arXiv:1102.3766v1 [cs.CC] 18 Feb 2011

Derandomizing HSSW Algorithm for 3-SAT

Kazuhisa Makino!, Suguru Tamaki?, and Masaki Yamamoto®

! Graduate School of Information Science and Technology, University of Tokyo
makino@mist.i.u-tokyo.ac.jp
2 Graduate School of Informatics, Kyoto University
tamak@kuis.kyoto-u.ac. jp
3 Dept. of Informatics, Kwansei-Gakuin University
masaki.yamamoto@kwansei.ac. jp

Abstract. We present a (full) derandomization of HSSW algorithm for 3-SAT, proposed
by Hofmeister, Schoning, Schuler, and Watanabe in [STACS’02]. Thereby, we obtain an

0(1.3303™)-time deterministic algorithm for 3-SAT, which is currently fastest.

1 Introduction

The satisfiability problem (SAT) is one of the most fundamental NP-hard problems. Quest-
ing for faster (exponential-time) exact algorithms is one of the main research directions on
SAT. Initiated by Monien and Speckenmeyer [12], a number of algorithms for ezactly solv-
ing SAT have been proposed, and many important techniques to analyze those algorithms
have been developed [6]. See also [5,13,15,16,20], for example. The most well-studied
restriction of the satisfiability problem is 3-SAT [2, 3,7-10, 18, 19, 21], i.e., the CNF satisfi-
ability problem with clauses of length at most three. The currently best known time com-
plexities for 3-SAT are 0(1.3211") achieved by randomized algorithms [7] and O(1.3334™)
derived by deterministic algorithms [13], where n denotes the number of Boolean variables
in the formula.

As we can see, there is a noticeable gap between the current randomized and deter-
ministic time bounds for 3-SAT. This raises a natural question: Can we close the gap
completely? One promising way to attack the above question is derandomization. Roughly
speaking, the task of derandomization is to construct an algorithm which deterministi-
cally and efficiently simulates the original randomized algorithm. There are a lot of strong
derandomization results, e.g. [1,4, 14, 17] to name a few, and one excellent example in the
area of satisfiability is the derandomization of Schéning’s algorithm for k-SAT.

In [20], Schéning proposed a simple randomized local search algorithm for k-SAT, and
showed that it runs in expected time O((2—2/k)™), which is O(1.3334™) when k = 3. Later
it was derandomized by Dantsin et al. [5]. They proposed a k-SAT algorithm that deter-
ministically simulates Schéning’s algorithm in time O((2 — 2/(k 4+ 1))™), which is O(1.5™)
when k = 3. Schoning’s algorithm makes use of randomness in the following two parts:
(i) choosing initial assignments for local search uniformly at random, and (ii) performing
random walks as the local search. Dantsin et al. [5] derandomized it (i) by constructing a
set of Hamming balls (so-called covering codes), which efficiently covers the entire search
space {0,1}", and (ii) by replacing each random walk by backtracking search. Here (i) is
“perfectly” derandomized in some sense, however, the derandomization of (ii) loses some
efficiency. For 3-SAT, the efficiency in derandomizing part (ii) was gradually improved by
a sequence of works [5, 3,21, 11]. Finally, and very recently, Moser and Scheder [13] showed

http://arxiv.org/abs/1102.3766v1

a full derandomization of Schoning’s algorithm, that is, they proposed a deterministic al-
gorithm for A-SAT that runs in time O((2 — 2/k + ¢)") for any € > 0. The running time
matches that of Schoning’s algorithm, and we now have a deterministic 6(1.3334") time
algorithm for 3-SAT.

Our Contribution

We investigate the possibility of derandomizing faster randomized algorithms for 3-SAT.
In [8], Hofmeister, Schéning, Schuler and Watanabe improved Schoning’s algorithm for
the 3-SAT case, that is, they proposed a randomized algorithm for 3-SAT that runs in
expected time O(1.3303™). Their improvement is based on a sophisticated way of randomly
choosing initial assignments rather than just choosing the ones uniformly at random.

In this paper, we present a full derandomization of their algorithm, that immediately
implies the following result:

Theorem 1. Problem 3-SAT is deterministically solvable in time 5(1.3303").

As long as the authors know, it is the currently fastest deterministic algorithm for 3-SAT.
Our result seems to be a necessary step towards a full derandomization of the currently best
known randomized algorithm, since it is based on the combination of two algorithms [9]
and [7], which are respectively a modification of Hofmeister et al.’s algorithm [8] and an
extension of Paturi et al.’s algorithm [15].

To prove the above result, we develop a new way of explicitly constructing covering
codes with the properties which corresponds to the distribution used to generate initial
assignments in Hofmeister et al.’s algorithm.

More precisely, we respectively denote by SCH and HSSW the randomized algorithms
by Schéning [20], and by Hofmeister, Schoning, Schuler, and Watanabe [8]. Algorithm
HSSW is obtained by modifying SCH, where one of the main differences between SCH
and HSSW is to choose initial assignments for random walks as the local search: HSSW
starts the random walk at an assignment chosen randomly from ({0,1}3\ 03)™ for some
m < n/3, while SCH starts it at an assignment chosen uniformly from the whole space
{0,1}".

We derandomized this random selection of initial assignments for HSSW in the similar
way to SCH [5], i.e., by constructing a covering code (i.e., a set of balls that covers the
whole search space ({0,1}3\ 03)™). However, due to the difference of ({0,1}?\ 0%)™ and
{0,1}"™, we cannot directly apply a uniform covering code developed in [5]. To efficiently
cover the space ({0,1}\ 0%)™, we introduced a generalized covering code, an [¢]-covering
code, which is a sequence of codes C'(0),C(1),...,C(¢) such that (i) C() is a set of balls of
radius 4, and (ii) Uf:o C(i) covers ({0,1}%\03)™. We remark that the generalized covering
code has non-uniform covering radius while an ordinary covering code has uniform radius.

We first show the existence of small [¢]-covering code (C(0),C(1),...,C(¢)), and then
similarly to [5], by using an approximation algorithm for the set cover problem, we show a
deterministic construction of an [f]-covering code C(0),C(1),...,C(f) such that |C(i)| ~
|C ()]

We remark that our technique of constructing certain types of covering codes has a
potential application, for example, it can be applied to the further extensions [2, 18] of

HSSW.

2 Preliminaries

In this section, we briefly review HSSW algorithm for 3-SAT proposed in [8]. In what
follows, we focus on 3-CNF formulas. Let ¢ be a 3-CNF formula over X = {z1,...,2,}.
We alternatively regard ¢ as the set of clauses of . Thus, the size of ¢, which is the
number of clauses of ¢, is denoted by |p|. For any sub-formula ¢’ C ¢ (resp., any clause
C € o), we denote by X (¢') (resp., X(C)) the set of variables of ¢’ (resp., C).

A clause set ¢ C ¢ is independent if C N C’ = () for any pair of clauses C,C’ € ¢’. An
independent clause set ¢’ is mazimal if for any clause C € (¢ \ ¢') there exists a clause
C’" € ¢ such that C N C’ # (. For any partial assignment ¢t to X (¢), we denote by ¢|; a
sub-formula obtained from ¢ by fixing variables according to t. Given a 3-CNF formula
v, algorithm HSSW starts with arbitrarily finding a maximal independent clause set of .

Fact 1 Let ¢ be a 3-CNF formula. Let ' C ¢ be a mazimal independent clause set of .
Then, for any assignment t to X ('), the formula ¢|; is a 2-CNF formula.

Before describing HSSW, we briefly review SCH algorithm for k-SAT proposed in
[20]. Algorithm SCH is a randomized algorithm which repeats the following procedure
exponentially (in n) many times: choose a random assignment ¢, and run a random walk
starting at t as follows: for a current assignment t', if ¢ is satisfied by #, then output YES
and halt. Otherwise, choose an arbitrary clause C unsatisfied by ¢/, and then update ¢’ by
flipping the assignment of a variable of C' chosen uniformly at random. This random walk
procedure denoted by SCH-RW(yp,t) is also exploited in HSSW. The success probability
of SCH-RW(p, t) for a satisfiable ¢ was analyzed in [20]: Let ¢ be a 3-CNF formula that
is satisfiable. Let ty be an arbitrary satisfying assignment of ¢. Then, for any initial
assignment ¢ with Hamming distance d(¢g,t) = r, we have

1\" 1
Pr{SCH-RW(p,t) = YES} > <§> oly ()’ (1)
Now, we are ready to present HSSW. Given a 3-CNF formula ¢, HSSW first obtains a
maximal independent clause set ¢’ C . Note here that the formula ¢|; for any assignment
to X (¢') is a 2-CNF, and hence we can check in polynomial time whether ¢|; is satisfiable.
From this observation, when ¢’ is small, we can significantly improve the whole running
time, that is, it only requires O(71¥'l) time. On the other hand, when the size of ¢/ is large,
we repeatedly apply the random walk procedure SCH-RW. In this case, we can also reduce
the running time by smartly choosing initial assignments from satisfiable assignments of
¢': Recall that SCH uniformly chooses initial assignments from {0,1}", which utilizes no
information on . Intuitively, HSSW uses initial assignments for SCH-RW that are closer
to any satisfiable assignment. In fact we can prove that the larger the size of ¢’ is, the
higher the probability that the random walk starts at an assignment closer to a satisfying
assignment is.
Formally, algorithm HSSW is described in Fig. 1. The algorithm contains 5 parameters
a, ¢, and triple (p1, p2, p3) with 3p; + 3ps + p3 = 1. These parameters are set to minimize
the whole expected running time.
Consider algorithm HSSW in Fig. 1 when |¢'| > an. Let HSSW-RW(¢') be the procedure
that is repeated c¢ times. Then, by using the lower bound (1), and setting parameters

HSSW(¢) // ¢: a 3-CNF formula over X
Obtain a maximal independent clause set ¢’ C ¢

If |¢'| < an, then
for each t € {0,1}X®") that satisfies ¢
Check the satisfiability of | // ¢|+: a 2-CNF formula

If |¢'| > an, then
c times do
Run ¢ = init-assign(X, ¢')
Run SCH-RW(¢p, t)
Output NO

init-assign(X,¢’) // return an assignment ¢ € {0,1}* defined as follows

for each C € ¢’
Assume C =z; Vz; Vxyi
Choose a random assignment ¢ to = = (z, x;, Tk)
following the probability distribution:

Pr{z = (1,0,0)} = Pr{z = (0,1,0)} = Pr{z = (0,0,1)} = p1
Pr{z = (1,1,0)} = Pr{z = (1,0,1)} = Pr{z = (0,1,1)} = p2
Pr{z=(1,1,1)} =ps

for each z € X \ X(¢')
Choose a random assignment ¢ to = € {0,1}

Fig. 1. Algorithm HSSW

(p1,p2, p3) suitably (c.f., Lemma 1 below), we have: for any satisfiable 3-CNF formula ¢,

Pr {HSSW-RW(y') = YES} > 3" (64 . (2
t,SCHI:Rw (¢) = =\14) \63 ’)

The whole expected running time 5(1.3303") is obtained by setting « to satisfy the fol-

lowing equation.
-1
(6 -E) -

The values of parameters (p1,p2,ps3) are determined according to the following lemma,
which will be used by our derandomization.

Lemma 1 (Hofmeister, Schoning, Schuler, and Watanabe [8]). Let ¢ be a 3-CNF
formula that is satisfiable, and let ¢’ C ¢ be a maximal independent clause set of . Let t be
a random (partial) assignment obtained via init-assign(X, ') and restricted to X (¢').
Then, for any (partial) assignment to € {0,1}X) that satisfies ¢/,

]? [<%>d(t07t)] _ <g>|w’|. 3)

There are two types of randomness that are used in HSSW: (1) the random assignment
obtained via init-assign, and (2) the random walk of SCH-RW. Fortunately, the latter
type of randomness can be (fully) removed by the recent result. (Compare it with the
inequality (1).)

Theorem 2 (Moser and Scheder [13]). Let ¢ be a 3-CNF formula that is satisfi-
able. Let tg be an arbitrary satisfying assignment of p. Given an assignment t such that
d(to,t) = r for a non-negative integer v. Then, the satisfying assignment to can be found
deterministically in time O((2 + ¢€)") for any constant € > 0.

In the next section, we show that the former type of randomness is also not necessary.
It is shown by using covering codes, that is in the similar way to [5]. But, the covering
code we make use of is different from ordinary ones. For any positive integer n, a code of
length n is a subset of {0,1}", where each element of a code is called a codeword. A code
C C {0,1}" is called an r-covering code if for every = € {0,1}", there exists a codeword
y € C such that d(z,y) < r. This is the definition of an ordinary covering code. We define
a generalization of covering codes in the following way:

Definition 1. Let ¢ be a non-negative integer. A sequence C(0),C(1),...,C(¢) of codes
isa{0,1,...,¢}-covering code, or simply an [¢]-covering code, if for every = € {0,1}", there
exists a codeword y € C(r) for some r : 0 < r < £ such that d(z,y) <r.

For ordinary covering codes, it is easy to show the existence of a “good” r-covering
code. Moreover, it is known that we can deterministically construct such an r-covering
code.

Lemma 2 (Dantsin et al. [5]). Let d > 2 be a divisor of n > 1, and let 0 < p <
1/2. Then, there is a polynomial qq(n) such that a covering code of length n, radius at

most pn, and size at most qd(n)2(1_h(p))", can be deterministically constructed in time
da() (274 42000,

3 A derandomization of HSSW

In this section, we prove Theorem 1 by derandomizing HSSW. We do that in the similar
way to [5]. Let ¢ be a 3-CNF formula, and ¢’ be a maximal independent clause set of
@. Let |¢'| = m, and we suppose 7 = 2(n). As is explained in the Introduction, we will
use a generalized covering code: an [¢]-covering code. First, we show that there exists an
[¢]-covering code for ({0,1}3\ 03)™ where each of its codes is of small size.

Lemma 3. For ({0,1}2\ 0®)™, there exists an [(]-covering code C(0),C(1),..., C(£),
where { is the mazimum integer such that (3/7)™ < (1/2)*=2, and |C(i)| = O(m?(7/3)™ /2%).

Proof. We show the existence of such an [¢]-covering code by a probabilistic argument,
as is the case of the existence of an ordinary covering code for {0,1}". However, the
probabilistic construction of an [¢]-covering code is different from the simple one of an
ordinary covering code in terms of, (1) non-uniform covering radius, and (2) non-uniform
choice of codewords.

For obtaining the desired covering code, we make use of the probability distribution
calculated in [8], that is, the equation (3) of Lemma 1. The probabilistic construction
is as follows: Let ¢ be the integer defined above. For each i : 0 < i < ¢, let C(i) C
({0,1}2\ 03)™ be a random code obtained by choosing y € ({0,1}® \ 03)™ according to
the distribution defined by the function init-assign (in Fig. 1), and by repeating it
independently 8m2(7/3)™ /2! times.

We will show that C(0),C(1),...,C(¢) is an [(]-covering code with high probability.
Fix x € ({0,1}?\ 03)™ arbitrarily. Note here that ¢ < 277 and (1/2)*~! < (3/7)™. Then,

3m
>_(1/2) Pr{d(z,y) = i}
= (1/2) Pr{d(z,y) =i} + Y (1/2)' Pr{d(z,y) = i}
i=0 i=0+1
¢
<D (1/2) Pr{d(z,y) = i} + (1/2)'
=0
¢

< 31/ Pr{d(e,) = i} + (3/7)" /2.
=0

Recall from the equation (3) of Lemma 1 that,

P [(%)d”] Sy Pr{d(r,y) = 1} = (%)m

i=0
From these two, we have

14

> (1/2) Prid(z,y) =i} = (3/7)™ /2.

=0

From this, we see there exists an r : 0 < r < £ such that

Pr{d(z,y) =r} > (3/7)"2" " /L. (4)
y
Note that this value of r depends on x. Thus, for each = € ({0,1}®\ 03)™, if we define

def i .
ro = arg max {(1/2) Pr{d(z,y) =4}},
we see that 7 = r,, satisfies the above inequality (4) 4. Let B(z,i) be the set of w € {0,1}3™
such that d(z,w) < i. Then, from the lower bound (4), the probability that x is not covered
with any C(7) is

%r x%U U B(z,i) p < Pr cx ¢ U B(z,1s)
i=0 2eC (i) Clra) 2€C(ry)

4 This definition of r, is not meaningful if we merely show the existence. However, it is used when we
consider a deterministic construction. See the next lemma.

= 01(37,1;) {Vy € C(ry)[d(z,y) > rz]}

= (prtae) >)
_ <1 ~ Pr{d(z,) < rm}> o

|C(rz)]
g@—mwmw:mﬁ
Yy
)IC(m)I

IN

(1 — (3/7)M2r="1 ¢

< exp (—(3/7)m27‘w—110(7~x)y /e)
exp (—2m)

IN

Thus, from the union bound, the probability that some = € ({0,1}3\ 0%)™ is not covered
with any C(i) is at most 7™ - exp(—21) = o(1). Therefore, there does exist an [¢]-covering
code stated in this lemma. O

Note that this lemma only shows the existence of such an [¢]-covering code. We need to
deterministically construct it. However, we can get around this issue in the same way as [5]:
applying the approximation algorithm for the set cover problem. But, since an [¢]-covering
code is not of uniform radius, we can not directly apply the approximation algorithm.

Lemma 4. Let d > 2 be a constant that divides 1h, and let ' = m/d. Let ¢’ be the
mazimum integer such that (3/7)™ < (1/2)"~2, and let s = 8m/>(7/3)™ /2 for each
i:0<1i</{.Letl=1{d. Then, there is a polynomial qq(rn) that satisfies the following: an
[0]-covering code C(0),C(1),...,C(£) for ({0,1}3\0*)™ such that |C ()| < qq(rn)-(7/3)™ /2
for 0 < i < ¢, can be deterministically constructed in time poly(in) - 757/ 4+ qq(1n) - (7/3)™.

Proof. First, we deterministically construct an [¢']-covering code D’(0), D'(1), ..., D'(¢)
for ({0,1}%\0%)™ such that |D'(i)| < poly(ri2/) - s}. (Then, we concatenate all of them. See
below for details.) Recall the proof of the previous lemma: Let p; = (1/2)! Pr{d(x,y) = i}
for each i : 0 < i < ¢. For any z € ({0,1}®\ 03)™, we have defined r, = arg max{p; :
0 < i < ¢}, which depends only on z. Then, we have concluded that the sequence
C’(0),C'(1),...,C"(¢') of random codes satisfies the following with high probability: every
z € ({0,1}3\ 0%)" is covered with the random code C'(r,).

Fix such an [¢']-covering code C’(0),C"(1),...,C"(') for ({0,1}3\0%)™ . Note here that
|C"(i)| = s, for 0 <4 <. Foreachi:0<i</, let

A, % {x e ({0,133 \ 03)™ -, = z} .

Note that [Ag, A1, ..., Ap] is a partition of ({0,1}3\ 0%)™. Below, we regard that C’(7)
dedicates to covering (only) A; (although some codeword of C’(i) may cover some elements
outside A;).

The point of the proof is that we apply the approximation algorithm for the set cover
problem to A; (not to the whole space ({0,1}3\ 03)™), from which we (deterministically)

obtain a covering code for A;. For this, we obtain all elements of A; and keep them.
This is done by calculating the value of 7, for each = € ({0,1}3 \ 0%)™, Furthermore,
the calculation of r, is done by calculating p; for every j : 0 < j < {': enumerate all
y € ({0,133 \ 0%)™ such that d(z,y) = j, and then calculate the probability that y is
generated by the function init-assign. Then, summing up those values of the probability,
we can calculate Pr{d(z,y) = j}, and hence p;. Choosing j as r, such that p; is the
maximum of all j : 0 < j < ¢, we can obtain the value of r,, and hence A;. In total, it
takes poly (i) - 72" time for that procedure.

Now, we apply the approximation algorithm for the set cover problem to each A;.
As is similar to [5], the approximation algorithm finds a covering code D’(i) for A; such
that |D'(i)] < q(®/) - s} in time g(m/) - |4;|> for some polynomial q(17'). In total, since
|A;] <77 it takes q(1) - 73 time for that procedure.

So far, we have obtained an [¢]-covering code D’(0), D'(1), ..., D'(¢') for ({0,1}3\0%)""
such that |D'(i)| < poly(m’) - s}. For each 0 <1i < ¢ =/{'d, let

C(i) € {D/(iy) x D'(ip) x - x D'(ig) 1i = i1 + g+ +iq, 0<i; <L},
It is easy to see that C(0),C(1),...,C(£) is an []-covering code for ({0,1}3\ 0%)™. We
(naively) estimate the upper bound on |C(i)|. Let i1, 19, - ,iq be integers such that i =
i1 +i2+ - +ig and 0 < i; < . Then,
’D/(il) X D/(ig) - X D/(id)‘
yd . 8 '2<7/3>m’ S (7/3)™ 8m(7/3)™
= (poly(ri')) - o : o e
. 817 2 7/3 m/d
= (poly(ry - G LD
A 7/3)™
= (poty(iy)* - 712
Since the number of combinations i1, ...,4g such that i =iy +--- +ig5 and 0 < i; < s

at most (¢ + 1)?, we have

(7/3)™
2

(7/3)™

CE < (¢ + 1) poly(i) 3

< qa(m) -

for some polynomial g4(m).

Finally, we check the running time needed to construct C(7). It takes ¢(m)- time to
construct the [¢']-covering code D’(0), D'(1),...,D'(#) for ({0,1}3\0%)™ . Furthermore, it
takes ZZ _o |C(4)] to construct the [f]-covering code C(0), C(1),...,C(¢) for ({0,1}3\0%)™,
which is at most gg(rn) - (7/3)™. Summing up, it takes g(rn) - 7/% + () - (7/3)™ in
total. O

731 /d

Recall that |¢'| = i = 2(n). Let n’ = n — 3rh, which is the number of variables in
¢ not appeared in ¢'. For the space {0, 1}"I, we use an ordinary covering code, that is
guaranteed by Lemma 2 to be deterministically constructed.

Corollary 1. Let d be a sufficiently large positive constant, and let 0 < p < 1/2. Then,
there is a polynomial qq(n) that satisfies the following: an {i + pn’ : 0 < i < £}-covering
code C(0+4pn'), C(1+pn),C(24pn'),...,CU+pn’) for ({0,1}3\0%)™ x {0,1}" such that
1C ()| < qq(n)(7/3)720=heDn" /91 can be determzmstzcally constructed in time qq(n)(7/3)™21=e)n’

Proof. 1t is derived from the previous lemma and Lemma 2. Given an [¢]-covering code
C1(0),C1(1),...,C1(¢) for ({0,1}3\0%)™, and a pn/-covering code Ca(pn’) for {0,1}". For
each 0 <i </, let

C(i+ pn') © C1(5) x Ca(pn’).

It is easy to see that C(0 + pn’),C(1 4 pn/),C(2 + pn'),...,C(£ + pn') is an {i + pn’ :
0 < i < {}-covering code for the space ({0,1}%\ 03)™ x {0,1}". Furthermore, |C(i +
pn)| < qa(n)(7/3)™20=hED" /90 for each i : 0 < i < £. From the previous lemma, if
the constant d is sufficiently large, the running time for (deterministically) constructing
C1(0),C1(1),...,C1(€) is at most qq()(7/3)™. Similarly, from Lemma 2, the running
time for (deterministically) constructing Co(pn’) is at most gq(n/)2="P)"" Thus, the
total running time is at most

¢
aa()(7/3)" + a(n)20 MO 13 qa(m)(7/3)" 20O 2
=0
< ga(n)(7/3)" 20700
for some polynomial g4(n). 0

Now, using this corollary, we show a derandomization of HSSW, and hence we prove
Theorem 1. The outline of the deterministic algorithm is almost same as HSSW, which
is described in Fig. 1. We show the derandomization for the case of |¢’| > an. Given ¢/,
we deterministically construct an {i + pn’ : 0 < i < £}-covering code C(0 + pn’), C(1 +
pon'),C(2+ pn'),...,C(£L+ pn’), as is specified in the proofs of Lemma 2, Lemma 4, and
Corollary 1. For any z € {0,1}" and non-negative integer i, we denote by B(z,) the set of
w € {0,1}" such that d(z,w) < i. Then, given such an {i + pn’ : 0 < i < £}-covering code,
we check whether there is a satisfying assignment within B(z,i + pn’) for each 0 < i < ¢
and each z € C(i+ pn'). It is easy to see that this algorithm finds a satisfying assignment
of ¢ if and only if ¢ is satisfiable.

We estimate the running time of the algorithm. For any fixed ¢ and z, the search of a
satisfying assignment within B(z,i4 pn’) is done in time (2+¢)"T#" for any small constant
e > 0, which is guaranteed by Theorem 2. Thus, given an {i + pn’ : 0 < i < {}-covering
code, the running time for this task for all B(z,i + pn') is at most

(]d(n) . Z <(7/§)m) 2(1—h(p))n’> . 2i+pn’ . (1 + E)n

0<i<t

IN™ (oo oo
= qa(n) - <§> . (2(1 h(p))n .gpn) N

— quln) - (g)’” - (%) (+on

~ain)- (3) (%)m (4O, (oo =n—3m)

for some polynomial g4(n). Note from the above corollary that the running time for con-
structing {i + pn’ : 0 < i < {}-covering code is less than the above value. Thus, the total

running time in case of |¢/| > an is at most O((4/3)"(63/64)™(1 + €)") for any € > 0.
(Compare this value with the success probability of (2).) On the other hand, it is easy to
see that the running time in case of |¢/| < an is at most O(7™). Therefore, by setting a
so that (4/3)™(63/64)*™(1 4 €)™ = 7*" holds (with € > 0 arbitrarily small), we obtain the

running time O(1.3303™).

4 Conclusion

We have shown a full derandomization of HSSW, and thereby present a currently fastest
deterministic algorithm for 3-SAT. An obvious future work is to obtain a full derandom-
ization of the currently best known randomized algorithm for 3-SAT [7]. To do so, it seems
to be required to derandomize Paturi et al.’s algorithm [15] completely. Another possible
future work is to extend HSSW algorithm to the k-SAT case. It leads to the fastest de-
terministic algorithms for k-SAT, combined with the derandomization techniques of this
paper and Moser and Scheder [13].

References

1. Manindra Agrawal, Neeraj Kayal, Nitin Saxena, “PRIMES is in P, Annals of Mathematics,
160(2):781-793, 2004.

2. S. Baumer and R. Schuler, “Improving a probabilistic 3-SAT algorithm by dynamic search and inde-
pendent clause pairs,” In Selected Revised Papers of the 6th International Conference on Theory and
Applications of Satisfiability Testing (SAT), LNCS 2919, pp. 150-161, 2003.

3. T. Briieggemann and W. Kern, “An improved deterministic local search algorithm for 3-SAT,” Theo-
retical Computer Science, 329(1-3):303-313, 2004.

4. Karthekeyan Chandrasekaran, Navin Goyal, Bernhard Haeupler, “Deterministic Algorithms for the
Lovéasz Local Lemma,” In Proc. of SODA 2010, pp. 992-1004, 2010.

5. E. Dantsin, A. Goerdt, E. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, P. Raghavan, and
U. Schoning, “A deterministic (2—2/(k+1))" algorithm for k-SAT based on local search,” Theoretical
Computer Science, 289(1), pp. 69-83, 2002.

6. E. Dantsin, E. A. Hirsch, “Worst-Case Upper Bounds,” In Handbook of Satisfiability, Frontiers in
Artificial Intelligence and Applications, Vol. 185, IOS Press, pp. 403—424, 2009.

7. Timon Hertli, Robin A. Moser, Dominik Scheder, “Improving PPSZ for 3-SAT using Crtitical Vari-
ables,” In Proc. of STACS 2011, to appear.

8. T. Hofmeister, U. Schéning, R. Schuler, and O. Watanabe, “A probabilistic 3-SAT algorithm further
improved,” In Proc. of the 19th Annual Symposium on Theoretical Aspects of Computer Science
(STACS), LNCS 2285, pp. 192-202, 2002.

9. K. Iwama, K. Seto, T. Takai and S. Tamaki, “Improved Randomized Algorithms for 3-SAT,” In Proc. of
ISAAC 2010, Part I, LNCS 6506, pp. 73-84, 2010.

10. K. Iwama and S. Tamaki, “Improved upper bounds for 3-SAT,” In Proceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 328-329, 2004.

11. Konstantin Kutzkov, Dominik Scheder, “Using CSP To Improve Deterministic 3-SAT,”
arXiv:1007.1166v2, 2010.

12. B. Monien and E. Speckenmeyer, “Solving satisfiability in less than 2" steps,” Discrete Applied Math-
ematics 10, pp. 287-295, 1985.

13. R. Moser and D. Scheder, “A Full Derandomization of Schoning’s k-SAT Algorithm,”
arXiv:1008.4067v1, 2010, to appear in Proc. of STOC 2011.

14. Sanjeev Mahajan, H. Ramesh, “ Derandomizing Approximation Algorithms Based on Semidefinite
Programming,” SIAM J. Comput., 28(5):1641-1663, 1999.

15. R. Paturi, P. Pudldk, M. Saks, and F. Zane, “An Improve Exponential-Time Algorithm for k-SAT,”
In Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 628-637, 1998. (Journal version: J. of the ACM, 52(3), pp. 337-364, 2005.)

10

16.

17.
18.

19.

20.

21.

R. Paturi, P. Pudlék, and F. Zane, “Satisfiability coding lemma,” In Proceedings of the 38th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 566574, 1997.

Omer Reingold, “Undirected connectivity in log-space,” J. ACM, 55(4), Article 17, 2008.

D. Rolf, “3-SAT € RTIME(O(1.32793")),” Electronic Colloquium on Computational Complexity,
TR03-054, 2003.

D. Rolf, “Improved bound for the PPSZ/Schoning-algorithm for 3-SAT,” Journal on Satisfiability,
Boolean Modeling and Computation, 1:111-122, 2006.

U. Schoéning, “A probabilistic algorithm for k-SAT and constraint satisfaction problems,” In Proceed-
ings of the 40th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 410-414,
1999.

D. Scheder, “Guided search and a faster deterministic algorithm for 3-SAT,” In Proceedings of the
8th Latin American Symposium on Theoretical Informatics (LATIN), LNCS 4957, pp. 60-71, 2008.

11

