
List coloring in the absence of a linear forest ?

Jean-François Couturier1, Petr A. Golovach2,
Dieter Kratsch1, and Daniël Paulusma2 ??

1Laboratoire d’Informatique Théorique et Appliquée,
Université Paul Verlaine - Metz, 57045 Metz Cedex 01, France

{couturier,kratsch}@univ-metz.fr
2School of Engineering and Computing Sciences, Durham University,

Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
{petr.golovach,daniel.paulusma}@durham.ac.uk

Abstract. The k-Coloring problem is to decide whether a graph can
be colored with at most k colors such that no two adjacent vertices receive
the same color. The List k-Coloring problem requires in addition that
every vertex u must receive a color from some given set L(u) ⊆ {1, . . . , k}.
Let Pn denote the path on n vertices, and G + H and rH the disjoint
union of two graphs G and H and r copies of H, respectively. For any two
fixed integers k and r, we show that List k-Coloring can be solved in
polynomial time for graphs with no induced rP1 + P5, hereby extending
the result of Hoàng, Kamiński, Lozin, Sawada and Shu for graphs with
no induced P5. Our result is tight; we prove that for any graph H that is
a supergraph of P1 + P5 with at least 5 edges, already List 5-Coloring
is NP-complete for graphs with no induced H.

1 Introduction

Graph coloring involves the labeling of the vertices of some given graph by inte-
gers called colors such that no two adjacent vertices receive the same color. The
corresponding k-Coloring problem is to decide whether a graph can be colored
with at most k colors. Due to the fact that k-Coloring is NP-complete for any
fixed k ≥ 3, there has been considerable interest in studying its complexity when
restricted to certain graph classes. One of the most well-known results in this re-
spect is due to Grötschel, Lovász, and Schrijver [10] who show that k-Coloring
is polynomial-time solvable for perfect graphs. More information on this classic
result and on the general motivation, background and related work on coloring
problems restricted to special graph classes can be found in several surveys [21,
23] on this topic.

We continue the study of the computational complexity of the k-Coloring
problem and related problems, in particular List k-Coloring when restricted
? An extended abstract of this paper has been accepted to the 37th International

Workshop on Graph-Theoretic Concepts in Computer Science (WG 2011).
?? This work has been supported by ANR Blanc AGAPE (ANR-09-BLAN-0159-03)

and EPSRC (EP/G043434/1).

to graph classes defined by one or more forbidden induced subgraphs. Such prob-
lems have been studied in many papers by different groups of researchers [3–7,
11, 13–17, 20, 24]. Before we summarize these results and explain our new results,
we first state the necessary terminology and notations.

1.1 Terminology

We only consider finite undirected graphs G = (V,E) without loops and multiple
edges. We sometimes denote the vertex set of G by VG. The subgraph of G =
(V,E) induced by U ⊆ V is denoted by G[U]. We refer to the textbook by Bondy
and Murty [2] for any undefined graph terminology.

The graph Pn denotes the path on n vertices. The disjoint union of two
graphs G and H is denoted G + H, and the disjoint union of r copies of G is
denoted rG. A linear forest is the disjoint union of a collection of paths. Let
{H1, . . . ,Hp} be a set of graphs. We say that a graph G is (H1, . . . ,Hp)-free if
G has no induced subgraph isomorphic to a graph in {H1, . . . ,Hp}; if p = 1, we
sometimes write H1-free instead of (H1)-free.

A (vertex) coloring of a graph G = (V,E) is a mapping φ : V → {1, 2, . . .}
such that φ(u) 6= φ(v) whenever uv ∈ E. Here, φ(u) is referred to as the color of
u. A k-coloring of G is a coloring φ of G with φ(V) ⊆ {1, . . . , k}. Here, we used
the notation φ(U) = {φ(u) | u ∈ U} for U ⊆ V . If G has a k-coloring, then G is
called k-colorable. Recall that the problem k-Coloring is to decide whether a
given graph admits a k-coloring. Here, k is fixed, i.e., not part of the input. If k
is part of the input then we denote the problem as Coloring. The optimization
version of this problem is to determine the chromatic number of a graph, i.e.,
the smallest k such that G has a k-coloring.

A list assignment of a graph G = (V,E) is a function L that assigns a list
L(u) of so-called admissible colors to each u ∈ V . If L(u) ⊆ {1, . . . , k} for u ∈ V ,
then L is also called a k-list assignment. Equivalently, L is a k-list assignment
if |

⋃
u∈V L(u)| ≤ k. We say that a coloring φ : V → {1, 2, . . .} respects L if

φ(u) ∈ L(u) for all u ∈ V . For a fixed integer k, the List k-Coloring problem
has as input a graph G with a k-list assignment L and asks whether G has a
coloring that respects L. If |L(u)| = 1 for every vertex u of some subset W ⊆ V
and L(u) = {1, . . . , k} for u ∈ V \ W , then we obtain the k-Precoloring
Extension problem.

1.2 Related work

Král’, Kratochv́ıl, Tuza and Woeginger [15] completely determined the com-
putational complexity of Coloring for graph classes characterized by a forbid-
den induced subgraph and achieved the following dichotomy.

Theorem 1 ([15]). Let H be a fixed graph. If H is a (not necessarily proper)
induced subgraph of P4 or of P1 +P3 then Coloring can be solved in polynomial
time for H-free graphs; otherwise it is NP-complete for H-free graphs.

2

Theorem 1 can be extended by considering the computational complexity
of Coloring for H-free graphs where H is a family of two (or more) graphs.
Some initial results have been obtained by Král’ et al. [15], Schindl [22] and a
number of authors studying the H-free graphs, in which one of the two graphs in
H is the triangle [5, 7, 13, 19]. Another extension is to classify the computational
complexity of k-Coloring and other variants of coloring for H-free graphs
where k is a fixed integer and H is a fixed graph. The complexity classifications
in both directions are far from being finished. In this paper we consider the
second direction. We focus on the case when H is a linear forest. Below we
justify this.

Kamiński and Lozin [13] showed that for any k ≥ 3, the k-Coloring problem
is NP-complete for the class of graphs of girth (the length of a shortest induced
cycle) at least p for any fixed p ≥ 3. Their result implies that for any k ≥ 3, the k-
Coloring problem is NP-complete for the class of H-free graphs if H contains
a cycle. Holyer [12] showed that 3-Coloring is NP-complete on line graphs.
Later, Leven and Galil [18] extended this result by showing that k-Coloring is
also NP-complete on line graphs for k ≥ 4. Because line graphs are claw-free, i.e.,
they have no induced K1,3, we find that for k ≥ 3, the k-Coloring problem is
NP-complete for the class of H-free graphs if H is a forest that contains a vertex
with degree at least 3. Hence, only the case in which H is a linear forest remains.

It is known that 4-Coloring is NP-complete for P8-free graphs [4] and that
6-Coloring is NP-complete for P7-free graphs [3]. On the contrary, Randerath
and Schiermeyer [20] showed that 3-Coloring can be solved in polynomial time
for P6-free graphs. A result which was generalized by Broersma et al. [3] who
showed that 3-Precoloring Extension can be solved in polynomial time for
P6-free graphs. Later, Broersma et al. [4] extended this result by showing that 3-
Precoloring Extension can be solved in polynomial time for H-free graphs if
H is a linear forest on at most 6 vertices. The proof methods of both papers [3, 4]
can directly be applied to show exactly the same results for List 3-Coloring.
For P5-free graphs, Hoàng et al. [11] could show a stronger result; note that
Coloring is NP-complete for P5-free graphs due to Theorem 1.

Theorem 2 ([11]). For any fixed integer k, the List k-Coloring problem can
be solved in polynomial time for P5-free graphs.

1.3 Our new results

The aim of our paper is to generalize Theorem 2 as much as possible. We prove
that for any fixed integers k and r, the List k-Coloring problem is polynomial-
time solvable for (rP1+P5)-free graphs. In order to prove our result, we show that
our input graphs have a dominating set of small size should they be k-colorable.
Hence, we search for such a dominating set. If we find it, then we color its vertices
in every possible way. Afterwards, we use the technique of “separating the color
lists of independent sets” of Hoáng et al. [11] on each resulting instance. They
successfully applied this technique for coloring P5-free graphs, and our result for
(rP1 + P5)-free graphs can be seen as a second example of its usefulness. We

3

present this technique in Section 2 in a more generic way. In order to obtain
our result for (rP1 + P5)-free graphs we have to prove a number of additional
structural results. This is done in Section 3. In Section 4 we show that our result
is tight by proving that already List 5-Coloring is NP-complete for the class
of H-free graphs whenever H has at least 5 edges and contains P1 + P5 as a
subgraph.

2 A generic approach for coloring H-free graphs

We generalize the technique Hoáng et al. [11] used to prove Theorem 2.
Given a graph G = (V,E) with a k-list assignment L, we use the following

terminology. Two adjacent vertices u and v are essential if L(u) ∩ L(v) 6= ∅;
otherwise u and v are non-essential. We observe that u is an essential neighbor
of v if and only if v is an essential neighbor of u. Two disjoint sets of vertices are
separated for L if no vertex in one of them has an essential neighbor in the other.
Let L be a set of k-list assignments of G with L′(u) ⊆ L(u) for all L′ ∈ L and
all u ∈ V . Then L and L are compatible if the following holds: G has a coloring
respecting L′ for some L′ ∈ L if G has a coloring respecting L. Note that the
reverse implication holds by the definition of L.

Assigning an admissible color to a vertex u does not influence the choice of
admissible colors for its non-essential neighbors. Hence, in our coloring algorithm,
we would like to branch in such a way that we obtain a compatible set of list
assignments for which disjoint sets of vertices become separated. Then we can
apply the algorithm recursively on smaller graphs induced by these disjoint sets.
This idea has been applied more often but usually leads to a huge case analysis.
However, Hoáng et al. [11] developed an elegant technique, which works well for
P5-free graphs. We present it in a more generic way below.

A subset D ⊆ V is a dominating set of G if every vertex in G belongs to D
or is adjacent to a vertex of D. In that case we also say that G[D] is dominating.
Suppose that we have ordered the vertices of D as d1, . . . , dp. Then we can define
(possibly empty) sets Fi for i = 1, . . . , p as follows. Let F1 be the set of vertices
in V \D adjacent to d1, and for i = 2, . . . , p, let Fi be the set of vertices in V \D
adjacent to di but not to any dh with h ≤ i − 1. The sets F1, . . . , Fp are called
fixed sets for D. By this definition and because D is dominating, every vertex in
V \ D belongs to exactly one fixed set Fi. We note, however, that D can have
several collections of fixed sets, depending on the ordering of the vertices of D.
A subset X ⊆ V is independent if there is no edge between any two vertices of
X.

We call a graph H a dominator-separator graph if every connected H-free
graph G = (V,E) satisfies the following two properties.

(i) If G is k-colorable for some integer k ≥ 1, then G has a dominating set D of
at most f(k) vertices, where f is a function that only depends on k.

(ii) There exists a polynomial-time algorithm that on input G, two independent
sets X and Y that are subsets of two different fixed sets of a dominating set

4

of G and a k-list assignment L of G outputs a set L of k-list assignments of
G with L′(u) ⊆ L(u) for all L′ ∈ L and all u ∈ V , such that

1. L is compatible with L;
2. |L| = O(h(k)ng(k)) for some functions h(k) and g(k) that only depend

on k;
3. X and Y are separated for every L′ ∈ L.

By a straightforward translation of the proof of Hoàng et al. [11] one finds
that for P5-free graphs, f(k) = k satisfies property (i), whereas h(k) = kk and
g(k) = k satisfy property (ii). Hence, P5 is a dominator-separator. The following
theorem generalizes their approach. Its proof is a reformulation of their proof in
terms of dominator-separator graphs and can be found in Appendix A.

Theorem 3. Let H be a dominator-separator graph, and let k be a fixed integer.
Then List k-Coloring can be solved in polynomial time for H-free graphs.

3 Coloring (rP1 + P5)-free graphs

In order to apply Theorem 3 we must prove that rP1 + P5 is a dominator-
separator graph for any fixed r. We start with the following lemma.

Lemma 1. Let G be an (rP1 +P`)-free graph for integers r and `. If G contains
an induced P`, then G contains a dominating induced sP1 + P` for some s < r.

Proof. Let P be an induced P` in G. Let U consist of all vertices in G that are
neither on P nor a neighbor of a vertex of P . We choose a maximal independent
set S in the subgraph of G induced by U . By maximality of S, all vertices in
U are dominated by S. This means that VP ∪ S is a dominating set in G. We
define s = |S| and observe that VP ∪ S induces an sP1 + P` in G. Because G
is (rP1 + P`)-free, we find that s < r. Hence, G contains a dominating induced
sP1 + P` with s < r, as desired. ut

A vertex subset K in a graph G is called a clique of G if there is an edge
between any two vertices of K. Just as Hoáng et al. [11], we need the following
result of Bacsó and Tuza [1] for the class of connected P5-free graphs.

Theorem 4 ([1]). Every connected P5-free graph G has a dominating P3 or a
dominating clique.

We are now ready to prove the following two lemmas which together show
that rP1 + P5 is a dominator-separator for any fixed integer r.

Lemma 2. Every connected (rP1 + P5)-free graph satisfies property (i).

5

Proof. Let G be a connected (rP1 + P5)-free graph that is k-colorable for some
integer k ≥ 1. We must prove that G has a dominating set of size at most
f(k) for some function f that only depends on k. Below we show that G has a
dominating set of size at most max{3, k, r+ 4}. Then we may take the function
f defined by f(k) = max{3, k, r + 4} for all k ≥ 1. This function only depends
on k, because r is fixed.

First suppose that G is P5-free, then G has a dominating P3 or a dominating
clique due to Theorem 4. Because G is k-colorable, any clique in G has at most
k vertices. In the first case we obtain a dominating set of size 3. In the second
case we obtain a dominating set of size at most k.

Now suppose that G is not P5-free. By Lemma 1, G has a dominating induced
sP1 +P5 for some s < r. Hence, we obtain a dominating set of size s+ 5 ≤ r+ 4.
This completes our proof of Lemma 2. ut

Lemma 3. Every connected (rP1 + P5)-free graph satisfies property (ii).

Proof. Let G = (V,E) be a connected (rP1 + P5)-free graph on n vertices with
k-list assignment L. Let D = {d1, . . . , dp} be a dominating set of G, and let
F1, . . . , Fp be the collection of fixed sets for D. For some 1 ≤ i < j ≤ n, let
X ⊆ Fi and Y ⊆ Fj be two independent sets of G. Note that i < j implies that
di is not adjacent to any vertex in Fj , whereas dj might be adjacent to one or
more vertices of Fi.

Let the set C consist of every color c for which there exist two adjacent
vertices x ∈ X and y ∈ Y such that c ∈ L(x) ∩ L(y). By definition, such x and
y are essential neighbors of each other. If C = ∅, then X and Y are separated.

Suppose that C 6= ∅. We define a set X ′ as the set of all vertices in X that
have an essential neighbor in Y , and a set Y ′ as the set of all vertices in Y that
have an essential neighbor in X ′. Because C 6= ∅, both X ′ and Y ′ are nonempty.
Our goal is to reduce the size of X ′. The reason is that when X ′ becomes empty,
then C ′ will be empty, and consequently, X and Y will be separated.

Before we present our algorithm we first prove a useful claim that requires
some extra terminology. We say that x ∈ X ′ is maximal if there is no vertex in
X ′ that has more neighbors in Y ′ than x has. We say that a vertex z ∈ X ′ is an
associate of x if at least |Y ′| − r + 1 vertices in Y ′ are adjacent to x or z.

Claim 1. Let x ∈ X ′ be maximal. Then either x is adjacent to all vertices of
Y ′, or every vertex in X ′ that is adjacent to a non-neighbor of x in Y ′ is an
associate of x.

We prove Claim 1 as follows. Suppose that x ∈ X ′ is maximal and that x is not
adjacent to all vertices of Y ′. Let z be adjacent to a vertex y ∈ Y ′ with xy /∈ E. In
order to derive at a contradiction, suppose that Y ′ contains r vertices y1, . . . , yr

neither adjacent to x nor to z. Because x is maximal and z is adjacent to a vertex
in Y ′, namely y, that is not adjacent to x, there exists a vertex y′ ∈ Y ′ adjacent
to x but not to z. Recall that di is not adjacent to any vertex of Y ′. Hence,
we have found an induced P5 = y′xdizy that together with y1, . . . , yr forms an
induced rP1 +P5 in G. This is not possible, because G is (rP1 +P5)-free. Hence,
we have proven Claim 1.

6

We are now ready to describe our algorithm that we use to prove property (ii).
Recall that our goal is to reduce the size of X ′. Hence, we branch on vertices of
X ′. Because X ′ may have a large size, we cannot branch by arbitrarily assigning
colors to vertices of X ′. Therefore, we do as follows as long as X ′ 6= ∅.

Determine a maximal vertex x ∈ X ′ and start to branch on x.

Our algorithm either assigns to x a specific color c from C, creating a number of
branches, or no color from C at all, yet another branch. In a branch of the first
type we cannot only remove x from X ′ but we will also show that we may remove
c from C; this is crucial for the running time analysis which we do afterwards. If
x is not adjacent to every vertex in Y ′, then we may need to refine the branching
by involving the associates of x. In a branch of the second type we remove every
color in C from the list of x. Consequently, x can be removed from X ′ as desired
(but we might not have decreased the size of C in this case).

The procedure Reduce-to-empty-set explains our approach in detail; see
Pseudocode 2. Here, updating a list assignment after a vertex gets a color means
removing this color from the list of every neighbor of that vertex. Further, for
x ∈ X ′, the set Ax

c denotes the set of associates of x that have color c in their list
and that are adjacent to a vertex in Y ′ that is no neighbor of x. Finally, we note
that at some places in this procedure we could also reduce the set Y ′. However,
for simplicity, we refrain from doing this, except in line 14 where it is necessary for
the correctness. We will use the Reduce-to-empty-set procedure as a subroutine
inside our separation algorithm called Separator; see Pseudocode 1. The output
of Separator is a set L of k-list assignments of G; at the start we set L = ∅.

Separator

input : sets X and Y
output : a set L of k-list assignments

1. determine the sets X ′, Y ′ and C
2. set L := ∅
3. Reduce-to-empty-set(X ′, Y ′, C,L)
4. return L

Pseudocode 1. Separating the two sets X and Y .

Having completed the overall description of our branching algorithm we prove
that G satisfies property (ii) as follows. From the description of the procedure
Reduce-to-empty-set, we conclude that each time we process a maximal vertex
x ∈ X ′, the size of X ′ reduces by at least one vertex. Hence, this procedure
will always terminate, and when it does X ′ will be empty. Consequently, our
algorithm Separator will terminate as well. When it does, it will return as
output a set L of k-list assignments of G. The sets X and Y are separated for
each k-list assignment of L, because X ′, and consequently, C are empty for each

7

such list assignment. In other words, condition 3 of property (ii) is satisfied. We
now show that conditions 1 and 2 are also satisfied.

The procedure Reduce-to-empty-set only reduces lists of vertices of G. As
a consequence, every list assignment L′ ∈ L has the property that L′(u) ⊆ L(u)
for all u ∈ V . We will show that L and L are compatible. In order to show this
suppose that G has a coloring φ respecting L. Let x ∈ X ′ be the maximal vertex
that is under consideration. We show that in the search tree that represents our
recursive procedure, there exist a branch that we can follow in order to prove the
existence of a list assignment L′ ∈ L that is respected by φ. The line numbers
in our proof refer to lines in the Reduce-to-empty-set procedure.

If φ(x) ∈ C, then we follow the branch that assigns color c to x in one of the
executions of line 4. Afterwards, we may update the list assignment. If Ax

c = ∅,
then Claim 1 tells us that there is no vertex in X ′ left that has color c in its list
and that is adjacent to a vertex in Y ′ with c in its list; if there were such vertices
they would have been associates of x. Hence, we may remove c from C and x
from X ′, as is done in line 7. If Ax

c 6= ∅, then there are two cases to consider.

Reduce-to-empty-set(X ′, Y ′, C,L)

1. while X ′ 6= ∅
2. determine a maximal vertex x ∈ X ′
3. for every color c ∈ C that is in the list of x do
4. color x by c and update the list assignment
5. determine the set Ax

c

6. if Ax
c = ∅ then

7. Reduce-to-empty-set(X ′ \ {x}, Y ′, C \ {c},L)
8. else
9. for every z ∈ Ax

c do
10. color z by c and update the list assignment
11. determine the set Y ′′ ⊆ Y ′ of vertices that have c in their list
12. for every coloring φ of Y ′′ that respects the lists do
13. color Y ′′ according to φ and update the list assignment
14. Reduce-to-empty-set(X ′ \ {x, z}, Y ′ \ Y ′′, C ′ \ {c},L)
15. end for
16. remove c from the lists of every vertex in Ax

c

17. Reduce-to-empty-set(X ′ \ {x}, Y ′, C ′ \ {c},L)
18. end for
19. end if
20. remove every color in C from the list of x
21. Reduce-to-empty-set (X ′ \ {x}, Y ′, C,L)
22. end for
23. end while
24. put the obtained list assignment in L

Pseudocode 2. Reducing the set X ′ to the empty set.

8

Case 1. At least one vertex z ∈ Ax
c has color φ(z) = c.

We will detect this case in one of the execution of line 10. If after updating the
list assignment there is still a set Y ′′ of vertices in Y ′ left, then we will consider
the coloring according to φ in one of the executions of line 13. We follow the
corresponding branch that colors the vertices of Y ′′ according to φ. Afterwards,
we may remove the vertices of Y ′′ from Y ′ as is done in line 14. Consequently,
the lists of the remaining vertices of Y ′ do not contain c anymore. Hence, we may
remove c from C in line 14. Because x and z received a color, we may remove x
and z from X ′; this is done in line 14 as well.

Case 2. None of the vertices in Ax
c has color c according to φ.

In this case we follow the branch that removes c from the lists of every vertices
in Ax

c ; see line 16. We claim that c is not in C anymore. This can be seen as
follows. In order to obtain a contradiction suppose that c ∈ C. Then there are
two adjacent vertices x∗ ∈ X ′ and y∗ ∈ Y ′ that each have c in their list. Because
x received color c and we removed c from the lists of its neighbors, we find that
y∗ is no neighbor of x. However, then x∗ must be in Ax

c by the definition of this
set and Claim 1. This is not possible either, because we removed c from the list
of every vertex in Ax

c . We conclude that c /∈ C. Hence, we may remove c from C
in line 17, and as before, we may also remove x from X ′, which is done in line
17 as well.

Finally, we consider the case in which φ(x) /∈ C. In this case, we follow the
branch that removes every color in C from the list of x; see line 20. Afterwards,
we may remove x from X ′, as is done in line 21. We conclude that for every
maximal vertex x, there exists a branch that assigns color φ(x) to x and that
the adjustments in the sets X ′, Y ′ and C in lines 7, 14, 17 and 21 are permitted.
Following these branches leads to a k-list assignment L′ ∈ L that is respected
by φ, as desired. This completes our proof of condition 1 of property (ii).

We are left to prove condition 2 of property (ii), namely that our algorithm
Separator runs in polynomial time and that |L| = O(h(k)ng(k)) for some
functions h(k) and g(k) that only depend on k. We note that the sets X ′,
Y ′ and C can be computed in polynomial time. By the construction of the
Reduce-to-empty procedure, each k-list assignment in L is the output of ex-
actly one leaf of the search tree T . This means that the number of leaves of T
is an upper bound for the number of the k-list assignments of L. Also, finding
a maximal vertex, assigning it a color and updating its list and the lists of its
neighbors takes polynomial time. Hence our algorithm runs in polynomial-time
if the number of leaves in T is O(h(k)ng(k)) for some functions h(k) and g(k)
that only depend on k. We will show this latter statement below.

Let ` be a leaf of T . Then there exists a sequence of vertices of X ′, on which
we branched in order to arrive at `. Each of these vertices was a maximal vertex
at the moment it was considered. We call these vertices the `-vertices.

The procedure Reduce-to-Empty only assigns a color from C to a vertex in
X ′ if it can remove this color from C afterwards. Maintaining this property has
the following two consequences. First, the number of `-vertices that received a

9

color from C is at most |C|; all other `-vertices got their list reduced by removing
the colors of C. Second, no two `-vertices received the same color from C. Recall
that every vertex in every nonempty set Ax

c determined in line 5 is an associate
of the minimal vertex x under consideration. Then, by definition, every set Y ′′

determined in line 11 has size at most r − 1.
For a leaf ` of T , we let C` denote the set of colors from C used on the `-

vertices. Using the above observations, we can determine a bound on the number
of leaves of T as follows.

1. We fix a set C` ⊆ C. There are at most 2|C| ≤ 2k such sets.

2. We fix a set X ′` of |C`| vertices in X ′, which correspond to the `-vertices.
There are at most |X ′||C`| ≤ n|C`| ≤ n|C| ≤ nk such sets.

3. We fix the order in which we assign the colors of C` to the vertices of X ′`
during the branching. There are at most |C`|! ≤ |C|! ≤ k! such orderings.

4. For each xi ∈ X ′` we fix an associate zi from X ′. We allow that zi = xi in
order to take into account that xi might be adjacent to all vertices of Y ′, or
that none of its associates get the same color as xi. This leads to at most
|X ′||X′

`| ≤ n|X′
`| = n|C`| ≤ nk sets of associates.

5. For each xi ∈ X ′` we choose a set Y ′′i of at most r − 1 vertices from Y ′.
We color every vertex of Y ′′i with a color from its list. Because there are
at most (r − 1)|Y ′|r−1 ≤ rnr choices for each Y ′′i , this leads to at most
(rnr)|X

′
`| = (rnr)|C`| ≤ (rnr)|C| ≤ (rnr)k = rknrk collections of such sets,

and each such set can be colored in at most kr ways.

From the above, we find that the number of leaves, and consequently the
number of k-list assignments of L is at most 2k · nk · k! · nk · rknrk · kr. Hence,
we can set h(k) = 2kk!rkkr and g(k) = 2k + rk. This completes the proof of
Lemma 3. ut

The proof of Lemma 3 differs from the proof of Hoàng et al. [11] in the
following way. They define C = L(Y ′) and show that X ′ contains a dominating
vertex; this suffices for the case H = P5 but does not work for the case H =
rP1 + P5 with r ≥ 1.

Due to Lemmas 2 and 3, the graph rP1 + P5 is a dominator-separator for
every fixed integer r. Hence we can apply Theorem 3 and obtain the main result
of this section.

Theorem 5. For any fixed integers k and r, the List k-Coloring problem can
be solved in polynomial time for (rP1 + P5)-free graphs.

4 Tightness

In this section we show that Theorem 5 is best possible in the sense that List k-
Coloring becomes NP-complete for some integer k on H-free graphs, whenever
H is a supergraph of P1 + P5 with at least 5 edges. In order to prove this we
need the following two results. The first result is due to Broersma et al. [4].

10

Theorem 6 ([4]). The 5-Precoloring Extension problem is NP-complete
for P6-free graphs.

Theorem 7. The List 5-Coloring problem is NP-complete for (P2 +P4)-free
graphs.

Proof. Because we can check in polynomial time whether a coloring of a graph
is a coloring that respects a given list assignment, List 5-Coloring is in NP.
In order to prove NP-completeness we reduce from the Not-All-Equal 3-
Satisfiability (NAE 3SATPL) problem with positive literals only. This NP-
complete problem [8], also known as Hypergraph 2-Colorability and Set
Splitting, is defined as follows. Given a set X = {x1, x2, . . . , xn} of logical
variables, and a set C = {C1, C2, . . . , Cm} of three-literal clauses over X in
which all literals are positive, does there exist a truth assignment for X such
that each clause contains at least one true literal and at least one false literal?

From an arbitrary instance I of NAE 3SATPL we define a graph G with a
5-list assignment L. In Claim 1 we show that G is (P2 +P4)-free. In Claim 2 we
show that G has a coloring respecting L if I has a satisfying truth assignment in
which each clause contains at least one true literal and at least one false literal.
In Claim 3 we prove the converse. Together these three claims form the proof of
Theorem 7.

Construction of G.
Let {x1, x2, . . . , xn} and clauses {C1, C2, . . . , Cm} be the variables and clauses
of I. Then we define G as follows.

• We let each clause Cj correspond to a vertex Cj with L(Cj) = {1, 2, 3}. We
say that such a vertex is of C-type.

• We let each variable xi correspond to a vertex xi with L(xi) = {4, 5}. We
say that such a vertex is of x-type.

• For each clause Cj , we fix an arbitrary order of its variables xi, xk, and
xr, and we introduce three pairs of new vertices {ai,j , bi,j}, {ak,j , bk,j},
{ar,j , br,j}. We set as lists of admissible colors for these three pairs, re-
spectively: {{1, 4}, {2, 5}}, {{2, 4}, {3, 5}}, {{3, 4}, {1, 5}}. We say that these
vertices are auxiliary.

• We add edges between x-type and auxiliary vertices whenever the first index
of the auxiliary vertex is the same as of the x-type vertex.

• We add edges between C-type and auxiliary vertices whenever the second
index of the auxiliary vertex is the same as the index of the C-type vertex.

• We add edges between all C-type vertices and all x-type vertices.

Note that the subgraph of G induced by the C-type and x-type vertices is
a complete bipartite graph with nm edges. Furthermore, each clause with its
three variables is represented by three 4-cycles that have one C-type vertex in
common. This is illustrated in Fig. 1 where we omitted the edges between Cj

and its x-type vertices.

11

xk, {4, 5}bk,j,ar,j,

Cj, {1, 2, 3}

xr,
{4, 5} {3, 4} {3, 5}

{1, 5}
br,j, ak,j, {2, 4}

xi, {4, 5}
bi,j, {2, 5}

{1, 4}
ai,j,

Fig. 1. Representation of a clause and its three variables in G.

Claim 1. The graph G is (P2 + P4)-free.

We prove Claim 1 as follows. Consider an arbitrary edge uv of G. Let H denote
the graph obtained from G after removing of u, v and all the vertices adjacent
with them. To prove the claim, it is sufficient to show that H is P4-free. Observe
that the set {u, v} contains at least an x-type vertex or a C-type vertex. In the
first case H has no C-type vertices. Because the graph obtained from G after
removing all C-type vertices is a disjoint union of stars, H is P4-free. In the
second case H has no x-type vertices, and we can use the same arguments. This
completes the proof of Claim 1.

Claim 2. If I has a truth assignment in which each clause contains at least one
true and at least one false literal, then G has a coloring that respects L.

We prove Claim 2 as follows. Suppose that I has a satisfying truth assignment
in which each clause contains at least one true and at least one false literal. We
use color 4 for the x-type vertices representing the true literals and color 5 for all
the x-type vertices representing the false literals. We give the auxiliary vertices
color 4 or 5 if their color is not forced to be from {1, 2, 3}. Consider a clause
Cj with variables xi, xk, xr. By our assumption, the vertices in {xi, xk, xr} get
colors {4, 4, 5}, {4, 5, 4},{5, 4, 4}, {5, 5, 4}, {5, 4, 5}, or {4, 5, 5}. Hence, we can
color Cj with color 3, 2, 1, 1, 3, 2, respectively. This completes the proof of Claim
2.

Claim 3. If G has a coloring that respects L, then I has a satisfying truth as-
signment in which each clause contains at least one true and at least one false
literal.

We prove Claim 3 as follows. Suppose that G has a coloring that respects L. Then
each of the x-type vertices has color 4 or 5, and each of the C-type vertices has
color 1, 2 or 3. We define a truth assignment that sets a variable to true if the
corresponding x-type vertex has color 4, and to false otherwise. Suppose that I
contains a clause Cj with literals xi, xk, xr that are all set to true. Then xi, xk, xr

all have color 4. Consequently, ai,j , ak,j , ar,j must have color 1, 2, 3, respectively.
However, this is not possible, because Cj has a color from {1, 2, 3}. Hence, every
clause contains at least one false literal. In the same way we can show that every
clause contains at least one true literal. This completes the proof of Claim 3,
and consequently, the proof of Theorem 7. ut

12

As explained in Section 1, the 5-Coloring problem is NP-complete for H-
free graphs whenever H is not a linear forest, due to results of Kamiński and
Lozin [13] and Leven and Galil [18]. Consequently, List 5-Coloring is NP-
complete for such graph classes. This means that P6 and P2 +P5 are the two re-
maining supergraphs of P1+P5 with exactly 5 edges. By Theorems 6 and 7, List
5-Coloring is NP-complete for P6-free graphs and for (P2 + P5)-free graphs,
respectively. This yields our desired result.

Theorem 8. Let H be a supergraph of P1 +P5 with at least 5 edges. Then List
5-Coloring is NP-complete for H-free graphs.

5 Future Work

Theorem 5 implies that for any fixed integer k and any fixed graph H on at most
5 vertices, the List k-Coloring problem is polynomial-time solvable, except
when H = P2 + P3.

Is List k-Coloring polynomial-time solvable on (P2 + P3)-free graphs for any
fixed k?

Due to the aforementioned polynomial-time result on List 3-Coloring for sP3-
free graphs [4], the first open case is k = 4. We note that the same question is
also open with respect to k-Coloring. For this problem, the first open case is
k = 5, as it is known that 4-Coloring is polynomial-time solvable on (P2 +P3)-
free graphs [9]. A possible solution strategy would be to prove that P2 + P3 is a
dominator-separator graph but this seems to be difficult.

References

1. G. Bacsó and Zs. Tuza, Dominating cliques in P5-free graphs, Periodica Mathe-
matica Hungarica 21, 303–308 (1990).

2. J.A. Bondy and U.S.R. Murty, Graph Theory, Springer Graduate Texts in Math-
ematics 244 (2008).

3. H.J. Broersma, F.V. Fomin, P.A. Golovach and D. Paulusma, Three complexity
results on coloring Pk-free graphs, Proceedings of IWOCA 2009, LNCS 5874, 95–
104 (2009).

4. H.J. Broersma, P.A. Golovach, D. Paulusma and J. Song, Updating the complexity
status of coloring graphs without a fixed induced linear forest, manuscript.

5. H.J. Broersma, P.A. Golovach, D. Paulusma and J. Song, Determining the chro-
matic number of triangle-free 2P3-free graphs in polynomial time, manuscript.

6. D. Bruce, C.T. Hoàng, and J. Sawada, A certifying algorithm for 3-colorability of
P5-free graphs, Proceedings of ISAAC 2009, LNCS 5878, 594-604 (2009).

7. K. Dabrowski, V. Lozin, R. Raman and B. Ries, Colouring vertices of triangle-free
graphs, Proceedings of WG 2010, LNCS 6410, 184-195 (2010).

8. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, San Francisco (1979).

9. P.A. Golovach, D. Paulusma and J. Song, 4-Coloring H-free graphs when H is
small, manuscript.

13

10. M. Grötschel, L. Lovász, and A. Schrijver, Polynomial algorithms for perfect
graphs, Ann. Discrete Math., Topics on Perfect Graphs 21, 325–356 (1984).

11. C.T. Hoàng, M. Kamiński, V. Lozin, J. Sawada, and X. Shu, Deciding k-colorability
of P5-free graphs in polynomial time, Algorithmica 57, 74–81 (2010).

12. I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput. 10, 718–720
(1981).

13. M. Kamiński and V.V. Lozin, Coloring edges and vertices of graphs without short
or long cycles, Contributions to Discrete Math. 2, 61–66 (2007).

14. M. Kamiński and V.V. Lozin, Vertex 3-colorability of Claw-free Graphs. Algorith-
mic Operations Research 21, (2007).

15. D. Král’, J. Kratochv́ıl, Zs. Tuza, and G.J. Woeginger, Complexity of coloring
graphs without forbidden induced subgraphs, Proceedings of WG 2001, LNCS
2204, 254–262 (2001).

16. J. Kratochv́ıl, Precoloring extension with fixed color bound, Acta Math. Univ.
Comen. 62, 139–153 (1993).

17. V.B. Le, B. Randerath and I. Schiermeyer, On the complexity of 4-coloring graphs
without long induced paths, Theoret. Comput. Sci. 389, 330–335 (2007).

18. D. Leven and Z. Galil, NP completeness of finding the chromatic index of regular
graphs, Journal of Algorithms 4, 35—44 (1983).

19. F. Maffray and M. Preissmann, On the NP-completeness of the k-colorability prob-
lem for triangle-free graphs, Discrete Math. 162, 313–317 (1996).

20. B. Randerath and I. Schiermeyer, 3-Colorability ∈ P for P6-free graphs, Discrete
Appl. Math. 136, 299–313 (2004).

21. B. Randerath and I. Schiermeyer, Vertex colouring and forbidden subgraphs - a
survey, Graphs Combin. 20, 1–40 (2004).

22. D. Schindl, Some new hereditary classes where graph coloring remains NP-hard,
Discrete Math. 295, 197–202 (2005).

23. Zs. Tuza, Graph colorings with local restrictions - a survey, Discuss. Math. Graph
Theory 17, 161–228 (1997).

24. G.J. Woeginger and J. Sgall, The complexity of coloring graphs without long in-
duced paths, Acta Cybernet. 15, 107–117 (2001).

14

A The proof of Theorem 3

Theorem 3. Let H be a dominator-separator graph, and let k be a fixed integer.
Then List k-Coloring can be solved in polynomial time for H-free graphs.

Proof. Suppose that H is a dominator-separator and that k is some fixed integer.
Let G be an H-free graph with k-list assignment L. Let |VG| = n. If G is not
connected, we apply the algorithm on each connected component of G. Hence,
we may assume that G is connected.

First we check if G has a dominating set of at most f(k) vertices. Recall
that f is a function that only depends on k and that is given to us, because G
satisfies property (i). Property (i) also tells us that G is not k-colorable if we
do not find such a dominating set. A brute force search for this dominating set
takes O(nf(k)) time, which is polynomial because k is fixed.

Suppose that we find a dominating set D with |D| ≤ f(k). Then we fix
an order d1, . . . , d|D| of the vertices of D and compute the corresponding fixed
sets Fi for i = 1, . . . , |D| in polynomial time. Let Gi denote the subgraph of G
induced by Fi for i = 1, . . . , |D|. By definition, every vertex of each Fi is adjacent
to di for i = 1, . . . , |D|. Consequently, each Gi must have a coloring using at most
k− 1 colors should G have a coloring respecting L. For i = 1, . . . , |D|, we define
a (k− 1)-list assignment Li by assigning the list Li(u) = {1, . . . , k− 1} to every
u ∈ Fi. Then we apply the algorithm on every Gi with list assignment Li in
order to determine if Gi allows a (k− 1)-coloring. If there is a subgraph Gi that
has no (k−1)-coloring, then G has no coloring respecting L. Otherwise, we have
found a (k − 1)-coloring φi for every Gi. The color classes of each φi form a
partition Xi of Fi in at most k − 1 independent sets. Obtaining this partition
was exactly the purpose of constructing these colorings. Afterwards they does
not play a role anymore.

We now color the vertices of D in every possible way, while respecting L. In
other words, the new lists of the vertices in D have size 1 in every such coloring
of D. If u ∈ D got colored by color i, then we remove i from the list of every
neighbor of u that is not in D. This gives us a set LD of k-list assignments of
G that is compatible with L and that has cardinality |LD| ≤ k|D| ≤ kf(k); the
latter is a constant because k is fixed.

We consider each k-list assignment L′ ∈ LD. We apply property (ii) on
two independent sets X ∈ Xi and Y ∈ Xj for some 1 ≤ i < j ≤ |D|. This
yields a set of k-list assignments that is compatible with L′, and for which X
and Y are separated. Property (ii) also guarantees that the size of this set is
at most O(h(k)ng(k)) for some functions h(k) and g(k) that only depend on
k. Starting with each newly created list assignment from this set, we repeatedly
apply property (ii) until all other pairs of independent sets that consist of one set
from Xi and one from Xj are separated as well. Note that previously separated
sets will indeed remain separated, because the lists of every newly generated
list assignment are subsets of the lists of an earlier created list assignment. The
resulting set of k-list assignments L∗ is compatible with L′. Because the number
of pairs X,Y with X ∈ Xi and Y ∈ Xj is |Xi| · |Xj | ≤ (k − 1) · (k − 1) ≤ k2,

15

the set L∗ is obtained in polynomial time and contains O((h(k)ng(k))k2
) list

assignments. We find that Fi and Fj are separated for each list assignment
L∗ ∈ L∗, because every pair (X,Y) with X ∈ Xi and Y ∈ Xj is separated for
L∗, and Xi and Xj are partitions of Fi and Fj , respectively.

Starting with each list assignment of L∗, we repeatedly apply the above
procedure until all other pairs of fixed sets are separated as well. Because there
are 1

2 |D| ·(|D|−1) ≤ 1
2f(k) ·(f(k)−1) ≤ f(k)2 such pairs, the total time that we

use is polynomial and the total number of k-list assignments that we create in
this way form a set L′ that is compatible with the list assignment L′ ∈ LD and
that has size O(((h(k)ng(k))k2

)f(k)2) = O(h′(k)ng′(k)) where h′(k) = h(k)k2f(k)2

and g′(k) = g(k)k2f(k)2 are functions that only depend on k.
Recall that |LD| ≤ kf(k). After processing all list assignments of LD as

described above, we obtain a set L that is compatible with L and that has size
O(kf(k)h′(k)ng′(k)); this number is polynomial in n because k is fixed.

We consider each k-list assignment L′′ ∈ L. For i = 1, . . . , |D|, let L′′i denote
the restriction of L′′ to Fi. By construction, every two fixed sets are separated
for L′′. Recall that every vertex in D already received a color. Then, G has
a coloring respecting L′′ if and only if every Gi has a coloring respecting L′′i .
Hence, we can apply the algorithm on each Gi. Because we removed the color of
every vertex of D from the lists of its neighbors and D is dominating, we find
that L′′i (Fi) contains at most k − 1 colors for i = 1, . . . , |D|, i.e., the number of
colors decreases. This means that the algorithm runs in polynomial time. This
completes the proof of Theorem 3. ut

16

