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4 Institut für Informatik, Universität Würzburg, Germany

Abstract. We study the minimum Manhattan network problem, which is defined as follows. Given a
set of points called terminals in Rd, find a minimum-length network such that each pair of terminals
is connected by a set of axis-parallel line segments whose total length is equal to the pair’s Manhattan
(that is, L1-) distance. The problem is NP-hard in 2D and there is no PTAS for 3D (unless P=NP).
Approximation algorithms are known for 2D, but not for 3D.
We present, for any fixed dimension d and any ε > 0, an O(nε)-approximation algorithm. For 3D, we
also give a 4(k− 1)-approximation algorithm for the case that the terminals are contained in the union
of k ≥ 2 parallel planes.
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1 Introduction

In a typical network construction problem, one is given a set of objects to be interconnected such
that some constraints regarding the connections are fulfilled. Additionally, the network must be
of little cost. For example, if the objects are points in Euclidean space and the constraints say
that, for some fixed t > 1, each pair of points must be connected by a path whose length is
bounded by t times the Euclidean distance of the points, then the solution is a so-called Euclidean
t-spanner. Concerning cost, one usually requires that the total length of the network is proportional
to the length of a Euclidean minimum spanning tree of the points. Such low-cost spanners can be
constructed efficiently [2].

In this paper, we are interested in constructing 1-spanners, with respect to the Manhattan
(or L1-) metric. Rather than requiring that the total length of the network is proportional to the
minimum spanning tree of the points, our aim is to minimize the total length (or weight) of the
network. Note that the Euclidean 1-spanner of a set of points is simply the complete graph (if no
three points are collinear) and hence, its weight is completely determined. Manhattan 1-spanners,
in contrast, have many degrees of freedom and vastly different weights.

More formally, given two points p and q in d-dimensional space Rd, a Manhattan path con-
necting p and q (a p–q M-path, for short) is a sequence of axis-parallel line segments connecting p
and q whose total length equals the Manhattan distance between p and q. Thus an M-path is
a monotone rectilinear path. For our purposes, a set of axis-parallel line segments is a network.
Given a network N , its weight ‖N‖ is the sum over the lengths of its line segments. A network N
Manhattan-connects (or M-connects) two given points p and q if it “contains” a p–q M-path π.
Note that we slightly abuse the notation here: we mean pointwise containment, that is, we require⋃
π ⊆ ⋃N . Given a set T of points—called terminals—in Rd, a network N is a Manhattan net-

work (or M-network) for T if N M-connects every pair of terminals in T . The minimum Manhattan
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Fig. 1: Examples of M-networks in 2D and 3D.

network problem (MMN) consists of finding, for a given set T of terminals, a minimum-weight
M-network. For examples, see Fig. 1.

M-networks have important applications in several areas such as VLSI layout and computational
biology. For example, Lam et al. [12] used them in gene alignment in order to reduce the size of
the search space of the Viterbi algorithm for pair hidden Markov models.

1.1 Previous work

The 2D-version of the problem, 2D-MMN, was introduced by Gudmundsson et al. [9]. They gave
an 8- and a 4-approximation algorithm. Later, the approximation ratio was improved to 3 [3,8] and
then to 2, which is currently the best possible. It was achieved in three different ways: via linear
programming [5], using the primal–dual scheme [15] and with purely geometric arguments [10]. The
last two algorithms run in O(n log n) time, given a set of n points in the plane. A ratio of 1.5 was
claimed [16], but apparently the proof is incomplete [8]. Chin et al. [6] finally settled the complexity
of 2D-MMN by proving it NP-hard.

A little earlier, Muñoz et al. [14] considered 3D-MMN. They showed that the problem is NP-hard
and that it is NP-hard to approximate beyond a factor of 1.00002. For the special case of 3D-MMN,
where any cuboid spanned by two terminals contains other terminals or is a rectangle, they gave
a 2α-approximation algorithm, where α denotes the best approximation ratio for 2D-MMN. They
posed the design of approximation algorithms for general 3D-MMN as an open problem.

1.2 Related problems

As we observe in Section 2.3, MMN is a special case of the directed Steiner forest problem (DSF).
More precisely, an instance of MMN can be decomposed into a constant number of DSF instances.
The input of DSF is an edge-weighted directed graph G and a set of vertex pairs. The goal is to
find a minimum-cost subgraph of G (not necessarily a forest) that connects all given vertex pairs.
Recently, Feldman et al. [7] reported, for any ε > 0, an O(n4/5+ε)-approximation algorithm for
DSF, where n is the number of vertices of the given graph. This bound carries over to dD-MMN.

An important special case of DSF is the directed Steiner tree problem (DST). Here, the input
instance specifies an edge-weighted digraph G, a root vertex r, and a subset S of the vertices of G
to which r must connect. An optimum solution for DST is a minimum-weight r-rooted subtree of G
spanning S. DST admits an O(nε)-approximation for any ε > 0 [4].

A geometric optimization problem that resembles MMN is the rectilinear Steiner arborescence
problem (RSA). Given a set of points in Rd with non-negative coordinates, a rectilinear Steiner
arborescence is a spanning tree that connects all points with M-paths to the origin. As in MMN, the

2



aim is to find a minimum-weight network. For 2D-RSA, there is a polynomial-time approximation
scheme (PTAS) [13] based on Arora’s technique for approximating geometric optimization problems
such as TSP [1]. It is not known whether 2D-MMN admits a PTAS. Arora’s technique does not
directly apply here as M-paths between terminals forbid detours and thus may not respect portals.

1.3 Our contribution

We first present a 4(k − 1)-approximation algorithm for the special case of 3D-MMN where the
given terminals are contained in k ≥ 2 planes parallel to the x–y plane; see Section 3.

Our main result is an O(nε)-approximation algorithm for dD-MMN, for any ε > 0. We first
present the algorithm in detail for three dimensions; see Section 4. Since the algorithm for arbitrary
dimensions is a straightforward generalization of the algorithm for 3D but less intuitive, we describe
it in the appendix.

Our O(nε)-approximation algorithm for dD-MMN constitutes a significant improvement upon
the best known ratio of O(n4/5+ε) for (general) directed Steiner forest [7]. We obtain this result
by exploiting the geometric structure of the problem. To underline the relevance of our result,
we remark that the bound of O(nε) is the best known result also for other directed Steiner-type
problems such as DST [4] or even acyclic DST [18].

Our O(k)-approximation algorithm for the k-planes case relies on recent work by Soto and
Telha [17]. They show that, given a set of red and blue points in the plane, one can determine
efficiently a minimum-cardinality set of points that together pierce all rectangles having a red point
in the lower left corner and a blue point in the upper right corner. Combining this result with an
approximation algorithm for 2D-MMN, yields an approximation algorithm for the 2-planes case.
We show how to generalize this idea to k planes.

2 Some Basic Observations

We begin with some notation. Given a point p ∈ R3, we denote the x-, y- and z-coordinate of p
by x(p), y(p), and z(p), respectively. Given two points a and c in R2, let R(a, c) = {b ∈ R2 |
x(a) ≤ x(b) ≤ x(c), y(a) ≤ y(b) ≤ y(c)} be the rectangle spanned by a and c. If a line segment is
parallel to the x-, y-, or z-axis, we say that it is x-, y-, or z-aligned. In what follows, we consider
the 3-dimensional case of the MMN problem, unless otherwise stated.

2.1 Quadratic Lower Bound for Generating Sets in 3D

Intuitively, what makes 3D-MMN more difficult than 2D-MMN is the following: in 2D, if the
bounding box of terminals s and s′ and the bounding box of t and t′ cross (as in Fig. 1b), then
any s–s′ M-path will intersect any t–t′ M-path, which yields s–t′ and t–s′ M-paths for free (if s
and t are the lower left corners of their respective boxes). A similar statement for 3D does not hold;
M-paths can “miss” each other—even if their bounding cuboids cross; see Fig. 1d.

Let us formalize this observation. Given a set T of terminals, a set Z of pairs of terminals is
a generating set [11] if any network that M-connects the pairs in Z in fact M-connects all pairs
of terminals. In 2D, any MMN instance has a generating set of linear size [11]. Unfortunately
this result does not extend to 3D. Below, we construct an instance that requires a generating set
of size Ω(n2). The idea of using linear-size generating sets is exploited by several algorithms for
2D-MMN [5,11]. The following theorem shows that these approaches do not easily carry over to 3D.
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Theorem 1. There exists an instance of 3D-MMN with n terminals that requires a generating set
of size Ω(n2).

Proof. We construct an instance that requires a generating set of size at least n2/4. The main idea
of the construction is to ensure that n2/4 of the terminal pairs must use an edge segment unique
to that specific pair. The input consists of two sets T and T ′, each with n/2 terminals, with the
following coordinates: for 0 ≤ i < n/2, terminal ti ∈ T is at (i, n/2− i, n/2− i) and terminal t′i ∈ T ′
is at (n/2 + i, n− i, n− i). Figure 2 shows the instance for n = 6.

t0

t1

t2

t′0

t′1

t′2

Fig. 2: The constructed network for n = 6.

Consider any given generating set Z ⊂ T × T ′ such that there is a pair (t̃, t̃′), t̃ ∈ T and t̃′ ∈ T ′
that is not in Z. We now construct a specific network that contains M-paths between all terminal
pairs in Z but no M-path between (t̃, t̃′).

Consider any pair (t, t′) ∈ Z such that t = (i, j, k) ∈ T and t′ = (i′, j′, k′) ∈ T ′. The M-path
from t to t′ has three segments: an x-aligned segment from (i, j, k) to (i′, j, k), a y-aligned segment
from (i′, j, k) to (i′, j′, k), and a z-aligned segment from (i′, j′, k) to (i′, j′, k′). To ensure an M-path
between each generating pair ti, tj ∈ T (similarly between t′i, t

′
j ∈ T ′), we add M-paths between

each pair of consecutive terminals in T (similarly for T ′) as follows: we connect ti, ti+1 ∈ T by
adding a z-aligned segment from ti = (i, j, k) to (i, j, k− 1), a y-aligned segment to (i, j− 1, k− 1),
and an x-aligned segment to ti+1 = (i+ 1, j − 1, k − 1); see Fig. 2.

It is easy to verify that, in this construction, the M-path between terminals t = (i, j, k) ∈ T
and t′ = (i′, j′, k′) ∈ T ′ must use the y-aligned segment between (i′, j, k) and (i′, j′, k). Since this
segment is added only between terminal pairs that are present in the generating set Z, there is no
M-path between terminals t̃ ∈ T and t̃′ ∈ T ′ which are not in Z. Thus, in order to obtain M-paths
between all pairs of terminals in T ∪ T ′, we need at least all of the n2/4 pairs in T × T ′. ut

2.2 Hanan Grid and Directional Subproblems

First, we note that any instance of MMN has a solution that is contained in the Hanan grid, the
grid induced by the terminals; see Fig. 1(a). Gudmundsson et al. [9] showed this for 2D; their proof
generalizes to higher dimensions. In what follows, we restrict ourselves to finding feasible solutions
that are contained in the Hanan grid.
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Second, to simplify our proofs, we consider the directional subproblem of 3D-MMN which
consists of connecting all terminal pairs (t, t′) such that t dominates t′, that is, x(t) ≤ x(t′),
y(t) ≤ y(t′), z(t) ≤ z(t′), and t 6= t′. We call such terminal pairs relevant.

The idea behind our reduction to the directional subproblem is that any instance of 3D-MMN
can be decomposed into four subproblems of this type. One may think of the above-defined di-
rectional subproblem as connecting the terminals which are oriented in a north-east (NE) con-
figuration in the x–y plane (with increasing z-coordinates). Analogous subproblems exist for the
directions NW, SE, and SW. Note that any terminal pair belongs to one of these four categories
(if seen from the terminal with smaller z-coordinate).

The decomposition extends to higher dimensions d, by fixing the relationship between (t, t′) for
one dimension (for example, z), and enumerating over all possible relationships for the remaining
d − 1 dimensions. This decomposes dD-MMN into 2d−1 subproblems, which is a constant number
of subproblems as we consider d to be a fixed constant.

This means that any ρ-approximation algorithm for the directional subproblem leads to an
O(ρ)-approximation algorithm for the general case. Thus we can focus on designing algorithms for
the directional subproblem.

Observation 1 Any instance of MMN can be decomposed into a constant number of directional
subproblems. Thus a ρ-approximation algorithm for the directional subproblem leads to an O(ρ)-
approximation algorithm for MMN.

2.3 Relation to Steiner Problems

We next show that there is an approximation-preserving reduction from directional 3D-MMN to
the directed Steiner forest (DSF) problem, which by Observation 1, carries over up to a constant
factor, to general 3D-MMN.

Let T be a set of n points in R3. Let H be the Hanan grid induced by T . We consider H as an
undirected graph where the length of each edge equals the Euclidean distance between its endpoints.
We orient each edge in H so that, for any edge (p, p′) in the resulting digraph H ′, the start node p
dominates the end node p′. We call H ′ the oriented Hanan grid of T . Now let (t, t′) be a relevant
pair of points in T , that is, t dominates t′. Any M-path in H connecting t to t′ corresponds to a
directed path in H ′ from t to t′. The converse also holds: every directed path in H ′ corresponds to
an M-path in H.

Let I be an instance of directional 3D-MMN and let I ′ be an instance of DSF where the input
graph is H ′ and where every relevant terminal pair of I has to be connected. Then, each feasible
solution N of I contained in H corresponds to a sub-graph N ′ of H ′ that connects every relevant
terminal pair, and is therefore a feasible solution to I ′. It is easy to see that N ′ has the same cost as
N , as N ′ uses the oriented version of each edge of N . Conversely, every feasible solution N ′ for I ′

corresponds to a subgraph N of H that M-connects every relevant terminal pair. Therefore, N is a
feasible solution to I ′ with the same cost as N ′. This establishes an efficiently computable one-to-
one correspondence between feasible solutions to I that are contained in H and feasible solutions to
I ′. Since there is an optimum solution to I contained in H [9], this is an approximation-preserving
reduction from directional 3D-MMN to DSF.

By means of the above transformation of the Hanan grid into a digraph, we also obtain an
approximation-preserving reduction from 3D-RSA to DST. We use this later in Section 4 to develop
an approximation algorithm for 3D-MMN. Let I be an instance of 3D-RSA given by a set T of
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terminals with non-negative coordinates that are to be M-connected to the origin o. We construct
an instance I ′ of DSF as above where {o} × T is the set of node pairs to be connected. Note that
any feasible solution to I ′ is, without loss of generality, a tree. Hence, I ′ is an instance of DST with
root o. All in all, we have an approximation-preserving reduction from 3D-RSA to DST.

3 The k-Plane Case

In this section we consider 3D-MMN, under the assumption that the set T of terminals is contained
in the union of k ≥ 2 planes E1, . . . , Ek that are parallel to the x–y plane. Of course, this assumption
always holds for some k ≤ n. We present a 4(k − 1)-approximation algorithm, which outperforms
our algorithm for the general case in Section 4 if k ∈ o(nε).

Let Nopt be some fixed minimum M-network for T , let Nhor
opt be the set of all x-aligned and all

y-aligned segments in Nopt, and let Nver
opt be the set of all z-aligned segments in Nopt. Let OPT

denote the weight of Nopt. Clearly, OPT does not depend on the specific choice of Nopt; the weights
of Nhor

opt and Nver
opt, however, may depend on Nopt. For i ∈ {1, . . . , k}, let Ti = T ∩ Ei be the set of

terminals in plane Ei. Further, let Txy be the projection of T onto the x–y plane.

Our algorithm consists of two phases. Phase I computes a set Nhor of horizontal (that is, x- and
y-aligned) line segments, phase II computes a set Nver of vertical (that is, z-aligned) line segments.
Finally, the algorithm returns the set N = Nhor ∪Nver.

Phase I is simple; we compute a 2-approximate M-network Nxy for Txy (using the algorithm of
Guo et al. [10]) and project Nxy onto each of the planes E1, . . . , Ek. Let Nhor be the union of these
projections. Note that Nhor M-connects any pair of terminals that lie in the same plane.

Observation 2 ‖Nhor‖ ≤ 2k‖Nhor
opt ‖.

Proof. The projection of Nhor
opt to the x–y plane is an M-network for Txy. Hence, ‖Nxy‖ ≤ 2Nhor

opt .
Adding up over the k planes yields the claim. ut

In Phase II, we construct a pillar network by computing a set Nver of vertical line segments, so-called
pillars, of total cost at most 4(k− 1)‖Nver

opt‖. This yields an overall approximation factor of 4(k− 1)

since ‖Nhor ∪Nver‖ ≤ 2k‖Nhor
opt ‖+ 4(k − 1)‖Nver

opt‖ ≤ 4(k − 1)(‖Nhor
opt ‖+ ‖Nver

opt‖) ≤ 4(k − 1)OPT.

Below we describe Phase II of our algorithm for the directional subproblem that runs in direction
north-east (NE) in the x–y plane (with increasing z-coordinates). For this directional subproblem,
we construct a pillar network Nver

dir of weight at most (k − 1)‖Nver
opt‖ that, together with Nhor, M-

connects all relevant pairs. We solve the analogous subproblems for the directions NW, SE, and SW
in the same fashion. Then Nver is the union of the four partial solutions and has weight at most
4(k − 1)‖Nver

opt‖, as desired.

Our directional subproblem is closely linked to the (directional) bichromatic rectangle piercing
problem (BRP), which is defined as follows. Let R and B be sets of red and blue points in R2,
respectively, and let R(R,B) denote the set of axis-aligned rectangles each of which is spanned by
a red point in its SW-corner and a blue point in its NE-corner. Then the aim of BRP is to find a
minimum-cardinality set P ⊂ R2 such that every rectangle in R(R,B) is pierced, that is, contains
at least one point in P . The points in P are called piercing points.

The problem dual to BRP is the (directional) bichromatic independent set of rectangles problem
(BIS) where the goal is to find the maximum number of pairwise disjoint rectangles in R(R,B),
given the sets R and B.
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Recently, Soto and Telha [17] proved a beautiful min–max theorem saying that, for R(R,B), the
minimum number of piercing points always equals the maximum number of independent rectangles.
This enabled them to give efficient exact algorithms for BRP and BIS running in Õ(n2.5) worst-case
time or Õ(nγ) expected time, where the Õ-notation ignores polylogarithmic factors, γ < 2.4 is the
exponent for fast matrix multiplication, and n = |R|+ |B| is the input size.

The details of Phase II appear, for k = 2 planes, in Section 3.1, and, for k > 2 planes, in
Section 3.2. Algorithm 1 summarizes of our k-planes algorithm.

Algorithm 1 k-Planes Algorithm
Input: Set T of terminals contained in the union of planes E1, . . . , Ek, all parallel to the x–y plane.

1: Let Txy be the projection of T onto the x–y plane
2: Phase I:

Compute Nxy, a 2-approximate M-network for Txy using the algorithm of Guo et al. [10].
Let Nhor be the union of the projections of Nxy onto each of the planes E1, . . . , Ek.

3: Phase II:
If k = 2, construct a pillar network Nver by Algorithm 2; see Section 3.1.
Otherwise, construct a pillar network Nver by Algorithm 3; see Section 3.2.

Output: Nhor ∪Nver.

3.1 Pillar Network for Two Planes

Our phase-II algorithm for two planes is very simple. We sketch it first in order to provide some
intuition for the k-planes case. Let the terminals in T1 be red and those in T2 be blue. Ignore the
z-coordinates of the terminals. Then the relevant red–blue point pairs span exactly the rectangles
in R(T1, T2), which we call relevant, too.

Algorithm 2 Pillar network of the directional subproblem for k = 2 planes
Input: Sets T1 ⊂ E1 and T2 ⊂ E2 of terminals.

1: Color T1 red and T2 blue.
2: Ignoring z-coordinates of terminals, let R(T1, T2) be the set of rectangles spanned by relevant red–blue pairs.
3: Compute a minimum piercing P̂ of R(T1, T2) such that for each relevant red–blue pair (r, b) ∈ T1×T2 the piercing

point for (r, b) lies on an r–b M-path in Nxy, as described in Lemma 2.
4: Erect pillars from E1 to E2 at each piercing point p̂ ∈ P̂ ; let Nver

dir be the resulting set of pillars.

Output: Nver
dir .

Our algorithm (Algorithm 2) consists of two steps. First, we compute a minimum piercing P of
R(T1, T2) using the algorithm of Soto and Telha [17]. Second, we move each piercing point p ∈ P
to a new position p̂—a nearby junction of Nxy—and erect, at p̂, a pillar connecting the two planes.
Let P̂ be the set of piercing points after the move, and let Nver

dir be the corresponding set of pillars.

Lemma 1. It holds that ‖Nver
dir ‖ ≤ ‖Nver

opt‖.

Proof. It is easy to see that |P̂ | = |P |. Integrating over the distance d of the two planes yields
‖Nver

dir ‖ = |P̂ | · d = |P | · d ≤ ‖Nver
opt‖. The last inequality is due to the fact that P is a minimum

piercing of R(T1, T2) and that the pillars in Nver
opt pierce R(T1, T2)—otherwise Nopt would not be

feasible. ut
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Now we turn to feasibility. We first detail how we move each piercing point p to its new position p̂.
For the sake of brevity, we identify terminals with their projections to the x–y plane. Our description
assumes that we have at our disposal some network M (such as Nxy) connecting the relevant pairs
in Txy.

For a piercing point p ∈ P , let Ap be the intersection of the relevant rectangles pierced by p; see
Fig. 3. Clearly, p ∈ Ap. Note that the bottom and left sides of Ap are determined by terminals tW
and tS to the west and south of Ap, respectively. Symmetrically, the top and right sides of Ap are
determined by terminals tE and tN to the east and north of Ap, respectively. Terminals tW and tS
may coincide, and so may tE and tN. It is easy to see that the network M contains an M-path πSN
connecting tS and tN and an M-path πWE connecting tW and tE. The path πSN goes through the
bottom and top sides of Ap and πWE goes through the left and right sides. Hence, the two paths
intersect in a point p̂ ∈ Ap. This is where we move the original piercing point p.

tE

tN

tS

tW

p̂

Ap

πWE

πSN

Fig. 3: Paths πSN and πWE meet in a point p̂ in Ap.

Since p̂ ∈ Ap, the point p̂ pierces the same relevant rectangles as p, and the set P̂ = {p̂ | p ∈ P}
is a (minimum) piercing for the set of relevant rectangles.

Lemma 2. Let R(R,B) be an instance of BRP and let M be a network that M-connects every
relevant red–blue point pair. Then we can efficiently compute a minimum piercing of R(R,B) such
that M contains, for every relevant red–blue point pair (r, b) in R×B, an r–b M-path that contains
a piercing point.

Proof. We use the algorithm of Soto and Telha [17] to compute a minimum piercing P of R(R,B).
Then, as we have seen above, P̂ is a minimum piercing of R(R,B), too. Now let (r, b) be a relevant
red–blue pair in R×B, and let p ∈ P be a point that pierces R(r, b). Clearly, p̂ pierces R(r, b), too.
As we have observed before, both p and p̂ lie in Ap.

Since (r, b) is a relevant pair, r lies to the SW of Ap and b to the NE; see Fig. 4a. We prove
that M contains an r–p̂ M-path; a symmetric argument proves that M also contains a p̂–b M-path.
Concatenating these two M-paths yields the desired r–b M-path since r lies to the SW of p̂ and p̂
lies to the SW of b. Recall that p̂ lies on the intersection of the tW–tE M-path πWE and the tS-tN
M-path πSN, where tW, tE, tS, tN are the terminals that determine the extensions of Ap; see Fig. 3.
To show that M M-connects r and p̂, we consider two cases.

Case I: r ∈ R(tW, tS); see Fig. 4a. According to our assumption, M contains some r–b M-path π.
Then π must intersect πWE or πSN at some point x to the SW of p̂. Thus, we can go, in a monotone
fashion, along π from r to x and then along πWE or πSN from x to p̂. This is the desired r–p̂ M-path.

Case II: r lies to the SW of tW or tS; see Fig. 4b. In this case M contains M-paths from r to tW
and to tS. If r lies to the SW of tW, we can go, again in a monotone fashion, from r to tW and
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tE

tN

tS

tW

p̂

Ap

πWE

πSN

b

r

x

π

(a) Case I: we can go from r via x
to p̂.

tE

tN

tS

tW

p̂

Ap

πWE

πSN
r

b

(b) Case II: we can go from r via tW or tS
to p̂.

Fig. 4: Sketches for the proof of Lemma 2.

then along πWE from tW to p̂. Otherwise, if r lies to the SW of tS, we can go from r to tS and then
on πSN from tS to p̂.

Since these are the only two possibilities, this concludes the proof. ut

Lemmas 1 and 2 (with R = T1, B = T2, and M = Nxy) yield the following.

Theorem 2. We can efficiently compute a 4-approximation for the 2-plane case.

3.2 Pillar Network for k Planes

Now we show how our phase-II algorithm generalizes to k planes. As in the 2-planes case, we
restrict ourselves to the directional subproblem and construct a pillar network Nver

dir of weight
at most (k − 1)‖Nver

opt‖. As we have argued at the beginning of Section 3, this suffices to prove
Theorem 3.

Theorem 3. There exists a 4(k − 1)-approximation algorithm for 3D-MMN where the terminals
lie in the union of k ≥ 2 planes parallel to the x–y plane.

Our pillar-placement algorithm (Algorithm 3) is as follows. Let i ∈ {1, . . . , k−1}. We construct
an instance Ii of BRP where we two-color Txy such that each point corresponding to a terminal
of some plane Ej with j ≤ i is colored red and each point corresponding to a terminal of some
plane Ej′ with j′ ≥ i + 1 is colored blue. For Ii, we compute a minimum piercing P̂i according to
Lemma 2 with M = Nxy. In other words, for any relevant pair (tj , tj′), there is some M-path in

Nxy that contains a piercing point of P̂i. We choose i? ∈ {1, . . . , k− 1} such that P̂i? has minimum
cardinality. This is crucial for our analysis. At the piercing points of P̂i? , we erect pillars spanning
all planes E1, . . . , Ek. Let N̂i? be the set of these pillars. We now show that N̂i? , along with Nhor,
creates a feasible network for any relevant terminal pair (tj , t

′
j) such that j ≤ i? and j′ ≥ i? + 1.

Lemma 3. The network Nhor ∪ N̂i? M-connects any relevant terminal pair in Tj × Tj′ with j ≤ i?
and j′ ≥ i? + 1.

Proof. Consider a pair (tj , tj′) in Tj × Tj′ as in the statement. We construct an M-path from tj
to tj′ as follows. We know that there exists an M-path π that connects the projections of tj and tj′

in Nxy and contains a piercing point p of P̂i? . Therefore, we can start at tj and follow the projection
of π onto plane Ej until we arrive at p. Then we use the corresponding pillar in N̂i? to reach the
plane Ej′ , where we follow the projection of π (onto that plane) until we reach tj′ . ut

9



Algorithm 3 Pillar network for the directional subproblem for k > 2 planes
Input: Sets Ts ⊂ Es, . . . , Tt ⊂ Et of terminals with s ≤ t (initially s = 1 and t = k).

1: Let T ′ be the projection of Ts ∪ · · · ∪ Tt onto the x–y plane.
2: for each i ∈ {s, . . . , t} do
3: Let Ii be an instance of BRP where each point in T ′, corresponding to a terminal in Tj with j ≤ i, is colored

red and each point in T ′, corresponding to a terminal in Tj′ with j′ ≥ i+ 1, is colored blue.

4: Compute a minimum piercing P̂i according to Lemma 2 with M = Nxy.
5: end for
6: Choose i? ∈ {s, . . . , t} such that P̂i? has minimum cardinality.
7: Let N̂i? be the set of pillars erected at each piercing point of P̂i? , spanning planes Es, . . . , Et.
8: Let N̂≤i? be the output of this algorithm applied recursively to Ts, . . . , Ti? .
9: Let N̂>i? be the output of this algorithm applied recursively to Ti?+1, . . . , Tt.

Output: N̂i? ∪ N̂≤i? ∪ N̂>i?

In order to also M-connect relevant terminal pairs in Tj × Tj′ , where either (j ≤ i? and j′ ≤ i?)
or (j ≥ i?+1 and j′ ≥ i?+1), we simply apply the pillar-placement algorithm recursively to the sets
T1, . . . , Ti? and Ti?+1, . . . , Tk. This yields the desired pillar network Nver

dir . By Lemma 3, Nver
dir ∪Nhor

is feasible. Next, we bound ‖N̂i?‖.

Lemma 4. Let M be an arbitrary directional Manhattan network for T , and let Mver be the set of
vertical segments in M . Then the pillar network N̂i? has weight at most ‖Mver‖.

Proof. Without loss of generality, we assume that M is a subnetwork of the Hanan grid [9]. We may
also assume that any segment of Mver spans only consecutive planes. For 1 ≤ i ≤ j ≤ k, let Mi,j

denote the subnetwork of Mver lying between planes Ei and Ej . Let di,j be the vertical distance
between planes Ei and Ej .

We start with the observation that, for any j = 1, . . . , k − 1, the network Mj,j+1 is a set of
pillars that forms a valid piercing of the piercing instance Ij (defined right after Theorem 3).
Hence, |Mj,j+1| ≥ |P̂j | ≥ |P̂i? |, which implies the claim of the lemma as follows:

‖Mver‖ =
k−1∑

j=1

‖Mj,j+1‖ =
k−1∑

j=1

|Mj,j+1| · dj,j+1 ≥
k−1∑

j=1

|Pi? | · dj,j+1 = |Pi? | · d1,k = ‖Pi?‖.

ut

It is crucial for our construction that the pillars constructed recursively span either E1, . . . , Ei?

or Ei?+1, . . . , Ek, but not all planes. For 1 ≤ j ≤ j′ ≤ k, let weightz(j, j
′) denote the weight of

the vertical part of the network produced by the above pillar-placement algorithm, when applied
to planes Ej , . . . , Ej′ recursively. For technical reasons we set weightz(j, j) = 0. Now assume that
j < j′ and that the algorithm makes the partition at plane Ei′ with j ≤ i′ < j′ when planes
Ej , . . . , Ej′ are processed. By means of Lemma 4, we derive the recursion

weightz(j, j
′) ≤ ‖Mj,j′‖+ weightz(j, i

′) + weightz(i
′ + 1, j′) , (1)

which holds for any M-network M for T . We now claim that

weightz(j, j
′) ≤ (j′ − j)‖Mj,j′‖.
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Our proof is by induction on the number of planes processed by the algorithm. By the induc-
tive hypothesis, we have that weightz(j, i

′) ≤ (i′ − j)‖Mj,i′‖ and weightz(i
′ + 1, j′) ≤ (j′ − i′ −

1)‖Mi′+1,j′‖. We plug these expressions into the recursion 1. Since ‖Mj,i′‖ + ‖Mi′+1,j′‖ ≤ ‖Mj,j′‖
and weightz(l, l) = 0 for any l ∈ {1, . . . , k}, the claim follows.

We conclude that the weight of the solution produced by the algorithm, when applied to all
planes E1, . . . , Ek, is bounded by weightz(1, k) ≤ (k − 1)‖M1,k‖ = (k − 1)‖Mver‖. This completes
the proof of Theorem 3.

4 The General Case

In this section, we present an approximation algorithm, which we call the grid algorithm, for the
general 3D-MMN problem. Our main result is the following.

Theorem 4. For any ε > 0, there exists an O(nε)-approximation algorithm for 3D-MMN that,
given a set of n terminals, runs in nO(1/ε) time.

This result is better than the one in the previous section if the given set of terminals is distributed
over ω(nε) horizontal planes. Moreover, the approach in this section extends to higher dimensions;
see appendix.

For technical reasons, we assume that the terminals are in general position, that is, any two
terminals differ in all three coordinates. By Observation 1 it suffices to describe and analyze the
algorithm for the directional subproblem.

4.1 The 3D Grid Algorithm

We begin the description with a high-level summary. To solve the directional subproblem, we place
a 3D grid that partitions the instance into a constant number of cuboids; see Fig. 5a. Cuboids that
differ in only two coordinates form slabs. We connect terminals from different slabs by M-connecting
each terminal to the corners of its cuboid and by using the edges of the grid to connect the corners.
We connect terminals from the same slab by recursively applying our algorithm to the slabs.

Step 1: Partitioning into cuboids and slabs. Consider the bounding cuboid C of T and set c = 31/ε.
Partition C by 3(c− 1) separating planes into c× c× c axis-aligned subcuboids Cijk with i, j, k ∈
{1, . . . , c}. The indices are such that larger indices mean larger coordinates. Place the separating
planes such that the number of terminals between two consecutive planes is at most n/c. This can be
accomplished by executing a simple plane-sweep for each direction x, y, z, and by placing separating
planes after every n/c terminals. Here we exploit our general-position assumption. The edges of
the resulting subcuboids—except the edges on the boundary of C, which we do not need—induce
a three-dimensional grid G of axis-aligned line segments. We insert G into the solution.

For each i ∈ {1, . . . , c}, define the x-aligned slab, Cxi , to be the union of all cuboids Cijk with
j, k ∈ {1, . . . , c}. Define y-aligned and z-aligned slabs Cyj , Czk analogously; see Fig. 5b.

Step 2: Add M-paths between different slabs. Consider two cuboids Cijk and Ci′j′k′ with i < i′,
j < j′, and k < k′. Any terminal pair (t, t′) ∈ Cijk × Ci′j′k′ can be M-connected using the edges
of G as long as t and t′ are connected to the appropriate corners of their cuboids; see Fig. 5c. To
this end, we use the following patching procedure.

Call a cuboid Cijk relevant if there is a non-empty cuboid Ci′j′k′ with i < i′, j < j′, and k < k′.
For each relevant cuboid Cijk, let p̂ijk denote a corner that is dominated by all terminals inside Cijk.
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(a) Example of a grid with two
cuboids from different slabs.
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

(b) Examples of x-, y-, and z-aligned
slabs.

(c) M-paths using patching
and grid edges.

Fig. 5: Illustrations for the grid algorithm: cuboids, slabs, and patches.

We define up-patching Cijk to mean M-connecting every terminal in Cijk to p̂ijk. We up-patch Cijk
by solving (approximately) an instance of 3D-RSA with the terminals in Cijk as points and p̂ijk as
origin. We define down-patching analogously; cuboid Cijk is relevant if there is a non-empty cuboid
Ci′j′k′ with i > i′, j > j′, k > k′; we let p̌ijk be the corner that dominates all terminals in Cijk.

We complete this step by inserting the up-patches and the down-patches of all relevant cuboids
into the solution.

Step 3: Add M-paths within slabs. To M-connect relevant terminal pairs that lie in the same slab, we
apply the grid algorithm (steps 1–3) recursively to each slab Cxi , Cyj , and Czk with i, j, k ∈ {1, . . . , c}.

4.2 Analysis

We first show that the output of the algorithm presented in Section 4.1 is feasible, then we establish
its approximation ratio of O(nε) and its running time of nO(1/ε) for any ε > 0. In this section, OPT
denotes the weight of a minimum M-network (not the cost of an optimal solution to the directional
subproblem).

Lemma 5 (Feasibility). The grid algorithm M-connects all relevant terminal pairs.

Proof. Let (t, t′) be a relevant terminal pair. First, suppose that t and t′ lie in cuboids of different
slabs. Thus, there are i < i′, j < j′, k < k′ such that t ∈ Cijk and t′ ∈ Ci′j′k′ . Furthermore, Cijk
and Ci′j′k′ are relevant for up- and down-patching, respectively. When up-patching, we solve an
instance of RSA connecting all terminals in Cijk to p̂ijk. Similarly, down-patching M-connects t′

to p̌i′j′k′ . The claim follows as G M-connects p̂ijk and p̌i′j′k′ .

Now, suppose that t and t′ lie in the same slab. As the algorithm is applied recursively to each
slab, there will be a recursion step where t and t′ lie in cuboids in different slabs. Here, we need
our general-position assumption. Applying the argument above to that particular recursive step
completes the proof. ut

Approximation ratio. Next, we turn to the performance of our algorithm. Let r(n) be its approxi-
mation ratio, where n is the number of terminals in T . The total weight of the output is the sum
of ‖G‖, the cost of patching, and the cost for the recursive treatment of the slabs. We analyze each
of the three costs separately.
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The grid G consists of all edges induced by the c3 subcuboids except the edges on the boundary
of C. Let ` denote the length of the longest side of C. The weight of G is at most 3(c− 1)2`, which
is bounded by 3c2OPT as ` ≤ OPT.

Let rpatch(n) denote the cost of patching all relevant cuboids in step 2. Lemma 6 (given below)
proves that rpatch(n) = O(nε)OPT.

Now consider the recursive application of the algorithm to all slabs. Recall that Nopt is a fixed
minimum M-network for T . For i ∈ 1, . . . , c, let OPTx

i be the optimum cost for M-connecting all
(not only relevant) terminal pairs in slab Cxi . Define OPTy

i and OPTz
i analogously.

Slightly abusing of notation, we write Nopt ∩Cxi for the set {s∩Cxi | s ∈ Nopt} of line segments
of Nopt intersected with slab Cxi . Observe that Nopt ∩ Cxi forms a feasible solution for Cxi . Thus,
OPTx

i ≤ ‖Nopt ∩ Cxi ‖. By construction, any slab contains at most n/c terminals. Hence, the total
cost of the solutions for slabs Cx1 , . . . , C

x
c is at most

c∑

i=1

r
(n
c

)
OPTx

i ≤ r
(n
c

) c∑

i=1

‖Nopt ∩ Cxi ‖ ≤ r
(n
c

)
OPT .

Clearly, the solutions for the y- and z-slabs have the same bound.
Summing up all three types of costs, we obtain the recursive equation

r(n)OPT ≤ 3c2OPT + rpatch(n)OPT + 3r
(n
c

)
OPT .

Hence, r(n) = O(nmax{ε,logc 3}). Plugging in c = 31/ε yields r(n) = O(nε), which proves the approx-
imation ratio claimed in Theorem 4.

Lemma 6. Patching all relevant cuboids costs rpatch(n) ∈ O(nε)OPT.

Proof. First note that it suffices to consider up-patching; the down-patching case can be argued
analogously.

Lemma 7 shows the existence of a near-optimal M-network that up-patches all relevant cuboids.
Lemma 8 shows that by reducing the patching problem to 3D-RSA, we can find such a network of
cost O(ρ)OPT, where ρ is the approximation factor of 3D-RSA.

We argued in Section 2.3 that there exists an approximation-preserving reduction from 3D-RSA
to DST. DST, in turn, admits an O(nε)-approximation for any ε > 0 [4]. Hence, the cost of up-
patching is indeed bounded by O(nε)OPT. ut

We now turn to the two lemmas that we just used in the proof of Lemma 6. For our analysis,
we need the network N ′ that is the union of G with Nopt and the projections of Nopt onto every
separating plane of G. Since there are 3(c − 1) separating planes and, as we have seen above,
‖G‖ ≤ 3c2OPT, it holds that ‖N ′‖ ≤ 3(c2 + c)OPT = O(OPT).

Lemma 7. There exists an M-network of total cost at most 3(c2 + c)OPT that up-patches all
relevant cuboids.

Proof. We claim that N ′ up-patches all relevant cuboids. To this end, let t ∈ Cijk and let t′ ∈ Ci′j′k′
with i < i′, j < j′, k < k′. Follow the M-path connecting t and t′, starting from t. This path must
leave Cijk at a certain point p̄, which lies on some face F of Cijk. Face F , in turn, lies on some
separating plane S of the grid G. From now on follow the projection of the M-path from p̄ to t′ on
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plane S. This projected path must leave the face F , since t′ lies in Ci′j′k′ with i < i′, j < j′, k < k′,
and the projection of t′ onto S must therefore lie outside of F . Moreover, the point p̄′ where this
path leaves F must lie on an edge of Cijk incident to pijk. Hence, we obtain a t–pijk M-path by
going from t to p̄, from p̄ to p̄′ and then from p̄′ to pijk. ut

Lemma 8. Given a number ρ ≥ 1 and an efficient ρ-approximation of 3D-RSA, we can efficiently
up-patch all relevant cuboids at cost no more than 12(c2 + c)ρOPT.

Proof. In Lemma 7, we showed the existence of a network N ′ that up-patches all relevant cuboids
at low cost. Now consider an arbitrary relevant cuboid Cijk. Clearly N ′ ∩ Cijk up-patches Cijk.
Hence OPTup

ijk ≤ ‖N ′ ∩ Cijk‖, where OPTup
ijk denotes the cost of a minimum up-patching of Cijk.

The problem of optimally up-patching Cijk is just an instance Iijk of 3D-RSA in which all terminals
in Cijk have to be connected by an M-path to p̂ijk. Applying the factor-ρ approximation algorithm
for 3D-RSA to each instance Iijk with Cijk relevant, we patch at total cost at most

ρ
∑

Cijk relevant

OPTup
ijk ≤ ρ

∑

Cijk relevant

‖N ′ ∩ Cijk‖ ≤ 4ρ‖N ′‖ .

The last inequality follows from the fact that each edge of N ′ occurs in at most four cuboids. The
lemma follows since ‖N ′‖ ≤ 3(c2 + c)OPT. ut

Running time. Finally, we analyze the running time. Let T (n) denote the running time of the
algorithm applied to a set of n terminals. The running time is dominated by patching and the
recursive slab treatment. Using the DST algorithm of Charikar et al. [4], patching cuboid Ci requires

time n
O(1/ε)
i , where ni is the number of terminals in Ci. As each cuboid is patched at most twice

and there are c3 cuboids, patching takes O(c3)nO(1/ε) = nO(1/ε) time. The algorithm is applied
recursively to 3c slabs. This yields the recurrence T (n) = 3cT (n/c) + nO(1/ε), which leads to the
claimed running time.

This completes the proof of Theorem 4.

5 Open Problems

We have presented, for any ε > 0, a grid-based O(nε)-approximation algorithm for dD-MMN.
This is a significant improvement over the ratio of O(n4/5+ε) which is achieved by reducing the
problem to DSF. For 3D, we have described a 4(k− 1)-approximation algorithm for the case when
the terminals lie on k ≥ 2 horizontal planes. This outperforms our grid-based algorithm when
k ∈ o(nε). Whereas 2D-MMN admits a 2-approximation [5,10,15], it remains open whether O(1)-
or O(log n)-approximation algorithms exist for higher dimensions.

Our O(nε)-approximation algorithm for dD-MMN solves instances of dD-RSA for the subprob-
lem of patching. We conjecture that dD-RSA admits better approximation ratios. While this is an
interesting open question, a positive result would still not be enough to improve our approximation
ratio, which is dominated by the cost of finding M-paths inside slabs.

The complexity of the undirectional bichromatic rectangle piercing problem (see Section 3) is
still unknown. Currently, the best approximation has a ratio of 4, which is (trivially) implied by the
result of Soto and Telha [17]. Any progress would immediately improve the approximation ratio of
our algorithm for the k-plane case of 3D-MMN (for any k > 2).
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Appendix: Extension to Higher Dimensions

We now describe the approximation algorithm for dD-MMN, for d > 3, as a generalization of the
3D-MMN idea from Section 4.

Theorem 5. For any fixed dimension d and for any ε > 0, there exists an O(nε)-approximation
algorithm for dD-MMN.

Large parts of the algorithm and the analysis are straightforward generalizations of the algorithm
for 3D-MMN. The presentation of both follows closely the 3D case. However, Lemma 11, where the
cost of the patching procedure is bounded, requires non-trivial additional insights.

As in the 3D case we decompose the overall problem into a constant number of instances of
the directional subproblem. The directional subproblem consists in M-connecting any terminal pair
(t, t′) such that xi(t) ≤ xi(t′) for any i ∈ {1, . . . , d}. Here, we use xi(p) to denote the i-th coordinate
of point p ∈ Rd. We can decompose the general problem into 2d−1 directional subproblems. Once
again, we assume that the terminals are in general position.

The dD Grid Algorithm

We begin the description with a high-level summary. To solve the directional dD-MMN problem
we place a dD-grid which partitions the instance into cuboids and slabs. Terminal pairs lying in
different slabs are handled by M-connecting each terminal to the corner of its cuboid and then using
the edges of grid. Terminal pairs from the same slab are M-connected by applying the algorithm
recursively to all slabs. Each slab contains only a constant fraction of the terminals.
Step 1: Partitioning into cuboids and slabs. Consider the bounding cuboid C for the set T of

terminals and choose a large constant c = d1/ε. For each dimension i ∈ {1, . . . , d} we choose c+ 1
separating planes determined by values xi1 < · · · < xic+1. Planes xi1 and xic+1 coincide with the
boundary of C in dimension i. The separating planes for dimension i partition C into c slabs Cij ,

where j ∈ {1, . . . , c}. Slab Cij is the set of points p ∈ C such that xji ≤ xi(p) ≤ x
j+1
i . We place the

separating planes so that each slab contains at most n/c terminals. Altogether we have d(c + 1)
separating planes.

Let j1, . . . , jd ∈ {1, . . . , c}. The subcuboids Cj1,...,jd is the set of points p ∈ C such that xiji ≤
xi(p) ≤ xiji+1 for each i ∈ {1, . . . , d}.

Consider the ith dimension, i ∈ {1, . . . , d} and integers jk ∈ {2, . . . , c} for each k ∈ {1, . . . , d}−
{i}. Let s be the axis-parallel line segment that contains all points p ∈ C such that xk(p) = xjk for
each k 6= i. We call s a grid segment for dimension i. The grid G is the set of all grid segments and
there are d(c− 1)d−1 grid segments in G.

Given jk ∈ {2, . . . , c} for each k ∈ {1, . . . , d} we call (x1j1 , . . . , x
d
jd

) a grid point of G and there

are (c− 1)d grid points in total.

Step 2: Add M-paths between different slabs. Consider two cuboids Cj1,...,jd and Cj′1,...,j′d with ji < j′i
for each i ∈ {1, . . . , d}. Any pair of terminals t ∈ Cj′1,...,j′d and t′ ∈ Cj′1,...,j′d can be M-connected
using the segments of G as long as t and t′ are suitably connected to the corners (grid points) of
their cuboids. We use patching (described below) to connect all terminal to the corners of their
cuboid.

Patching: Call a cuboid Cj1,...,jd relevant if there is a cuboid Cj′1,...,j′d that contains at least one
terminal and satisfies ji < j′i for each i ∈ {1, . . . , d}. For each relevant cuboid Cj1,...,jd , let pj1,...,jd
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denote the grid point (xij1+1, . . . , x
d
jd+1). Up-patching Cj1,...,jd means to M-connect every terminal

in t ∈ Cj1,...,jd to pj1,...,jd . Up-patch Cj1,...,jd by solving the dD-RSA problem with the terminals
inside Cj1,...,jd as the terminals and pj1,...,jd as the origin.

Down-patching is defined analogously; cuboid Cj1,...,jd is relevant if there is a non-empty cuboid
Cj′1,...,j′d with j′i < ji, i = 1, . . . , d and using grid point p′j1,...,jd := (xij1+1, . . . , x

d
jd+1) as origin instead

of pj1,...,jd .
The output of this step is the union of grid G with a network that up-patches and down-patches

all relevant cuboids. This produces M-paths between all terminal pairs in different slabs.

Step 3: Add M-paths within slabs. To also connect terminal pairs that lie in a common slab we apply
the algorithm (Steps 1–3) recursively to each slab Cij with i ∈ {1, . . . , d} and any j ∈ {1, . . . , c}.

Analysis

We now show that the algorithm presented above yields a feasible solution to directional dD-MMN,
with cost at most O(nε)OPT, for any ε > 0. Here, OPT denotes the cost of an optimum solution to
the general dD-MMN instance rather than the minimum cost OPT′ achievable for the directional
subproblem. The reason is that the cost of the grid G is generally not related to OPT′ but to OPT.
We finish the section by arguing that the running time of the algorithm is nO(1/ε).

Lemma 9 (Feasibility). The dD grid algorithm M-connects all relevant terminal pairs.

Proof. Let (t, t′) be a relevant terminal pair. First suppose that t ∈ Cj1,...,jd and t′ ∈ Cj′1,...,j′d where
ji < j′i for all i ∈ {1, . . . , d}. Hence, Cj1,...,jd and Cj′1,...,j′d are relevant for up-patching and down-
patching, respectively. Consider the corners pj1,...,jd of Cj1,...,jd and the corner p′j′1,...,j′d

of Cj′1,...,j′d .

In the up-patching step of our algorithm we solve an RSA problem with terminals of Cj1,...,jd as
the input points, and corner pj1,...,jd as the origin. By definition, an RSA solution M-connects t to
pj1,...,jd . Similarly, down-patching M-connects t′ to p′j′1,...,j′d

. It follows that t and t′ are connected,

since pj1,...,jd and p′j′1,...,j′d
are M-connected via grid G. Both terminals are even M-connected since

additionally t ≤ pj1,...,jd ≤ p′j′1,...,j′d ≤ t
′, where ≤ denotes the domination relation between points.

Now suppose t and t′ lie in the same slab. As the algorithm is applied recursively to each slab
there will be a recursion step where t and t′ will lie in cuboids in different slabs. Here, we need
our assumption of general position. Applying the argument above to that particular recursive step
completes the proof. ut

Approximation ratio. Let r(n) denote the approximation ratio of our algorithm where n is the
number of terminals in T . The total cost of our solution consists of the cost for the grid G, the cost
of up-patching and down-patching all relevant cuboids, and the cost for the recursive treatment of
the slabs in all d dimensions. We analyze each of these costs separately.

The grid G consists of the d(c−1)d−1 grid segments. The length of any grid segment s is a lower
bound on OPT. This holds because there are two terminals on the boundary of C whose L1-distance
is at least the length of s. It follows that the cost of the grid is bounded by d(c− 1)d−1OPT.

Let rpatch(n) denote the cost of patching all relevant cuboids as is done in Step 2. Lemma 10
(given below) proves that rpatch(n) = O(nε)OPT.

Now consider the recursive application of the algorithm to all slabs Cij , where i ∈ {1, . . . , d}
and j ∈ {1, . . . , c}. First recall that we placed the separating planes so that |Cij | ≤ n/c for any
i ∈ {1, . . . , d} and any j ∈ {1, . . . , c}.

17



Consider dimension i ∈ {1, . . . , d}. Let OPTi
j be the optimum cost for M-connecting all (not

only relevant) terminal pairs in slab Cij , where j ∈ {1, . . . , c}. Slightly abusing notation, we write

Nopt∩Cij for the set of line segments of Nopt that are completely contained in the slab Cij . Observe

that Nopt ∩Cij , forms a feasible solution for Cij . Thus OPTi
j ≤ ‖Nopt ∩Cij‖. Each such Cij contains

at most n/c terminals, and therefore the total cost of the solutions for the all slabs Cij of dimension
i is at most

c∑

j=1

r
(n
c

)
OPTi

j ≤ r
(n
c

) c∑

j=1

‖Nopt ∩ Cij‖ ≤ r
(n
c

)
OPT .

Summing all costs, we obtain the following recursive equation for r(n)

r(n)OPT ≤ dcd−1 ·OPT + d · r
(n
c

)
OPT + rpatch(n)OPT .

Hence r(n) = O(nmax{ε,logc d}). Choosing c ≥ d1/ε, as in Step 1, yields O(nε) proving the approxi-
mation ratio claimed in Theorem 4.

Lemma 10. The cost of patching all relevant cuboids, rpatch(n), is O(nε)OPT.

Proof. First consider up-patching. Lemma 11 (below) shows the existence of a near optimal network
that up-patches all relevant cuboids. Lemma 12 shows that by reducing the patching problem to
dD-RSA, we can find such a network of cost O(ρ)OPT, where ρ is the approximation factor of
dD-RSA.

Analogously to the 3D-case there is a approximation-preserving reduction from dD-RSA to DST
(see Section 2.3), which implies that dD-RSA is approximable within a factor O(nε) for any ε > 0.
Hence the same approximation factor can be achieved for dD-RSA by choosing ε sufficiently small.

The lemma follows as the analysis holds analogously for down-patching. ut

Lemma 11. There exists an M-network of total cost at most (c + 1)dOPT that up-patches all
relevant cuboids.

Proof. Let I ⊆ {1, . . . , d} be a set of dimensions. For every i ∈ I we choose a separating plane xiji
where ji ∈ {1, . . . , c}. Let J be the set of these separating planes and let C(J) be the intersection
of C with all separating planes in J . We call C(J) a C-face. There are most (c+ 1)d such C-faces.
Project Nopt onto each C-face. Let N ′ be the union of all these projections. Clearly, the cost of N ′

is at most (c+ 1)dOPT.
We claim that N ′ up-patches all relevant cuboids. To this end, let (t, t′) be a relevant terminal

pair such that t ∈ Cj1,...,jd , t′ ∈ Cj′1,...,j′d and ji < j′i for all i ∈ {1, . . . , d}.
We claim that there is an M-path πt from t to pj1,...,jd in N ′. To see this, traverse the M-path

πtt′ in Nopt connecting t and t′, starting from t. We assume w.l.o.g. that the separating planes
that bound cuboid Cj1,...,jd are entered by πtt′ in the order (x1j1+1, . . . , x

d
jd+1). The desired path πt

starts at t and follows π until the separating plane x1j1+1 is entered. From this point on we follow

the projection πtt′(x
1
j1+1) of πtt′ onto C-face C(x1j1+1). If πtt′(x

1
j1+1) enters x2j2+1 we follow the

projection πtt′(x
1
j1+1, x

2
j2+1) of πtt′ onto C(x1j1+1, x

2
j2+1)). We proceed in this fashion until we reach

the C-face C(x1j1+1, . . . , x
d
jd+1), which is just the corner pj1,...,jd . Since N ′ contains the projection of

πtt′ onto each C-face, the path πt described above is contained in N ′. This reasoning remains valid
if the separating planes that bound Cj1,...,jd are entered in an arbitrary order, as we projected Nopt

onto each C-face. ut
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Lemma 12. Given an efficient algorithm that approximates dD-RSA within a factor of ρ, we can
efficiently up-patch all relevant cuboids at cost at most (2(c+ 1))dρOPT.

Proof. In Lemma 11, we showed the existence of a network N ′ that up-patches all relevant cuboids
at low cost. Now consider an arbitrary relevant cuboid Cj1,...,jd . Clearly N ′ ∩ Cj1,...,jd up-patches
Cj1,...,jd . Hence OPTup

j1,...,jd
≤ ‖N ′ ∩ Cj1,...,jd‖, where OPTup

j1,...,jd
denotes the cost of a minimum

up-patching of Cj1,...,jd . The problem of optimally up-patching Cj1,...,jd is just an instance Ij1,...,jd of
dD-RSA, in which all terminals in Cj1,...,jd have to be connected by an M-path to pj1,...,jd . Applying
the factor-ρ approximation algorithm for dD-RSA to each instance Ij1,...,jd with Cj1,...,jd relevant,
we patch at total cost at most

ρ
∑

Cj1,...,jd
relevant

OPTup
j1,...,jd

≤ ρ
∑

Cj1,...,jd
relevant

‖N ′ ∩ Cj1,...,jd‖ ≤ 2dρ‖N ′‖ .

The last inequality follows from the fact that each segment of N ′ occurs in at most 2d cuboids. The
lemma follows since ‖N ′‖ ≤ (c+ 1)dOPT. ut

Running time. Let T (n) denote the running time of the algorithm for n terminals. The running
time is dominated by patching and the recursive treatment of slabs. Using the DST algorithm of
Charikar et al. [4], patching cuboid Cij requires time (nij)

O(1/ε), where nij is the number of terminals

in Cij . As each cuboid is patched at most twice and there are cd cuboids, patching requires total time

O(cd)nO(1/ε) = nO(1/ε). The algorithm is applied recursively to dc slabs. This yields the recurrence
T (n) = dcT (n/c) + nO(1/ε), which leads to the claimed running time.
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