
Better size estimation for sparse matrix
products?

Rasmus Resen Amossen, Andrea Campagna, and Rasmus Pagh

IT University of Copenhagen, DK-2300 Copenhagen S, Denmark
{resen,acam,pagh}@itu.dk

Abstract. We consider the problem of doing fast and reliable estimation
of the number z of non-zero entries in a sparse boolean matrix product.
This problem has applications in databases and computer algebra.
Let n denote the total number of non-zero entries in the input matri-
ces. We show how to compute a 1 ± ε approximation of z (with small
probability of error) in expected time O(n) for any ε > 4/ 4

√
z. The pre-

viously best estimation algorithm, due to Cohen (JCSS 1997), uses time
O(n/ε2). We also present a variant using O(sort(n)) I/Os in expectation
in the cache-oblivious model.
In contrast to these results, the currently best algorithms for computing a
sparse boolean matrix product use time ω(n4/3) (resp. ω(n4/3/B) I/Os),
even if the result matrix has only z = O(n) nonzero entries.
Our algorithm combines the size estimation technique of Bar-Yossef et
al. (RANDOM 2002) with a particular class of pairwise independent hash
functions that allows the sketch of a set of the form A×C to be computed
in expected time O(|A|+ |C|) and O(sort(|A|+ |C|)) I/Os.
We then describe how sampling can be used to maintain (independent)
sketches of matrices that allow estimation to be performed in time o(n)
if z is sufficiently large. This gives a simpler alternative to the sketching
technique of Ganguly et al. (PODS 2005), and matches a space lower
bound shown in that paper.
Finally, we present experiments on real-world data sets that show the
accuracy of both our methods to be significantly better than the worst-
case analysis predicts.

1 Introduction

In this paper we will consider a d × d boolean matrix as the subset of [d] × [d]
corresponding to the nonzero entries. The product of two matrices R1 and R2

contains (i, k) if and only if there exists j such that (i, j) ∈ R1 and (j, k) ∈ R2.
The matrix product can also be expressed using basic operators of relational
algebra: R1 1 R2 denotes the set of tuples (i, j, k) where (i, j) ∈ R1 and (j, k) ∈
? This work was supported by the Danish National Research Foundation, as part of

the project “Scalable Query Evaluation in Relational Database Systems”. A shorter
version of this paper has been accepted for presentation at the 14th Intl. Workshop
on Randomization and Computation - RANDOM 2010.

ar
X

iv
:1

00
6.

41
73

v2
 [

cs
.D

S]
 2

2
Fe

b
20

11

R2, and the projection operator π can be used to compute the tuples (i, k) where
there exists a tuple of the form (i, ·, k) in R1 1 R2. Since most of our applications
are in database systems we will primarily use the notation of relational algebra.

We consider the following question: given relations R1 and R2 with schemas
(a, b) and (b, c), estimate the number z of distinct tuples in the relation Z =
πac(R1 1 R2). This problem has been referred to in the literature as join-project
or join-distinct1. We define n1 = |R1|, n2 = |R2|, and n = n1 + n2. As observed
above, the join-project problem is equivalent to the problem of estimating the
number of non-zero entries in the product of two boolean matrices, having n1

and n2 non-zero entries, respectively.

In recent years there has been several papers presenting new algorithms for
sparse matrix multiplication [3,13,15]. In particular, these algorithms can be used
to implement boolean matrix multiplication. However, the proposed algorithms
all have substantially superlinear time complexity in the input size n: On worst-
case inputs they require time ω(n4/3), even when z = O(n).

In an influential work, Cohen [6] presented an estimation algorithm that,
for any constant error probability δ > 0, and any ε > 0, can compute a 1 ± ε
approximation of z = |Z| in time O(n/ε2). Cohen’s algorithm applies to the
more general problem of computing the size of the transitive closure of a graph.

Our main result is that in the special case of sparse matrix product size
estimation, we can improve this to expected time O(n) for ε > 4/ 4

√
z. This

means that we have a linear time algorithm for relative error where Cohen’s
algorithm would use time O(n

√
z).

Approach. To build intuition on the size estimation question, consider the sets
Aj = {i |(i, j) ∈ R1} and Cj = {k |(j, k) ∈ R2}. By definition, Z =

⋃
j Aj ×

Cj . The size of Z depends crucially on the extent of overlap among the sets
{Aj × Cj}j . However, the total size of these sets may be much larger than both
input and output (see [3]), so any approach that explicitly processes them is
unattractive.

The starting point for our improved estimation algorithm is a well-known
algorithm for estimating the number of distinct elements in a data streaming
context [4]. (We remark that the idea underlying this algorithm is similar to
that of Cohen [6].) Our main insight is that this algorithm can be extended
such that a set of the form Aj × Cj can be added to the sketch in expected
time O(|Aj | + |Cj |), i.e., without explicitly generating all pairs. The idea is to
use a hash function that is particularly well suited for the purpose: sufficiently
structured to make hash values easy to handle algorithmically, and sufficiently
random to make the analysis of sketching accuracy go through.

1 Readers familiar with the database literature may notice that we consider projections
that return a set, i.e., that projection is duplicate eliminating. We also observe that
any equi-join followed by a projection can be reduced to the case above, having two
variables in each relation and projecting away the single join attribute. Thus, there
is no loss of generality in considering this minimal case.

1.1 Motivation

Cohen [7] investigated the use of the size estimation technique in sparse matrix
computations. In particular, it can be used to find the optimal order of multiply-
ing sparse matrices, and in memory allocation for sparse matrix computations.

In addition, we are motivated by applications in database systems, where size
estimation is an important part of query optimization. Examples of database
queries that correspond to boolean matrix products are:

– A query that computes all pairs of people in a social network with a distance
2 connection (“possible friends”).

– A query to compute all director-actor pairs who have done at least one movie
together.

– In a business database with information on orders, and a categorization
of products into types, compute the relation that contains a tuple (c, p) if
customer c has made an order for a product of type p.

As a final example, we consider a fundamental data mining task. Given a list
of sets, the famous Apriori data mining algorithm [2] finds frequent item pairs
by counting the number occurrences of item pairs where each single element
is frequent. So if R1 = R2 denotes the relationship between high-support (i.e.,
frequent) items and sets in which they occur, Z is exactly the pairs of frequent
items, and the number of distinct items in Z determines the space usage of
Apriori. Since Apriori may be very time consuming, it is of interest to establish
whether sufficient space is available before choosing the support threshold and
running the algorithm.

1.2 Further related work

JD sketch. Ganguly et al. [9] previously considered techniques that compute a
data structure (a sketch) for R1 and R2 (individually), such that the two sketches
suffice to compute an approximation of z.

Define na = |{i | ∃j.(i, j) ∈ R1}| and nc = |{k | ∃j.(j, k) ∈ R2}|. Ganguly
et al. show that for any constant c and any β, a sketching method that returns
a c-approximation with probability Ω(1) whenever z ≥ β must, on a worst-case
input, use expected space

Ω(min(n1+n2, nanc(n1/na+n2/nc)/β)) = Ω(min(n1+n2, (n1nc+n2na)/β)) bits.

The lower bound proof applies to the case where n1 = n2, na = nc, and z <
na + nc. We note that [9] claims a stronger lower bound, but their proof does
not establish a lower bound above n1 + n2 bits. Ganguly et al. present a sketch
whose worst-case space usage matches the lower bound times polylogarithmic
factors (while not stated in [9], the trivial sketch that stores the whole input can
be used to nearly match the first term in the minimum).

In Section 3 we analyze a simple sketch, previously considered in other con-
texts by Gibbons [11] and Ganguly and Saha [10]. It similarly matches the above
worst-case bound, but the exact space usage is incomparable to that of [9].

The focus of [9] is on space usage, and so the time for updating sketches,
and for computing the estimate from two sketches, is not discussed in the paper.
Looking at the data structure description we see that the update time grows
linearly with the quantity s1, which is Ω(n) in the worst case. Also, the sketch
uses a number of summary data structures that are accessed in a random fashion,
meaning that the worst case number of I/Os is at least Ω(n) unless the sketch
fits internal memory. By the above lower bound we see that keeping the sketch
in internal memory is not feasible in general. In contrast, the sketch we consider
allows collection and combination of sketches to be done efficiently in linear time
and I/O.

Distinct elements and distinct paths estimation. Our work is related in
terms of techniques to papers on estimating the number of distinct items in a
data stream (see [4] and its references). However, our basic estimation algorithm
does not work in a general streaming model, since it crucially needs the ability
to access all tuples with a particular value on the join attribute together.

Ganguly and Saha [10] consider the problem of estimating the number of
distinct vertex pairs connected by a length-2 path in a graph whose edges are
given as a data stream of n edges. This corresponds to size estimation for the
special case of squaring a matrix (or self-join in database terminology). It is
shown that space

√
n is required, and that space roughly O(n3/4) suffices for

constant ε (unless there are close to n connected components). The estimation
itself is a join-distinct size estimation of a sample of the input having size no
smaller than O(n3/4/ε2). Using Cohen’s estimation algorithm this would require
time O(n3/4/ε4), so this is O(n) time only for ε > 1/ 16

√
n.

Join synopses. Acharya et al. [1] proposed so-called join synopses that provide
a uniform sample of the result of a join. While this can be used to estimate result
sizes of a variety of operations, it does not seem to yield efficient estimates of
join-project sizes. The reason is that a standard uniform sample is known to be
inefficient for estimating the number of distinct values [5]. In addition, Acharya
et al. assume the presence of a foreign-key relationship, i.e., that each tuple has
at most one matching tuple in the other table(s), which is also known as a snow
flake schema. Our method has no such restriction.

Distinct sampling. Gibbons [11] considered different samples that can be
extracted by a scan over the input, and proposed distinct samples, which offer
much better guarantees with respect to estimating the number of distinct values
in query results. Gibbons shows that this technique applies to single relations,
and to foreign key joins where the join result has the same number of tuples
as one of the relations. In Section 3 we show that the distinct samples, with
suitable settings of parameters, can often be used in our setting to get an accurate
estimate of z = |Z|. The processing of a pair of samples to produce the estimate
consists of running the efficient estimation algorithm of Section 2 on the samples,
meaning that this is time- and I/O-efficient.

2 Our algorithm

The task is to estimate the size z of Z = πac(R1 1 R2). We may assume that
attribute values are O(log n)-bits integers, since any domain can be mapped
into this one using hashing, without changing the join result size with high
probability. When discussing I/O bounds, B is the number of such integers that
fits in a disk block. In linear expected time (by hashing) or sort(n) I/Os we can
cluster the relations according to the value of the join attribute b. By initially
eliminating input tuples that do not have any matching tuples in the other
relation we may assume without loss of generality that z ≥ n/2.

In what follows, k is a positive integer parameter that determines the space
usage and accuracy of our method. The technique used is to compute the kth
smallest value v of a hash function h(x, y), for (x, y) ∈ Z. Analogously to the
result by Bar-Yossef et al. [4] we can then use z̃ = k/v as an estimator for z.

Our main building block is an efficient iteration over all tuples (x, ·, y) ∈
R1 1 R2 for which h(x, y) is smaller than a carefully chosen threshold p, and is
therefore a candidate for being among the k smallest hash values. The essence
of our result lies in how the pairs being output by this iteration are computed
in expected linear time. We also introduce a new buffering trick to update the
sketch in expected amortized O(1) time per pair. In a nutshell, each time k
new elements have been retrieved, they are merged using a linear time selection
procedure with the previous k smallest values to produce a new (unordered) list
of the k smallest values.

Theorem 1. Let R1(a, b) and R2(b, c) be relations with n tuples in total, and
define z = |πac(R1 1 R2)|. Let ε, 0 < ε < 1

4 be given. There are algorithms
that run in expected O(n) time on a RAM, and expected O(sort(n)) I/Os in the
cache-oblivious model, and output a number z̃ such that for k = 9/ε2:

– Pr[(1− ε)z < z̃ < (1 + ε)z] ≥ 2/3 when z > k2, and
– Pr[z̃ < (1 + ε)k2] ≥ 2/3 when z ≤ k2.

Observe that for ε > 4/ 4
√
z we will be in the first case, and get the desired 1± ε

approximation with probability 2/3. The error probability can be reduced from
1/3 to δ by the standard technique of doing O(log(1/δ)) runs and taking the
median (the analysis follows from a Chernoff bound). We remark that this can
be done in such a way that the O(log(1/δ)) factor affects only the RAM running
time and not the number of I/Os. For constant relative error ε > 0 we have the
following result:

Theorem 2. In the setting of Theorem 1, if ε is constant there are algorithms
that run in expected O(n) time on a RAM, and expected O(sort(n)) I/Os in the
cache-oblivious model, that output z̃ such that Pr[(1 − ε)z < z̃ < (1 + ε)z] =
1−O(1/

√
n).

The error probability can be reduced to n−c for any desired constant c by running
the algorithms O(c) times, and taking the median as above.

2.1 Finding pairs

For B = πb(R1) ∪ πb(R2) and each i ∈ B let Ai = πa(σb=i(R1)) and Ci =
πc(σb=i(R2)). We would like to efficiently iterate over all pairs (x, y) ∈ Ai × Ci,
i ∈ B, for which h(x, y) is smaller than a threshold p. This is done as follows
(see Algorithm 1 for pseudocode).

For a set U , let h1, h2 : U → [0; 1] be hash functions chosen independently at
random from a pairwise independent family, and define h : U × U → [0; 1] by2

h(x, y) = (h1(x)− h2(y)) mod 1.

It is easy to show that h is also a pairwise independent hash function — a
property we will utilize later. Now, conceptually arrange the values of h(x, y) in
an |Ai| × |Ci| matrix, and order the rows by increasing values of h1(x), and the
columns by increasing values of h2(y). Then the values of h(x, y) will decrease
(modulo 1) from left to right, and increase (modulo 1) from top to bottom.

For each i ∈ B, we traverse the corresponding |Ai| × |Ci| matrix by visiting
the columns from left to right, and in each column t finding the row s̄ with the
smallest value of h(xs̄, yt). Values smaller than p in that column will be found
in rows subsequent to s̄. When all such values have been output, the search
proceeds in column t + 1. Notice, that if h(xs̄, yt) was the minimum value in
column t, then the minimum value in column t+ 1 is found by increasing s̄ until
h(xs̄, yt+1) < h(x(s̄−1) mod |Ai|, yt+1). We observe that the algorithm is robust to
decreasing the value of the threshold p during execution, in the sense that the
algorithm still outputs all pairs with hash value at most p.

2.2 Estimating the size

While finding the relevant pairs, we will use a technique that allows us to main-
tain the k smallest hash values in an unordered buffer instead of using a heap
data structure (lines 14–18 in Algorithm 1). In this way we are able to maintain
the k smallest hash values in constant amortized time per insertion in the buffer,
eliminating the log k factor implied by the heap data structure.

Let S and F be two unordered sets containing, respectively, the k smallest
hash values seen so far (all, of course, smaller than p), and the latest up to k
elements seen. We avoid duplicates in S and F (i.e., the sets are kept disjoint) by
using a simple hash table to check for membership before insertion. Whenever
|F | = k the two sets S and F are combined in order to obtain a new sketch S.
This is done by finding the median of S ∪F , which takes O(k) time using either
deterministic methods (see [8]) or more practical randomized ones [12].

At each iteration the current kth smallest value in S may be smaller than
the initial value p, and we use this as a better substitute for the initial value
of p. However, in the analysis below we will upper bound both the running time
and the error probability using the initial threshold value p.

2 We observe that this is different from the “composable hash functions” used by
Ganguly et al. [9].

Algorithm 1 Pseudocode for the size estimator.

1: procedure DisItems(p, ε)
2: k ← d9/ε2e
3: F ← ∅
4: for i ∈ B do
5: x← Ai sorted according to h1-value
6: y ← Ci sorted according to h2-value
7: s̄← 1
8: for t := 1 to |Ci| do
9: while h(xs̄, yt) > h(x(s̄−1) mod |Ai|, yt) do . Find s̄ s.t. h(xs̄, yt) is min.

10: s̄← (s̄+ 1) mod |Ai|
11: end while
12: s← s̄
13: while h(xs, yt) < p do . Find all s where h(xs, yt) < p
14: F ← F ∪ {(xs, yt)}
15: if |F | = k then . Buffer filled, find smallest hash values in S ∪ F
16: (p, S)← Combine(S, F)
17: F ← ∅
18: end if
19: s← (s+ 1) mod |Ai|
20: end while
21: end for
22: end for
23: (p, S)← Combine(S, F)
24: if |S| = k then
25: return “z̃ = k

p
and z̃ ∈ [(1± ε)z] with probability 2/3”

26: else
27: return “z̃ = k2, z ≤ k2 with probability 2/3”
28: end if
29: end procedure

30: procedure Combine(S, F)
31: v ← Rank(h(S) ∪ h(F), k) . Rank(·, k) returns the kth smallest value
32: S ← {x ∈ S ∪ F |h(x) ≤ v}
33: return (v, S)
34: end procedure

2.3 Time analysis

We split the time analysis into two parts. One part accounts for iterations of
the inner while loop in lines 13–20, and the other part accounts for everything
else. We first consider the RAM model, and then outline the analysis in the
cache-oblivious model.

Inner while loop. Observe that for each iteration, one pair (xs, yt) is added to F
(if it is not already there). For each t ∈ Ci, p|Ai| elements are expected to
be added since each pair (xs, yt) is added with probability p. This means that
the expected total number of iterations is O(p|Ai||Ci|). Each call to Combine

costs time O(k), but we notice that there must be at least k iterations between
successive calls, since the size of F must go from 0 to k. Inserting a new value
into F costs O(1) since the set is not sorted. Hence, the total cost of the inner
loop is O(p|Ai||Ci|).

Remaining cost. Consider the processing of a single i ∈ B in Algorithm 1. The
initial sorting of hash values can be done with bucket sort requiring expected
time O(|Ai| + |Ci|) since the numbers sorted are pairwise independent (by the
same analysis as for hashing with chaining).

For the iteration in lines 9–11 observe that h(xs̄, yt) is monotone modulo 1,
and we have at most a total of 2|Ai| increments of s̄ among all t ∈ Ci. Thus,
the total number of iterations is O(|Ai|), and the total cost for each i ∈ B is
O(|Ai|+ |Ci|).

The time for the final call to Combine is dominated by the preceding cost
of constructing S and F .

I/O efficient variant. As for I/O efficiency, notice that a direct implementation
of Algorithm 1 may cause a linear number of cache misses if Ai and Ci do
not fit into internal memory. To get an I/O-efficient variant we use a cache-
oblivious sorting algorithm, sorting R1 according to (b, h1(a)), and R2 according
to (b, h2(c)), such that the sorting steps for each i ∈ B is replaced by one global
sorting step.

The rest of the algorithm works directly in a cache-oblivious setting. To see
this, notice that it suffices to keep in internal memory the two input blocks that
are closest to each of the pointers s, t, and s̄. The cache-oblivious model assumes
the cache to behave in an optimal fashion, so also in this model there will be
Ω(B) operations between cache misses, and O(n/B) I/Os, expected, in total.

Lemma 1. Suppose R1(a, b) and R2(b, c) are relations with n tuples in total.
Let p > 0 and ε > 0 be given. Then Algorithm 1 runs in expected O(n +∑

i p|Ai||Ci|) time and O(1/ε2) space on a RAM, and can be modified to use
expected O(sort(n)) I/Os in the cache-oblivious model.

Choice of threshold p. We would like a value of p that ensures the expected
processing time is O(n). At the same time p should be large enough that we
expect to reach line 25 where an exact estimate is returned (except possibly in
the case where z is small).

Lemma 2. Let j ∈ B satisfy |Ai||Ci| ≤ |Aj ||Cj | for all i ∈ B. Then p =
min(1/k, k/(|Aj ||Cj |)) gives an expected O(n) running time for Algorithm 1.

Proof. We argue that for each i, p|Ai||Ci| ≤ max(|Ai|, |Ci|), which by Lemma 1
implies running time O(n +

∑
i p|Ai||Ci|) = O(n +

∑
i max(|Ai|, |Ci|)) = O(n).

Suppose first that |Ai||Ci| ≥ k2. Then p = k/(|Aj ||Cj |) and p|Ai||Ci| ≤ k ≤√
|Ai||Ci| ≤ max(|Ai|, |Ci|). Otherwise, when |Ai||Ci| < k2, we have p ≤ 1/k and

p|Ai||Ci| = |Ai||Ci|/k ≤ max(|Ai|, |Ci|). ut

We note that when R1 and R2 are sorted according to b, the value of p
specified above can be found by a simple scan over both inputs. Our experiments
indicate that in practice this initial scan is not needed, see Section 4 for details.

2.4 Error probability

Theorem 3. Let h be a pairwise independent hash function. Suppose we are
provided with a stream of elements N with h(x) < v for all x ∈ N . Further, let ε,
0 < ε < 1

4 be given and assume that p ≥ min
(

k
2z ,

1
k

)
, where k ≥ 9/ε2, and z is

the number of distinct items in N . Then Algorithm 1 produces an approximation
z̃ of z such that

– Pr[(1− ε)z < z̃ < (1 + ε)z] ≥ 2/3 for z > k2, and
– Pr[z̃ < (1 + ε)k2] ≥ 2/3 for z ≤ k2.

Proof. The error probability proof is similar to the one that can be found in [4],
with some differences and extensions. We bound the error probability of three
cases: the estimate being smaller/larger than the multiplicative error bound, and
the number of obtained samples being too small.

Estimate too large. Let us first consider the case where z̃ > (1+ε)z, i.e. the
algorithm overestimates the number of distinct elements. This happens if the
stream N contains at least k entries smaller than k/(1 + ε)z. For each pair
(a, c) ∈ Z define an indicator random variable X(a,c) as

X(a,c) =

{
1 h(a, c) < k/(1 + ε)z

0 otherwise

That is, we have z such random variables for which the probability of X(a,c) = 1
is exactly k/(1+ε)z and E[X(a,c)] = k/(1+ε)z. Now define Y =

∑
(a,c)∈Z X(a,c)

so that E[Y] = E[
∑

(a,c)∈Z X(a,c)] =
∑

(a,c)∈Z E[X(a,c)] = k/(1 + ε). By the

pairwise independence of the X(a,c) we also get Var(Y) ≤ k/(1 + ε). Using
Chebyshev’s inequality [14] we can bound the probability of having too many
pairs reported:

Pr [Y > k] ≤ Pr
[
|Y −E[Y]| > k − k

1+ε

]
≤ Var[Y](

k − k
1+ε

)2 ≤
k/(1 + ε)(
k − k

1+ε

)2 ≤
1
6

since k ≥ 9/ε2.
Estimate too small. Now, consider the case where z̃ < (1− ε)z which hap-

pens when at most k hash values are smaller than k/(1−ε)z and at least k hash
values are smaller than p. Define X ′(a,c) as

X ′(a,c) =

{
1 h(a, c) < k/(1− ε)z
0 otherwise

so that E[X ′(a,c)] = k/(1−ε)z < (1+ε)k/z. Moreover, with Y ′ =
∑

(a,c)∈Z X
′
(a,c)

we have E[Y ′] = k/(1−ε), and since the indicator random variables defined above
are pairwise independent, we also have Var[Y ′] ≤ E[Y ′] < (1+ε)k. Chebyshev’s
inequality gives:

Pr [Y ′ < k] ≤ Pr
[
|Y ′ −E[Y ′]| > k

1−ε − k
]
≤ Var[Y ′](

k − k
1+ε

)2 ≤
(1 + ε)k(
k

1−ε − k
)2 <

1
9

since k ≥ 9/ε2.
Not enough samples. Consider the case where |S| < k after all pairs have

been retrieved. In this case the algorithm returns β = k2 as an upper bound
on the number of distinct elements in the output, and we have two possible
situations: either there is actually less than k2 distinct pairs in the output, in
which case the algorithm is correct, or there are more than k2 distinct elements
in the output, in which case it is incorrect. In the latter case, less than k hash
values have been smaller than p and the kth smallest value v is therefore larger
than p. Define X ′′(a,c) as

X ′′(a,c) =

{
1 h(a, c) < p

0 otherwise

and let again Y ′′ =
∑

(a,c)∈Z X
′′
(a,c). It results that E[X ′′(a,c)] = p and E[Y ′′] = zp,

and because of pairwise independancy of X ′′(a,c), also Var[Y ′′] ≤ E[Y ′′]. Using

Chebyshev’s inequality and remembering that z > k2 in this case we have:

Pr[Y ′′ < k] ≤ Pr[|Y ′′ −E[Y ′′]| > zp− k] ≤ zp

(zp− k)2
≤ zp(

1
2zp
)2 ≤ 8/k ≤ 1/18.

using that k ≥ 9/ε2 ≥ 144.
In conclusion, the probability that the algorithm fails to output an estimate

within the given limits is at most 1/6 + 1/9 + 1/18 = 1/3. ut

For the proof of Theorem 2 we observe that in the above proof, if ε is constant
the error probability is O(1/k). Using k =

√
n we get linear running time and

error probability O(1/
√
n).

Realization of hash functions. We have used the idealized assumption that
hash values were real numbers in (0; 1). Let m = n3. To get an actual implemen-
tation we approximate (by rounding down) the real numbers used by rational
numbers of the form i/m, for integer i. This changes each hash value by at most
2/m. Now, because of the way hash values are computed, the probability that
we get a different result when comparing two real-valued hash values and two
rational ones is bounded by 2/m. Similarly, the probability that we get a differ-
ent result when looking up a hash value in the dictionary is bounded by 2k/m.
Thus, the probability that the algorithm makes a different decision based on the
approximation, in any of its steps, is O(kn/m) = o(1). Also, for the final output
the error introduced by rounding is negligible.

3 Distinct sketches

A well-known approach to size estimation in, described in generality by Gib-
bons [11] and explicitly for join-project operations in [10,3], is to sample random
subsets R′1 ⊆ R1 and R′2 ⊆ R2, compute Z ′ = πac(R

′
1 1 R′2), and use the size

of Z ′ to derive an estimate for z. This is possible if R′1 = σa∈Sa
(R1), where

Sa ⊆ πa(R1) is a random subset where each element is picked independently
with probability p1, and similarly R′2 = σc∈Sc(R2), where Sc ⊆ πc(R2) includes
each element independently with probability p2. Then z′ = |Z ′|/(p1p2) is an
unbiased estimator for z. The samples can be obtained in small space using hash
functions whose values determine which elements are picked for Sa and Sc. The
value |Z ′| can be approximated in linear time using the method described in sec-
tion 2 if the samples are sorted — otherwise one has to add the cost of sorting.
In either case, the estimation algorithm is I/O-efficient.

Below we analyze the variance of the estimator z′, to identify the minimum
sampling probability that introduces only a small relative error with good prob-
ability. The usual technique of repetition can be used to reduce the error prob-
ability. Recall that we have two relations with n1 and n2 tuples, respectively,
and that na and nc denotes the number of distinct values of attributes a and c,
respectively. Our method will pick samples R′1 and R′2 of expected size s from
each relation, where s = p1n1 = p2n2 is a parameter to be specified.

Theorem 4. Let R′1 and R′2 be samples of size s, obtained as described above.
Then z′ = |πac(R′1 1 R′2)|/(p1p2) is a 1±ε approximation of z = |πac(R1 1 R2)|
with probability 5/6 if z > β, where β = 14

ε2

(
ncn1+nan2

s

)
. If z ≤ β then z′ <

(1 + ε)β with probability 5/6.

3.1 Analysis of variance

To arrive at a sufficient condition that z′ is a 1±ε approximation of z with good
probability, we analyze its variance. To this end define Zi· = {j | (i, j) ∈ Z},
Z·j = {i | (i, j) ∈ Z}, and let

Xi =

{
1− p1, if i ∈ Sa

−p1, otherwise
Yj =

{
1− p2, if j ∈ Sc

−p2, otherwise
.

By definition of Sa, E[Xi] = Pr[i ∈ Sa](1 − p1) − Pr[i 6∈ Sa]p1 = 0. Similarly,
E[Yi] = 0. We have that (i, j) ∈ Z ′ if and only if (i, j) ∈ Z and (i, j) ∈ Sa × Sc.
This means that z′p1p2 =

∑
(i,j)∈Z(Xi+p1)(Yj+p2). By linearity of expectation,

E[(Xi+p1)(Yj+p2)] = p1p2, and we can write the variance of z′p1p2, Var(z′p1p2)
as

E


 ∑

(i,j)∈Z

((Xi + p1)(Yj + p2)− p1p2)

2
 .

Expanding the product and using linearity of expectation, we get

Var(z′p1p2) =
∑

(i,j)∈Z

∑
(i,j′)∈Z

E
[
X2

i p
2
2

]
+

∑
(i,j)∈Z

∑
(i′,j)∈Z

E
[
Y 2
j p

2
1

]
+

∑
(i,j)∈Z

E
[
X2

i Y
2
j

]
=
∑
i∈A

∑
j,j′∈Zi·

p2
2 E
[
X2

i

]
+
∑
j∈C

∑
i,i′∈Z·j

p2
1 E
[
Y 2
i

]
+ zE

[
X2

i

]
E
[
Y 2
i

]
Since E

[
X2

i

]
= p1(1 − p1)2 + (1 − p1)(−p1)2 = p1 − p2

1 < p1, and similarly

E
[
Y 2
j

]
< p2 we can upper bound Var(z′) as follows:

Var(z′) = (p1p2)−2 Var(z′p1p2)

< (p1p2)−2
(∑

i∈A

∑
j,j′∈Zi·

p1p
2
2 +

∑
j∈C

∑
i,i′∈Z·j

p2
1p2 + z p1p2

)
≤ (p1p2)−2

(
ncz p1p

2
2 + naz p

2
1p2 + z p1p2

)
=
(
nc/p1 + na/p2 + (p1p2)−1

)
z .

3.2 Sufficient sample size

We are ready to derive a bound on the probability that z′ deviates significantly
from z. Choose 0 < ε < 1. Since z = E[z′] Chebyshev’s inequality says

Pr[|z′ − z] > εz] <
Var(z′)

(εz)2
≤
(
nc/p1 + na/p2 + (p1p2)−1

)
/(ε2z).

This can equivalently be expressed in terms of the sample size s, since p1 = s/n1

and p2 = s/n2:

Pr[|z′ − z] > εz] < (ncn1 + nan2 + n1n2/s) /(sε
2z).

We seek a sufficient condition on s that the above probability is bounded by
some constant δ < 1

2 (e.g. δ = 1/6). In particular it must be the case that

n1n2/(s
2ε2z) < δ, which implies s >

√
n1, n2/(δz) ≥

√
n1, n2/(δnanc). Hence,

using the arithmetic-geometric inequality:

n1n2/s <
√
ncn1nan2δ ≤ (ncn1 + nan2)/(2

√
δ).

In other words, it suffices that

(ncn1 + nan2) (1 + (2
√
δ)−1)

sε2z
< δ ⇐⇒ s >

(
ncn1 + nan2

z

)(
1 + (2

√
δ)−1

ε2δ

)
.

One apparent problem is the chicken-egg situation: z is not known in advance.
If a lower bound on z is known, this can be used to compute a sufficient sample
size. Alternatively, if we allow a larger relative error whenever z ≤ β we may
compute a sufficient value of s based on the assumption z ≥ β. Whenever z < β
we then get the guarantee that z′ < (1 + ε)β with probability 1− δ. Theorem 4
follows by fixing s and solving for β.

Optimality. For constant ε and δ our upper bound matches the lower bound of
Ganguly et al. [9] whenever this does not exceed n1 + n2. It is trivial to achieve
a sketch of size O((n1 + n2) log(n1 + n2)) bits (simply store hash signatures for
the entire relations). We also note that the lower bound proof in [9] uses certain
restrictions of parameters (n1 = n2, na = nc, and z < na + nc), so it may be
possible to do better in some settings.

4 Experiments

We have run our algorithm on most of the datasets from the Frequent Itemset
Mining Implementations (FIMI) Repository3 together with some datasets ex-
tracted from the Internet Movie Database (IMDB). Each dataset represents a
single relation, and motivated by the Apriori space estimation example in the
introduction, we perform the size estimation on self-joins of these relations. Ta-
ble 1 displays the size of each dataset together with the number of distinct a-
and c-values.

Instance z na (= nc) ε0.1 ε0.01

accidents 94 · 103 468 1.18 3.73
bms-pos 760 · 103 1,657 0.78 2.47
bms-webview-1 128 · 103 497 1.04 3.29
bms-webview-2 1.45 · 106 3,340 0.80 2.54
chess 5.24 · 103 75 2.00 6.33
connect 13.8 · 103 129 1.62 5.12
directoractor 734 · 106 50,645 0.14 0.44
kosarak 66.2 · 106 41,270 0.42 1.32
movieactor 111 · 106 51,226 0.36 1.14
mushroom 7.17 · 103 119 2.16 6.82
pumsb 1.07 · 106 2,113 0.74 2.35
pumsb star 967 · 103 2,088 0.78 2.46
retail 7.19 · 106 16,470 0.80 2.53

Table 1. Characteristics of the used datasets. The rightmost middle column displays
the size na = |πa(R1)| (which in this case is equals nc = |∪πc(R2)|). The two rightmost
columns display the theoretical error as described in Theorem 4, for p1 = p2 = 0.1
and p1 = p2 = 0.01, respectively. These theoretical error bounds, which hold with
probability 5/6, are significantly larger than the actual observed errors in Figure 2.

Rather than selecting h1 and h2 from an arbitrary pairwise independent
family, we store functions that map the attribute values to fully random and
independent values of the form d/264, where d is a 64 bit random integer formed
by reading 64 random bits from the Marsaglia Random Number CDROM4.

3 http://fimi.cs.helsinki.fi
4 http://www.stat.fsu.edu/pub/diehard/

0.8 0.9 1 1.1 1.2
Ratio

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

pr
ob

ab
ilit

y

accidents
bms-pos
bms-webview-1
bms-webview-2
chess
connect
directoractor
kosarak
movieactor
mushroom
pumsb
pusmb_star
retail

(a) k = 256

0.8 0.9 1 1.1 1.2
Ratio

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

pr
ob

ab
ilit

y

accidents
bms-pos
bms-webview-1
bms-webview-2
chess
connect
directoractor
kosarak
movieactor
mushroom
pumsb
pumsb_star
retail

(b) k = 1024

Fig. 1. The cumulative distribution functions for k = 256 and k = 1024. It is seen
that k = 1024 yields a more precise estimate than k = 256 with 2/3 of the estimates
being within 4% and 10% of the exact size, respectively.

0.5 1 1.5 2 2.5 3
Ratio

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

pr
ob

ab
ilit

y

accidents
bms-pos
bms-webview-1
bms-webview-2
chess
connect
directoractor
kosarak
movieactor
mushroom
pumsb
pumsb_star
retail

(a) k = 1024, p1 = p2 = 0.1

0 0.5 1 1.5 2 2.5 3
Ratio

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

pr
ob

ab
ilit

y

accidents
bms-pos
bms-webview-1
bms-webview-2
directoractor
kosarak
movieactor
pumsb
pumsb_star
retail

(b) k = 1024, p1 = p2 = 0.01

Fig. 2. Plots for sampling with probability 10% and 1%. If the sampling probability
is too small, no elements at all may reach the sketch and in these cases we are not able
to return an estimate. Instances with no estimates have been left out of the graph.

We have chosen an initial value of p = 1 for our tests in order to be certain to
always arrive at an estimate. In most cases we observed that p quickly decreases
to a value below 1/k anyway. But as the sampling probability decreases, the
probability that the sketch will never be filled increases, implying that we will
not get a linear time complexity with an initial value of p = 1. In the cases where
the sketch is not filled, we report |F |/(p1p2) as the estimate, where |F | is the
number of elements in the buffer.

Tests have been performed for k = 256 and k = 1024. In each test, 60 inde-
pendent estimates were made and compared to the exact size of the join-project.
By sorting the ratios “estimate”/”exact size” we can draw the cumulative distri-
bution function for each instance that, for each ratio-value on the x-axis, displays
on the y-axis the probability that an estimate will have this ratio or less. Figure 1
shows plots for k = 256 and k = 1024. In Table 2 we compare the theoretical
error ε with observed error for 2/3 of the results. As seen, the observed error is
smaller than the theoretical upper bound.

In Figure 2 we perform sampling with 10% and 1% probability, as described
in Section 3. Again, the samples are chosen using truly random bits. The variance
of estimates increase as the probability decreases, but increases more for smaller
than for larger instances. If the sampling probability is too small, no elements
at all may reach the sketch and in these cases we are not able to return an
estimate. As seen, the observed errors in the figure are significantly smaller than
the theoretical errors seen in Table 1.

k ε Observed ε

256 0.188 0.1
1024 0.094 0.04

Table 2. The theoretical error bound is ε =
√

9/k as stated Theorem 3. The observed
error in Figure 1, however, is significantly less.

5 Conclusion

We have presented improved algorithms for estimating the size of boolean matrix
products, for the first time allowing o(1) relative error to be achieved in linear
time. An interesting open problem is if this can be extended to transitive closure
in general graphs, and/or to products of more than two matrices.

Acknowledgement. We would like to thank Jelani Nelson for useful dis-
cussions, and in particular for introducing us to the idea of buffering to achieve
faster data stream algorithms. Also, we thank Sumit Ganguly for clarifying the
lower bound proof of [9] to us. Finally, we thank Konstantin Kutzkov and Rolf
Fagerberg for pointing out mistakes that have been corrected in this version of
the paper.

References

1. S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. Join synopses for
approximate query answering. In Proceedings of the 1999 ACM SIGMOD Inter-
national Conference on Management of Data, volume 28(2) of SIGMOD Record,
pages 275–286. ACM, 1999.

2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Pro-
ceedings of 20th International Conference on Very Large Data Bases (VLDB ’94),
pages 487–499. Morgan Kaufmann Publishers, 1994.

3. R. R. Amossen and R. Pagh. Faster join-projects and sparse matrix multiplications.
In Proceedings of the 12th International Conference on Database Theory (ICDT
’09), pages 121–126. ACM, 2009.

4. Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting
distinct elements in a data stream. In Proceedings of the 6th International Work-
shop on Randomization and Approximation Techniques (RANDOM ’02), pages
1–10. Springer-Verlag, 2002.

5. M. Charikar, S. Chaudhuri, R. Motwani, and V. R. Narasayya. Towards estimation
error guarantees for distinct values. In Proceedings of the 19th ACM Symposium
on Principles of Database Systems (PODS ’00), pages 268–279. ACM, 2000.

6. E. Cohen. Size-estimation framework with applications to transitive closure and
reachability. Journal of Computer and System Sciences, 55(3):441–453, Dec. 1997.

7. E. Cohen. Structure prediction and computation of sparse matrix products. J.
Comb. Optim, 2(4):307–332, 1998.

8. D. Dor and U. Zwick. Selecting the median. In Proceedings of the 6th annual
ACM-SIAM Symposium on Discrete algorithms (SODA ’95), pages 28–37. SIAM,
1995.

9. S. Ganguly, M. Garofalakis, A. Kumar, and R. Rastogi. Join-distinct aggregate
estimation over update streams. In Proceedings of the 24th ACM Symposium on
Principles of Database Systems (PODS ’05), pages 259–270. ACM, 2005.

10. S. Ganguly and B. Saha. On estimating path aggregates over streaming graphs.
In Proceedings of 17th International Symposium on Algorithms and Computation,
(ISAAC ’06), volume 4288 of Lecture Notes in Computer Science, pages 163–172.
Springer, 2006.

11. P. B. Gibbons. Distinct sampling for highly-accurate answers to distinct values
queries and event reports. In Proceedings of the 27th International Conference on
Very Large Data Bases (VLDB ’01), pages 541–550. Morgan Kaufmann Publishers,
2001.

12. C. A. R. Hoare. Algorithm 65: find. Commun. ACM, 4(7):321–322, 1961.
13. A. Lingas. A fast output-sensitive algorithm for boolean matrix multiplication.

In Proceedings of the 17th European Symposium on Algorithms (ESA ’09), volume
5757 of Lecture Notes in Computer Science, pages 408–419. Springer, 2009.

14. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

15. R. Yuster and U. Zwick. Fast sparse matrix multiplication. ACM Trans. Algo-
rithms, 1(1):2–13, 2005.

	Better size estimation for sparse matrix products

