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ENCODING AND CONSTRUCTING 1-NESTED

PHYLOGENETIC NETWORKS WITH TRINETS

K. T. HUBER AND V. MOULTON.

Abstract. Phylogenetic networks are a generalization of phylo-
genetic trees that are used in biology to represent reticulate or
non-treelike evolution. Recently, several algorithms have been de-
veloped which aim to construct phylogenetic networks from biolog-
ical data using triplets, i.e. binary phylogenetic trees on 3-element
subsets of a given set of species. However, a fundamental problem
with this approach is that the triplets displayed by a phylogenetic
network do not necessary uniquely determine or encode the net-
work. Here we propose an alternative approach to encoding and
constructing phylogenetic networks, which uses phylogenetic net-
works on 3-element subsets of a set, or trinets, rather than triplets.
More specifically, we show that for a special, well-studied type of
phylogenetic network called a 1-nested network, the trinets dis-
played by a 1-nested network always encode the network. We also
present an efficient algorithm for deciding whether a dense set of
trinets (i.e. one that contains a trinet on every 3-element subset
of a set) can be displayed by a 1-nested network or not and, if so,
constructs that network. In addition, we discuss some potential
new directions that this new approach opens up for constructing
and comparing phylogenetic networks.

Keywords phylogenetic network, triplets, trinets, reticulate evolution

AMS classification: 05C05, 92D15, 68R05

1. Introduction

Phylogenetic networks are a generalization of phylogenetic trees that
are used in biology to represent reticulate or non-treelike evolution (cf.
[12, 23] for recent overviews). There are various types of phylogenetic
networks, but in this paper we shall focus on phylogenetic networks
that explicitly represent the evolution of a given set of species. Such
networks (whose formal definition is presented in Section 2) can be
essentially regarded as directed acyclic graphs having a single root,
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whose internal vertices represent ancestral species and whose leaves
represent the set species (see e.g. Fig. 1). They have been used, just to
name a few examples, to represent the evolution of viruses [28], bacteria
[25], plants [22], and fish [20].
Recently, several algorithms have been developed which aim to con-

struct phylogenetic networks (cf. [12, 23]). However, as stated in [12,
p.xi], “While there is a great need for practical and reliable computa-
tional methods for inferring rooted phylogenetic networks to explicitly
describe evolutionary scenarios involving reticulate events, generally
speaking, such methods do not yet exist, or have not yet matured
enough to become standard tools”.
Probably one of the main reasons for this is that we do not yet have

a very good understanding of how to build up complex phylogenetic
networks from simpler structures. An important case in point is the
construction of phylogenetic networks from phylogenetic trees. Even
though there has been a great deal of recent work on this problem (cf.
[12, Chapter 11], [23, Section 2]), especially concerning the construction
of networks from triplets (i.e. binary phylogenetic trees with three
leaves) [10, 11, 13, 14, 16, 17, 30]), there is a fundamental obstacle to
this approach: The trees displayed by a phylogenetic network do not
necessarily determine or encode the network [10] (even on 3 species –
see e.g. Fig. 1) and, in fact, we do not even know when a phylogenetic
network is uniquely determined by all of the trees that it displays [32].
As an alternative approach to tackling the problem of construct-

ing phylogenetic networks, in this paper we shall investigate the fol-
lowing strategy: Instead of constructing phylogenetic networks from
trees, try to build them up from (simpler) phylogenetic networks. More
specifically, we investigate how to construct phylogenetic networks from
trinets, that is, phylogenetic networks having just three leaves (see, for
example, the networks N1 and N2 in Fig. 1).

Figure 1. Two distinct phylogenetic networks N1 and
N2 with leaf set {x, y, z} that display the same set
{T1, T2} of phylogenetic trees. In particular, neither of
these two networks is encoded by this set of trees.
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One of the main difficulties that we had to overcome before being able
to put this strategy into practice was to find an appropriate definition
for the set of trinets that is displayed by a phylogenetic network (see
Definition 3.1). However, with this definition in hand, we are able to
show that any 1-nested network – a quite simple and well-studied type
of phylogenetic network [7] – is always encoded by the set of trinets
it displays (Theorem 6.3). Moreover, using this fact, we provide a
polynomial-time algorithm for deciding whether a given dense set of
trinets (i.e. one that contains a trinet on every 3-element subset of a
set) can be displayed by a 1-nested network or not and, if so, constructs
that network (see Fig. 10 and Theorem 7.3).
We now describe the contents of the rest of the paper. In Section 2

we introduce some relevant, basic terminology concerning phylogenetic
networks. In Section 3 we define the rather natural concept of a recov-
erable network, and show that, although a phylogenetic network need
not be recoverable in general, a 1-nested network always is. In the
following section, we show that a recoverable phylogenetic network is
1-nested if and only if all of its displayed trinets are 1-nested (Theo-
rem 4.3). Using this fact and certain operations on 1-nested networks
that are closely related to those presented in [7] and that are presented
in Section 5, we then establish Theorem 6.3 in Section 6. As a corollary,
we obtain a new (and efficiently computable) proper metric on the set
of 1-nested networks all having the same leaf set (see Corollary 6.4). In
Section 7 we present our main algorithm for checking whether or not a
dense set of trinets is displayed by a 1-nested network. We conclude in
Section 8 with a discussion on some possible future directions, including
some ideas about how trinets might be used in practical applications.

2. Preliminaries

For the rest of this paper, X is a non-empty, finite set (which will
usually correspond to a set of species or organisms). For consistency,
we follow the notation presented in [7] where appropriate.
An rDAG N = (V,A) is a directed acyclic graph (DAG) with non-

empty vertex set V = V (N), non-empty arc set A = A(N) (with no
multiple arcs) and single root ρ = ρN (i.e. a DAG with precisely one
source ρ). We let <N denote the usual partial order on V induced by
N . The underlying graph of N is denoted N . A cycle in N is a subset
C = {v1, v2, . . . , vn} ⊆ V (N), n ≥ 3, such that {vi, vi+1} ∈ E(N) for
all 1 ≤ i ≤ n − 1 and {v1, vn} ∈ E(N). If C is some cycle in N and
there is some v 6= w ∈ V so that the union of all of the arcs in N
having both vertices in C is the union of two directed paths in N that
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both start at v and end at w, then v (w) is called the split (end) vertex
of C. We denote an arc a ∈ A with tail x (= tail(a)), and head y by
(x, y). We call (x, y) a cut arc (of N) if the removal of the edge {x, y}
from E(N) disconnects N . A vertex v ∈ V is a called a leaf of N if
indegree(v) = 1 and outdegree(v) = 0. We denote the set of leaves
of N by L(N). Every vertex of N that is neither the root ρN nor has
outdegree 0 is called an interior vertex of N . A tree vertex v ∈ V is an
interior vertex of N with indegree(v) = 1, and a hybrid vertex v ∈ V is
an interior vertex with indegree(v) ≥ 2. Note that neither the root ρN
nor a leaf of N is a tree vertex and that a hybrid vertex of N cannot
be a leaf.
Now, an X-rDAG is an rDAG N = (V,A) with leaves uniquely

labeled by the elements in X (i.e. there is a map φN : X → V such that
φ maps X bijectively onto L(N)). We will usually just assume L(N) =
X in case the labeling map is clear from the context. A phylogenetic
network N = (V,A) (on X) is an X-rDAG such that every tree vertex
has outdegree at least 2 and every hybrid vertex has outdegree at least
1. If N is such a network and N ′ = (V ′, A′) is a phylogenetic network
on a non-empty finite set Y , then N is isomorphic to N ′ if there is a
bijection ξ : X → Y and a directed graph isomorphism ι : V → V ′

between N and N ′ such that φN ′ = ι ◦ φN ◦ ξ−1. In particular, in case
Y = X we consider X as being a subset of both V and V ′, and hence
N is isomorphic to N ′ if and only if ι restricted to X is the identity
map on X .
A phylogenetic network N = (V,A) on X is

• a bush (on X) if it is isomorphic to the phylogenetic network
with vertex set V = X ∪ {v}, v 6∈ X , and arc set A = {(v, x) :
x ∈ X},

• a two-leafed network (on X) if X = {x, y}, and N is isomor-
phic to the phylogenetic network on X with vertex set V =
{u, v, w, x, y} and arc set A = {(u, w), (u, v), (v, w), (v, x), (w, y)},

• binary if all of its hybrid vertices have indegree 2 and outdegree
1 and all of its tree vertices have outdegree 2,

• 1-nested if every pair of cycles in N intersect in at most 1 ver-
tex1,

• a galled tree if every pair of cycles in N is disjoint,
• a (rooted) phylogenetic tree if N is a tree, and
• a trinet if |L(N)| = |X| = 3.

1Note that in [7], 1-nested networks are defined in such a way that every hybrid
vertex has indegree 2 – we do not make this assumption, but we will use the same
name rather than introducing another term.
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Figure 2. The fourteen possible non-isomorphic, 1-
nested trinets on the set {x, y, z}. Directions on arcs
are omitted for clarity; internal vertices indicated with a
dot are all hybrid vertices. Leaves that are at the bot-
tom of a trinet are indicated with large dots and vertices
hanging off the side of a trinet with a square.

Note that a 1-nested network N on X with |X| = 1 is a bush with arc
set consisting of precisely one arc, and if |X| = 2 then N is isomorphic
to either a two-leafed network or a phylogenetic tree with 2 leaves.
In Fig. 2 we picture the set of all possible non-isomorphic 1-nested

trinets on {x, y, z}. If N is a 1-nested trinet on X , |X| = 3, that is
not isomorphic to a phylogenetic tree on X , then we say that t ∈ X is
at the bottom of N if it corresponds to one of the vertices represented
by larger dots in Fig. 2, and we say that t hangs off the side of N if
it corresponds to one of the vertices represented by a square in that
figure (note that, in particular, there may be more than one element
at the bottom of a trinet).
Finally, let T denote a non-empty set of trinets such that L(T ) ∈

(

X

3

)

for all T ∈ T (which we shall also call a trinet set (on X) for short).
If Y ⊆ X , |Y | ≥ 3, we let TY be the subset of T consisting of those
trinets T ∈ T with L(T ) ⊆ Y . In addition, we call T dense (on X) if
(

X

3

)

= {L(N) : N ∈ T } and |T | =
(

|X|
3

)

.

3. Trinets and recoverable networks

In this section, we investigate networks that display only 1-nested
trinets. In particular, we show that even if every trinet displayed by a
network N is 1-nested, it does not necessarily follow that N is 1-nested.
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In addition, we shall introduce a rather natural condition on N (that
it is a ‘recoverable network’) for which this statement does in fact hold
(see Theorem 4.3 in the next section).
Suppose N = (V,A) is a phylogenetic network on X , |X| ≥ 3, and

Y is a non-empty subset of V −{ρN}. Let v(Y ) to be the last vertex in
V −Y that lies on all paths in N from ρN to every y ∈ Y . Note that if
Y consists of a single vertex y, then v({y}) is known as the immediate
dominator of y [21] (see also [12, p. 143] where it is called the lowest
stable ancestor of y)).
We now present a key definition (see also Fig. 3):

Definition 3.1. Given a phylogenetic network N on X and some
Y ∈

(

X

3

)

, we define the trinet on Y displayed by N to be the trinet
NY with leaf set Y which is obtained from N by first taking the net-
work Ñ consisting of the union of all directed paths in N starting at
v(Y ) and ending at some element in Y , and then repeatedly first (i)
suppressing all vertices v with indegree(v) = outdegree(v) = 1, and
then (ii) suppressing all multiple arcs that might result, until a trinet
on Y is obtained. Put Tr(N) = {NY : Y ∈

(

X

3

)

}.

Given a phylogenetic network N on X , we say that a trinet set T on
X is displayed by N if T ⊆ Tr(N). Moreover, we say that T encodes
N if T ⊆ Tr(N) and, if N ′ is any other phylogenetic network on X
with T ⊆ Tr(N ′), then N ′ is isomorphic to N .
Note that in Definition 3.1 it is necessary to consider (at least) 3-

element subsets of X , since if ‘binets’ are defined in a similar way for
2-element subsets, then the resulting set would not in general encode
the network (even if the network is a tree). Also note that we do not
define a trinet on Y displayed by N to be the network consisting of the
union of all directed paths in N to the elements of Y as this can result
in networks with vertices having in- and outdegree 1, that is, networks
that are not phylogenetic networks.
The proof of the following lemma is straight-forward and is omitted:

Lemma 3.2. Suppose that N is a 1-nested network on X, |X| ≥ 3.
Then any element in Tr(N) is isomorphic to one of the fourteen trinets
on {x, y, z} presented in Fig. 2.

Remark 3.3. If N is a 1-nested network on X, |X| ≥ 3, then N is
binary if every element in Tr(N) is isomorphic to either T1(x, y, z) or
one of Ni(x, y, z), 1 ≤ i ≤ 7. Moreover, binary level-1 networks and
galled trees (as defined in [7]) can be characterized in a similar manner.

Now, suppose that N is a phylogenetic network on X such that every
trinet in Tr(N) is isomorphic to one of the fourteen trinets presented



ENCODING AND CONSTRUCTING 1-NESTED NETWORKS 7

Figure 3. (a) A phylogenetic network N on X =
{x1, . . . , xn, z, y1, . . . , yn}, n ≥ 1. (b) The subnetwork
N ′ obtained by taking the union of the directed paths
from v(Y ) to every element in Y = {x2, yn, z}. (c) The
subnetwork N ′′ obtained from N ′ by suppressing all mul-
tiple arcs of N ′. (d) The trinet obtained from N ′′ by
suppressing all vertices v ∈ V (N ′′) with indegree(v) =
outdegree(v) = 1. Directions of arcs are omitted when
clear.

Figure 4. A phylogenetic network N on {x, y, z} for
which Tr(N) consists of precisely the trinet T1(x, y, z)
but N is not a phylogenetic tree on {x, y, z}. As before,
directions are omitted for clarity when clear. Also only
the vertices that are leaves are marked by a dot.

in Fig. 2. It is tempting to think that this should imply that N is
1-nested. However, this is not the case. For example, even if N is
a phylogenetic network such that every trinet in Tr(N) is isomorphic
to either T1(x, y, z) or T2(x, y, z) in Fig. 2, then N is not necessarily
isomorphic to a phylogenetic tree (see e.g. Fig. 4). Even so, as we
shall show in the next section (see Theorem 4.3), the aforementioned
statement is almost correct.
To this end, we now introduce a special class of networks. Suppose

that N is a phylogenetic network on X with |X| ≥ 3. We say that
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a vertex v ∈ V (N) is reachable from a vertex w ∈ V (N) − v if there
exists a directed path in N starting at w and ending in v. In addition,
if z ∈ V (N) is a vertex of N that lies on that path then we say that
v is reachable from w by crossing z. We denote by v∗N ∈ V (N) the
(necessarily unique) vertex in N for which there exist some distinct

x, y ∈ X with v∗N = v({x, y}) and, for all {u, v} ∈
(

V (N)
2

)

− {x, y},
either v∗N = v({u, v}) holds or v({u, v}) is reachable from v∗N .
Now, we say that N is recoverable if ρN = v∗N . We use the term

recoverable, since for biological data it would not be possible to infer
the structure of the network above v∗N in case N is not recoverable,
as there would be no way to ‘detect’ vertices above v∗N using any pair
of elements in X . As an illustration, the vertex v in the phylogenetic
network N on {x, y, z} pictured in Fig. 4 is the vertex v∗N = v({x, z}).
Since v∗N 6= ρN , N is not recoverable.
We now characterize recoverable networks N onX , |X| ≥ 3, in terms

of a special type of vertex. A vertex v ∈ V (N) is a cut vertex of N
if the deletion of v (plus its incident edges) from N disconnects N .
We denote the resulting graph by N\v. If, in addition, there exists a
connected component K of N\v such that V (K) ∩ L(N) = ∅ then we
call v a separating vertex of N . For example, in Fig. 4 v is a separating
vertex of N whereas vertex w is a cut vertex of N .

Proposition 3.4. Suppose N is a phylogenetic network on X, |X| ≥ 3.
Then the following statements hold:

(i) If N is not recoverable then v∗N is a cut vertex of N .
(ii) N is recoverable if and only if v∗N is not a separating vertex of

N .

Proof. (i) Note first that ρN 6= v∗N as N is not recoverable. Let x, y ∈ X
distinct such that v∗N = v({x, y}), and assume for contradiction that v∗N
is not a cut vertex of N . Then there must exist some leaf l ∈ L(N) of
N that is reachable from ρN without crossing v∗N . Hence, there exists
some z ∈ {x, y} such that v∗N 6= v({l, z}) and v∗N is reachable from
v({l, z}); a contradiction. Thus, v∗N is a cut vertex of N .
(ii) We prove the contrapositive of the statement i. e. we show that

N is not recoverable if and only if v∗N is a separating vertex of N .
Suppose {x, y} ∈

(

X

2

)

such that v∗N = v({x, y}). Assume first that N
is not recoverable. Then ρN 6= v∗N and, by (i), v∗N is a cut vertex of N .
Hence, for every leaf l ∈ L(N) of N , every directed path from ρN to
l must cross v∗N . Let KρN denote the connected component of N\v∗N
that contains ρN in its vertex set. Then V (KρN )∩L(N) = ∅. Thus v∗N
is a separating vertex of N .
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Conversely, suppose that v∗N is a separating vertex of N . Then v∗N is
a cut vertex of N and so every directed path from ρN to a leaf z ∈ L(N)
of N must cross v∗N . If N were recoverable then ρN = v∗N would follow,
implying that every vertex in N must lie on a directed path from v∗N to
a leaf of N . But then V (K)∩L(N) 6= ∅ for every connected component
K in N\v∗N ; a contradiction. Thus, N cannot be recoverable. �

It immediately follows that 1-nested networks are always recoverable:

Corollary 3.5. Suppose N is a phylogenetic network on X, |X| ≥ 3.
If N is 1-nested, then N is recoverable.

Proof. Suppose for contradiction that there exists a 1-nested network
N on X that is not recoverable, that is, ρN 6= v∗N . Then, by Propo-
sition 3.4(i), v∗N is a cut vertex of N . Hence, for every leaf l ∈ L(N)
of N , every directed path from ρN 6= v∗N to l must cross v∗N . Since
outdegree(ρN) ≥ 2 and N cannot have multiple arcs, it follows that
there exist (at least) 3 distinct directed paths in N from ρN to v∗N .
But then there must exist two cycles in N which intersect in at least 2
vertices; a contradiction. �

4. 1-nested trinets imply 1-nested networks

In the last section, we proved that if N is a 1-nested phylogenetic
network on X , |X| ≥ 3, then N is recoverable. We shall now prove
that if all of the trinets displayed by a recoverable network are 1-nested,
then the network is 1-nested (Theorem 4.3).
To this end, suppose that N is a phylogenetic network onX , |X| ≥ 3,

and that C is a cycle of N . Put

Z(C) = {v ∈ C : there exist {a, a′} ∈

(

A(C)

2

)

with tail(a) = tail(a′) = v}.

Clearly, Z(C) 6= ∅.
Now, suppose l ∈ L(N) is a leaf of N that is reachable from a hybrid

vertex of N . We denote by p(l) the number of distinct directed paths
in N from ρN to l. Clearly p(l) ≥ 2. Moreover, we denote by w(l) the
unique vertex of N distinct from l that simultaneously lies on every
directed path from ρN to l such that (i) w(l) is a hybrid vertex of N ,
and (ii) there is a unique directed path from w(l) to l such that every
interior vertex of N on this path is a tree vertex of N . To illustrate
these definitions, consider the network N on {x, y, z} depicted in Fig. 4.
Then w(y) is the unique hybridization vertex of N and p(y) = 3.
We now prove some useful, but somewhat technical, results concern-

ing the set Z(C).
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Figure 5. The situation considered in the proof of
Proposition 4.1. The vertices in C which have two of
their incoming (outgoing) arcs contained in A(C) are
marked with squares (triangles). The leaves of N plus
the vertex v({z1, . . . , zm} are marked by dots. For clar-
ity all other vertices are not marked. The directed lines
represent directed paths rather than arcs.

Proposition 4.1. Suppose N is a recoverable phylogenetic network on
X, |X| ≥ 3, such that every trinet in Tr(N) is isomorphic to one of
the fourteen trinets on {x, y, z} depicted in Fig. 2. Then |Z(C)| = 1,
for all cycles C in N .

Proof. Suppose for contradiction that N contains a cycle C with m :=
|Z(C)| ≥ 2. Put Z(C) = {z1, . . . , zm}. Since C is a cycle in N there
must exist distinct vertices hi ∈ C, 1 ≤ i ≤ m, such that, for all
1 ≤ i ≤ m, two of the incoming arcs of hi are contained in A(C) and
hi can be reached from zi and from zi+1, 1 ≤ i ≤ m, where we define
zm+1 := z1. Moreover for each such vertex hi there must exist a leaf
li ∈ L(N) of N that is reachable from hi. Note that some of the leaves
li might be the same (see Fig. 5 for a representation of the generic
situation in which all leaves li, 1 ≤ i ≤ m, are distinct).
Choose some i ∈ {1, . . . , m}, say i = 1, and let σ be the ordering

l1, l2, . . . , lm of the leaves lj , 1 ≤ j ≤ m induced by C via the vertices hi,
1 ≤ i ≤ m. If there exist at least three distinct leaves in that ordering,
then let li1 , li2, li3 denote the first three distinct leaves in σ. Note that
l1 = li1 and each of li1 li2 , and li3 is reachable from v({z1, z2, . . . , zp}) ∈
V (N), where p ∈ {1, . . . , m} is such that for all i3 ≤ q ≤ p we have
lq = li3 . But then p ≥ 3 and the trinet N ′ on {li1, li2 , li3} displayed by
N contains v({z2, . . . , zp}) in its vertex set if p 6= m and, otherwise, the
vertex v({z1, z2, . . . , zp = zm}). Hence, if p 6= m then zj ∈ V (N ′), 2 ≤
j ≤ p−1, and otherwise, zj ∈ V (N ′) with j = 1, . . . , m. Consequently,
N ′ contains two cycles that intersect in a path of length 1 or more in
each case. Since, by construction, each cycle is the union of two directed
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paths in N that have the same start and end vertex this implies that
N ′ is not of the specified form, a contradiction.
Now, if there exist just two leaves li1 and li2 in σ that are distinct,

then choose some l ∈ L(N) − {li1, li2}, which must exist as |X| ≥ 3.
Since each of li1 and li2 is reachable from v({z1, z2, . . . , zm}) ∈ V (N) it
follows that v({z1, z2, . . . , zm}) is a vertex in the trinet N ′ on {l, li1 , li2}
displayed by N . But then zj ∈ V (N ′), 1 ≤ j ≤ m which implies that
N ′ contains two cycles that intersect in a path of length at least 1. As
before, this yields a contradiction.
So suppose that li = lj for all i, j ∈ {1, . . . , m}. Let Lw(l1) ⊆ L(N)

denote the set of leaves of N that are reachable from w(l1). We claim
that w(l1) is not a cut vertex ofN . Suppose for contradiction that w(l1)
is a cut vertex of N . Then, since N is recoverable, there must exist a
leaf l ∈ L(N)−Lw(l1) that is reachable from ρN without crossing w(l1).
Choose some l′ ∈ L(N) − {l1, l}, which must exist as |X| ≥ 3. Since
l1 is reachable from each of zj , 1 ≤ j ≤ m, v({z1, z2, . . . , zm}) ∈ V (N)
must be a vertex in the trinet N ′ on {l, l′, l1} displayed by N . But then
zi ∈ V (N ′), 1 ≤ i ≤ m, and so we obtain a contradiction as before.
Thus, w(l1) cannot be a cut vertex of N , as claimed.
Thus, there must exist some leaf l ∈ Lw(l1) that is reachable from

ρN without crossing w(l1). But then l1 6= l, by the definition of w(l1).
Arguments similar to the ones used in the previous case can be now
used to obtain a final contradiction. Thus, |Z(C)| = 1 must hold for
every cycle C of N . �

To establish Theorem 4.3 we will use one further result that follows
from the last proposition. Suppose N is a phylogenetic network on X ,
|X| ≥ 3, and C is a cycle in N with |Z(C)| = 1. Then we denote the
unique vertex in C that has two of its incoming arcs contained in A(C)
by hC .

Corollary 4.2. Let N be a recoverable phylogenetic network on X,
|X| ≥ 3, such that every trinet in Tr(N) is isomorphic to one of the
fourteen trinets on {x, y, z} depicted in Fig. 2. Let C1 and C2 denote
two distinct cycles of N for which A(C1) ∩ A(C2) 6= ∅ holds, and let
l ∈ L(N) denote a leaf of N that is reachable from both hC1

and hC2
.

Then w(l) is not a cut vertex of N .

Proof. Suppose for contradiction that this is not the case, that is, there
exists a recoverable phylogenetic network N on X , two distinct cycles
C1 and C2 in N with A(C1) ∩ A(C2) 6= ∅, and a leaf l ∈ L(N) of N
that is reachable from hC1

and from hC2
but that w(l) is a cut vertex
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of N . Since N is recoverable, there must exist a leaf l′ ∈ L(N) − {l}
of N that is reachable from ρN without crossing w(l).
Now let zi ∈ V (N) denote the unique vertex in Z(Ci) i = 1, 2. Note

that z1 = z2 might hold. Since l is clearly also reachable from both
z1 and z2, there must exist a directed path from ρN to v({z1, z2}) that
crosses v({l, l′}). Choose some l′′ ∈ L(N) − {l, l′} which must exist
as |X| ≥ 3. Then the trinet N ′ on {l, l′, l′′} displayed by N contains
the vertex v({z1, z2}) and thus every arc in A(C1) ∪ A(C2). Since
A(C1)∩A(C2) 6= ∅ it follows that N ′ is not of the specified form which
is impossible. �

We now prove the main result of this section:

Theorem 4.3. Suppose that N is a recoverable phylogenetic network
on X, |X| ≥ 3. Then N is 1-nested if and only if every trinet in Tr(N)
is isomorphic to one of the fourteen trinets depicted in Fig. 2.

Proof. If N is 1-nested then, by Lemma 3.2, the trinets in Tr(N) are
of the specified form.
Conversely, suppose that the trinets in Tr(N) are of the specified

form. Assume for contradiction that N is not 1-nested. Then there
must exist two cycles C1 and C2 in N which intersect in more than
one vertex. Moreover, amongst all such pairs of cycles, there must
exist a pair C1 and C2 for which the following holds: There is a path
P with V (P ) ⊆ C1 ∩ C2 which has an end vertex x2 ∈ V (P ) such
that the edge {x1, x2} ∈ E(P ) is the arc (x1, x2) in A(N) and {y, x2} 6∈
E(C1)∩E(C2), for all y ∈ (C1∩C2)−{x1, x2}. Choose some zi ∈ Z(Ci),
i = 1, 2 and note that, by Proposition 4.1, |Z(Ci)| = 1. However note
that z1 = z2 might hold.
Let li ∈ L(N) denote a leaf of N that is reachable from hi = hCi

,
i = 1, 2. Then one of the three generic cases (a) - (c) pictured in Fig. 6
must hold. Note that in the case of (b) and (c) we can choose l1 to
equal l2 since in case of (b) we have x2 = h2 and in case of (c) we have
x2 = h2 = h1.
Suppose first that Case (a) holds. We begin by considering the case

l1 = l2. Since N is recoverable, Corollary 4.2 implies that w(l1) is a not
a cut vertex of N . Let Lw(l1) ⊆ L(N) denote the set of leaves of N that
are reachable from w(l1). Then there must exist a leaf l ∈ Lw(l1) of N
that is reachable from ρN without crossing w(l1). By the definition of
w(l1), l1 6= l. Since l is reachable from z1 and from z2, there must exist
a directed path from ρN to v({z1, z2}) that crosses v({l1, l}). Choose
some l′ ∈ L(N)− {l1, l}, which must exist as |X| ≥ 3. Then the trinet
N ′ on {l1, l, l

′} displayed by N contains the vertex v({z1, z2}). Thus,
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Figure 6. The three generic cases considered in the
proof of Theorem 4.3. The vertices in Ci, i = 1, 2 which
have two of their incoming (outgoing) arcs contained in
A(Ci), i = 1, 2 are marked with squares (triangles). The
leaves of N plus the vertices ρN , x1, x2, v({z1, z2}) and
w(li), i = 1, 2 are marked by dots. For clarity all other
vertices are not marked. The directed lines represent
directed paths rather than arcs.

N ′ contains two cycles that intersect in the edge {x1, x2}. Since each
cycle is the union of two directed paths in N that have the same start
vertex and the same end vertex, it follows that N ′ is not of the specified
form, a contradiction. Thus l1 6= l2 must hold.
Since |X| ≥ 3, we may choose some l ∈ L(N) − {l1, l2}. But then

similar arguments applied to the trinet N ′ on {l1, l2, l} displayed by N
yields a contradiction.
Similar arguments can be used to show that Case (b) and Case (c)

lead to a contradiction. But this implies that there cannot exist two
distinct cycles of N that intersect in more than one vertex. Thus, N
must be 1-nested. �

As a corollary we see that if all of the trinets displayed by a re-
coverable phylogenetic network are trees then the network must be a
tree.

Corollary 4.4. Suppose N is a recoverable phylogenetic network on
X, |X| ≥ 3. Then N is a phylogenetic tree on X if and only if every
trinet in Tr(N) is isomorphic to either the trinet T1(x, y, z) or the
trinet T2(x, y, z) on {x, y, z}.

Proof. This is an immediate consequence of Theorem 4.3 and the fact
that if N is recoverable 1-nested network on X then N contains a cycle
if and only if there exists a trinet N ′ ∈ Tr(N) such that N ′ contains a
cycle. �
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5. Cherries, cactuses and reductions

In the next section, we shall show that the set of trinets displayed
by a phylogenetic network encode the network. To do this, we will
use some operations that can be performed on 1-nested networks to
produce new 1-nested networks which we shall now introduce. These
operations are very closely related to the “R, T and G–operations”
presented in [7, Section 4]. In consequence, we shall omit the proofs of
the results that we state concerning our operations, instead citing the
related results in [7, Section 4] which have very similar proofs.
Suppose N = (V,A) is a 1-nested network on X , |X| ≥ 2. We

call a subset S ⊆ X a cherry of N if |S| ≥ 2 and there is some
vS ∈ V such that (vS, x) ∈ A for all x ∈ S and (vS, x) /∈ A for all
x ∈ X−S (see Fig. 7(a)). Moreover, we shall call such a cherry isolated
if outdegree(vS) = |S| and indegree(vS) = 1 (see Fig. 7(b)). Note that
if S is a cherry of N and S = X , then N is isomorphic to a bush on
X . We now define a related concept. If |X| ≥ 2, we call a tuple H =
(a1, a2, . . . , ap : b1, b2, . . . , bq : z) of distinct elements of X with p ≥ 1,
q ≥ 0 a cactus of N (with support S = {a1, a2, . . . , ap, b1, b2, . . . , bq, z})
if there is cycle CH in N with split vertex vH such that the network
induced by N on CH ∪ S is as pictured in Fig. 7(c) (note that if q = 0,
we take the tuple to be H = (a1, a2, . . . , ap : ∅ : z)). Moreover, such a
cactus H is called isolated if indegree(vH) = 1 and outdegree(vH) = 2
(see Fig. 7(d)). Note that a two-leafed network on a set of size two is
a cactus.
Now, suppose that N is 1-nested network on X , |X| ≥ 2. In case

there is a non-isolated cherry S of N and z ∈ S, then we define a

Figure 7. (a) A cherry S = {x1, x2, . . . , xm}, m ≥ 2,
(b) an isolated cherry S = {x1, x2, . . . , xm}, m ≥ 2, (c)
a cactus H = (a1, a2, . . . , ap : b1, b2, . . . , bq : z), p ≥
1, q ≥ 0, and (d) an isolated cactus H = (a1, a2, . . . , ap :
b1, b2, . . . , bq : z), p ≥ 1, q ≥ 0. Note that the arcs ending
at vS and vH in (a) and (c) do not necessarily exist.
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cherry reduction C = Cz:S on N to be the network Cz:S(N) which is
obtained by removing all leaves in S except z from N , together with
their incident arcs. In addition, if S is an isolated cherry of N and
z ∈ S, then we define an isolated cherry reduction C = Cz:S on N to
be the network Cz:S(N) which is obtained by removing all leaves in S
from N , together with their incident arcs, and replacing the vertex vS
by z, which now becomes a leaf of the new network.
Similarly, suppose there is a cactusH = (a1, a2, . . . , ap : b1, b2, . . . , bq :

z) of N with support S. If H is not isolated, then we define a cac-
tus reduction H = Hz:S = Ha1,a2,...,ap:b1,b2,...,bq:z on N to be the net-
work Ha1,a2,...,ap:b1,b2,...,bq :z(N) which is obtained by removing the ver-
tices (CH − {vH}) ∪ (S − {z}), together with their induced arcs plus
the two outgoing arcs of vH contained in A(C), fromN and then adding
in the new arc (vH , z). In addition, if H is isolated, then we define an
isolated cactus reduction H = Hz:S = Ha1,a2,...,ap:b1,b2,...,bq:z on N to be

the network Ha1,a2,...,ap:b1,b2,...,bq :z(N) which is obtained by removing the
vertices (CH −{vH})∪ (S−{z}), together with their induced arcs plus
the two outgoing arcs of vH , from N and replacing vH with z.
It is clear that the networks Cz:S(N), Cz:S(N),Ha1,a2,...,ap:b1,b2,...,bq:z(N)

and Ha1,a2,...,ap:b1,b2,...,bq:z(N) are all 1-nested networks on the set X −
(S − {z}) and that they all have |S| − 1 less leaves than N . Moreover
we have:

Proposition 5.1. [7, Proposition 2] Suppose that N is a 1-nested net-
work on X, |X| ≥ 1. If |X| ≥ 2, then at least one of the reductions C,
C, H, H may be applied to N . Moreover, if none of the reductions C,
C, H, H may be applied to N , then |X| = 1 and N is the bush on X.

We can also define ‘inverses’ of C−1, C
−1
, H−1, H

−1
of the reductions

C, C, H , H as follows. Given a 1-nested network N on X , |X| ≥ 1,
a leaf z ∈ X of N , and a set finite S with |S| ≥ 2 and S ∩ X = {z},
we define the cherry expansion C−1

z:S of N to be the network C−1
z:S(N)

obtained by replacing leaf z by a new vertex v, and adding in new arcs
(v, s) for all s ∈ S. Clearly C−1

z:S(N) is a 1-nested network on X ∪ S.

Isolated cherry, cactus and isolated cactus expansions C
−1
, H−1, H

−1
,

corresponding to C, H and H, are defined in a similar way.
It is straight-forward to see that a reduction and its corresponding

expansion are mutual inverses, in that when one is applied to a 1-
nested network N on X and then its inverse, we obtain a network that
is isomorphic to N . Moreover, we have:

Lemma 5.2. [7, Lemma 4] Let N and N ′ be two 1-nested networks on
X, |X| ≥ 3. If N and N ′ are isomorphic, then if one of the reductions
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C, C, H, H (respectively, expansions C−1, C
−1
, H−1, H

−1
) may be

applied to N , then the same one may also be applied to N ′ and the two
resulting 1-nested networks are isomorphic.

6. Encoding 1-nested networks with trinets

In this section we show that the set of (necessarily 1-nested) trinets
displayed by a 1-nested network N on X encodes N (see Theorem 6.3).
We begin by describing how to characterize cherries and cactuses in

a 1-nested network in terms of their trinets, starting with cherries. To
this end, we associate to a trinet set T on X and a non-empty subset
S ⊆ X the trinet set

T |S := {N ∈ T : S ∩ L(N) 6= ∅}.

Lemma 6.1. Suppose N = (V,A) is a 1-nested network on X, |X| ≥ 3,
and let S ⊆ X with |S| ≥ 2. Let T be a non-empty subset of Tr(N).
Then S is a cherry of N with T = Tr(N)|S if and only if T satisfies
the following properties:

(C1) L(N ′) ∩ S 6= ∅, for all N ′ ∈ T (or equivalently, T |S = T ).
(C2) For all {x, y} ∈

(

S

2

)

and all z ∈ X − S, either T1(x, y, z),
T2(x, y, z), N3(z, x, y), N4(x, y, z), N9(x, y, z) or N10(z, x, y) is
in T .

(C3) For all {x, y, z} ∈
(

S

3

)

, T2(x, y, z) ∈ T .
(C4) There is no S ′ ⊆ X such that S ⊂ S ′ and T satisfies (C2) and

(C3) with S replaced by S ′.

Moreover, if this is the case and S 6= X (or, equivalently, |X−S| ≥ 1),
then S is isolated if and only if T also satisfies:

(C5) For all {x, y} ∈
(

S

2

)

and all z ∈ X − S, either T1(x, y, z),
N3(z, x, y) or N4(x, y, z) is contained in T .

Proof. Suppose T = Tr(N)|S holds for some cherry S of N . Then it is
straight-forward to check that T satisfies (C1)–(C4).
Conversely, suppose T satisfies (C1)–(C4). Let v = v(S). Note

that v({x, y}) = v for all {x, y} ∈
(

S

2

)

, since otherwise there would
exist some z ∈ S such that T2(x, y, z) 6∈ T , in contradiction to (C3).
Moreover, suppose there were some z ∈ X−S, x ∈ S with v({z, x}) >N

v. Let y ∈ S − {x} (which exists since |S| ≥ 2). Then none of
the trinets T1(x, y, z), T2(x, y, z), N3(z, x, y), N4(x, y, z) N9(x, y, z) or
N10(z, x, y) could be contained in T , in contradiction to (C2). Thus,
for all z ∈ X − S and all x ∈ S, we have v({z, x}) <N v with possibly
equality holding. It follows that (v, x) ∈ A for all x ∈ S.
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Now, suppose there is some r ∈ X−S with (v, r) ∈ A. Let S ′ = S ∪
{r}. Then it is straight-forward to check that, for all x ∈ S ′ and all z ∈
X − S ′, either T1(x, r, z), T2(x, r, z), N3(z, x, r), N4(x, r, z), N9(x, r, z)

or N10(z, x, r) is in T , and that T2(x, y, r) ∈ T for all {x, y} ∈
(

S′

2

)

.
This implies that S ′ satisfies (C2) and (C3) with S replaced by S ′,
which contradicts (C4). In particular, it follows that S is a cherry of
N .
To see that T = Tr(N)|S holds note first that T ⊆ Tr(N)|S is a

consequence of (C1). To see that Tr(N)|S ⊆ T suppose N ′ ∈ Tr(N)|S.
Then L(N ′) ∩ S 6= ∅ and so N ′ ∈ T follows from considering the size
of the intersection L(N ′) ∩ S in conjunction with Properties (C2) and
(C3).
To complete the proof, suppose that X 6= S. First note that if S

is an isolated cherry of N , then (C5) clearly holds. Conversely, if T
satisfies (C5), then let v ∈ V be the vertex with (v, x) ∈ A for all
x ∈ S and (v, x) 6∈ A for all x ∈ X−S (which exists since S is a cherry
by (C2)–(C4)). Then outdegree(v) = |S|, since otherwise there would
exist some {x, y} ∈

(

S

2

)

and z ∈ X − S with z >N v such that either
T2(x, y, z) or N10(z, x, y) ∈ T , in contradiction to (C5).
Now, since |X − S| ≥ 1, indegree(v) ≥ 1. Suppose indegree(v) > 1.

Then there must exist some z ∈ X − S and {x, y} ∈
(

S

2

)

such that
N9(x, y, z) ∈ T , which contradicts (C5). Therefore indegree(v) = 1,
which completes the proof. �

We now present a similar result for cactuses.

Lemma 6.2. Let N be a 1-nested network on X, |X| ≥ 3, and let
H = (a1, . . . , ap : b1, . . . , bq : z) be a tuple of distinct elements in X
with p ≥ 1 and q ≥ 0. Put S = {a1, . . . , ap, b1, . . . , bq, z} and let
T be a non-empty subset of Tr(N). Then H is a cactus of N with
support S and T = Tr(N)|S if and only if, with A = {a1, . . . , ap} and
B = {b1, . . . , bq}, T satisfies the following properties:

(H1) L(N ′) ∩ S 6= ∅ for all N ′ ∈ T (or, equivalently T |S = T ).
(H2) N1(x, z, y) ∈ T for all x ∈ A, y ∈ B.
(H3) N2(z, x, x

′) ∈ T for all x = ai, x
′ = aj, 1 ≤ i < j ≤ p, or

x = br, x
′ = bs, 1 ≤ r < s ≤ q.

(H4) T1(x, x
′, x′′) ∈ T for all x = ai, x

′ = aj , x
′′ = ak, 1 ≤ i < j <

k ≤ p, or x = br, x
′ = bs, x

′′ = bt, 1 ≤ r < s < t ≤ q.
(H5) For all w ∈ X−S either N5(z, x, w), or N6(z, x, w), or N7(w, x, z),

or N8(z, x, w), or N11(z, x, w), or N12(w, x, z) is contained in
T , for all x ∈ A or x ∈ B.
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(H6) For all w ∈ X − S, either T1(x, x
′, w), or N3(w, x, x

′), or
N4(x, x

′, w) is contained in T , for all x 6= x′ ∈ A or x 6= x′ ∈ B.
(H7) For all w ∈ X − S, one of T1(x, y, w), T1(x, w, y), T1(y, w, x),

T2(x, y, w), N4(x, y, w), and N1(x, w, y) is contained in T , for
all x ∈ A and y ∈ B.

(H8) There exists no tuple H = (c1, . . . , ct : d1 . . . , ds : z) of distinct
elements in X, t ≥ 1 and s ≥ 0, with S ( S ′ := {c1, . . . , ct, d1 . . . , ds, z}
such that T satisfies (H2)–(H7) for S ′.

Moreover, if this is the case and S 6= X, then H is isolated if and only
if T also satisfies:

(H9) For all w ∈ X − S, T2(x, y, w) 6∈ T , for all x ∈ A, y ∈ B, and
N8(z, x, w) 6∈ T , N11(z, x, w) 6∈ T and N12(w, x, z) 6∈ T for all
x ∈ A or x ∈ B.

Proof. Suppose H is a cactus of N with support S and T = Tr(N)|S.
Then it is straight-forward to see that T must satisfy (H1)–(H8).
Conversely, suppose T satisfies (H1)–(H8) with A and B as specified.

We claim that H is a cactus of N with support S. We prove the
claim for q = 0 and remark that the proof for q ≥ 1 is similar. Let
x ∈ A. If |S| = 2 then choose some w ∈ X − S. By (H5), one of the
trinets N5(z, x, w), N6(z, x, w), N7(w, x, z), N8(z, x, w), N11(z, x, w),
N12(w, x, z) must be contained in T . But then H must clearly be a
cactus of N (with support S).
Assume that |S| ≥ 3. Then |A| ≥ 2 and, by (H3), N2(z, ai, aj) ∈ T or

N2(z, aj , ai) ∈ T holds for all {i, j} ∈
(

{1,...,p}
2

)

. Since T ⊆ Tr(N), there
must exist a cycle Ci,j in N with split vertex vi,j := vCi,j

and end vertex

bi,j := bCi,j
that gives rise to that trinet on {z, ai, aj}, {i, j} ∈

(

{1,...,p}
2

)

.

We show that Ci,j = Ck,l holds for all {i, j}, {k, l} ∈
(

{1,...,p}
2

)

. To see
this it suffices to show that Ci,j = Ci,l holds for all i ∈ {1, . . . , p} and

all {k, l} ∈
(

{1,...,p}−{i}
2

)

. So assume for contradiction that there exists

some i ∈ {1, . . . , p} and some {j, l} ∈
(

{1,...,p}−{i}
2

)

with Ci,j 6= Ci,l.
Without loss of generality assume that i = 1.
Note that since N is 1-nested there must exist, for all t ∈ {2, . . . , p}

and all x ∈ {a1, at, z}, a unique last vertex v1,tx in C1,t that lies on every
path from ρN to x. Clearly, v1,tz is the end vertex of C1,t and v1,ta1

is
neither the end vertex nor the split vertex of C1,t, t ∈ {2, . . . , p}. Put
v = v({v1,j, v1,l}).
We first show that b1,j = b1,l. Suppose for contradiction that b1,j 6=

b1,l. Then since indegree(z) = 1, there must exist a vertex yz distinct
from z that lies simultaneously on any path in N from b1,j = v1,jz to z
and on any path in N from b1,l = v1,lz to z. Without loss of generality,
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we may assume that yz is as close to z as possible. So there must
exist a cycle C in N with {v, v1,j, b1,j, yz, b1,l, v1,l} ⊆ C with possibly
v = v1,j or v = v1,l or v = v1,j = v1,l or b1,j = yz or b1,l = yz holding.
Since {v1,j, b1,j} ⊆ C ∩C1,j and N is 1-nested this is impossible. Thus
b1,j = b1,l, as required.
Similar arguments with z replaced by a1 in the definition of yz also

imply that v1,ja1
= v1,la1

must hold. But then C1,j and C1,l intersect
in more than one vertex which is impossible as N is 1-nested. Thus
C1,j = C1,l must hold for all j, l ∈ {2, . . . , p}. Moreover, by (H4),

v1,2ar
6= v1,2as

for all {r, s} ∈
(

{1,...,p}
2

)

. Thus there exists a directed path P
from v1,2 to b1,2 that crosses the vertices v

1,2
a1
, v1,2a2

, . . . , v1,2ap
in that order.

To finish the proof of the claim that H is a cactus of N with support
S, we next establish that V (P ) = Y := {v1,2a1

, v1,2a2
, . . . , v1,2ap

, v1,2, b1,2}.
Suppose for contradiction that this is not the case and that there exists
some u ∈ V (P )− Y . Without loss of generality, we may assume that
(u, v1,2a1

) ∈ A(P ). Since N is 1-nested, there exists some leaf w ∈
L(N)− S that is reachable from u without crossing any further vertex
in C1,2. We distinguish the cases that X = S and that X 6= S. If
X = S then this is impossible and so V (P ) = Y , as required. Since
C1,2 is a cycle in N and N is 1-nested it follows that (v1,2, b1,2) is an
arc in N . But this implies that H is a cactus of N (with support S).
So assume that S 6= X . Then (H6) applied to a1, a2, and w,

combined with the fact that N is 1-nested, implies that the trinet
T1(a1, a2, w) is contained in T . But then T satisfies (H2)–(H7) for the
support S ∪ {w} of the tuple H ′ = (w, a1, . . . , ap : ∅ : z). In view of
(H8), this is impossible. Thus, V (P ) = Y , as required.
We now show that (v1,2, b1,2) ∈ A(C1,2). Suppose this is not the case

and there exists some u ∈ C1,2 − V (P ). Without loss of generality we
may assume (v1,2, u) ∈ A(C1,2). Then there exists a leaf w ∈ L(N)−S
such that u is the last vertex in C1,2 on any path from ρN to w. But then
the trinet on {w, a1, z} is not as specified in (H5) which is impossible.
Thus, (v1,2, b1,2) ∈ A(C1,2), as required. It follows that H must be a
cactus of N (with support S) in this case, too.
To see that Tr(N)|S = T , let N ′ ∈ Tr(N)|S. Then L(N ′) ∩ S 6= ∅.

By distinguishing the cases that |L(N ′) ∩ S| = 1, 2, or 3, it is straight
forward to show that N ′ ∈ T using Properties (H2)–(H8). Also T ⊆
Tr(N)|S holds by Property (H1).
It remains to show that if H is a cactus of N with support S and

S 6= X then H is isolated if and only if T satisfies (H9). Assume that
H is a cactus of N with support S and that S 6= X . Then it is straight
forward to check that T satisfies (H9).
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Conversely, assume that T satisfies (H9). We need to show that
outdegree(vH) = 2 and that indegree(vH) = 1. We again prove the
case q = 0 and remark that the arguments for q ≥ 1 are similar. Since
H is a cactus of N we clearly have outdegree(vH) ≥ 2. Assume for
contradiction that outdegree(vH) > 2. Then since N is 1-nested and
X 6= S there must exist some w ∈ X − S that is reachable from
vH without crossing a vertex in CH − {vH}, where CH is the cycle
in N corresponding to H . But then there exists some x ∈ A such
that N8(z, x, w) or N12(w, x, z) is contained in T contradicting (H9).
Thus, outdegree(vH) = 2, as required. But then indegree(vH) ≥ 1 as
S 6= X . Assume for contradiction that indegree(vH) > 1. Then since
S 6= X there must exist some w ∈ X−S such that N11(z, a, w) ∈ T for
some a ∈ A contradicting again (H9). Thus, indegree(vH) = 1. This
completes the proof of Lemma 6.2. �

Now, let Rz:S (R−1
z:S) denote any of the four reductions C, C, H , H

with z and S as specified in the definition of the reductions. Then
it is straight-forward to check that if N is a 1-nested network on X ,
|X| ≥ 3, and

Tz:S = {N ′ ∈ Tr(N) : S ∩ L(N ′) 6= ∅ and S ∩ L(N ′) 6= {z}},

then

(1) Tr(N) = Tr(Rz:S(N))∐ Tz:S,

or, in other words, Tr(Rz:S(N)) = Tr(N)− Tz:S.

Theorem 6.3. Suppose that N and N ′ are both 1-nested networks on
X, |X| ≥ 3. Then Tr(N) = Tr(N ′) if and only if N is isomorphic to
N ′.

Proof. Suppose first that N is isomorphic to N ′. Then Tr(N) =
Tr(N ′) follows immediately by using induction on |X|, Lemma 5.2
and (1).
To prove the converse we also use induction on |X|. If |X| = 3, then

the converse obviously holds. So, suppose that, for all 1 ≤ |X| ≤ m,
m ≥ 3, if Tr(N) = Tr(N ′) then N is isomorphic to N ′.
Let |X| = m+1, and suppose that N and N ′ are 1-nested networks

on X with Tr(N) = Tr(N ′). By Proposition 5.1 we can apply at least
one of the reductions R = C,C,H,H to N . Therefore, since Tr(N) =
Tr(N ′), by Lemmas 6.1 and 6.2, we may also apply the same reduction
R to N ′. Moreover, by (1) we have Tr(R(N)) = Tr(R(N ′)). So, by
induction, R(N) is isomorphic to R(N ′). Therefore, by Lemma 5.2,
R−1(R(N)) is isomorphic to R−1(R(N ′)), i.e. N is isomorphic to N ′,
as required. �



ENCODING AND CONSTRUCTING 1-NESTED NETWORKS 21

There has been some interest in the literature in defining metrics
on networks [12, page 172], and various metrics have been defined for
different types of phylogenetic networks including 1-nested networks
[4, 5, 6, 7, 8, 10]. Thus the following result could be of interest. For X
with |X| ≥ 3, let N1(X) denote the set of 1-nested networks on X . In
addition, define the map

d : N1(X)×N1(X) → R; (N,N ′) 7→ d(N,N ′) := |Tr(N)∆Tr(N ′)|,

for all N,N ′ ∈ N1(X). Then the last theorem immediately implies:

Corollary 6.4. For X with |X| ≥ 3, the map d is a (proper) metric
on N1(X).

Note that the metric d can be efficiently computed since, for N ∈ N1,
it is possible to compute every trinet in Tr(N) efficiently (essentially
because for any Y ∈

(

X

3

)

the vertex v(Y ) can be computed efficiently
using, e.g. the algorithm presented in [21]).

7. Constructing 1-nested networks from dense sets of

trinets

In this section, we present an efficient algorithm which, given a dense
set T of trinets, can decide whether or not it is displayed by a 1-nested
network, and if this is the case, constructs the network displaying T
(see Fig. 10).
We begin by describing efficient algorithms for detecting cherries and

cactuses. Given a dense set T of trinets on X , we say that S ⊆ X ,
|S| ≥ 2 is a cherry of T if the set T |S satisfies conditions (C2)–(C4)
(note that it necessarily satisfies (C1)), and that it is isolated if it also
satisfies (C5). We now show that cherries can be found in polynomial
time in a dense set of trinets using the algorithm presented in Fig. 8.

Lemma 7.1. Given a dense set T of trinets on X, |X| ≥ 3, algorithm
FindCherry is correct and has run-time that is polynomial in |X|.

Proof. It is straight-forward to see that algorithm FindCherry has
run-time that is polynomial in |X|.
To see that algorithm FindCherry is correct, first note that it will

clearly terminate. Now, suppose that the algorithm outputs a (non-
empty) set S. Then, in view of line 7, T |S must satisfy (C2) and (C3).
Moreover, in view of the while loop (lines 6–10) T |S must satisfy (C4),
So S must be a cherry of T . Moreover, if the output indicates that S is
isolated (i.e. that S 6= X and that T |S satisfies (C5)), then this must
be the case in view of line 8.
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Now, suppose that algorithm FindCherry outputs “No cherry of
T exists”, and that, for the purposes of contradiction, a cherry S of T
does exist. Then, as any cherry has cardinality at least 2, if a cherry
exists then at some stage the while loop in lines 2–12 must encounter
some {x, y} ∈

(

X

2

)

with {x, y} ⊆ S. Clearly, the algorithm will then
have to output S, a contradiction. Thus the algorithm FindCherry

is correct. �

FindCherry(X,T )

Input: A set X , |X| ≥ 3, and a dense set T of trinets on X .
Output: A cherry S of T , and a boolean variable I ∈ {T,F}, with I = T

if S is isolated and I = F else, or the statement “No cherry of T
exists”.

1. Let S = ∅, I = F, G =
(

X

2

)

.
2. While there is some {x, y} ∈ G do
3. If T1(x, y, z), T2(x, y, z), N3(z, x, y), N4(x, y, z), N9(x, y, z)
4. or N10(z, x, y) is contained in T for all z ∈ X − {x, y} then do
5. Let S = {x, y}, G = ∅ and U = X − {x, y}.
6. While there is some u ∈ U do
7. If T |S∪{u} satisfies (C2) and (C3), then let S = S ∪ {u}.
8. If U = {u}, S 6= X , and S satisfies (C5), then let I = T.
9. Let U = U − {u}.
10. end “do (line 6)”
11. else let G = G− {{x, y}}.
12. end “do (line 2)”
13. If S = ∅ then output “No cherry of T exists” else output S and I.

Figure 8. Pseudo-code for an algorithm that either
finds a cherry of a dense trinet set T and also checks
whether it is isolated or not or determines that no cherry
of T exists.

Now, given a dense trinet set T on X , we say that a tuple H =
(a1, a2, . . . , ap : b1, b2, . . . , bq : z) of distinct elements of X , p ≥ 1, q ≥ 0
is a cactus of T (with support S = A ∪B ∪ {z}, A = {a1, . . . , ap} and
B = {b1, . . . , bq}) if T |S satisfies conditions (H2)–(H8) of Lemma 6.2
(note that T |S necessarily satisfies (H1)). Moreover, such an H is
isolated if S 6= X and T |S also satisfies condition (H9) of Lemma 6.2.
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Note that if H = (a1, a2, . . . , ap : b1, b2, . . . , bq : z) is a cactus of T ,
then the relation ∼T defined on the set Y = S − {z} = A ∪ B by
putting y ∼T y′ if and only if y = y′ or N2(z, y, y

′) or N2(z, y
′, y) ∈ T ,

for all y, y′ ∈ Y , is an equivalence relation on Y with (at most two)
equivalence classes A,B. Moreover, the relation <T defined on Y by
y <T y′ if and only if N2(z, y, y

′) ∈ T , for all y, y′ ∈ Y , is a strict
partial order on Y , which restricts to a strict linear order on A and
also on B.
Using these observations, we now show that the algorithm presented

in Fig. 9 can be used to detect cactuses in a dense set of trinets in
polynomial time.

Lemma 7.2. Given a dense set T of trinets on X, |X| ≥ 3, algorithm
FindCactus is correct and has run-time that is polynomial in |X|.

Proof. First note that the algorithm will clearly terminate. Moreover,
if it does output a tuple then in view of lines 12 and 13 this must be
a cactus of T and it will be isolated only if I = T. In addition, if the
algorithm outputs “No cactus of T exists”, then this must be the case.
Otherwise, suppose there is some cactus K = (a1, . . . , ap : b1, . . . , bq : z)
of T , p ≥ 1, q ≥ 0. Setting A = {a1, . . . , ap} and B = {b1, . . . , bq} it
follows that S = A ∪ B ∪ {z} is the support of K and that z must be
at the bottom of some trinet in T . Thus the while loop (lines 2–20)
would eventually find z at line 3. Since K is a cactus of T , for each
element y ∈ Y := A ∪ B, there exists some N ∈ T such that y hangs
off the side of N and z is at the bottom of N . Moreover, A and B
(in case B 6= ∅) are the equivalence classes of the relation ∼T defined
on Y and the elements in A and B (again in case B 6= ∅) are strictly
linearly ordered by <T . Thus, the algorithm would form the tuple
F = (a1, . . . , ap : b1, . . . , bq : z) (lines 10 and 11). Clearly, the support
of F is S. Since T |S satisfies (H2)–(H8) it follows that F is returned
by the algorithm. However since F = K, this is impossible.
Finally, to see that algorithm FindCactus is polynomial in |X|, it

is sufficient to note that lines 6–7, 8–9 and 12–13 can all clearly be
executed in time that is polynomial in |X|. �

We now use the algorithms FindCherry and FindCactus to show
that it can be decided in polynomial time whether or not a dense set of
trinets is displayed by a 1-nested network using the algorithm presented
in Fig. 10.

Theorem 7.3. For X with |X| ≥ 3 and T a dense set of trinets on
X, algorithm BuildNet has run-time that is polynomial in |X| and
is correct.
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FindCactus(X,T )

Input: A set X , |X| ≥ 3, and a dense set T of trinets on X .
Output: A cactus H of T and a boolean variable I ∈ {T,F}, with I = T

if H is isolated and I = F else, or the statement “No cactus of T
exists”.

1. Put H = ∅, I = F, G = X .
2. While there is some z ∈ G do
3. If there is a trinet N ∈ T such that z is at the bottom of N , then do
4. Let Y be the set of y ∈ X − {z} such that y hangs off the side of
5. some N ∈ T for which z is at the bottom of N .
6. If the relation ∼T is an equivalence relation on Y
7. that has at most two equivalence classes E,E ′, then do
8. If the relation <T on Y is a partial order on Y that also restricts
9. to give a strict linear order on E and on E ′ then do
10. Let F = (a1, . . . , ap : b1, . . . , bq : z) and S = Y ∪ {z}, where
11. E = {a1, . . . , ap} and E ′ = {b1, . . . , bq} are ordered relative to <T .
12. If T |S satisfies (H2)–(H8), then let H = F and G = ∅ and, if
13. T |S also satisfies (H9) then let I = T, else let G = G− {z}.
14. end “do (line 11)”
15. else let G = G− {z}.
16. end “do (line 8)”
17. else let G = G− {z}.
18. end “do (line 3)”
19. else let G = G− {z}.
20. end “do (line 2)”
21. If H = ∅ then output “No cactus of T exists” else output H and I.

Figure 9. Pseudo-code for an algorithm that either
finds a cactus of a dense trinet set T and also decides
whether it is isolated or not or determines that no cac-
tus of T exists.

Proof. Algorithm BuildNet has run-time that is polynomial in |X|
since the check required in line 2 can be executed in time that is poly-
nomial in |X| by Lemmas 7.1 and 7.2
Now, if algorithm BuildNet outputs “There is no 1-nested network

displaying T ”, then by Proposition 5.1, Lemma 6.1 and Lemma 6.2,
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BuildNet(T )

Input: A set X , |X| ≥ 3, and a dense set T of trinets on X .
Output: A 1-nested network N on X with Tr(N) = T , or

the statement “There is no 1-nested network displaying T ”.

1. Stack = ∅, G = X
2. While there is some cherry S in T with z ∈ S or some cactus
3. H = (a1, . . . , ap : b1, . . . , bq : z) with support S = {a1, . . . , ap, b1, . . . , bq, z}
4. in T do
5. Put the symbol Rz:S on the top of Stack.
6. If |G− (S − {z})| ≤ 2, then let N be either the bush on G or
7. the two-leafed network on G, depending on T .
8. Let T = T − Tz:S, G = G− (S − {z}).
9. end “do (line 2)”
10. If |G| ≥ 3, then output “There is no 1-nested network displaying T ”
11. else do
12. While there is some Rz:S on the top of Stack, do N = R−1

z:S(N).
13. Output N
13. end “do (line 12)”

Figure 10. Pseudo-code for an algorithm to construct
a 1-nested network from a dense set of trinets, or decide
that such a network does not exist.

there is no 1-nested network N on X with Tr(N) = T . Moreover,
if BuildNet outputs a network N , then N is clearly 1-nested, and
Tr(N) = T by (1). This completes the proof. �

Remark 7.4. Although we have shown that algorithm BuildNet has
run-time that is polynomial in |X|, it could be of interest to see if faster,
more sophisticated algorithms can be developed.

8. Discussion

In this paper, we have shown that we can recover a 1-nested net-
work from ‘perfect data’, viz. the dense set of 1-nested trinets that
is displayed by the network. In practice, we will not usually have ac-
cess to such information for biological datasets. Even so, it should be
quite straight-forward to at least compute a dense set of trinets for any
given biological dataset using existing phylogenetic network methods.
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Figure 11. The 1-nested network N on {w, x, y, z} de-
picted in (a) is uniquely determined by the two trinets
pictured in (b). As before, directions are omitted for
clarity when clear. Also only the vertices that are leaves
are marked by a dot.

For example, given a multiple sequence alignment, one could compute
the most parsimonious or most likely trinet for every sub-alignment of
3 sequences (using, e.g. methods described in [18, 19]), which would be
feasible as there are a bounded number of 1-nested trinets. Note that
this would have the advantage that no ‘breakpoints’ would need to be
computed for the multiple alignment, which is a first (and sometimes
quite difficult) step that is usually required when constructing phylo-
genetic networks from phylogenetic trees (cf. e.g. [12, Chapter 11], [23,
Section 2]).
Given that computing dense sets of trinets is feasible for biological

data, it could be reasonable to develop methods for finding 1-nested
networks displaying as many trinets as possible from a dense set of
trinets. Similar techniques have been developed for triplets e.g. [11,
13, 31], although it is worth noting that it is NP-hard to find a tree
displaying a maximum number of rooted triplets from an arbitrary set
of triplets [2, 15, 33] (even if the set is dense [3]). Alternatively, it might
be of interest to investigate if there might be an ‘Aho-type’ algorithm
[1] to determine if an arbitrary subset of 1-nested trinets encodes a 1-
nested network, and, if so, adapt this to give ‘Min-Cut’ type algorithms
for building 1-nested networks from sets of trinets (cf. [24, 26, 27]). A
first step in this direction could be to determine whether or not it is
an NP-complete problem to decide if an arbitrary subset of 1-nested
trinets encodes a 1-nested network (in particular, note that there are
non-dense sets of 1-nested trinets that encode 1-nested networks – e.g.
the 1-nested network N on {w, x, y, z} pictured in Fig. 11(a) is the only
1-nested network on {w, x, y, z} displaying the two trinets presented in
Fig. 11(b)).
In another direction, clearly we can ask for results along the lines of

those presented above for level-k networks [9], k ≥ 2, phylogenetic
networks that have a bounded level of complexity depending on k
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Figure 12. A level-n phylogenetic network N on
{x1, x2, . . . , xn}, n ≥ 4, for which every trinet in Tr(N)
is of level-3. For clarity arc directions are omitted when
clear.

(and also, of course, ‘k-nested’ networks). Note that there are non-
recoverable level-2 networks (e.g. Fig. 4), and so this could be rather
more technical. Moreover, it should be noted that, for k ≥ 3, there
are level-k networks that are not of level-(k − 1) all of whose trinets
have fixed level (see Fig. 12). Thus, the levels of the trinets displayed
by a network do not necessarily determine the level of a network. For
practical purposes, it might also be of interest to determine a way to
enumerate the level-k trinets, k ≥ 2.
Another avenue worth exploring, could be to try generalizing the

above results to ‘r-nets’, r ≥ 4, i.e. phylogenetic networks with r-
leaves (note that in case r = 4 quartet trees are commonly used to
build phylogenetic trees, e.g. [29]). Note that it is straight-forward to
extend Definition 3.1 to obtain a set of r-nets displayed by a phylo-
genetic network. This could be quite useful in practice since it might
be possible to obtain more accurate estimates for r-nets than trinets
(at least for r = 4) before we try to piece them together, although,
technically speaking, this could be very challenging.
Finally, we conclude with what we consider to be a rather bold con-

jecture:

Conjecture 8.1. If N is a recoverable phylogenetic network on X, then
Tr(N) encodes N , that is, if N ′ a recoverable phylogenetic network on
X such that Tr(N) = Tr(N ′) then N is isomorphic to N ′.

A first (and probably quite instructive!) ‘exercise’ could be to try
and show that this conjecture at least holds for level-2 networks. Note
that if this conjecture were true, then as in Corollary 6.4, we would
immediately obtain a new proper metric on the set of recoverable phy-
logenetic networks on X .
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