Algorithmica (2013) 67:49-64
DOI 10.1007/s00453-012-9711-x

The School Bus Problem on Trees

Adrian Bock - Elyot Grant - Jochen Kénemann -
Laura Sanita

Received: 23 May 2012 / Accepted: 30 October 2012 / Published online: 21 November 2012
© Springer Science+Business Media New York 2012

Abstract The School Bus Problem is an NP-hard vehicle routing problem in which
the goal is to route buses that transport children to a school such that for each child,
the distance travelled on the bus does not exceed the shortest distance from the child’s
home to the school by more than a given regret threshold. Subject to this constraint
and bus capacity limit, the goal is to minimize the number of buses required.

In this paper, we give a polynomial time 4-approximation algorithm when the
children and school are located at vertices of a fixed tree. As a byproduct of our
analysis, we show that the integrality gap of the natural set-cover formulation for this
problem is also bounded by 4. We also present a constant factor approximation for
the variant where we have a fixed number of buses to use, and the goal is to minimize
the maximum regret.

Keywords Vehicle routing - Approximation algorithm - Set-cover formulation

1 Introduction

Vehicle routing is an important and active topic in computer science and operations
research. In the literature, the objective is typically to find a minimum-cost set of
routes in a network that achieve a certain objective subject to a set of constraints.
The constraints and cost are often related to the distance travelled, number of routes
or vehicles used, coverage of the network by the routes, and so on. Problems of this
kind are frequent and crucial in areas such as logistics, distribution systems, and
public transportation (see, e.g., the survey by [14]).

A. Bock (X))
EPFL, Lausanne, Switzerland
e-mail: adrianaloysius.bock@epfl.ch

E. Grant - J. Kénemann - L. Sanita
University of Waterloo, Waterloo, Canada

@ Springer

mailto:adrianaloysius.bock@epfl.ch

50 Algorithmica (2013) 67:49-64

In vehicle routing problems relevant to public transportation, a secondary objective
often must be taken into account beyond minimizing operation cost: namely, it is
crucial to design routes so as to optimize customer satisfaction in order to motivate
customers to use the service. This requirement is essential in the so-called School Bus
Problem (SBP)—the focus of this paper.

In the SBP, we must route buses that pick up children and bring them from their
homes to a school. However, parents do not want their children to spend too much
time on the bus relative to the time required to transport them to school by car along a
shortest path. In fact, if the additional distance travelled by the bus exceeds a certain
regret threshold, the parents would rather drive their children to school by themselves,
which is unacceptable. Subject to this, the goal is to cover all of the children using a
minimum number of buses.

Formally, we are given an undirected network G(V, E) with distances on the
edges d : E — Z4, anode s € V representing the school, and a set W C V repre-
senting the houses of children. Additionally, we are given a bus capacity C € Z,
and a regret bound R € Z . The aim is to construct a minimum cardinality set P of
walks ending at s (bus routes) and assign each child w € W to be the responsibility of
some bus p(w) € P such that (i) for each walk P € P, the total number of children
w with p(w) = P is at most the capacity C; (ii) for every child the regret bound is
respected, that is: d¥ (w, s) < d(w,s) + R, where d¥ (w, s) is the distance from the
child w to the school s on the walk p(w), and d(w, s) is the shortest distance from
w to s in the graph G.

In an additional variation of the problem, we have a fixed number N of buses we
can use, and the goal is to minimize the maximum regret R. We call this variant the
School Bus Problem with Regret minimization (SBP-R).

Like many vehicle routing problems, both SBP and SBP-R are strongly NP-hard,
even on the simplest of graphs. To see this, consider a star centered at the school s
with children located at all other vertices. If k of the edges are very long, say longer
than %, then in any feasible solution we need at least k buses: one bus starting at each
of these k endpoints. Then, determining if such k buses are sufficient with a regret
bound R is precisely equivalent to solving the bin-packing decision problem with k
bins of capacity § and objects sized according to the distances from the remaining
children to the school. It follows that bin-packing can be reduced to both SBP and
SBP-R on stars.

Many variants of vehicle routing have been studied in the context of exact, approx-
imate, and heuristic algorithms. For SBP and SBP-R, heuristic methods for practical
applications have been examined (see the survey of [12]), but there is no literature
concerning formal approximability and inapproximability results. Our goal is to ad-
vance the state of the art in this perspective.

1.1 Our Results
As we will show, the SBP can be formulated as a set covering problem. With this ob-
servation, we will easily derive a O(log C)-approximation to SBP in general graphs,

as well as a O(log C) upper bound on the integrality gap of the natural set-cover
formulation applied to the SBP.

@ Springer

Algorithmica (2013) 67:49-64 51

If we restrict the input to trees, we can achieve a constant factor approximation.
Specifically, we will give a simple combinatorial 4-approximation for the SBP on
trees. The approximation factor reduces to 3 in the case of unlimited capacity.

Our algorithm for SBP immediately yields an integrality gap bound matching the
approximation factor. Namely, we will show that the integrality gap of the natural
set-cover formulation of the SBP on trees is at most 4. In case of unlimited capacity,
the gap is at most 3.

On the negative side, we can prove an inapproximability factor of % for the SBP
on trees.

Finally, we give a combinatorial 13.5-approximation for the SBP-R on trees, in
the case of unlimited capacity.

1.2 Related Work

There is an enormous number of results concerning vehicle routing problems; see the
survey [14].

The SBP is closely related (but not equal) to the Distance Constrained Vehicle
Routing Problem (DVRP). DVRP enforces a bound D on the length of a vehicle tour,
and the goal is the minimization of the number of routes used to visit all locations.
It was raised and studied for applications in [9] and [10]. Routing problems like the
DVRP can directly be encoded as instances of Minimum Set Cover, and thus often
admit logarithmic approximations. The authors of [11] give a careful analysis of the
set cover integer programming formulation of the DVRP and bound its integrality gap
by O(log D) on general graphs and by O(1) on a tree. They also obtain a constant
approximation for the DVRP on a tree and a O(log D) approximation in general.
We remark here that, despite the similarity of the two problems, a straightforward
adaptation of their methods to the SBP does not work. Therefore, in order to develop
our approximation results for the SBP on trees, we need to introduce some new ideas.

The Capacitated Vehicle Routing Problem (CVRP) enforces a limit C on the num-
ber of visited locations in each route, and the goal is the minimization of the total
length of all the routes. The paper [7] established a strong link to the underlying
Travelling Salesman Problem (TSP) by giving an approximation algorithm that relies
on the approximation algorithms for TSP. Depending on the capacity bound C, it is
possible to obtain a PTAS in the Euclidean plane for some special cases (if the ca-
pacity is either small [1], or very large [2]). If we restrict the input to trees, there is a
2-approximation [8].

Many practical problems involving school buses have been studied, but primar-
ily within the context of heuristic methods for real-life instances. We refer to [12]
for a thorough survey of possible formulations and heuristic solution methods. Our
notion of regret was first introduced as a vehicle routing objective in [13]. They con-
sidered a more general problem involving timing windows for customers and applied
metaheuristics to produce solutions to real-life instances.

The School bus problem can be seen as a special case of the Vehicle Routing
with time windows (VRP-TW), where every node is associated with a time interval
in which it must be visited [6]. There is a O(log® |V |) approximation algorithm for
VRP-TW based on a O(log? |V|) approximation for Orienteering with time windows

[3].

@ Springer

52 Algorithmica (2013) 67:49-64

2 Preliminaries

We first observe that the capacity bound can be neglected for a slight loss in the ap-
proximation factor for the SBP. The proof is essentially identical to that of a similar
result proven in [11] for the DVRP, but we recall the proof for the sake of complete-
ness.

Lemma 1 Given an a-approximation to the SBP with unlimited capacity for each
bus, there is an o + 1-approximation to the SBP with capacity bound C.

Proof Given an instance of the SBP with capacity bound C, we first ignore the ca-
pacity bound and run the a-approximation algorithm for the resulting SBP instance
with unlimited capacity. The output will be a set of walks Py, ..., Py covering all
children W. The idea is to cut each walk into parts of capacity C and connect them
directly to the school. Let APX ¢ denote the number of buses output in case of capac-
ity C and OPT ¢, OPT « the optimum solutions of the capacitated and uncapacitated
case, respectively. We obtain

APXe < Xk:<|{w eW:w isgovered by P;}| + 1)
i=1

w
=< |C—| + aOPT 5 < (1 4+a)OPTc.]

If P is a walk ending at s and covering a subset S of nodes, then we say that P
has regret R if a regret bound of R is respected for all children in S. The following
useful fact holds for both the SBP and the SBP-R:

Proposition 1 Let P be a walk starting at some node v and ending at s. For all nodes
covered by P the regret bound R is respected if and only if it is respected for v.

Proof Assume for contradiction that there is anode w € S withd” (w, s) > d(w, s)+
R while d¥ (v, s) <d(v, s) + R. The triangle inequality then implies

df(v,s)>dP(w,s) +dw, w) > R+dw,s)+dw,w)>R+dv,s),

a contradiction. O

We next give a covering integer programming formulation of the SBP. Let S be
the family of all feasible sets of C or fewer children that can be covered by a single
walk ending at s having regret at most R. We introduce a variable xg for each S € S
and give the following formulation:

min ng

SeS

s.t. Z xg>1 YweWw (IP)
S:weS

xs€{0,1} VSeS.

@ Springer

Algorithmica (2013) 67:49-64 53

Theorem 1 There is a O(log C)-approximation to SBP in general graphs. Further-
more, the integrality gap of the LP relaxation of SBP’s covering integer programming
Sformulation can also be bounded by O(log C).

Proof An O(log C)-approximation algorithm easily follows from adapting the stan-
dard greedy strategy for set cover. Such a greedy algorithm, applied to an SBP in-
stance, repeatedly searches for a feasible walk ending at s that picks up the maxi-
mum number of uncovered children, doing so until every child is picked up. At each
iteration, we guess the starting point v* (by trying all |V | — 1 possibilities). Using
Proposition 1, the resulting problem we are left with is to find a v*, s-walk in G of
length at most d(v*, s) + R visiting the maximum number of uncovered nodes in W.
Such a problem is well known in the literature as the Orienteering Problem, and can
be approximated within a constant factor[4, 5]. The results then follow by applying
the classical Dual-Fitting set cover analysis (since the analysis is pretty standard, we
omit the details and refer to [15]). Il

We leave the interesting question open whether a constant factor approximation
can be achieved for the SBP in general graphs. This is unknown for related vehicle
routing problems like the Distance-constrained vehicle routing problem [11] or the
vehicle routing problem with time windows [6] as well. However, we will show now
how to obtain a constant approximation on trees.

In the remainder of this paper, we will mainly focus on the infinite capacity version
of the SBP and SBP-R on a tree 7 with root s. We denote by P (u, v) and d(u, v) the
unique path from u to v in T, and its corresponding length. For a subset of edges F,
we let d(F) :=)_,.pd(e). An Euler tour of a connected set of edges is a walk that
visits each edge exactly twice. We note that subtrees of T that contain no vertices in
W will never be visited by a bus in any optimal solution, and thus we can assume
without loss of generality that all leaves of 7' contain children. In such an instance, a
feasible solution will simply cover all of T with bus routes. Moreover, when assuming
infinite capacity, any solution is still feasible if every node of T contains a child and
we can therefore assume, without loss of generality, that W = V.

3 SBP on Trees

For the SBP on trees, we first present the 4-approximation. After that, we show that
the integrality gap of the natural set cover formulation can be bounded by 4 as well.
Finally, we prove that the SBP on trees is hard to approximate within a factor 3/2.

3.1 A 4-Approximation

Theorem 2 There exists a polynomial time 4-approximation for the SBP on trees.
The approximation factor reduces to 3 in the case of unlimited capacity.

We prove Theorem 2 by first giving a combinatorial 3-approximation for the SBP

with unlimited capacity on graphs that are trees, and subsequently applying Lemma 1.
Our algorithm is based on the following intuitive observations:

@ Springer

54 Algorithmica (2013) 67:49-64

Fig. 1 Example of a tree with S
unit distance edges and R = 6.
A maximal set of anchors is
drawn as square nodes, the
corresponding skeleton is shown
in solid and the grey, dashed
parts of the tree are the short
subtrees

— When the input tree is very short (say, of height at most g on an instance with
regret R), then it is relatively easy to obtain a 2-approximation for the SBP by
simply cutting an Euler tour of the tree into short pieces and assigning each piece
to a bus.

— General trees can be partitioned into smaller pieces (subtrees) such that at least one
bus is required for each piece, but each piece can be solved almost optimally via a
similar Euler tour method.

We begin with some definitions. We call a set of vertices {ay,...,an} SV R-
independent if for all a; # a;, we have d(a;,lca(a;, a;)) > g, where Ica(a;, a;) is
the lowest common ancestor of the vertices a; and a; in T. By iteratively marking
the leaf in 7 furthest from the root such that R-independence is maintained among
marked leaves, we can obtain, in polynomial time, an inclusion-wise maximal R-
independent set of leaves A such that all vertices in T are within a distance of § from
a path P(s, a) for some a € A. We shall call A a set of anchors. By construction, no
two distinct anchors a; and a; can both be covered by a walk of regret at most R,
immediately yielding the following lower bound:

Proposition 2 The size |A| of the set of anchors is a lower bound on the number of
buses that is needed in any feasible solution.

We now give a second useful lower bound. Let Q :={J,c4 P (s, a). We call Q the
skeleton of T, noting that Q is a subtree of 7 whose leaves are the anchors. Observe
that all edges in the skeleton Q will automatically be covered if a bus visits each
anchor. Since each anchor must be visited at least once, it suffices to only consider
covering the anchors and the non-skeletal edges of T, i.e. the edges in T \ Q. The
edges in T \ Q form a collection of disjoint subtrees, each of which has height at
most g. We call these short subtrees. See Fig. 1 for an example tree visualizing these
definitions.

Suppose that a feasible walk starts at a vertex v in a short subtree 7 . It will cover
all the edges in P (s, v), and may possibly cover some additional detour edges having
total length at most %. Since 7 is a short subtree, the non-skeletal edges in P (s, v)
have total length at most g. It follows that:

@ Springer

Algorithmica (2013) 67:49-64 55

Observation 1 The set of non-skeletal edges covered by any feasible walk P must
have total length at most R: at most % in length along the path from its starting vertex

to the root, and at most g length in edges covered by detours.
From this, we can observe the following lower bound on the number of buses:

Proposition 3 The number % > ceT\Q d(e) is a lower bound on the number of buses
that are needed in any feasible solution.

We build our 3-approximation from these two lower bounds by partitioning the
edges of T into a family of subtrees each containing a single anchor, and approximat-
ing the optimal solution well on each of these subtrees. For anchors A = {ay, ..., an},
we define associated paths of edges {Py, ..., Py} as follows: (i) P; = P(s,a1), and
(i) P; = P(s,ai)\ (U’j_:l1 {P;}) for2 <i <m.Theedgesin {Py,..., Py} form a par-
tition of the skeleton Q into paths (not necessarily ending at s), each of which starts
at a different anchor.

We then let 7; be the set of all edges in both the path P; and the set of all short
subtrees attached to P;. If a short subtree is attached to a junction point where two
paths P; and P; meet, we arbitrarily assign it to either P; or P; so that the sets
{T1,...,T,} form a partition of all of the edges of T into a collection of subtrees,
each containing a single anchor.

For each 1 <i < m we define a directed walk W; that starts at the anchor «;,
proceeds along P; in the direction toward the root s, and collects every edge in 7; by
tracing out an Euler tour around each of the short subtrees in 7; that are attached to
P;. One may easily verify that it is always possible to quickly find such a walk such
that the following properties are satisfied:

— W; contains each edge in P; exactly once and always proceeds in the direction
toward s when collecting each edge in P;.

— W; contains each edge in T; \ P; exactly twice: once proceeding in the direction
away from s, and once in the direction toward s.

We now greedily assign the edges in the short subtrees in 7; to buses by simply adding
edges to buses in the order in which they are visited by W;. We first initialize a bus
B1 at the anchor g; and have it travel along W; until the total length of all of the edges
it has traversed in the downward direction (away from the root s) is exactly %. At
this point, we assume it lies on some vertex v; (if not, we may imagine adding v; to
the middle of an existing edge in 7}, although this will not be relevant to our solution
as there are then no children at v;). We send bus 81 from v; immediately back to
the root s and create a new bus S, that starts at v; and continues to follow W; until
it too has traversed exactly g length in edges of 7; in the downward direction. We
assume it then lies at a vertex v, create a new bus B3 that starts at vy and continues
to follow W;, and so on. Eventually, some bus B; will pick up the last remaining
children and proceed to the root s, possibly with leftover detour to spare. We observe

23 cer\py
R

d
that the number of buses used is exactly [(e)] since each bus other than the

last one consumes exactly % of the downward directed edges in W;, and W; proceeds
downward along each edge in T; \ P; exactly once. We also note that this is a feasible

@ Springer

56 Algorithmica (2013) 67:49-64

solution since a bus travelling a total downward direction of § must make a detour
no greater than R.

Doing this for each edge set 7; yields a feasible solution to the original instance

2 eer;\p; d(e)
R

using exactly Y 'L, [1 buses. This is at most

2 — ZeeT\Qd(e)
m+EZ Z d(e) =m +2==—"5—— <30PT
i=1 EET,'\P,'

by Proposition 2 and Proposition 3, where OPT is the optimal number of buses re-
quired in any feasible solution. Together with Lemma 1, this proves Theorem 2.

3.2 Integrality Gap of Set-Cover Formulation

We will next show that the bounds given in Propositions 2 and 3 are necessarily also
respected by fractional solutions to the LP relaxation (LP) of (IP). Together with the
argument above, this immediately implies that (LP) has an integrality gap of at most
4 (and 3 in the case of infinite capacities).

Theorem 3 The integrality gap of the natural set-cover formulation of the SBP on
trees is at most 4. In case of unlimited capacity, the gap is at most 3.

Proof The dual of (LP) is a packing problem with a variable y, for each v € V;
we think of y, as the profit of child v. The dual then has an exponential number of
constraints bounding the total profit of each feasible set of children that can be picked
up in a single walk.

max Z Yo

veV\{s}

s.t. Z vy <1 V feasible sets of children S D)

ves

yw>0 VYveV\({s}
To prove our bound, we need to state the following lemma proven by [11]:

Lemma 2 (Distribution Lemma) For any tree H with root r and distance function d
on the edges, it is possible to distribute a total profit of 1 among the leaves of H such
that the profit contained in any subtree F rooted at r is at most % -7

There are three things to prove for a feasible fractional solution to the LP relax-
ation of (IP):

(i) The number % is a lower bound on the value of any fractional solution.

This lower bound is trivial. We assign a profit of % to every node v € V' \ {s}.
Any walk that collects profit > 1 has to visit more than C nodes.

@ Springer

Algorithmica (2013) 67:49-64 57

(ii) The size |A| of the set of anchors is a lower bound on the value of any fractional
solution.
The profit function that assigns a profit 1 to every anchor and 0 to all other
vertices is a feasible solution to (D), since a feasible walk can never visit more
than one anchor and thus collects profit at most 1.

(iii)) The lower bound of Proposition 3 holds for all fractional solutions.
In order to show this, we apply the distribution lemma to every short subtree H
from the collection H of short subtrees that form 7"\ Q. On each subtree H, an
amount of d(H)/R is distributed among its leaves. Every other vertex gets profit
0% ";herefore we distribute in total a profit of 3, 7\ o d(e)/R over the vertices
of T.

It remains to prove the feasibility of this dual solution. Consider a feasible

walk P in T and assume that it collects a profit > 1. P visits the following
length among edges of short subtrees:

ZeeHﬂPd(e) ZeeHﬁP ()
‘ ~aan H fit(H) - R
ee(T\ZQ)mP (e) = Z d(H) (H) = Z d(H) profit(H) -

By the distribution lemma, we know that

Z Zee;l(r};) () profit(H) - R > profit(P) - R > R

This is a contradiction to the Observation 1.

Now we bring the three lower bounds together to obtain the claimed result. Let APX
denote the feasible integer solution that we obtain from combining Theorem 1 with
Lemma 1. Combining their proofs, we have:

1% d(e)
apx <Y +|A|+226€L <4.0PT;.
C R
Note that in case of unlimited capacity, the term % is omitted and we obtain an
integrality gap of at most 3. 0

The worst example that we are aware of has integrality gap 2. It consists of a star
with n 4+ 1 nodes and edges of unit distance from the center. Set R := 2(n — 2) and
the capacity C unlimited. The best integer solution uses exactly two routes while the
fractional solution considers n routes (each possible route that skips exactly one leaf)
with —— fraction. This yields a fractional solution close to 1 for n big enough and
thus the clalmed result.

3.3 Hardness of Approximation
Theorem 4 The SBP is NP-hard to approximate within a factor %

Proof The reduction is from the subset sum problem. In an instance Z of the subset
sum problem, we are given a collection {ay, ..., a;,} of m non-negative integers with

@ Springer

58 Algorithmica (2013) 67:49-64

> a; evenand B := 4> ", a;. The goal is to determine whether there exists a
subset S C [m] such that) ;_¢a; = B. This problem is known to be NP-complete.

To complete our inapproximability proof, we construct an instance of SBP on
trees as follows. The root s has 2 children ¢y, ¢ and m additional children. The
edges (s, c¢1) and (s, ¢p) have length 2B, while foreach j =1, ..., m, edge (s, j) has
length a;. The regret bound is R := 2B. Note that the size of the SBP instance is
polynomial in the size of 7 , and the construction runs in polynomial time.

Suppose 7 is a yes-instance; that is, there is some subset S C [m] with ZjeS aj=
B. Then we can construct one walk starting at ¢; and ending at s visiting vertices
{j: j € S}, and one walk starting at ¢, and ending at s visiting vertices {j: j €
[m]\ S}). Note that the regret of each walk is exactly 2B.

Conversely, suppose Z is a no-instance. Then we claim that the optimal value of
the SBP instance is at least 3. Due to the length of the edges (s, c¢1) and (s, ¢2), the
nodes ¢ and ¢ must be the starting nodes of two different walks, since otherwise we
will exceed the regret bound. On the other hand, each of these 2 walks can only cover
a subset S C [m] with) jesaj = B, otherwise the regret bound will be exceeded.
Since Z;”zl a; = 2B, but there is no valid walk covering a subset S C [m] such that
> jesdj = B, we require at least 3 walks to cover all nodes. The result follows. [

4 A 13.5-Approximation to the Uncapacitated SBP-R on Trees

In this section, the School Bus Problem with Regret Minimization (SBP-R) is consid-
ered. SBP-R differs from SBP because of the exchanged roles of maximum regret and
number of bus routes. In case of SBP-R, the number of routes is bounded by a given
parameter N € N while the maximum regret is to be minimized. We present here a
polynomial time 13.5-approximation algorithm for SBP-R with unlimited capacity.

Without loss of generality, we may assume the tree 7 to be binary. Suppose we
can fix a value R for the regret. We will develop an algorithm that, given an instance
and the value R, either outputs a set of at most N bus routes, with a maximum regret
of 13.5R, or asserts that every solution with at most N buses must have a regret value
> R. Then, we can do binary search on the regret values and output the best solution
found.

Suppose we have guessed a value for R. We begin by finding a set of anchors A
with respect to R as described in Sect. 3.1. Our algorithm shall only generate solu-
tions where each bus begins its journey at an anchor. As it turns out, this restriction
will be very helpful and causes only a small loss in the approximation factor that
we obtain. By assigning a bus to start at each of the anchors, we can ensure that the
anchors and skeleton will be covered. However, this time, covering the short sub-
trees (as defined for SBP in Sect. 3.1) is much trickier because the number of buses
we may use is limited. In fact, it may be the case that all feasible solutions using
N buses require some bus to travel from an anchor, up part of the skeleton, and then
down another part of the skeleton partially toward a different anchor, before returning
upward to travel to the root. Consequently, greedy assignments of short subtrees to
buses using methods like those used in Sect. 3.1 do not work for SBP-R.

We introduce a few additional definitions to help us describe how we get around
this difficulty. Every vertex v € Q of the skeleton is called a junction point if it is

@ Springer

Algorithmica (2013) 67:49-64 59

Fig. 2 Example of a tree with
unit distance edges and R = 6.
Anchors are drawn as square
nodes, junction points as empty
circles

either the root s or if v has degree more than 2 in Q. Let J be the set of junction
points. The skeleton Q can be split at its junction points into a set of edge-disjoint
paths, which we will call core segments. Formally, a path in Q is a core segment if
and only if its endpoints are anchors or junction points and it contains no junction
points in its interior. See Fig. 2 for an example tree visualizing these definitions.

Now, we employ the fact that, in a solution of regret R using N buses, no bus
starting at some anchor a € A may travel too far off from the path from a to the
root s; in particular, it may not travel a distance of more than § along core segments
not contained in the path from a to s. As intuition for how our algorithm exploits
this, imagine taking each short subtree in 7', detaching it from the skeleton Q, and
then reattaching it to Q at some point g closer to the root s from its original point
of attachment in 7. In the resultant tree 7', a short subtree 7’ will be attached to
the skeleton Q along the path from an anchor a to the root s if and only if the root
of the corresponding short subtree 7 in T could be reached by a bus starting at a
having regret at most R. Accordingly, by relocating all of the short subtrees, we
effectively get rid of the need to consider buses that travel downward along portions
of the skeleton. We will show that this relocation results only in a small loss in the
approximation guarantee.

However, we must also ensure that the short subtrees themselves can be collected
efficiently by a small number of buses. To do this, we cluster and cut the short subtrees
into suitable pieces (called tickets), each of which can be collected efficiently by a bus
starting at some particular anchor. By sizing the tickets appropriately, we also obtain
a lower bound on the number of buses with regret R that are required to cover all of
the points.

The next lemma shows how we obtain suitable tickets from a collection of short
subtrees.

Lemma 3 There exists a polynomial-time algorithm that, given a vertical path P in
the skeleton Q, and a collection C of short subtrees whose roots lie on P, produces

a partition of the edges of C into tickets EC, .. EC with k < LZTGC 4
overhead ticket Eg such that:

| and an

(P1) All of the edges in Eg can be collected with an additional regret <2.5R by a
single bus whose route contains P.

(P2) Forall 1 <i <k, all the edges in Elc can be collected with an additional regret
at most 3R by a single bus whose route contains P.

@ Springer

60 Algorithmica (2013) 67:49-64

Proof First, we identify the roots of all short subtrees with the lowest node v of path
P. The idea is to cut the Euler tour of all short subtrees in C into suitable pieces.
Starting from v, cut it at the first node such that the current piece has length > 2R.
Continue like this to obtain k + 1 walks. Denote by Elc ey E,g all but the last

piece. The last part of the Euler tour defines the overhead ticket Eg. Note that k£ <

LMJ, and that every cutting point is endpoint of a ticket and starting point
of another ticket, thus it is covered by exactly two tickets. Since every node needs
to be covered only once in a solution, we can ignore the last edge in each set Elc
(1 <i <k). By construction, the resulting length is at most 2R. Both the starting and
the end point of each ticket Elc (1 <i <k) are at distance at most § from v (cf. the
definition of a short subtree). Since the Euler tour goes back to v after one subtree is
finished, we obtain from a ticket a set of tours of total length at most 3R. Note that we
can arrange those tours in bottom-up order of the roots of visited short subtrees on the
skeleton. A bus whose root walk contains P can then cover all edges corresponding
to a ticket with regret at most 3R. The last piece Eg of the Euler tour remaining from
the cutting procedure certainly has length < 2R. Since the Euler tour goes back to
v, only the distance to the starting point of the last piece has to be connected to v in
order to obtain a set of tours. As in the previous case, one bus can cover these tours
with regret 2.5R, since the height of each subtree is at most %

This strategy fulfills the properties (P1) and (P2) and runs in polynomial time. [

The next simple lemma will be useful later when we assign the overhead tickets
to buses.

Lemma 4 One can find a mapping ¢ : J —> A from junction points to anchors in
polynomial time with the following properties:

(i) Every junction point j € J is mapped to an anchor ¢ (j) down in the subtree
rooted at j,
(i) Forall a € A, there is at most one junction point j € J with ¢ (j) =a.

Proof We construct ¢ by iteratively considering anchors A = {ay, ..., a,} and build-
ing the skeleton Q using paths from anchors to junction points. We begin with the
path P (s, ar) and set ¢ (s) = a;. When each new path P (s, a;) is added, a new junc-
tion point j; is formed, namely the lowest intersection point of P(s, a;) with the
previous paths. We set ¢ (j;) = a; for the remaining i, and we easily see that the
resulting mapping ¢ satisfies properties (i) and (ii). d

Now, for our final algorithm, we don’t actually detach, move, and reattach all
of the short subtrees in 7. Instead, we employ a bit more care and cleverness to
combine this step with the ticketing process. For every core segment S, let 7(S) and
b(S) be the top and the bottom junction points in S. Furthermore, let 7(S) be the
highest junction point at distance at most R/2 from #(S) (see Fig. 3a). The junction
point r(S) represents the common ancestor of all anchors from which a bus could
reach S without exceeding the regret R. Our algorithm essentially deals with all short
subtrees on S by converting them to tickets, and then ‘placing’ all of these tickets on
r(S), where they will be collected by buses travelling through the junction 7 (S).

@ Springer

Algorithmica (2013) 67:49-64 61

Fig. 3 [Illustrations for
Algorithm 1

(a) notation (b) situation in step 3

Formally, our algorithm proceeds as follows.

Algorithm 1

1.

b

Find a maximal R-independent set of anchors A, i.e. leaves such that a feasible
bus can visit at most one of them. This defines a skeleton Q of the instance T .

. Initialize a default bus at each anchor a € A.
. For each junction point j € J in bottom-up order do:

Assign an arbitrary left-to-right ordering of the two segments S;, S, with 7(S;) =

j=1(S,)." See also Fig. 3b.

(a) Let C; be the collection of short subtrees whose root node lies in the left core
segment S at distance < R/2 from j. Let C; be the collection of short subtrees
whose root node lies in the core segment S; with b(S;) = j at distance > R /2
from 7(S;). Note that C; = is possible.

(b) Apply Lemma3toC;UC; on P = §;US;, and obtain tickets E1, ..., E, and
overhead ticket E.

(c) Let C3 be the collection of short subtrees whose root node lies in the right core
segment S, at distance < R/2 from j.

(d) Apply Lemma 3 to C3 on path P = S,, and obtain tickets Fi,..., F; and
overhead ticket Fp.

(e) Assign Eg and Fj to the default bus at ¢ ().

(f) Place the y tickets E1, ..., Ey and z tickets Fy, ..., F; atr(S;) =7(S,).

For each anchor a € A do:

Let C, be the collection of short subtrees whose root node lies in the core segment

S, with b(S,) = a at distance > R/2 from #(S,).

(a) Apply Lemma3toC, on P = S,, and obtain tickets K1, ..., K,, and overhead
ticket Ko.

(b) Assign Ky to the default bus at a.

(c) Place the w tickets K1, ..., Ky, ata.

Assign every bus greedily the lowest ticket available on its path to the root.

Add a new bus for each unmatched ticket.

1Ifj =y, then §; = Sy is possible.

@ Springer

62 Algorithmica (2013) 67:49-64

Let B be the number of bus routes output by the algorithm. We show:

(1) the regret of each route output by the algorithm is at most 13.5 - R and
(i1) B is a lower bound on the number of buses with regret at most R that are needed
to cover all nodes.

Lemma S Algorithm 1 outputs a set of buses with maximum regret 13.5R.

Proof Any bus starting at an anchor a collects at most 4 different regret amounts:

— at most one non-overhead ticket in step 5. Suppose that the ticket corresponds
to short subtrees with roots on core segment S. We claim that these roots are at
distance at most R from P (s, a). To see this note that the ticket might have been
placed at r(S) in step 3(f) of the algorithm. In this case, P (s, a) is by definition
at distance at most R/2 from the top end point 7(S) of segment S, and from there
the short subtrees hanging off S can be reached within an additional distance of at
most R/2. The claim follows, and together with property (P2) from Lemma 3, we
can cover a ticket with a walk of regret <5R.

— at most two remaining pieces of the Euler tour in step 3(e). There is at most one
junction point j with ¢ (j) = a by (ii) of Lemma 4. For a junction point j, each
part Eo and Fy can be covered with regret <2.5R by (P2). Note that an additional
regret R can be necessary to get to the roots of the short subtrees in either Eqy or
Fj that do not lie on the path from a to the root.

— at most one remaining piece of the Euler tour at a assigned in step 4(b). This ticket
Ky can be covered with regret <2.5R by (P2).

In total, the bus from anchor a collects regret of at most SR + 5R + R + 2.5R =
13.5R. d

In the following, we refer to the non-overhead tickets that are only assigned in
step 6 of the algorithm as unmatched tickets. Let B be the number of bus routes
output by the algorithm. We obtain:

Lemma 6 B is a lower bound on the number of buses with regret at most R needed
to cover all points.

Proof We can interpret B as the number of anchors plus the number of unmatched
tickets. We traverse the tree now bottom up from the anchors and inductively compute
at each anchor or junction point a lower bound on the number of buses needed to
cover some subtree below. Let j be a node that is either an anchor or a junction
point. Denote by 7'; the subtree of the skeleton rooted at j, together with all the (non-
overhead) tickets placed within this subtree. Our claim is that the number of buses
with regret R needed to cover 7T is at least the number of anchors in T; plus the
number of unmatched tickets in 7;. We distinguish two cases at j:

Case 1: There is at least one unmatched ticket placed at j. In 7;, the number of
non-overhead tickets clearly exceeds the number of anchors by exactly the number
of unmatched tickets within 7';. However, the number of non-overhead tickets is a
lower bound by Observation 1 and our claim holds.

@ Springer

Algorithmica (2013) 67:49-64 63

Case 2: There is no unmatched ticket placed at j. If j is an anchor, we clearly need
one bus to pick up j. Otherwise, we can focus on the lower bounds at the two
successor junction points ji, j» below j. We claim that a bus starting in the subtree
T}, can not go to the subtree T}, to pick up edges from a ticket (and vice versa).
To prove this, we can assume that a ticket 7 is placed at j;. Consider an edge
e € T\ Q that is contained in 7. We distinguish the cases how the ticket 7 was
formed to prove that every bus that covers e cannot start in 7;,. Let T, denote the
short subtree containing e.

— T, is rooted at a core segment S at distance greater than R/2 from ¢(S) = j, i.e.
T, € C; for ji (T, € C, if j; is an anchor a). Then a bus starting in T';, can not pick
up an edge of T, since the regret of the corresponding walk would be > R.

— T, isrooted on a core segment S with r(S) = jj,i.e. T, € C; UC3 for some junction
point ;' (possibly j' = j;). By the definition of r(S), it follows that T, is rooted at
distance greater than R/2 from j. Therefore, a bus starting in 7, can not pick up
an edge of T, since the regret of the corresponding walk would be > R.

It follows that the lower bound at j is the sum of the buses needed at each of the
disjoint subtrees rooted at j; and j,. Note that the number of anchors (unmatched
tickets, resp.) within 7 is exactly the sum of the anchors (unmatched tickets, resp.)
within 7, and T},. This proves our induction step, and therefore our claim. O

Theorem 5 There exists a polynomial time 13.5-approximation algorithm for the
SBP-R on trees in the case of unlimited capacity.

Proof Observe that Lemmas 5 and 6 yield a 13.5-approximation algorithm for SBP-
R on trees: Given a value for R, we find a feasible solution to the SBP-R with value
at most 13.5 - R if B < N holds. If not, then Lemma 6 ensures that OPT > R. Thus
doing binary search for R yields the result. 0

References

1. Adamaszek, A., Czumaj, A., Lingas, A.: PTAS for k-tour cover problem on the plane for moderately
large values of k. In: Algorithms and Computation. LNCS, vol. 5878, pp. 994-1003. Springer, Berlin
(2009)

2. Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: towards a
polynomial time approximation scheme for general k. STOC (1997)

3. Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Approximation algorithms for deadline-TSP and
vehicle routing with time windows. In: Proceedings of the 36th Annual ACM Symposium on Theory
of Computing, pp. 166—174 (2004)

4. Blum, A., Chawla, S., Karger, D.R., Lane, T., Meyerson, A., Minkoff, M.: Approximation algorithms
for orienteering and discounted-reward TSP. SIAM J. Comput. 37(2), 653-670 (2007)

5. Chekuri, C., Korula, N., Pal, M.: Improved algorithms for orienteering and related problems. In:
SODA, pp. 661-670 (2008)

6. Desrochers, M., Desrosiers, J., Solomon, M.: A new optimization algorithm for the vehicle routing
problem with time windows. Oper. Res. 40, 342-354 (1992)

7. Haimovich, M., Rinnoy Kan, A.H.G.: Bounds and heuristic for capacitated routing problems. Math.
Oper. Res. 10(4), 527-542 (1985)

8. Labbe, M., Laporte, G., Mercure, H.: Capacitated vehicle routing on trees. Oper. Res. 39(4), 616622
(1991)

@ Springer

64

Algorithmica (2013) 67:49-64

10.

11.

12.
13.

14.
15.

. Laporte, G., Desrochers, M., Norbert, Y.: Two exact algorithms for the distance constrained vehicle

routing problem. Networks 14, 47-61 (1984)

Li, C.-L., Simchi-Levi, S., Desrochers, M.: On the distance constrained vehicle routing problem. Oper.
Res. 40, 790-799 (1992)

Nagarajan, V., Ravi, R.: Approximation Algorithms for Distance Constrained Vehicle Routing Prob-
lems. Tepper School of Business, Carnegie—Mellon University Press, Pittsburgh (2008)

Park, J., Kim, B.-1.: The school bus routing problem: a review. Eur. J. Oper. Res. 202, 311-319 (2010)
Spada, M., Bierlaire, M., Liebling, Th.M.: Decision-aiding methodology for the school bus routing
and scheduling problem. Transp. Sci. 39(4), 477-490 (2005)

Toth, P., Vigo, D.: The Vehicle Routing Problem. STAM, Philadelphia (2001)

Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)

@ Springer

	The School Bus Problem on Trees
	Abstract
	Introduction
	Our Results
	Related Work

	Preliminaries
	SBP on Trees
	A 4-Approximation
	Integrality Gap of Set-Cover Formulation
	Hardness of Approximation

	A 13.5-Approximation to the Uncapacitated SBP-R on Trees
	References

