorithms. It
would be interesting to classify which cases admit better-than-∆-competitive randomized online algorithms.

Relation to local-ratio and primal-dual methods (Section 6). Section 6 describes how the analyses here
can be recast (perhaps at some expense in intuition) in either the local-ratio framework or (at least for linear
costs) the primal-dual framework. Local ratio is usually applied to problems with variables in {0, 1}; the
section introduces an interpretation of local ratio for more general domains, based on residual costs.

Similarly, the Knapsack Cover (KC) inequalities are most commonly used for problems with variables
in {0, 1}, and it is not clear how to extend the KC inequalities to more general domains (e.g. from CMIP-01
to CMIP-UB). (The standard KC inequalities suffice for O(log(∆̂))-approximation of CMIP-UB [41], but
may require some modification to give ∆-approximation of CMIP-UB [54, 55].) The primal-dual analysis
in Section 6 uses a new linear program (LP) relaxation for LINEAR-COST COVERING that may help better
understand how to extend the KC inequalities.
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Section 6 also discusses how the analyses here can be interpreted via a certain class of valid linear
inequalities, namely inequalities that are “local” in that they can be proven valid by looking only at each
single constraint S ∈ C in isolation.

Related work: hardness results, log-approximation algorithms. Even for simple covering problems
such as SET COVER, no polynomial-time (∆ − ε)-approximation algorithms (for any constant ε > 0) are
currently known for small (e.g. constant) ∆. A particularly well studied special case, with ∆ = 2, is
VERTEX COVER, for which some complexity-theoretic evidence suggests that such an algorithm may not
exist [30, 34, 7, 50, 28, 29, 31, 24, 40].

For instances where ∆ is large, O(log ∆̂)-approximation algorithms may be more appropriate, where
∆̂ is the maximum number of constraints in which any variable occurs. Such algorithms exist for SET

COVER [37, 38, 48, 19, (greedy, 1975)] for CIP [60, 61, (ellipsoid, 2000)] and CIP-UB [41, (ellipsoid/KC
inequalities, 2005)]. It is an open question whether there is a fast greedyO(log ∆̂)-approximation algorithm
handling all of these problems (via, say, CIP-UB).

Recent works with log-approximations for submodular-cost covering problems include [32, 57, 58, 18].
Most of these have high-degree-polynomial run time. For example, the (lnn)-approximation algorithm for
two-stage probabilistic SET-COVER [32] requires solving instances of SUBMODULAR FUNCTION MINIMIZA-
TION [51, 52], which requires high-degree-polynomial run time. ([32] also claims a related 2-approximation
for two-stage probabilistic VERTEX COVER without details.)

Related work: distributed and parallel algorithms. Distributed and parallel approximation algorithms
for covering problems are an active area of study. The simple form of the greedy algorithm here makes it par-
ticularly amenable for distributed and/or parallel implementation. In fact, it admits poly-log-time distributed
and parallel implementations, giving (for example) the first poly-log-time 2-approximation algorithms for
the well-studied (weighted) VERTEX COVER and MAXIMUM WEIGHT MATCHING problems. See [42, 43, 45]
for details and related results.

Organization. Section 2 gives the greedy algorithm for SUBMODULAR-COST COVERING (Alg. 2) and
proves that is has approximation ratio ∆. Section 3 describes applications to online problems. Section
4 describes randomized generalizations of the greedy algorithm, including a stateless online algorithm. Sec-
tions 5 and 6 explain how to view the analysis via the local-ratio and primal-dual methods. Section 7 details
fast implementations for some special cases. After Section 2, each section may be read independently of the
others.

2 Greedy Algorithm for Submodular-Cost Covering (Alg. 2)

This section gives the full greedy algorithm for SUBMODULAR-COST COVERING (Alg. 2) and the analysis of
its approximation ratio. We assume SUBMODULAR-COST COVERING instances are given in canonical form:

Definition 2 (canonical form). An instance (c, U, C) is in canonical form if each variable domain is unre-
stricted (each Uj = R̄≥0). Such an instance is specified by just the pair (c, C).

This assumption is without loss of generality by the following reduction:

Observation 1. For any SUBMODULAR-COST COVERING instance (c, U, C), there is an equivalent canonical
form instance (c, C′). By “equivalent”, we mean that any x that is feasible in (c, U, C) is also feasible in
(c, C′), and that any x′ that is minimally feasible in (c, C′) is also feasible in (c, U, C).

5



Given any feasible solution x′ to (c, C′), one can compute a feasible solution x to (c, U, C) with c(x) ≤ c(x′)
by taking each xj = max{α ∈ Uj | α ≤ xj}.

The reduction is straightforward and is given in the Appendix. The idea is to incorporate the variable-
domain restrictions “xj ∈ Uj” directly into each covering constraint S ∈ C, replacing each occurrence of
xj in each S by max{α ∈ Uj | α ≤ xj}. For example, applied to a CIP-UB instance (c, U, C) as described
in the introduction, the reduction produces the canonical instance (c, C′) in which each covering constraint
Aix ≥ bi in C is replaced in C′ by the stronger non-convex covering constraint∑

j Aijbmin(xj , uj)c ≥ bi.

To satisfy these constraints, it doesn’t help to assign any xj a value outside of Uj = {0, 1, . . . , uj}: any
minimal x satisfying the constraints in C′ will also satisfy xj ∈ {0, 1, . . . , uj} for each j.

In the rest of the paper, we assume all instances are given in canonical form. To handle an instance
(c, U, C) that is not in canonical form, apply the above reduction to obtain canonical instance (c, C′), use
one of the algorithms here to compute a ∆-approximate solution x for (c, C′), then compute vector x′ as
described after Observation 1.

Definition 3. For any covering constraint S and x ∈ Rn
≥0, let “x ≤S y”, “x >S y”, etc., mean that the

operator holds coordinate-wise for coordinates in vars(S). E.g. x ≤S y if xj ≤ yj for all j ∈ vars(S).

Observation 2. If x ∈ S and y ≥S x, then y ∈ S.

The observation is true simply because S is closed upwards, and membership of y in S depends only on
yj for j ∈ vars(S). We use this observation throughout the paper.

To warm up the intuition for Alg. 2, we first introduce and analyze a simpler version, Alg. 1, that works
only for linear costs. The algorithm starts with x ← 0, then repeatedly chooses any unmet constraint S,
and, to satisfy S, raises all variables xj with j ∈ vars(S) at rate 1/cj , until x satisfies S:

Greedy algorithm for Linear-Cost Covering ALG. 1
Input: (linear) cost vector c ∈ Rn

≥0, canonical constraints C
Output: ∆-approximate solution x
1. Recall that vars(S) contains the indices of variables that S constrains.
2. Start with x← 0, then, for each of the constraints S ∈ C, in any order:
3. Just until x ∈ S, do:
4. for all j ∈ vars(S) simultaneously, raise xj continuously at rate 1/cj .
5. Return x.

As the variables increase in Line 4, the cost of x increases at rate |vars(S)| ≤ ∆ (each variable contributes
to the cost increase at unit rate).7 The proof of the approximation ratio relies on the following observation:

Observation 3. Let y be any feasible solution. Consider an iteration for a constraint S. Unless the current
solution x already satisfies S at the start of the iteration, at the end of the iteration, x has some variable xk
with k ∈ vars(S) such that xk ≤ yk. (That is, x 6>S y.)

Proof. At the start of the iteration, since y but not x satisfies S, Observation 2 implies that x 6≥S y. During
the iteration, while Line 4 is raising the xj for j ∈ vars(S), if at some moment x ≥S y, then, since y ∈ S,
it must be (by Observation 2) that x ∈ S also, so at that moment Line 4 stops raising the variables, before
x >S y.

7If some cj = 0, then xj is raised instantaneously to∞ at cost 0, after which the cost of x increases at rate less than |vars(S)|.
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As the variables increase in Line 4, Observation 3 implies that, for some xk, the growing interval [0, xk]
covers (at rate 1/ck) a larger and larger fraction of the corresponding interval [0, x∗k] in the optimal solution
x∗. This allows the ∆-rate increase in the cost of x to be charged at unit rate to the cost of x∗, proving that
the final cost of x is at most ∆ times the cost of x∗.

For example, consider two iterations of Alg. 1 on input min{x1 +x2 +x3 | x1 +x2 ≥ 4; x2 +x3 ≥ 4}
with optimal solution x∗ = (0, 4, 0), as shown in Fig. 3. The first iteration does a step for the first constraint,

x1 x⇤
1 x2 x⇤

2 x⇤
3x3

(a) start

b b

x1 x⇤
1 x2 x⇤

2 x⇤
3x3

(b) step for

b b

x1 x⇤
1 x2 x⇤

2 x⇤
3x3

0
1
2
3
4

0
1
2
3
4

0
1
2
3
4

c

c
b b

c

x1 + x2 � 4 x2 + x3 � 4(c) step for

Figure 3: Two steps of Alg. 1, where x∗ = (0, 2, 0). Dark portions of x∗2 have been charged.

raising x1 and x2 by 2, and charging the cost increase of 4 to the [0, 2] portion of x∗2. The second iteration
does a step for the second constraint, raising x2 and x3 both by 1, and charging the cost increase of 2 to the
[2, 3] portion of x∗2.

We generalize this charging argument by defining the residual problem for the current x, which is the
problem of finding a minimum-cost augmentation of the current x to make it feasible. For example, after
the first iteration of Alg. 1 in the example above, the residual problem for x = (2, 2, 0) is equivalent to
min{y1 + y2 + y3 | y1 + y2 ≥ 0; y2 + y3 ≥ 2}. For notational simplicity, in the definition of the
residual problem, instead of shifting each constraint, we (equivalently, but perhaps less intuitively) leave the
constraints alone but modify the cost function (we charge y only for the part of y that exceeds x): 8

Definition 4 (residual problem). Given any SUBMODULAR-COST COVERING instance (c, C), and any x ∈
R̄n
≥0, define the residual problem for x to be the instance (c̃x, C) with cost function c̃x(y) = c(x∨ y)− c(x).

For Q ⊆ Rn
≥0, define the cost of Q in the residual problem for x to be c̃x(Q) = miny∈Q c̃x(y).

If Q is closed upwards, then c̃x(Q) equals min{c(y)− c(x) | y ≥ x, y ∈ Q}.

In all cases here Q is closed upwards, and we interpret c̃x(Q) as the minimum increase in c(x) necessary to
raise coordinates of x to bring x into Q. The residual problem (c̃x, C) has optimal cost c̃x(

⋂
S∈C S).

Here is the formal proof of the approximation ratio, as it specializes for Alg. 1.

Lemma 1 (correctness of Alg. 1). Alg. 1 is a ∆-approximation algorithm for LINEAR-COST COVERING.

Proof. First consider the case when every cost cj is non-zero. Consider an iteration for a constraint S ∈ C.
Fix any feasible y. The cost c̃x(y) of y in the residual problem for x is the sum

∑
j cj max(yj − xj , 0).

As Line 4 raises each variable xj for j ∈ vars(S) at rate 1/cj , by Observation 3, one of the variables being
raised is an xk such that xk < yk. For this k, the term ck max(yk − xk, 0) in the sum is decreasing at rate 1.
No terms in the sum increase. Thus, c̃x(y) decreases at rate at least 1.

Meanwhile, the cost c(x) of x increases at rate |vars(S)| ≤ ∆. Thus, the algorithm maintains the
invariant c(x)/∆ + c̃x(y) ≤ c(y) (true initially because c(0) = 0 and c̃0(y) = c(y)). Since c̃x(y) ≥ 0, this
implies that c(x) ≤ ∆c(y) at all times.

8Readers may recognize a similarity to the local-ratio method. This is explored in Section 5.
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In the case that some cj = 0 during an iteration, the corresponding xj’s are set instantaneously to∞.
This increases neither c(x) nor c̃x(y), so the above invariant is still maintained and the conclusion still
holds.

The main algorithm (Alg. 2, next) generalizes Alg. 1 in two ways: First, the algorithm works with any
submodular (not just linear) cost function. (This generalization is more complicated but technically straight-
forward.) Second, in each iteration, instead of increasing variables just until the constraint is satisfied, it
chooses a step size β ≥ 0 explicitly (we will see that this will allow a larger step than in Alg. 1). Then, for
each j ∈ vars(S), it increases xj maximally so that the cost c(x) of x increases by (at most) β.

Greedy algorithm for Submodular-Cost Covering ALG. 2
Input: objective c, canonical constraints C
Output: ∆-approximate solution x (provided conditions of Thm. 1 are met).
1. Let x← 0.
2. While ∃ S ∈ C such that x 6∈ S do:
3. Choose any S such that x 6∈ S and do stepc(x, S) (defined below).
4. Return x.
Subroutine stepc . . .makes progress towards satisfying x ∈ S.
Input: current solution x, unsatisfied S ∈ C
1. Choose any step size β ∈ [0, c̃x(S)]. . . . discussed before Thm. 1.
2. For each j ∈ vars(S), let x′j ∈ R̄≥0 be the maximum such that raising xj to x′j would increase
c(x) by at most β. . . . recall c(x) is continuous

3. For j ∈ vars(S), let xj ← x′j .

Choosing the step size β. In an iteration for a constraint S, the algorithm can choose any step size β ≥ 0
subject to the restriction β ≤ c̃x(S) = min{c(y)− c(x) | y ∈ S, y ≥ x}. That is, β is at most the minimum
cost that would be necessary to increase variables in x to bring x into S. To understand ways in which Alg. 2
can choose β, consider the following.

• In all cases, Alg. 2 can take β as Alg. 1 does: just large enough to ensure x ∈ S after the iteration. By
an argument similar to the proof of Lemma 1, this particular β is guaranteed to satisfy the restriction
β ≤ c̃x(S). (Of course another option is to take any β smaller than this β.)

• In some cases, Alg. 2 can take β larger than Alg. 1 does. For example, consider a linear constraint
xu + xw ≥ 1 with linear cost c(x) = xu + xw. Consider an iteration for this constraint, starting
with xu = xw = 0. Alg. 1 would take β = 1/2 and xu = xw = 1/2, satisfying the constraint. But
c̃x(S) = 1 (to bring x into S would require raising xu + xw to 1), so Alg. 2 can take β = 1 and
xu = xw = 1, “over-satisfying” the constraint.

• It would be natural to set β to its maximum allowed value c̃x(S), but this value can be hard to compute.
Consider a single constraint S:

∑
j cj min(1, bxjc) ≥ 1, with cost function c(x) =

∑
j cjxj . Then

c̃0(S) = 1 if and only if there is a subset Q such that
∑

j∈Q cj = 1. Determining this for arbitrary c
is SUBSET SUM, which is NP-hard. Still, determining a “good enough” β is not hard: take, e.g. β =
min{cj(1 − xj) | xj < 1}. If x 6∈ S, then this is at most c̃x(S) because to bring x into S would
require raising at least one xj < 1 to 1. This choice of β is easy to compute, and with it Alg. 2 will
satisfy S within ∆ iterations.
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In short, computing c̃x(S) can be hard, but finding a “good” β ≤ c̃x(S) is not hard. A generic choice is to
take β just large enough to bring x into S after the iteration, as Alg. 1 does, but in some cases (especially
in online, distributed, and parallel settings where the algorithm is restricted) other choices may be easier to
implement or lead to fewer iterations. For a few examples, see the specializations of Alg. 2 in Section 7.

The proof of the approximation ratio for Alg. 2 generalizes the proof of Lemma 1 in two ways: the
proof has a second case to handle step sizes β larger than Alg. 1 would take, and the proof handles the more
general (submodular) cost function (the generality of which makes this proof unfortunately more abstract).

Theorem 1 (correctness of Alg. 2). For SUBMODULAR-COST COVERING, if Alg. 2 terminates, it returns a
∆-approximate solution.

Proof. Consider an iteration for a constraint S ∈ C. By the submodularity of c, the iteration increases the
cost c(x) of x by at most β|vars(S)|. 9 We show that, for any feasible y, the cost c̃x(y) of y in the residual
problem for x decreases by at least β. Thus, the invariant c(x)/∆ + c̃x(y) ≤ c(y), and the theorem, hold.

Recall that x ∧ y (resp. x ∨ y) denotes the coordinate-wise minimum (resp. maximum) of x and y.
Let x and x′ denote the vector x before and after the iteration, respectively. Fix any feasible y.
First consider the case when y ≥ x (the general case will follow from this one). The submodularity of c

implies c(x′) + c(y) ≥ c(x′ ∨ y) + c(x′ ∧ y). Subtracting c(x) from both sides and rearranging terms gives
(with equality if c is separable, e.g. linear)

[c(y)− c(x)] − [c(y ∨ x′)− c(x′)] ≥ c(x′ ∧ y)− c(x).

The first bracketed term is c(y ∨ x) − c(x) = c̃x(y) (using here that y ≥ x) so y ∨ x = y). The second
bracketed term is c̃x′(y). Substituting c̃x(y) and c̃x′(y) for the two bracketed terms, respectively, we have

c̃x(y)− c̃x′(y) ≥ c(x′ ∧ y)− c(x). (1)

Note that the left-hand side is the decrease in the residual cost for y in this iteration, which we want to show
is at least β. The right-hand side is the cost increase when x is raised to x′ ∧ y (i.e., each xj for j ∈ vars(S)
is raised to min(x′j , yj)).

To complete the proof for the case y ≥ x, we show that the right-hand side is at least β.
Recall that if y is feasible, then there must be at least one xk with k ∈ vars(S) and xk < yk.

Subcase 1 – When also x′k < yk for some k ∈ vars(S). The intuition in this case is that raising x to x′ ∧ y
raises xk to x′k, which alone costs β (by Alg. 2). Formally, let z be x with just xk raised to x′k. Then:

(i) Alg. 2 chooses x′k maximally such that c(z) ≤ c(x) + β.
(ii) c(z) = c(x) + β because (i) holds, c is continuous, and x′k <∞.

(iii) z ≤ x′ ∧ y because z ≤ x′ and (using x ≤ y and x′k < yk) z ≤ y.
(iv) c(z) ≤ c(x′ ∧ y) because c is non-decreasing, and (iii) holds.

Substituting (ii) into (iv) gives c(x) + β ≤ c(x′ ∧ y), that is, c(x′ ∧ y)− c(x) ≥ β.

Subcase 2 – Otherwise x′ ≥S y. The intuition in this case is that x′ ∧ y =S y, so that raising x to x′ ∧ y is
enough to bring x into S. And, by the assumption on β in Alg. 2, it costs at least β to bring x into S.

Here is the formal argument. Let z = x′ ∧ y. Then:
9To see this, consider each variables xj for j ∈ vars(S) one at a time, in at most ∆ steps; by submodularity of c, in a step that

increases a given xj , the increase in c(x) is at most what it would have been if xj had been increased first, i.e., at most β.
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(a) z =S y by the definition of z and x′ ≥S y.
(b) z ∈ S by (a), y ∈ S, and Observation 2.
(c) z ≥ x by the definition of z and x′ ≥ x and y ≥ x.
(d) c̃x(S) ≤ c(z)− c(x) by (b), (c), and the definition of c̃x(S).
(e) β ≤ c̃x(S) by the definition of Alg. 2.

By transitivity, (d) and (e) imply β ≤ c(z)− c(x), that is, c(x′ ∧ y)− c(x) ≥ β.

For the remaining case (when y 6≥ x), we show that the case y ≥ x implies this case. The intuition is that
if yj < xj , then c̃x(y) is unchanged by raising yj to xj , so we may as well assume y ≥ x. Formally, define
ŷ = y ∨ x ≥ y. Then ŷ ≥ x and ŷ is feasible.

By calculation, c̃x(y) = c(x ∨ y)− c(x) = c(x ∨ (y ∨ x))− c(x) = c̃x(ŷ).
By calculation, c̃x′(y) = c(x′ ∨ y)− c(x′) = c(x′ ∨ (y ∨ x))− c(x′) = c̃x′(ŷ).
Thus, c̃x(y)− c̃x′(y) equals c̃x(ŷ)− c̃x′(ŷ), which by the case already considered is at least β.

3 Online Covering, Paging, and Caching

Recall that in online SUBMODULAR-COST COVERING, each constraint S ∈ C is revealed one at a time; an
online algorithm must raise variables in x to bring x into the given S, without knowing the remaining
constraints. Alg. 1 or Alg. 2 can do this, so by Thm. 1 they yield ∆-competitive online algorithms.10

Corollary 1. Alg. 1 and Alg. 2 give ∆-competitive deterministic online algorithms for SUBMODULAR-COST

COVERING.

Using simple variants of the reduction of WEIGHTED CACHING to online SET COVER from [2], Corol-
lary 1 naturally generalizes a number of known results for PAGING, WEIGHTED CACHING, FILE CACHING,
CONNECTION CACHING, etc. as described in the introduction. To illustrate such a reduction, consider the
following CONNECTION CACHING problem. A request sequence r is given online. Each request rt is a subset
of the nodes in a network. In response to each request rt, a connection is activated (if not already activated)
between all nodes in rt. Then, if any node in rt has more than k active connections, some of the connections
(other than rt) must be deactivated (paying cost(rs) to deactivate connection rs) to leave each node with at
most k active connections.

Reduce this problem to online SET COVER as follows. Let variable xt indicate whether connection rt is
closed before the next request to rt after time t, so the total cost is

∑
t cost(rt)xt. For each node u and each

time t, for any (k + 1)-subset Q ⊆ {rs | s ≤ t;u ∈ rs}, at least one connection rs ∈ Q− {rt} (where s is
the time of the most recent request to rs) must have been deactivated, so the following constraint11 is met:
maxrs∈Q−{rt} xs ≥ 1.

This is an instance of online SET COVER, with a set for each time t (corresponding to xt) and an element
for each triple (u, t,Q) (corresponding to the constraint for that triple as described above).

Alg. 1 (via Corollary 1) gives the following k-competitive algorithm. In response to a connection request
rt, the connection is activated and xt is set to 0. Then, as long as any node, say u, has k + 1 active connec-
tions, the current x violates the constraint for the triple (u,Q, t), where Q contains u’s active connections.
Node u implements an iteration of Alg. 1 for the violated constraint: for all connections rs ∈ Q − {rt},

10If the cost function is linear, in responding to S this algorithm needs to know only S and the values of variables in S and their
cost coefficients. In general, the algorithm needs to know S, the entire cost function, and all variables’ values.

11We assume the last request must stay cached. If not, don’t subtract rt fromQ in each constraint. The competitive ratio is k+1.
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it simultaneously raises xs at rate 1/cost(rs), until some xs reaches 1. Node u then arbitrarily deactivates
connections rs ∈ Q with xs = 1 so that at most k of u’s connections remain active.

For a more involved example with a detailed analysis, see Section 3.1.

Remark: On k/(k − h + 1)-competitiveness. The classic competitive ratio of k/(k − h + 1) (versus
opt with cache size h ≤ k) can be reproduced in the above settings as follows. For any set Q as described
above, opt must meet the stronger constraint

∑
rs∈Q−{rt}bxsc ≥ k − h + 1. In this scenario, the proof of

Lemma 1 extends to show a ratio of k/(k − h + 1) (use that the variables are in [0, 1], so there are at least
k − h+ 1 variables xj such that xj < yj , so c̃x(y) decreases at rate at least k − h+ 1).

3.1 Covering constraint generality; upgradable online problems

Recall that the covering constraints in SUBMODULAR-COST COVERING need not be convex, only closed
upwards. This makes them relatively powerful. The main purpose of this section is to illustrate this power,
first by describing a simple example modeling file-segment requests in the http: protocol, then by using
it to model upgradable online caching problems.

Http file segment requests. The http: protocol allows retrieval of segments of files. To model this,
consider each file f as a group of arbitrary segments (e.g. bytes or pages). Let xt be the number of segments
of file rt evicted before its next request. Let c(rt) be the cost to retrieve a single segment of file rt, so the
total cost is

∑
t xt c(rt). Then (for example), if the cache can hold at most k segments total, model this with

constraints of the form (for a given subset Q)
∑

s∈Q max{0, size(rs) − bxsc} ≤ k (where size(rs) is the
total number of segments in rs).

Running Alg. 1 on an online request sequence gives the following online algorithm. At time t, respond
to the file request rt as follows. Bring all segments of rt into the cache. Until the current set of segments in
cache becomes cacheable, increase xs for each file with a segment in cache (other than rt) at rate 1/c(rs).
Meanwhile, whenever bmin(xs, size(rs))c increases for some xs, evict segment bxsc of rs. Continue until
the segments remaining in cache are cacheable.

The competitive ratio will be the maximum number of files in the cache. (In contrast, the obvious
approach of modeling each segment as a separate cacheable item will give competitive ratio equal to the
maximum number of individual segments ever in cache.)

Upgradable caching. The main point of this section is to illustrate the wide variety of online caching
problems that can be reduced to online covering, and then solved via algorithms such as Alg. 1.

An UPGRADABLE CACHING instance is specified by a maximum cache size k, a number d of hardware
components, the eviction-cost function cost(· · ·), and, for each time step t (revealed in an online fashion)
a request rt and a cacheability predicate, cacheablet(· · ·). As the online algorithm proceeds, it chooses not
only how to evict items, but also how to upgrade the hardware configuration. The hardware configuration
is modeled abstractly by a vector γ ∈ Rd

≥0, where γi is the cost spent so far on upgrading the ith hardware
component. Upgrading the hardware configuration is modeled by increasing the γi’s, which (via cost(· · ·)
and cacheable(· · ·)), can decrease item eviction costs and increase the power of the cache.

In response to each request, if the requested item rt is not in cache, it is brought in. The algorithm
can then increase any of the γi’s arbitrarily (increasing a given γi models spending to upgrade the ith
hardware component). The algorithm must then evict items (other than rt) from cache until the set Q of
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items remaining in cache is cacheable, that is, it satisfies the given predicate cacheablet(Q, γ). The cost to
evict any given item rs is cost(rs, γ) for γ at the time of eviction.

The eviction-cost function cost(· · ·) and each predicate cacheablet(· · ·) must meet the following mono-
tonicity restrictions. The eviction-cost function cost(rs, λ) must be monotone non-increasing with re-
spect to each λi. (Intuitively, upgrading the hardware can only decrease eviction costs.) The predicate
cacheablet(Q,λ) must be monotone with respect to Q and each λi. That is, increasing any single λi cannot
cause the value of the predicate to switch from true to false. (Intuitively, upgrading the hardware can only
increase the power of the cache.) Also, if a set Q is cacheable (for a given t and γ) then so is every subset
Q′ ⊆ Q. Finally, for simplicity of presentation, we assume that every cacheable set has cardinality k or less.

The cost of a solution is the total paid to evict items, plus the final hardware configuration cost,
∑d

i=1 γi.
The competitive ratio is defined with respect to the minimum cost of any sequence of evictions that meets all
the specified cacheability constraints.12 Note that the offline solution may as well fix the optimal hardware
configuration at the start, before the first request, as this maximizes subsequent cacheability and minimizes
subsequent eviction costs.

Standard FILE CACHING is the special case when cacheablet(Q, γ) is the predicate “
∑

rs∈Q size(rs) ≤
k” and cost(rs, γ) depends only on rs; that is, d = 0. Using UPGRADABLE CACHING with d = 0, one
could model independent use of the cache by some interfering process: the cacheability predicate could be
changed to cacheablet(Q) ≡ “

∑
rs∈Q size(rs) ≤ kt”, where each kt is at most k but otherwise depends

arbitrarily on t. Or, using UPGRADABLE CACHING with d = 1, one could also model a cache that starts
with size 1, with upgrades to larger sizes (up to a maximum of k) available for purchase at any time. Or,
also with d = 1, one could model that upgrades of the network (decreasing the eviction costs of arbitrary
items arbitrarily) are available for purchase at any time. One can also model fairly arbitrary restrictions on
cacheability: for example (for illustration), one could require that, at odd times t, two specified files cannot
both be in cache together, etc.

Next we describe how to reduce UPGRADABLE CACHING to online SUBMODULAR-COST COVERING with
∆ = d + k, giving (via Alg. 1) a (d + k)-competitive online algorithm for UPGRADABLE CACHING. The
resulting algorithm is a natural generalization of existing algorithms.

Theorem 2 (upgradable caching). UPGRADABLE CACHING has a (d + k)-competitive online algorithm,
where d is the number of upgradable components and k is the maximum number of files ever held in cache.

Proof. Given an arbitrary UPGRADABLE CACHING instance with T requests, define a SUBMODULAR-COST

COVERING instance (c, C) over Rd+T
≥0 as follows.

The variables are as follows. For i = 1, . . . , d, variable γi is the amount invested in component i. For
t = 1, . . . , T , variable xt is the cost (if any) incurred for evicting the tth requested item rt at any time
before its next request. Thus, a solution is a pair (γ, x) ∈ Rd

≥0 × RT
≥0. The cost function is c(γ, x) =∑d

i=1 γi +
∑T

t=1 xt.
At any time t, let A(t) denote the set of times of active requests, the times of the most recent requests to

each item:
A(t) = {s | s ≤ t, (∀s′ ≤ t) rs′ = rs → s′ ≤ s}.

In what follows, in the context of the current request rt at time t, we abuse notation by identifying each time
s ∈ A(t) with its requested item rs. (This gives a bijection between A(t) and the requested items.)

12This definition assumes that the request sequence and cacheability requirements are independent of the responses of the algo-
rithm. In practice, even for standard paging, this assumption might not hold. For example, a fault incurred by one process may
cause another process’s requests to come earlier. In this case, the optimal offline strategy would choose responses that take into
account the effects on inputs at subsequent times (possibly leading to a lower cost). Modeling this accurately seems difficult.
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For any given subset Q ⊆ A(t) of the currently active items, and any hardware configuration γ, either
the set Q is cacheable or at least one item s ∈ Q − {t} must be evicted by time t. In short, any feasible
solution (γ, x) must satisfy the predicate

cacheablet(Q, γ) or ∃s ∈ Q− {t} such that xs ≥ cost(rs, γ).

For a given t and Q, let St(Q) denote the set of solutions (γ, x) satisfying the above predicate. The set
St(Q) is closed upwards (by the restrictions on cacheable and cost) and so is a valid covering constraint.

The online algorithm adapts Alg. 1, as follows. It initializes γ = x = 0. After request rt, the algorithm
keeps in cache the set of active items whose eviction costs have not been paid, which we denote C:

C = Ct(γ, x) = {t} ∪ {s ∈ A(t) | xs < cost(rs, γ)}.

To respond to request rt, as long as the cached set C is not legally cacheable (i.e., cacheablet(C, γ) is
false), the corresponding constraint, St(C) is violated, and the algorithm performs an iteration of Alg. 1
for that constraint. By inspection, this constraint depends on the following variables: every λi, and each xs
where rs is cached and s 6= t (that is, s ∈ C − {t}). Thus, the algorithm increases these variables at unit
rate, until either (a) xs ≥ cost(rs, γ) for some cached rs and/or (b) cacheablet(C, γ) becomes true (due to
items leaving C and/or increases in γ). When case (a) happens, the algorithm evicts that rs to maintain the
invariant that the cached set C, then continues with that the new constraint for the new C. When case (b)
happens, the currently cached set is legally cacheable, and the algorithms is done responding to request t,

This completes the description of the algorithm. For the analysis, we define the constraint collection C
in the underlying SUBMODULAR COVERING instance (c, C) to contain just those constraints St(C) for which
the algorithm, given the request sequence, does steps. When the algorithm does a step at time t, the cached
set C contains only t and items that stayed in cache (and where collectively cacheable) after the previous
request. Since at most k items stayed in cache, by inspection, the underlying constraint St(C) depends on
at most d+ k variables in (γ, x). Thus, the degree ∆ of (c, C) is at most d+ k.

For the SUBMODULAR-COST COVERING instance (c, C), let (γ∗, x∗) and (γ′, x′), respectively, be the
solutions corresponding to opt and generated by the algorithm, respectively. For the original upgradable
caching instance (distinct from (c, C)), let opt and A denote the costs of, respectively, the optimal solution
and the algorithm’s solution.

Then A ≤ c(γ′, x′) because the algorithm paid at most x′s to evict each evicted item rs. (We use here
that xs ≥ cost(rs, γ) at the time of eviction, and xs does not decrease after that; note that xs may exceed
cost(rs, γ) because some items with positive x′s might not be evicted.) The approximation guarantee for
Alg. 1 (Lemma 1) ensures c(γ′, x′) ≤ ∆ c(γ∗, x∗).

By transitivity A ≤ c(γ′, x′) ≤ ∆ c(γ∗, x∗) = ∆ opt.

Flexibility in tuning the algorithm. In practice, it is well known that a competitive ratio much lower than
k is desirable and usually achievable for paging. Also, for file caching (where items have sizes), carefully
tuned variants of LANDLORD (a.k.a. GREEDY-DUAL SIZE) outperform the original algorithms [23]. In this
context, it is worth noting that the above algorithm can be adjusted, or tuned, in various ways while keeping
its competitive ratio,

First, there is flexibility in how the algorithm handles “free” requests — requests to items that are already
in the cache. When the algorithm is responding to request rt, let t′ be the most recent time that item was
requested but was not in the cache at the time of the request. Let F (t) = {s | t′ < s < t, rs = rt} denote the
times of these recent free requests to the item. Worst-case sequences have no free requests, and, although
each free request rs costs nothing, the analysis in the proof above charges xs for it anyway.
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The algorithm in the proof stops the step for the current constraint St(C) and removes an item s from
the cache C when some xs reaches cost(rs, γ). Modify the algorithm to stop the step (and remove s from
C) sooner, specifically, when xs reaches cost(rs, γ) −∑

s′∈F (s) xs′ for some s ∈ C (effectively reducing
the eviction cost of rs by

∑
s′∈F (s) xs′ . The modified algorithm is still a specialization of Alg. 1. Although

the resulting solution (x, γ) may be infeasible, the approximation guarantee still applies, in that (x, γ) has
cost at most ∆ opt. The online solution A is feasible though, and has cost equal to the cost of (x, γ), and is
thus ∆-competitive.

In the above description, each free request is used to reduce the effective cost of a later request to the
same item. Whereas the unmodified algorithm generalizes LRU, the modified algorithm generalizes FIFO.

Even more generally, the sum over the free requests rs of xs can be arbitrarily distributed over the non-
free requests to reduce their effective costs (leading to earlier eviction). Essentially the same analysis still
shows k-competitiveness.

There is a second, independent source of flexibility — the rates at which the variables are increased in
each step. As it specializes for FILE CACHING, the algorithm in the proof raises each xs at unit rate until xs
reaches cost(rs). This raises the total cost c(x, γ) at rate

∑
s∈C−{t} 1 ≤ k, while (in the analysis of Alg. 1

the residual cost of opt decreases at rate at least 1, implying a competitive ratio of k. In contrast, LANDLORD

(effectively) raises each xs at rate size(rs) until xs reaches cost(rs). This raises c(x, γ) more rapidly, at rate∑
s∈C−{t} size(rs), but this sum is also at most k (since all summed items fitted in the cache before rt was

brought in). This implies the (known) competitive ratio of k for LANDLORD. Generally, for items of size
larger than 1, the algorithm could raise xs at any rate in [1, size(rs)]. The more general algorithm still has
competitive ratio at most k.

Analogous adjustments can be made in other applications of Alg. 1. For some applications, adjusting
the variables’ relative rates of increase can lead to stronger theoretical bounds.

4 Stateless Online Algorithm and Randomized Generalization of Alg. 2

This section describes two randomized algorithms for SUBMODULAR-COST COVERING: Alg. 3 — a stateless
∆-competitive online algorithm, and an algorithm that generalizes both that and Alg. 2. For simplicity, in
this section we assume each Uj has finite cardinality. (The algorithms can be generalized in various ways to
arbitrary closed Uj , but the presentation becomes more technical.13)

Alg. 3 generalizes the HARMONIC k-server algorithm as it specializes for PAGING and CACHING [56], and
Pitt’s WEIGHTED VERTEX COVER algorithm [4].

Definition 5 (stateless online algorithm). An online algorithm for a (non-canonical) SUBMODULAR-COST

COVERING instance (c, U, C) is stateless provided the only state it maintains is the current solution x, in
which each xj is assigned only values in Uj .

Although Alg. 1 and Alg. 2 maintain only the current partial solution x ∈ Rn
≥0, for problems with

variable-domain restrictions xj may take values outside Uj . So these algorithms are not stateless.14

13 Here is one of many ways to modify Alg. 3 to handle arbitrary closed Uj’s. In each step, take β small enough so that for
each j ∈ vars(S), either Uj contains the entire interval [xj , xj + β], or Uj contains just xj from that interval. For the latter type
of j, take βj and x̂j as described in Alg. 3. For the former type of j, take βj = β and take x̂j to be the smallest value such that
increasing xj to x̂j would increase c(x) by β. Then proceed as above. (Taking β infinitesmally small gives the following process.
For each j ∈ vars(S) simultaneously, xj increases continuously at rate inversely proportional to its contribution to the cost, if it is
possible to do so while maintaining xj ∈ Uj , and otherwise xj increases to its next allowed value randomly according to a Poisson
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Stateless algorithm for Submodular-cost Covering ALG. 3
Input: cost c, finite domains U , constraints C
1. Initialize xj ← minUj for each j.
2. In response to each given constraint S, repeat the following until x ∈ S:
3. For each j ∈ vars(S):
4. If xj < maxUj :
5. Let x̂j = min{α ∈ Uj | α > xj} be the next largest value in Uj .
6. Let βj be the increase in c(x) that would result from raising xj to x̂j .
7. Else:
8. Let x̂j = xj and βj =∞.
9. If (∀j ∈ vars(S)) βj =∞: Return “infeasible”.

10. Increase xj to x̂j for all j ∈ J , where J is any random subset of vars(S) such that, for some
β ≥ 0, for each j ∈ vars(S), Pr[j ∈ J ] = β/βj . Above interpret 0/0 as 1. (Note that there
are many ways to choose J with the necessary property.)

The stateless algorithm initializes each xj to minUj . Given any constraint S, it repeats the following
until S is satisfied: it chooses a random subset J ⊆ vars(S), then increases each xj for j ∈ J to its next
allowed value, min{α ∈ Uj | α > xj}. The subset J can be any random subset such that, for some β ≥ 0,
for each j ∈ vars(S), Pr[j ∈ J ] equals β/βj , where βj is the increase in c(x) that would result from
increasing xj .

For example, one could take J = {r} where r is chosen so that Pr[r = j] ∝ 1/βj . Or take any
β ≤ minj βj , then, independently for each j ∈ vars(S), take j in J with probability β/βj . Or, choose
τ ∈ [0, 1] uniformly, then take J = {j |β/βj ≥ τ}. In the case that each Uj = {0, 1} and c is linear, one
natural special case of the algorithm is to repeat the following as long as there is some unsatisfied constraint
S:

Choose a single k ∈ {j | j ∈ vars(S), xj = 0} at random, so that Pr[k = j] ∝ 1/cj . Set xk = 1.

Theorem 3 (correctness of stateless Alg. 3). For online SUBMODULAR-COST COVERING with finite variable
domains, Alg. 3 is stateless. If the step sizes are chosen so the number of iterations has finite expectation
(e.g. taking β = Ω(minj βj)), then it is ∆-competitive (in expectation).

Proof. By inspection the algorithm maintains each xj ∈ Uj . It remains to prove ∆-competitiveness.
Consider any iteration of the repeat loop. Let x and x′, respectively, denote x before and after the

iteration. Let β and βj be as in the algorithm.
First we observe that iteration increases the cost of algorithm’s solution x by at most β∆ in expectation:

Claim 1: Cost c(x) increases by at most
∑

j∈vars(S)(β/βj)βj = β|vars(S)| ≤ β∆ in expectation.

The claim follows easily by direct calculation and the submodularity of c.

Inequality (1) from the proof of Thm. 1 still holds: c̃x(y)− c̃x′(y) ≥ c(x′∧y)− c(x), so the next claim
implies that the residual cost of any feasible y ≥ x decreases by at least β in expectation:

process whose intensity is inversely proportional to the resulting expected increase in the cost.)
14The online solution is not x, but rather x′ ≤ x defined from x by x′j = max{α ∈ Uj | α ≤ xj} or something similar, so

the algorithms maintain state other than the current online solution x′. For example, for paging problems, the algorithms maintain
xt ∈ [0, 1] as they proceed, where a requested item rs is currently evicted only once xs = 1. To be stateless, they should maintain
each xt ∈ {0, 1}, where xs = 0 iff page rs is still in the cache.
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Claim 2: For any feasible y ≥ x, EJ [c(x′ ∧ y)− c(x) | x] ≥ β.

Proof of claim. By Observation 2, there is a k ∈ vars(S) with yk > xk. Since yk ∈ Uk, the algorithm’s
choice of x̂k ensures yk ≥ x̂k. Let z be obtained from x by raising just xk to x̂k. With probability β/βk,
the subroutine raises xk to x̂k ≤ yk, in which case c(x′ ∧ y) − c(x) ≥ c(z) − c(x) = βk. This implies
EJ [c(x′ ∧ y)− c(x) | x] ≥ (β/βk)βk = β, proving Claim 2.

Thus, for y ≥ x, in each iteration, the residual cost of y decreases by at least β in expectation:
EJ [c̃x(y) − c̃x′(y) | x] ≥ β. By the argument at the end of the proof of Thm. 1, this implies the same
for all feasible y (even if y 6≥ x).

In sum, the iteration increases the cost of x by at most ∆β in expectation, while decreasing the residual
cost of any feasible y by at least β in expectation. By standard probabilistic arguments, this implies that the
expected final cost of x is at most ∆ times the initial residual cost of y (which equals the cost of y).

Formally, c(xt) + ∆c̃xt(y) is a super-martingale, where random variable xt denotes x after t iterations.
Let random variable T be the number of iterations. Using, respectively, c̃xT (y) ≥ 0, a standard optional

stopping theorem, and c̃x0(y) = c(y)− c(x0) (because x0 ≤ y), the expected final cost E[c(xT )] is at most

E[c(xT ) + ∆ c̃xT (y)] ≤ E[c(x0) + ∆ c̃x0(y)] = c(x0) + ∆ (c(y)− c(x0)) ≤ ∆ c(y).

Most general randomized algorithm. Alg. 2 raises the variables continuously, whereas Alg. 3 steps each
variable xj through the successive values in Uj . For some instances, both of these choices can lead to
slow running times. Next is an algorithm that generalizes both of these algorithms. The basic algorithm is
simple, but the condition on β is more subtle. The analysis is a straightforward technical generalization of
the previous analyses.

The algorithm has more flexibility in increasing variables. This may be important in distributed or
parallel applications, where the flexibility allows implementing the algorithm so that it is guaranteed to
make rapid (probabilistic) progress. (The flexibility may also be useful for dealing with limited-precision
arithmetic.)

The algorithm is Alg. 2, modified to call subroutine random stepc(x, S) (Alg. 4, below) instead of
stepc(x, S) to augment x in each iteration.

Subroutine random stepc ALG. 4
Input: current solution x ∈ R̄n

≥0, unsatisfied constraint S ∈ C)
1. Fix an arbitrary probability pj ∈ [0, 1] for each j ∈ vars(S).

. . . above, taking each pj = 1 gives Alg. 2
2. Choose a step size β ≥ 0 where β is at most expression (2) in Thm. 4.
3. For j with pj > 0, let x̂j be maximum such that raising xj to x̂j would raise c(x) by at most β/pj .
4. Choose a random subseta J ⊆ vars(S) s. t. Pr[j ∈ J ] = pj for j ∈ vars(S).
5. For j ∈ J , let xj ← x̂j .

aAs in Alg. 3, the events “j ∈ J” for j ∈ vars(S) can be dependent. See the last line of Alg. 3.

The step-size requirement is a bit more complicated.

Theorem 4 (correctness of randomized algorithm). For SUBMODULAR-COST COVERING suppose, in each
iteration of the randomized algorithm for a constraint S ∈ C and x 6∈ S, the step size β ≥ 0 is at most

min { EJ [c(x ↑y
J

)− c(x)] : y ≥ x; y ∈ S }, (2)
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where x ↑y
J

is a random vector obtained by choosing a random subset J from the same distribution used
in Line 4 of random step and then raising xj to yj for j ∈ J . Suppose also that the expected number of
iterations is finite. Then the algorithm returns a ∆-approximate solution in expectation.

Note that if p = 1, then (2) simplifies to c̃x(S). If c is linear, (2) simplifies to c̃′x(S) where c′j = pjcj .

Proof. The proof mirrors the proof of Thm. 3.
Fix any iteration. Let x and x′, respectively, denote x before and after the iteration. Let p, β, x̂, and J

be as in random step.

Claim 1. The expected increase in c(x) is
EJ [c(x′)− c(x)|x] ≤ ∑

j∈vars(S) pjβ/pj = β|vars(S)| ≤ β∆.

The claim follows easily by calculation and the submodularity of c.

Inequality (1) from the proof of Thm. 1 still holds: c̃x(y) − c̃x′(y) ≥ c(x′ ∧ y) − c(x), so the next claim
implies that the residual cost of any feasible y ≥ x decreases by at least β in expectation:

Claim 2. For any feasible y ≥ x, EJ [c(x′ ∧ y)− c(x) | x] ≥ β.

Proof of claim: The structure of the proof is similar to the corresponding part of the proof of Thm. 1.
Recall that if y is feasible, then there must be at least one xk with k ∈ vars(S) and xk < yk.

Subcase 1 – When also there is an x̂k < yk for k ∈ vars(S) with pk > 0.

In case of the event k ∈ J , raising x to x′ ∧ y raises xk to x̂k, which alone (by Alg. 4) costs β/pk.

Thus, the expected cost to raise x to x′ ∧ y is at least Pr[k ∈ J ]β/pk = β.

Subcase 2 – Otherwise, x̂j ≥ yj for all j ∈ J (for all possible J).

In this case, x′ ∧ y ≥ x ↑y
J

in all outcomes.

Thus, the expected cost to increase x to x′ ∧ y is at least the expected cost to increase x to x ↑y
J

.

By the assumption in the theorem, this is at least β. This proves Claim 2.

Claims 1 and 2 imply ∆-approximation via the argument in the final paragraphs of the proof of Thm. 3.

5 Relation to local-ratio method

The local-ratio method has most commonly been applied to problems with variables taking values in {0, 1}
and with linear objective function c ·x (see [7, 4, 9, 5]; for one exception, see [8]). For example, [9] shows a
form of equivalence between the primal-dual method and the local-ratio method, but that result only consid-
ers problems with solution space {0, 1}n (i.e., 0/1-variables). Also, the standard intuitive interpretation of
local-ratio — that the algorithm reduces the coefficients in the cost vector c — works only for 0/1-variables.

Here we need to generalize to more general solution spaces. To begin, we first describe a typical local-
ratio algorithm for a problem with variables over {0, 1} (we use CIP-01). After that, we describe one way to
extend the approach to more general variable domains. With that extension in place, we then recast Thm. 1
(the approximation ratio for Alg. 2) as a local-ratio analysis.
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Local-ratio for {0, 1} variable domains. Given a (non-canonical) LINEAR-COST COVERING instance
(c, U, C) where each Uj = {0, 1}, the standard local-ratio approach gives the following ∆-approximation
algorithm:

Initialize vector ` = c. Let “the cost of x under `” be
∑

j `jxj . Let x̂(`) be the maximal
x ∈ {0, 1}n that has zero cost under ` (i.e., x̂j(`) = 1 if `j = 0). As long as x̂(`) fails to
meet some constraint S ∈ C, repeat the following: Until x̂(`) ∈ S, simultaneously for all
j ∈ vars(S) with `j > 0, decrease `j at unit rate. Finally, return x̂(`).

The algorithm has approximation ratio ∆ = maxS |vars(S)| by the following argument. Fix the solution
xa returned by the algorithm. An iteration for a constraint S decreases `jxaj for each j ∈ vars(S) at rate
xaj ≤ 1, so it decreases ` · xa at rate at most ∆. On the other hand, in any feasible solution x∗, as long as the
variables xj for j ∈ S are being decreased, at least one j ∈ vars(S) with `j > 0 has x∗j = 1 (otherwise x̂(`)
would be in S). Thus the iteration decreases ` ·x∗ at rate at least 1. From this it follows that c ·xa ≤ ∆c ·x∗
(details are left as an exercise).

This local-ratio algorithm is the same as Alg. 1 for the case U = {0, 1}n (and linear cost). To see
why, observe that the modified cost vector ` in the local-ratio algorithm is implicitly keeping track of the
residual problem for x in Alg. 1. When the local-ratio algorithm reduces a cost `j at unit rate, for the same
j, Alg. 1 increases xj at rate 1/cj . This maintains the mutual invariant (∀j) `j = cj(1 − xj) — that is, `j
is the cost to raise xj the rest of the way to 1. Thus, as they proceed together, the CIP-01 instance (`, C)
defined by the current (lowered) costs ` is exactly the residual problem (c̃x, C) for the current x in Alg. 1. To
confirm this, note that the cost of any y in the residual problem for x is c̃x(y) =

∑
j cj max(yj − xj , 0) =∑

j:yj=1 cj(1 − xj), whereas in the local-ratio algorithm the cost for y under ` is
∑

j:yj=1 `j , and by the
mutual invariant above these are equal.

So, at least for linear-cost covering problems with {0, 1}-variable domains, we can interpret local-ratio
via residual costs, and vice versa. On the other hand, residual costs extend naturally to more general do-
mains. Is it possible to likewise extend the local-ratio cost-reduction approach? Simply reducing some costs
`j until some `j = 0 does not work — `jx

a
j may decrease at rate faster than 1, and when `j reaches 0, it is

not clear which value xj should take in Uj .

Local ratio for more general domains. One way to extend local-ratio to more general variable domains
is as follows. Consider any (non-canonical) instance (c, U, C) where c is linear. Assume for simplicity
that each variable domain Uj is the same: Uj = {0, 1, . . . , u} for some u independent of j, and that all
costs cj are non-zero. For each variable xj , instead of maintaining a single reduced cost `j , the algorithm
will maintain a vector `j ∈ Ru

≥0 of reduced costs. Intuitively, `jk represents the cost to increase xj from
k − 1 to k. (We are almost just reducing the general case to the 0/1 case by replacing each variable xj by
multiple copies, but that alone doesn’t quite work, as it increases ∆ by a factor of u.) Define the cost of any
x ∈ {0, 1, . . . , u}n under the current ` to be

∑
j

∑xj

k=1 `jk. As a function of the reduced costs `, define x̂(`)

to be the maximal zero-cost solution, i.e. x̂j(`) = max{k | ∑k
i=1 `ji = 0}.

The local-ratio algorithm initializes each `jk = cj , so that the cost of any x under ` equals the original
cost of x (under c). The algorithm then repeats the following until x̂(`) satisfies all constraints.

1. Choose any constraint S that x̂(`) does not meet. Until x̂(`) ∈ S, do:
2. Just until an `jk reaches zero, for all j ∈ vars(S) with x̂j(`) < u
3. simultaneously, lower `jkj at unit rate, where kj = x̂j(`) + 1.

Finally the algorithm returns x̂(`) (the maximal x with zero cost under the final `).
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One can show that this algorithm is a ∆-approximation algorithm (for ∆ w.r.t. the original CIP-UB
instance) by the following argument. Fix xa and x∗ to be, respectively, the algorithm’s final solution and an
optimal solution. In an iteration for a constraint S, as ` changes, the cost of xa under ` decreases at rate at
most ∆, while the cost of x∗ under ` decreases at rate at least 1. We leave the details as an exercise.

In fact, the above algorithm is equivalent to Alg. 1 for CIP-UB. If the two algorithms are run in sync, at
any given time, the CIP-01 instance with modified cost ` exactly captures the residual problem for Alg. 1.

Local-ratio for Submodular-Cost Covering. The previous example illustrates the basic ideas underlying
one approach for extending local-ratio to problems with general variable domains: decompose the cost into
parts, one for each possible increment of each variable, then, to satisfy a constraint S, for each variable
xj with j ∈ vars(S), lower just the cost for that variable’s next increment. This idea extends somewhat
naturally even to infinite variable domains, and is equivalent to the residual-cost interpretation.

Next we tackle SUBMODULAR-COST COVERING in full generality. We recast the proof of Thm. 1 (the
correctness of Alg. 2) as a local-ratio proof. Formally, the minimum requirement for the local-ratio method
is that the objective function can be decomposed into “locally approximable” objectives. The common cost-
reduction presentation of local ratio described above gives one such decomposition, but others have been
used (e.g. [8]). In our setting, the following local-ratio decomposition works. (We discuss the intuition after
the lemma and proof.)

Lemma 2 (local-ratio lemma). Any algorithm returns a ∆-approximate solution x provided there exist
T ∈ Z≥0 and ct : Rn

≥0 → R≥0 (for t = 1, 2, . . . , T ) and r : Rn
≥0 → R≥0 such that

(a) for any y, c(y) =
∑T

t=1 c
t(y) + r(y),

(b) for all t, and any y and feasible x∗, ct(y) ≤ ct(x∗)∆,
(c) the algorithm returns x such that r(x) = 0.

Proof. Properties (a)-(c) state that the cost function can be decomposed into parts, where, for each part ct(),
any solution y is ∆-approximate, and, for the remaining part r(), the solution x returned by the algorithm
has cost zero. Since x is ∆-approximate w.r.t. each ct(), and x has cost zero for the remaining part, x is
∆-approximate overall. Formally, let x∗ be an optimal solution. By properties (a) and (c), (b), then (a),
respectively,

c(x) =
∑T

t=1 c
t(x) ≤ ∑T

t=1 c
t(x∗)∆ + r(x∗)∆ = c(x∗)∆.

In local-ratio as usually presented, the local-ratio algorithm determines the cost decomposition as it
proceeds. The only state maintained by the algorithm after iteration t is the “remaining cost” function `t,
defined by `t(y) = c(y) −∑

s≤t c
s(y). In iteration t, the algorithm determines some portion ct of `t−1

satisfying Property (b) in the lemma and removes it from the cost. (This is the key step in designing the
algorithm.) The algorithm stops when it has removed enough of the cost so that there is a feasible solution
xa with zero remaining cost (`T (xa) = 0), then returns that xa (taking r = `T for Property (c) in the
lemma). By the lemma, this xa is a ∆-approximate solution.

For a concrete example, consider the local-ratio algorithm for the linear-cost, 0/1-variable case described
at the start of this section. Let T be the number of iterations. For t = 0, 1, . . . , T , let `t be the modified
cost vector at the end of iteration t (so `0 is the original cost vector). Define ct(y) = (`t − `t−1) · y to be
the decrease in the cost of y due to the change in ` in iteration t. Define r(y) = `T · y to be the modified
cost vector at termination (so the returned solution x = x̂(`T ) has r(x) = 0). It is easy to see that property
(a) and (c) hold. To see that property (b) holds, recall that in iteration t the algorithm reduces all `j for
j ∈ vars(S) with `j > 0, simultaneously and continuously at unit rate. It raises each xj to 1 when `j
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reaches 0. It stops once x ∈ S. At most ∆ of the `j’s are being lowered at any time, so the rate of decrease
in ` · y for any y ∈ {0, 1}n is at most ∆. But for any x∗ ∈ S, the rate of decrease in ` · x∗ is at least 1,
because at least one j ∈ vars(S) has x∗j = 1 and `j > 0 (otherwise x would be in S).

Next we describe how to generate such a decomposition of the cost c corresponding to a run of Alg. 2
on an arbitrary SUBMODULAR-COST COVERING instance (c, C). This gives an alternate proof of Thm. 1.
The proof uses the previously described idea for extending local ratio to more general domains. Beyond
that, it is slightly more complicated than the argument in the previous paragraph for two reasons: it handles
submodular costs, and, more subtly, in an iteration for a constraint S, Alg. 2 can increase variables more
than enough to satisfy S (of course this is handled already in the previous analysis of Alg. 2, which we
leverage below).

Lemma 3 (correctness of Alg. 2 via local-ratio). Alg. 2, run on any instance (c, C) of SUBMODULAR-COST

COVERING, implicitly generates a cost decomposition {ct} and r as described in Lemma 2. Thus, Alg. 2
gives a ∆-approximation.

Proof sketch. Assume without loss of generality that c(0) = 0. (Otherwise use cost function c′(x) =
c(x)− c(0). Then c′(x) is still non-negative and non-decreasing, and, since ∆ ≥ 1, the approximation ratio
for c′ implies it for c.)

Let xt denote Alg. 2’s vector x after t iterations. Let T be the number of iterations.
Recall that c̃xt is the cost in the residual problem (c̃xt , C) for x after iteration t: c̃xt(y) = c(xt∨y)−c(xt).
Define ct so that the “remaining cost” function `t (as discussed before the lemma) equals the objective

c̃xt in the residual problem for xt. Specifically, take ct(y) = c̃xt−1(y)− c̃xt(y). Also define r(y) = c̃xT (y).
These ct and r have properties (a-c) from Lemma 2.
Properties (a) and (c) follow by direct calculation. To show (b), fix any y. Then ct(y) = c(xt) −

c(xt−1) + c(xt−1 ∨ y) − c(xt ∨ y) ≤ c(xt) − c(xt−1). So ct(y) is at most the increase in the cost c(x) of
x during iteration t. In the proof of Thm. 1, this increase in c(x) in iteration t is shown to be at most ∆β.
Also, for any feasible x∗, the cost c̃x(x∗) for x∗ in the residual problem for x is shown to reduce by at least
β. But the reduction in c̃x(x∗) is exactly ct(x∗). Thus, ct(y) ≤ ∆β ≤ ∆ct(x∗), proving Property (b).

Each ct in the proof captures the part of the cost c lying “between” xt−1 and xt. For example, if c is
linear, then ct(y) =

∑
j cj |[0, yj ] ∩ [xt−1

j , xtj ]|. The choice of xt in the algorithm guarantees property (b) in
the lemma.

6 Relation to primal-dual method; local valid inequalities

Next we discuss how Alg. 1 can be reinterpreted as a primal-dual algorithm.
It is folklore that local-ratio and primal-dual algorithms are “equivalent”; for example [9] shows a formal

equivalence between the primal-dual method and the local-ratio method. But that result only applies to
problems with solution space {0, 1}n (i.e., 0/1-variables), and the underlying arguments do not seem to
extend directly to this more general setting.

Next we present two linear-program relaxations for LINEAR-COST COVERING, then use the second one
to reprove Lemma 1 (that Alg. 1 is a ∆-approximation algorithm for LINEAR-COST COVERING) using the
primal-dual method.

Fix any LINEAR-COST COVERING instance (c, C) in canonical form.
To simplify the presentation, assume at least one optimal solution to (c, C) is finite (i.e., in Rn

≥0).
For any S ∈ C, let S denote the complement of S in R̄n

≥0. Let S∗ denote the closure of S under limit.
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By Observation 2, if x is feasible, then, for any S ∈ C and y ∈ S, xmeets the non-domination constraint
x 6<S y (that is, xj ≥ yj for some j ∈ vars(S)). By a limit argument,15 the same is true if y ∈ S∗. In sum,
if x is feasible, then x meets the non-domination constraint for every (S, y) where S ∈ C and y ∈ S∗. For
finite x, the converse is also true:

Observation 4. If x ∈ Rn
≥0 meets the non-domination constraint for every S ∈ C and y ∈ S∗, then x is

feasible for (c, C).

Proof. Assume x is not feasible. Fix an S ∈ C with x 6∈ S. Define y(ε) by yj(ε) = xj + ε so limε→0 y =
x 6∈ S. Since S is closed under limit, y(ε′) 6∈ S for some ε′ > 0. Since x is finite, xj < yj(ε

′) for each
j ∈ vars(S). Thus, x <S y(ε′) (i.e., x fails to meet the non-domination constraint for (S, y(ε′))).

First relaxation. The non-domination constraints suggest this relaxation of (c, C):

minimize c · x subject to (∀S ∈ C, y ∈ S∗)
∑

j∈vars(S)

xj/yj ≥ 1.

Let (c,R1) denote this LINEAR-COST COVERING instance. Call it Relaxation 1.

Observation 5. Fix any x ∈ Rn
≥0 that is feasible for (c,R1).

Then ∆x is feasible for (c, C).

Proof. Fix any S ∈ C and y ∈ S∗.
Then

∑
j∈vars(S) xj/yj ≥ 1. Thus, maxj∈vars(S) xj/yj ≥ 1/|vars(S)|.

Thus, maxj∈vars(S) ∆xj/yj ≥ 1.
That is, ∆x meets the non-domination constraint for (any) (S, y).
By Observation 4, ∆x is feasible for (c, C).

Corollary 2 (relaxation gap for first relaxation). The relaxation gap16 for (c,R1) is at most ∆.

Proof. Let x be a finite optimal solution for (c,R1). By Obs. 5, ∆x is feasible for (c, C), and has cost
c · (∆x) = ∆(c · x). Thus, the optimal cost for (c, C) is at most ∆ times the optimal cost for (c,R1).

Incidentally, (c,R1) gives an ellipsoid-based LINEAR-COST COVERING ∆-approximation algorithm.17

Linear-Cost Covering reduces to Set Cover. From the LINEAR-COST COVERING instance (c, C), con-
struct an equivalent (infinite) SET COVER instance (c′, (E,F)) as follows. Recall the non-domination con-
straints: x 6<S y for each S ∈ C and y ∈ S

∗. Such a constraint is met if, for some j ∈ vars(S), xj is
assigned a value r ≥ yj . Introduce an element e = (S, y) into the element set E for each pair (S, y) asso-
ciated with such a constraint. For each j ∈ [n] and r ∈ R≥0, introduce a set s(j, r) into the set family F ,

15If x ∈ S and y ∈ S
∗
, then y is the limit of some sequence {yt} of points in S. Each yt has xtj(t) ≥ ytj(t) for some

j(t) ∈ vars(S). Since |vars(S)| is finite, for some j ∈ vars(S), the infinite subsequence {yt | j(t) = j} also has y as a limit point.
Then yj is the limit of the ytj’s in this subsequence, each of which is at most xj , so yj is at most xj .

16The relaxation gap is the maximum, over all instances (c, C) of LINEAR-COST COVERING, of the ratio [optimal cost for (c, C)]
/ [optimal cost for its relaxation (c,R1)].

17Briefly, run the ellipsoid method to solve (c,R1) using a separation oracle that, given x, checks whether ∆x ∈ S for all
S ∈ C, and, if not, returns an inequality that x violates forR1 (from the proof of Observation 5). Either the oracle finds, for some
x, that ∆x ∈ S for all S, in which case x′ = ∆x is a ∆-approximate solution for (c, C), or the oracle returns to the ellipsoid
method a sequence of violated inequalities that, collectively, prove that (c,R1) (and thus (c, C)) is infeasible.
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such that set s(j, r) contains element (S, y) if assigning xj = r would ensure x 6<S y (i.e., would satisfy the
non-domination constraint for (S, y)). That is, s(j, r) = {(S, y) | j ∈ vars(S), r ≥ yj}. Take the cost of
set s(j, r) to be c′jr = rcj (equal to the cost of assigning xj = r).

Observation 6 (reduction to Set Cover). The LINEAR-COST COVERING instance (c, C) is equivalent to the
above SET COVER instance (c′, (E,F)). By “equivalent” we mean that each feasible solution x to (c, C)
corresponds to a set cover X for (E,F) (where s(j, r) ∈ X iff xj = r) and, conversely, each set cover X
for (E,F) corresponds to a feasible solution x to (c, C) (where xj =

∑
r:s(j,r)∈X r). Each correspondence

preserves cost.

The observation is a consequence of Observation 4.
Note that above reduction increases ∆.

Second relaxation, via Set Cover. Relaxation 2 is the standard LP relaxation of SET COVER, applied to
the equivalent SET COVER instance (c′, (E,F)) above, with a variable Xjr for each set s(j, r) ∈ F :

minimize
∑
j,r

rcjXjr subject to (∀S ∈ C, y ∈ S∗)
∑

j∈vars(S)

∑
r≥yj

Xjr ≥ 1.

(There is a technicality in the definition above — the index r of the inner sum ranges over [yj ,∞). Should
one sum, or integrate, over r? Either can be appropriate — the problem and its dual will be well-defined and
weak duality will hold either way. Here we restrict attention to solutions X with finite support, so we sum.
The same issue arises in the dual below.)

We denote the above relaxation (c′,R2). By Observation 6, any feasible solution x to (c, C) gives a
feasible solution to (c,R2) of the same cost (via Xjr = 1 iff r = xj and Xjr = 0) otherwise). Incidentally,
any feasible solution X to (c′,R2) also gives a solution x to (c,R1) of the same cost, via xj =

∑
r rXjr.

That is, Relaxation 1 is a relaxation of Relaxation 2. The converse is not generally true.18

Dual of Set-Cover relaxation. The linear-programming dual of Relaxation 2 is the standard SET COVER

dual: fractional packing of elements under (capacitated) sets. We use a variable ze for each element e:

maximize
∑
e∈E

ze subject to (∀ s(j, r) ∈ F)
∑

e∈s(j,r)

ze ≤ rcj .

Recall E = {(S, y) | S ∈ C, y ∈ S∗}; s(j, r) = {(S, y) ∈ E | j ∈ vars(S), r ≥ yj}.
We now describe the primal-dual interpretation of Alg. 1.

Lemma 4 (primal-dual analysis of Alg. 1). Alg. 1 can be augmented to compute, along with the solution
x to (c, C), a solution z to the dual of Relaxation 2 such that c · x is at most ∆ times the cost of z. Thus,
Alg. 1 is a ∆-approximation algorithm.

Proof. Initialize z = 0. Consider an iteration of Alg. 1 for some constraint S′. Let x and x′, respectively, be
the solution x before and after the iteration. Fix element e′ = (S′, x′). Augment Alg. 1 to raise19 the dual

18The instance (c, C) defined by min{x1 + x2 | x ∈ R2
≥0; x1 + x2 ≥ 1} has optimum cost 1. In its first relaxation (c,R1),

x1 = x2 = 1/4 with cost 1/2 is feasible. But one can show (via duality) that (c′,R2) has optimal cost at least 1.
19In fact this dual variable must be 0 before this, because x′j > xj for some j, so this dual variable has not been raised before.
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variable ze′ by β. This increases the dual cost by β. Since the iteration increases the cost of x by at most
β∆, the iteration maintains the invariant that the cost of x is at most ∆ times the dual cost.

To finish, we show the iteration maintains dual feasibility. For any element e = (S, y) ∈ E, let S(e)
denote S. Increasing the dual variable ze′ by β maintains the following invariant:

for all j ∈ [n], xjcj =
∑

e:j∈vars(S(e)) ze.

The invariant is maintained because ze′ occurs in the sum iff j ∈ vars(S(e′)) = vars(S′), and each xj is
increased (by β/cj) iff j ∈ vars(S′), so the iteration increases both sides of the equation equally.

Now consider any dual constraint that contains the raised variable ze′ . Fix the pair (j, r) defining the
dual constraint. That e′ ∈ s(j, r) implies j ∈ vars(S′) and x′j ≤ r. Each dual variable ze that occurs in
this dual constraint has j ∈ vars(S(e)). But, by the invariant, at the end of the iteration, the sum of all
dual variables ze with j ∈ vars(S(e)) equals x′jcj . Since x′j ≤ r, this sum is at most rcj . Thus, the dual
constraint remains feasible at the end of the iteration.

6.1 Valid local inequalities; the “price of locality”

Here is one general way of characterizing the analyses in this paper in terms of valid inequalities. Note that
each of the valid inequalities that is used in Relaxation 1 from Section 6 can be obtained by considering some
single constraint “x ∈ S” in isolation, and adding valid inequalities for just that constraint. Call such a valid
inequality “local”. This raises the following question: What if we were to add all local valid inequalities
(ones that can be obtained by looking at each S in isolation)? What can we say about the relaxation gap of
the resulting polytope?

Formally, fix any SUBMODULAR-COST COVERING instance min{c(x) | x ∈ S for all S ∈ C}. Consider
the “local” relaxation (c,L) obtained as follows. For each constraint S ∈ C, let conv(S) denote the convex
closure of S. Then let L = {conv(S) | S ∈ C}. Equivalently, for each S ∈ C, let LS contain all of the
linear inequalities on variables in vars(S) that are valid for S, then let L =

⋃
S∈C LS . For LINEAR-COST

COVERING, Relaxation 1 above is a relaxation of (c,L), so Corollary 2 implies that the gap is at most ∆. It
is not hard to find examples20 showing that the gap is at least ∆.

Of course, if we add all (not just local) valid inequalities for the feasible region
⋂

S∈C S, then every
extreme point of the resulting feasible region is feasible for (c, C), so the relaxation gap would be 1.

7 Fast Implementations for Special Cases of Submodular-Cost Covering

This section has a linear-time implementation of Alg. 2 for FACILITY LOCATION (and thus also for SET

COVER and VERTEX COVER), a nearly linear-time implementation for CMIP-UB, and anO(N∆̂ log ∆)-time
implementation for two-stage probabilistic CMIP-UB. (HereN is the number of non-zeroes in the constraint
matrix and ∆̂ is the maximum, over all variables xj , of the number of constraints that constrain that variable.)

20 Here is an example in R2. For v ∈ R2, let |v| denote the 1-norm
∑

i |vi|. For each v ∈ R2
≥0 such that |v| = 1, define

constraint set Sv = {x ∈ R2
≥0 : (∃j)xj ≥ vj}. Consider the covering problem min{|x| : (∀v)x ∈ Sv}.

Each constraint x ∈ Sv excludes points dominated by v, so the intersection of all Sv’s is {x ∈ R2
≥0 : |x| ≥ 1}. On the other

hand, since Sv contains the points (v1, 0) and (0, v2), conv(Sv) must contain x = v2(v1, 0) + v1(0, v1) = (v1v2, v1v2), where
v1v2 ≤ (1/2)2 = 1/4. Thus, each conv(Sv) contains x = (1/4, 1/4), with |x| = 1/2. Thus, the relaxation gap of (c,L) for this
instance is at least 2.

Another example with ∆ = 2, this time in Rn
≥0. Consider the sets Sij = {x ∈ Rn

≥0 : max(xi, xj) ≥ 1}. Consider the covering
problem min{|x| : (∀i, j)x ∈ Sij}. Each point x ∈

⋂
ij Sij has |x∗| ≥ (n − 1)/n, but x = (1/2, 1/2, 1/2, . . . , 1/2) is in each

conv(S), and |x| = n/2, so the relaxation gap of (c,L) is at least 2.
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The section also introduces a two-stage probabilistic version of SUBMODULAR COVERING, and shows that it
reduces to ordinary SUBMODULAR COVERING.

For FACILITY LOCATION, ∆ is the maximum number of facilities that might serve any given customer.
For SET COVER, ∆ is the maximum set size. For VERTEX COVER, ∆ = 2.

7.1 Linear-time implementations for Facility Location, Set Cover, and Vertex Cover

The standard integer linear program for FACILITY LOCATION is not a covering linear program due to con-
straints of the form “xij ≤ yj”. Also, the standard reduction of FACILITY LOCATION to SET COVER increases
∆ exponentially. For these reasons, we formulate FACILITY LOCATION directly as the following special case
of SUBMODULAR-COST COVERING, taking advantage of submodular cost:

minimize
∑

j fj maxi xij +
∑

ij dijxij

subject to (for each customer i) maxj∈N(i) xij ≥ 1.

Above j ∈ N(i) if customer i can use facility j. (N(i) = vars(Si) where Si is the constraint above for
customer i.)

Theorem 5 (linear-time implementations). For (non-metric) FACILITY LOCATION, SET COVER, and VER-
TEX COVER, the greedy ∆-approximation algorithm (Alg. 2) has a linear-time implementation.

Proof. The implementation is as follows.

1. Start with all xij = 0. Then, for each customer i, in any order, do the following:
2. Let β = minj∈N(i)[dij + fj(1−maxi′ xi′j)]

(the minimum cost to raise xij to 1 for any j ∈ N(i)).
3. For each j ∈ N(i), raise xij by min[β/dij , (β + fj maxi′ xi′j)/(dij + fj)]
4. Assign each customer i to any facility j(i) with xij(i) = 1.
5. Open the facilities that have customers.

Line 3 raises the xij’s just enough to increase the cost by β per raised xij and to increase maxj∈N(i) xij to
1.

By maintaining, for each facility j, maxi xij , the implementation can be done in linear time,O(
∑

i |N(i)|).
SET COVER is the special case when dij = 0; VERTEX COVER is the further special case ∆ = 2.

7.2 Nearly linear-time implementation for CMIP-UB

This section describes a nearly linear-time implementation of Alg. 2 for COVERING MIXED INTEGER LINEAR

PROGRAMS with upper bounds on the variables (CMIP-UB), that is, problems of the form

min {c · x | x ∈ Rn
≥0; Ax ≥ B; x ≤ u; (∀j ∈ I) xj ∈ Z},

where c ∈ Rn
≥0, A ∈ Rm×n

≥0 and B ∈ Rn
≥0 have no negative entries. The set I contains the indices of the

variables that are restricted to take integer values, while u ∈ R̄n
≥0 gives the upper bounds on the variables.

∆ is the maximum number of non-zeroes in any row of A. We prove the following theorem:

Theorem 6 (implementation for CMIP-UB). For CMIP-UB, Alg. 2 can be implemented to return a ∆-
approximation in O(N log ∆) time, where N is the total number of non-zeroes in the constraint matrix.
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Proof. Fix any CMIP-UB instance as described above. For each constraint Aix ≥ Bi (each row of A), do
the following. For presentation (to avoid writing the subscript i), rewrite the constraint as a · x ≥ b (where
a = Ai and b = Bi). Then bring the constraint into canonical form, as follows. Assume for simplicity
of presentation that integer-valued variables in S come before the other variables (that is, I ∩ vars(S) =
{1, 2, . . . , `} for some `). Assume for later in the proof that these ` variables are ordered so that a1 ≥
a2 ≥ · · · ≥ a`. (These assumptions are without loss of generality.) Now incorporate the variable-domain
restrictions (x ≤ u and (∀j ∈ I) xj ∈ Z) into the constraint by rewriting it as follows:∑̀

j=1

ajbmin(xj , uj)c+
∑
j>`

aj min(xj , uj) ≥ b. (canonical constraint S for Aix ≥ Bi)

Let C be the collection of such canonical constraints, one for each original covering constraintAix ≥ Bi.
Intuition. The algorithm focuses on a single unsatisfied S ∈ C, repeating an iteration of Alg. 2 (raising
the variables xj for j ∈ vars(S)) until S is satisfied. It then moves on to another unsatisfied S, and so
on, until all constraints are satisfied. While working with a particular constraint S, it increases each xj for
j ∈ vars(S) by β/cj for some β. We must choose β ≤ c̃x(S) (the optimal cost to augment x to satisfy S),
thus each step requires some lower bound on c̃x(S). But the steps must also be large enough to satisfy S
quickly.

For intuition, consider first the case when S has no variable upper bounds (each uj =∞) and no floors.
In this case, the optimal augmentation of x to satisfy S simply raises the single most cost-effective variable
xj (minimizing aj/cj) to satisfy S, so c̃x(S) is easy to calculate exactly and taking β = c̃x(S) satisfies S in
one iteration.

Next consider the case when S has some variable upper bounds (finite uj). In this case, we take β to be
the minimum cost to either satisfy S or bring some variable to its upper bound (we call this saturating the
variable). This β is easy to calculate, and will satisfy S after at most vars(S) iterations (as each variable can
be saturated at most once).

Finally, consider the case when S also has floors. This complicates the picture considerably. The basic
idea is to relax (remove) the floors, satisfy the relaxed constraint as described above, and then reintroduce
the floors one by one. We reintroduce a floor only once the constraint without that floor is already satisfied.
This ensures that the constraint with the floor will be satisfied if the term with the floor increases even once.
(If the term for a floored variable xj increases, we say xj is bumped.) We also reintroduce the floors in a
particular order — in order of decreasing aj . This ensures that introducing one floor (which lowers the value
of the left-hand side) does not break the property in italics above for previously reintroduced floors.

The above approach ensures that S will be satisfied in O(vars(S)) iterations. A careful but straightfor-
ward use of heaps allows all the iterations for S to be done in O(vars(S) log ∆) time. This will imply the
theorem.

Here are the details. To specify the implementation of Alg. 2, we first specify how, in each iteration,
for a given constraint S ∈ C and x 6∈ S, the implementation chooses the step size β. It starts by finding a
relaxation Sh of S (that is, S ⊆ Sh, so c̃x(Sh) ≤ c̃x(S)). Having chosen the relaxation, the algorithm then
takes β to be the minimum cost needed to raise any single variable xj (with j ∈ vars(S)) just enough to
either satisfy the relaxation Sh or to cause xj = uj .

The relaxation Sh is as follows. Remove all floors from S, then add in just enough floors (from left
to right), so that the resulting constraint is unsatisfied. Let Sh be the resulting constraint, where h is the
number of floors added in. Formally, For h = 0, 1, . . . , `, define fh(x) =

∑h
j=1 ajbmin(xj , uj)c +∑

j>h aj min(xj , uj) to be the left-hand side of constraint S above, with only the first h floors retained.
Then fix h = min{h ≥ 0 | fh(x) < b}, and take Sh = {x | fh(x) ≥ b}.
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Next we show that this β satisfies the constraint in Alg. 2.

Lemma 5 (validity of step size). For S, x 6∈ S, and β as described above, β ∈ [0, c̃x(S)].

Proof. As S ⊆ Sh, it suffices to prove β ≤ c̃x(Sh). Recall that a variable xj is saturated if xj = uj . Focus
on the unsaturated variables in vars(S). We must show that if we wish to augment (increase) some variables
just enough to saturate a variable or bring x into Sh, then we can achieve this at minimum cost by increasing
a single variable. This is certainly true if we saturate a variable: only that variable needs to be increased. A
special case of this is when some ci is 0—we can saturate xi at zero cost, which is minimum. Therefore,
consider the case where all ci’s are positive and the variable increases bring x into Sh.

Let P be the set of unsaturated variables in {x1, . . . , xh}, and let Q be the set of unsaturated variables
among {xj | j > h}. Consider increasing a variable xj ∈ P . Until xj is bumped (i.e., the term bxjc + 1
increases because xj reaches its next higher integer), fh(x) remains unchanged, but the cost increases. Thus,
if it is optimal to increase xj at all, xj must be bumped. When xj is bumped, fh(x) jumps by aj , which
(by the ordering of coefficients) is at least ah, which (by the choice of h) is sufficient to bring x into Sh.
Thus, if the optimal augmentation increases a variable in P , then the only variable that it increases is that
one variable, which is bumped once.

The only remaining case is when the optimal augmentation of x increases only variables from Q. Let
xk = arg min{cj/aj | xj ∈ Q}. Clearly it is not advantageous to increase any variable in Q other than xk.
(Let δj ≥ 0 denote the amount by which we increase xj ∈ Q. If δj > 0 for some j 6= k, then we can set
δj = 0 and instead increase δk by ajδj/ak. this will leave the increase in fh(x) intact, so x will still be
brought into Sh, yet will not inflate the cost increase, because the cost will decrease by cjδj , but increase by
ckajδ/ak ≤ cjδj , where the inequality holds by the definition of k.)

By the lemma and Thm. 1, with this choice of β, the algorithm gives a ∆-approximation. It remains to
bound the running time.

Lemma 6 (iterations). For each S ∈ C, the algorithm does at most 2|vars(S)| iterations for S.

Proof. Recall that, in a given iteration, β is the minimum such that raising some single xk by β/ck (with
k ∈ vars(S) and xk < uk) is enough to saturate xk or bring x into Sh. If the problem is feasible, β < ∞
so there is such an xk. Each iteration increases xj for all j ∈ vars(S) by β/cj , so must increase this xk by
β/ck. Thus, the iteration either saturates xk or brings x into Sh.

The number of iterations for S that saturate variable is clearly at most |vars(S)|. The number of iterations
for S that satisfy that iteration’s relaxation (bringing x into Sh) is also at most |vars(S)|, because, by the
choice of h, in the next iteration for S the relaxation index h will be at least 1 larger. Thus, there are at most
2|vars(S)| iterations for S before x ∈ S.

The obvious implementation of an iteration for a given constraint S runs in time O(|vars(S)|) (provided
the constraint’s aj’s are sorted in a preprocessing step). By the lemma, the obvious implementation thus
yields total time O(

∑
S |vars(S)|2) ≤ O(

∑
S |vars(S)|∆) = O(N∆).

To complete the proof of Thm. 6, we show how to use standard heap data structures to implement the
above algorithm to run in O(N log ∆) time. The implementation considers the constraints S ∈ C in any
order. For a given S, it repeatedly does iterations for that S until x ∈ S. As the iterations for a given S
proceed, the algorithm maintains the following quantities:

• A fixed vector xb, which is x at the start of the first iteration for S, initialized in time O(|vars(S)|).

26



• A variable τ , tracking the sum of the β’s for S so far (initially 0). Crucially, the current x then satisfies
xj = xbj + τ/cj for j ∈ vars(S). While processing a given S, we use this to represent x implicitly.

We then use the following heaps to find each breakpoint of τ — each value at which a variable
becomes saturated, is bumped, or at which Sh is satisfied and the index h of the current relaxation Sh

increases. We stop when S` (that is, S) is satisfied.

• A heap containing, for each unsaturated variable xj in vars(S), the value cj(uj − xbj) of τ at which xj
would saturate. This value does not change until xj is saturated, at which point the value is removed
from the heap.

• A heap containing, for each unsaturated integer variable xj (j ≤ h) in Sh, the value of τ at which xj

would next be bumped. This value is initially cj(1−(xbj−bxbjc)). It changes only when xj is bumped,
at which point it increases by cj .

• A heap containing, for each unsaturated non-integer variable xj (j > h) in Sj , the ratio cj/aj . This value
does not change. It is removed from the heap when xj is saturated.

• The current derivative d of fh(x) with respect to τ , which is d =
∑

j>h,xj<uj
aj/cj . This value changes

by a single term whenever a variable is saturated or h increases.

• The current slack bh = b− fh(x) of Sh, updated at each breakpoint of τ .

In each iteration, the algorithm queries the min-values of each of the three heaps. It uses the three values
to calculate the minimum value of τ at which, respectively, a variable would become saturated, a variable
would be bumped, or a single (non-integer) variable’s increase would increase fh(x) by the slack bh. It
then increases τ to the minimum of these three values. (This corresponds to doing a step of Alg. 1 with β
equal to the increase in τ .) With the change in τ , it detects each saturation, bump, and increment of h that
occurs, uses the derivative to compute the increase in fh(x), then updates the data structures accordingly.
(For example, it removes saturated variables’ keys from all three heaps.)

After the algorithm has finished all iterations for a given constraint S, it explicitly sets xj ← xbj + τ/cj
for j ∈ vars(S), discards the data structures for S, and moves on to the next constraint.

The heap keys for a variable xj change (and are inserted or removed) only when that particularly variable
is bumped, or saturated, or when h increases to j. Each variable is saturated at most once, and h increases at
most ` ≤ vars(S) times, and thus there are at most vars(S) bumps (as each bump increases h by at least 1).
Thus, during all iterations for S, the total number of breakpoints and heap key changes isO(vars(S)). Since
each heap operation takesO(log ∆) time, the overall time is thenO(

∑
S∈C |vars(S)| log ∆) = O(N log ∆),

where N is the number of non-zeros in A.
This proves the theorem.

7.3 Two-Stage (Probabilistic) Submodular-Cost Covering

An instance of two-stage SUBMODULAR-COST COVERING is a tuple (W,p, (c, C)) where (c, C) is an instance
of SUBMODULAR-COST COVERING over n variables (so S ⊆ R̄n

≥0 for each S ∈ C), W : R̄|C|×n≥0 → R̄≥0 is a
non-decreasing, submodular, continuous first-stage objective function, and, for each S ∈ C, the activation
probability of S is pS . A solution is a collection X = [xS ]S∈C of vectors xS ∈ R̄n

≥0, one for each constraint
S ∈ C, such that xS ∈ S. Intuitively, xS specifies how S will be satisfied if S is activated, which happens
with probability pS . As usual ∆ = maxS∈C |vars(S)|.
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The solution should minimize the costw(X) ofX , as defined by the following random experiment. Each
constraint S is independently activated with probability pS . This defines a SUBMODULAR-COST COVERING

instance (c,A) where A = {S ∈ C | S is activated} ⊆ C, and the solution xA for that instance defined by
xAj = max{xSj | S ∈ A}. Intuitively, xA is the minimal vector that meets the first-stage commitment to
satisfy each activated constraint S with xS . The cost w(X) is then W (X) +EA[c(xA)], the first-stage cost
W (X) (modeling a “preparation” cost) plus the (expectation of the) second-stage cost c(xA) (modeling an
additional cost for assembling the final solution to the second-stage SUBMODULAR-COST COVERING instance
(c,A)).

Facility-Location example. For example, consider a SET COVER instance (c, C) with elements [m] and
sets s(j) ⊆ [m] for j ∈ [n]. That is, minimize c · x subject to x ∈ Rn

≥0, (∀i ∈ [m]) maxj:i∈s(j) xj ≥ 1.

Extend this to a two-stage SET COVER instance (W,p, (c, C)) whereWij ≥ 0 and each pi = 1. LetX = [xi]i
be any (minimal) feasible solution to this instance. That is, xi ∈ {0, 1}n says that element i chooses the set
s(j) where xij = 1. All constraints are activated in the second stage, so each xAj = max{xij | i ∈ s(j)}. That
is, xAj = 1 iff any element i has chosen set s(j). The costw(X) is

∑
ij Wijx

i
j +

∑
j cj max{xij | i ∈ s(j)}.

Note that this two-stage SET COVER problem exactly models FACILITY LOCATION. The first-stage cost
W captures the assignment cost; the second-stage cost c captures the opening cost.

Consider again general two-stage SUBMODULAR-COST COVERING. A ∆-approximation algorithm for it
follows immediately from the following observation:

Observation 7. Two-stage SUBMODULAR-COST COVERING reduces to SUBMODULAR-COST COVERING (pre-
serving ∆).

Proof. Any two-stage instance (W,p, (c, C)) over n variables is equivalent to a standard instance (w, C′)
over n|C| variables (X = [xS ]S∈C) where w(X) is the cost of X for the two-stage instance as defined
above, and, for each S ∈ C, there is a corresponding constraint xS ∈ S on X in C′. One can easily verify
that the cost w(X) is submodular, non-decreasing, and continuous because W (X) and c(x) are.

Next we describe a fast implementation of Alg. 2 for two-stage CMIP-UB — the special case of two-
stage SUBMODULAR-COST COVERING where W is linear and the pair (c, C) form a CMIP-UB instance.

Theorem 7 (implementation for two-stage CMIP-UB). For two-stage CMIP-UB:
(a) Alg. 2 can be implemented to return a ∆-approximation in O(N∆̂ log ∆) time, where ∆̂ is the

maximum number of constraints per variable and N is the input size
∑

S∈C |vars(S)|.
(b) When p = 1, the algorithm can be implemented to run in time O(N log ∆). (The case p = 1 of

two-stage CMIP-UB generalizes CMIP-UB and FACILITY LOCATION).

Proof. Fix an instance (W,p, (c, C)) of two-stage CMIP-UB. Let (w, C′) be the equivalent instance of stan-
dard SUBMODULAR-COST COVERING from Observation 7 over variable vector X = [xS ]S∈C . Let random
variable xA be as described in the problem definition (xAj = max{xSj | S active}), so that w(X) =

W ·X + E[c · xA].
We implement Alg. 2 for the SUBMODULAR-COST COVERING instance (w, C′). In an iteration of the

algorithm for a constraint S on xS , the algorithm computes β as follows. Recall that the variables in X
being increased (to satisfy xS ∈ S) are xSj for j ∈ vars(S). The derivative of w(X) with respect to xSj is

c′j = WS
j + cj Pr[xSj determines xAj ]

= WS
j + cjpS

∏
{1− pR | xRj > xSj , j ∈ vars(R)}.
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The derivative will be constant (that is, w(X) will be linear in xS) until xSj reaches its next breakpoint
tj = min{xRj | xRj > xSj , j ∈ vars(R)}. Define βt = min{(tj − xSj )c′j | j ∈ vars(S)} to be the minimum
cost to bring any xSj to its next breakpoint.

Let w′ be the vector defined above (the gradient of w with respect to xS). Let β′ be the step size that the
algorithm in Thm. 6 would compute given the linear cost w′. That is, that it would compute in an iteration
for constraint xS ∈ S given the CMIP-UB instance (w′, {S}) and the current xS .

The algorithm here computes βt and β′ as defined above, then takes the step size β to be β = min(βt, β
′).

This β is a valid lower bound on c̃X(S), because βt is the minimum cost to bring any xSj to its next break-
point, while β′ ≤ c̃′

xS (S) is a lower bound on the cost to satisfy S without bringing any xSj to a breakpoint.
Thus, by Thm. 1, this algorithm computes a ∆-approximation.

The algorithm is as follows. It considers the constraints in any order. For each constraint S, it does
iterations for that S, with step size β defined above, until S is satisfied.

Lemma 7 (iterations). For each S ∈ C, the algorithm does at most |vars(S)|(∆̂ + 2) iterations for S.

Proof. An iteration may cause some xSj to reach its next breakpoint tj . By inspection of the breakpoints tj ,
each xSj can cross at most ∆̂ breakpoints (one for each constraint R on xj in the original instance). Thus,
there are at most |vars(S)|∆̂ such iterations. In each remaining iteration the step size β equals the step size
β′ from the algorithm in Thm. 6. Following the proof of Lemma 6 in Thm. 6, there are at most 2|vars(S)|
such iterations. (In each such iteration, either some variable xSj reaches its upper bound uj for the first time,
or the constraint xSj ∈ Sh is satisfied for the current relaxation Sh of S. By inspection, Sh depends only on
the current xS and the constraint S, and not on the cost function w′. Thus, as in the proof of Lemma 6, after
an iteration for S where the current Sh is satisfied, in the next iteration, h will be at least one larger. That
can happen at most |vars(S)| times.)

To complete the proof of Thm. 7, we prove that algorithm can be implemented to take timeO(N∆̂ log ∆),
or, if p = 1, time O(N log ∆).

As the algorithm does iterations for S, the algorithm maintains the data structures described at the end
of the proof of Thm. 6, with the following adjustments. When some xSj reaches its next breakpoint and w′j
increases, the algorithm

• raises xbj to maintain the invariant xj = xbj + τ/w′j ;

• updates the derivative d to account for the change in the term aj/cj (if present in the derivative), and

• updates the values for key j in the three heaps (where present).

By inspection of the proof of Thm. 6, these adjustments are enough to maintain the data structures correctly
throughout all iterations for S. The updates take O(log ∆) time per breakpoint. Thus, the total time for the
adjustments is O(

∑
S |vars(S)|∆̂ log ∆), which is O(N∆̂ log ∆).

To compute βt in each iteration, the algorithm does the following. As it is doing iterations for a particular
constraint S, recall that τ is the sum of the β’s for S so far (from the proof of Thm. 6). The algorithm
maintains a fourth heap containing values {τ + (tj − xSj )w′j | j ∈ vars(S)} (the values in the definition of
βt, plus τ ). Then βt is the minimum value in this heap, minus τ .

Then xSj reaches a breakpoint (and w′j changes) if and only if β = βt and key j has minimum value
in this heap. When that happens, the algorithm finds the next breakpoint t′j for j (as described in the next
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paragraph) and updates j’s value in the fourth heap. The total time spent maintaining the fourth heap is
O(log ∆) per breakpoint, O(

∑
S

∑
j∈vars(S) ∆̂ log ∆) = O(N∆̂ log ∆).

The algorithm computes the breakpoints tj efficiently as follows. Throughout the entire computation
(not just the iterations for S), the algorithm maintains, for each j, an array of j’s variables in X , that is,
{xRj | R ∈ C, j ∈ vars(R)}, sorted by the variables’ current values (initially all 0). Then tj is the value of
the first xRj after xSj in j’s list. When xSj reaches its breakpoint tj (detected as described in the previous
paragraph), the algorithm updates the list order by swapping xSj with the xRj following it in the list (the one
with value tj). The next breakpoint is then the value of the variable xR

′
j that was after xRj and is now after

xSj . The time spent computing breakpoints in this way is proportional to the total number of swaps, which
is proportional to the total number of breakpoints, which is at most

∑
S

∑
j∈vars(S) ∆̂ = N∆̂.

This concludes the proof for the general case.
When p = 1, note that in this case the product in the equation for c′j is 1 if xSj = maxR x

R
j and 0

otherwise. So each constraint S has at most one breakpoint per variable, and the total time for the adjust-
ments above reduces to O(

∑
S |vars(S)| log ∆) = O(N log ∆). As in the proof of Thm. 6, the remaining

operations also take O(N log ∆) time.
This concludes the proof of the theorem.
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Appendix

Proof of Observation 1 (reduction to canonical form). Here is the reduction: Let (c, U, C) be any in-
stance of SUBMODULAR-COST COVERING. Construct its canonical form (c, C′) as follows. First, assume
without loss of generality that minUj = 0 for each j. (If not, let `j = minUj , then apply the translation
x↔ x′+` to the cost and feasible region: rewrite the cost c(x) as c′(x′) = c(x′+`); rewrite each constraint
“x ∈ S” as “x′ ∈ S − `”; replace each domain Uj by U ′j = Uj − `j .)

Next, define µj(x) = max{α ∈ Uj | α ≤ xj} (that is, µ(x) is x with each coordinate lowered into
Uj). For each constraint S in C, put a corresponding constraint “µ(x) ∈ S” in C′. The new constraint is
closed upwards and closed under limit because S is and µ is non-decreasing. It is not hard to verify that
any solution x to the canonical instance (c, C′) gives a corresponding solution µ(x) to the original instance
(c, U, C), and that this reduction preserves ∆-approximation.
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